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UTILIZING INCOMMENSURATE SAMPLING RATES TO LAYER 

AUDIO FILES FOR USE WITH VARIABLE BANDWIDTH 

BY 

Erik Leland Taubeneck 

ABSTRACT 

In the study of Sampling Theory, the Nyquist-Shannon sampling theorem, proved 

in the first half of the 20th century, showed that a bandwidth limited signal could be 

exactly reconstructed when sampled at an appropriate rate. This is the basis for digital 

representation of audio files (CDs), since human hearing is bandwidth limited. Dr. Stephen 

Casey proved in his recent research that such a signal, sampled at multiple specifically 

chosen incommensurate rates, can also be exactly reconstructed. This research takes his 

theorem and applies it to a regularly sampled audio signal to construct new data sets, 

sampled at incommensurate rates. The signal can be reconstructed from one or more of 

these sets, with quality increasing as more data sets are included. Each data set can buffer 

individually when streamed over a broadband connection. Thus, when bandwidth changes 

the audio player can add or drop a data set without having to completely re-buffer. 
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1 Introduction 

The origin of this research stems back to a conversation with my advisor, Dr. Stephen 

Casey, about a theorem he had recently proved that appeared in The Journal of Applied 

Functional Analysis. While much of the analysis in the paper was, and some still remains, 

beyond my mathematical skill set, I immediately thought of an application to digital audio 

signals. Originally, I had anticipated an ability to compress audio further than current 

encoding schemes have achieved. In fact, in March 2009 at the 19th Annual Robyn Rafferty 

Mathias Student Research Conference, I presented preliminary research titled Audio Com

pression Using Incommensurate Sampling Rates. However, as my research continued, the 

potential to compress audio using this type of analysis declined. The amount of compression 

that could be achieved seemed to be minimal and required a relational data structure that 

was far beyond my computer science skills. 

The process would have taken one audio file and convert it into a few audio files which, 

together, would be roughly the same size as the original. Compression would have come from 

eliminating near overlap between these new files. When this became an impractical project, 

I proposed using this multiple file structure as a type of layering of an audio signal. This is 

useful in a variable bandwidth setting, such as streaming audio to a computer or a cell phone. 

This paper reviews introductory sampling theory, states Casey's multichannel deconvolution 

theorem, describes current digital to audio conversion algorithms, and produces an original 

algorithm for creating and reconstructing multichannel layered audio files. 

1.1 B ackgr ound 

Casey's research [Cas07] undertook the problem of determining the flatness of a sur

face, such as a silicon chip. Computer chip manufacturers require a piece of silicon to be 

sufficiently smooth in order to add grooves in which the electrons flow. The smoother the 
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silicon surface, the closer these grooves can be placed; a shorter distance for the electrons to 

travel produces a faster chip. The process to test the smoothness uses a small needle, which 

is placed above the surface. An electrical charge is run through a needle and its reflection off 

the surface is measured. A smaller needle allows for a more precise measurement and, due 

to the economic and technological advances sustaining Moore's Law1, smaller and smaller 

needles have been used. The needles, however, have a lower bound on size with respect 

to the ability to carry an electrical charge. Engineers reached a point where any smaller 

needles would burst whenever the necessary electrical charge was applied. 

The solution to this problem came in the form of complex and harmonic analysis. 

The problem, in essence, is the reconstruction of a function (in this case we have the 

function of the distance between the needle and the surface) from discrete data values. It 

has been well known that this is possible for bandwidth limited functions when sampling 

above the Nyquist rate. In this setting, the 'rate' does not refer to time, but rather the size 

of the needle. Casey showed that by measuring with multiple needles with relative radii 

proportional to the integers2, the data could reconstruct the function to a level equivalent 

to measuring with a needle smaller than each of these multiple needles. 

This discussion immediately led me to question: could this process also be used with 

audio signals? The answer was a quick and obvious yes, and his paper had actually dealt 

with this situation. I began to consider the possible implications of this concept on audio 

compression. As mentioned above, the first idea dealt with compression which did not 

pan out. Instead, the idea to use this theorem to improve streaming audio technology was 

conceived. 

1.2 Preliminary Definitions 

We first introduce useful definitions which shall be referenced in the paper. These 

are referenced in a number of texts books in complex, harmonic, and numerical analysis. 

1 Moore's Law states that computer processors double in speed roughly every 16 months. This phenomena 
has nearly held true since the advent of digital computation. 

2The use of the integers here has to do with the circular nature of the needle and the zeros of Bessel 
functions. This paper will deal with a different set of sampling rates. 
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However much of this section is cited from a collection of notes arranged by my advisor, 

Casey. [CaslO] 

Definition 1.1 A function f is called absolutely integrable, i.e. f G L1(R), if 

H/lli := / |/(:r)|dx < +00. 
JR 

/ / / is in Ll, we say that \\f\\i is the Ll norm of f. Similarly, a function is called square 

integrable, i.e. / G L2(M.), if 

:= f \f(x)\2dx < +00. 
JR 

If f is in 1?, we say that f is of finite energy and \\f\\2 is the L2 norm of f. 

For the remainder of the paper, all functions will be considered absolutely and square 

integrable functions on the real line, and all integrals will be done with respect to the 

Lebesgue measure, unless otherwise noted. The Fourier series and Fourier transform are 

fundamental in the study of sampling theory and their definitions follow. 

Definition 1.2 (Fourier Series) Let f be a periodic, continuous, integrable function on 

R, with period 2fi. Then the Fourier series of f is defined by 

/ (*) := J ] Cnexp-^ /n 

where the Fourier coefficients {cn} are given by 

c „ : = ^ | f(x)ex^nx/Qdx. 

Definition 1.3 (Fourier Transform and Inversion Formula) The Fourier transform 

of f G L1 (W) is defined as 

f(u):= [ f(t)exp-2^dt 
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and its inversion formula3, for g € L1(M), is 

g(t):= [ g^exp^dw. 

If we consider the function / to be a signal, then the domain of / is time. The 

domain of / , the Fourier transform of / , represents the signal frequency. The following 

definitions are useful when referring to the time or frequency domain of such a function and 

its transform: 

Definition 1.4 (Support) The support of a function / : R —» R, denoted supp(f), is the 

closure of the set on which f is non-zero, i.e. supp(f) = {x € R : / (x) ^ 0}. The function 

f is said to have compact support if supp(f) is a compact set. 

The Fourier Transform has a number of mathematically convenient properties: lin

earity, symmetry, conjugation, boundedness, and continuity, to name a few. Convolution is 

also a relevant property to the study of sampling theory. 

Definition 1.5 (Convolution) For f,g € /^(R), the convolution of f and g is defined by 

(f*9)(t):= f f(r)g(t-r)dr 

for t,T G R. 

Convolution on either side of the Fourier Transform is equivalent to multiplication 

on the other side, 

(f^g) = f-g, (i) 

(Fg) = f*g- (2) 

3K is equivalent to K and is used to differentiate the time domain (pre-transform) from the frequency 
domain (post-transform). 



Proof of Equation 1: Let f,g € L^M), then 

{f*g)(w) = -2irituj f(f*9)(t)* 
JR 

= f{t-T)g(T)d,T exp 
JR UR 

= / [ f(t-r)g(r)exp-2^dr 
JRJR 

-2nitu dt 

dt. 

The interchange of integrals is justified by Fubini and Tonelli [Ben74]. This last equality 

is justified by the fact that exp~2mtuJ does not depend on the integrand with respect to r. 

We now make a u-substitution. Let u = t — r , then 

t = U + T 

T = t — u 

du = dt. 

Note that as t ranges in M, u ranges M. as well, and thus the limits of integration do not 

change with respect to the substitution. 

(f7~g)(u) = f [ f(u)g(T)exp-2^u+T^drdu 

= [ f f(u) e x p - 2 ^ g(r) exp"2™™ dr dt 
JRJR 

-2iriuu [ 9(r) 
.JR 

= / /(u)exp' 
JR 

= [ f(u)exp-2^^g(uj)du 
JR 

= I f{u)exV-2^^ du-g{u) 
JR 

= 7(w) • g(u>). 

exp 
— 2TTITU! dr dt 

Equation (2) justified similarly, replacing exp lmtu} with exp ̂2mtu> 
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1.3 The Dirac Delta Functional 

Suppose we wished to find the identity under convolution, i.e. a function g such that 

f * 9 = f-

However, no such analytic function exists. We wish to construct a generalized function, 

with the following conditions: 

i. J 5(t) dt = 1 
JR 

ii. supp{<5} = {0} 

Hi. S(t) > 0 for all t e R 

Since the Lebesgue measure of a singleton is 0, i.e. A({0}) = 0, the first two conditions 

contradict each other. We can, however, create a sequence of functions and observe their 

action on a continuous function g in the limit. In this sense, we are constructing a generalized 

function. It is important to note here that convergence is in the sense of generalized functions 

[Lig62]. Let {fn(t) : n € N} be a sequence of real-valued functions such that 

fn(t) = ^X[_ii]{t) 

where 

1 if x € E 
XE= < 

OifxgE. 

Let g be a continuous function on R. We aim to see that 

lim f fn(t)g(t)dt = g(0). (3) 

Proof of Equation (3): Let e > 0 be given. Since g is continuous, there exists4 a 7 > 0 

such that \g(t) — g(0)\ < e whenever \t — 0| < 7. Let iV7 = ^ , where [•] denotes the 

47 used here instead of the traditional 6 as not to confuse any part of the proof with the S functional. 



ceiling function. Then for n > iV7, n > ^ and 

f g(t)fn(t)dt-g(0) = I g{t)^X<_iu{t)dt-g(Q) 
JR JR

 l n n' 

2 f1*1 g(t)dt-llg{0) 
Z J-l/n 1/r. 

r-l/n 

2n" 

< 

< 

n f1/n n fi/n 

« / 9(t)dt-- g(0)dt 
1 J-l/n Z J-l/n 

- (g(t)-g(0))dt 
Z J-l/n 

n (lln 

- \g(t) - g(0)\ dt 
1 J-l/n 

n flln 

2 J-l/n 

The second to last inequality is due to the integral triangle inequality, and the final inequality 

is due to the fact that t € [— ̂ , ^ ] . Thus \t — 0| < ^ < 7. This completes the proof. Q 

Definition 1.6 (Dirac Delta Functional) Let g be a continuous function on JR. Then 

5(t) is the generalized function such that 

f g(t)S(t)dt = g(0). 
JR 

The name Dirac delta functional comes from physicist Paul Dirac who applied the 

functional to quantum mechanics. Now, note that 

(3 * S)(t) = [ g{t- T)5{T) dr = g(t - 0) = g(t). 
JR 

So 5 is the identity under the convolution operation. To verify the other conditions, note 

that if g(t) = 1 then 

f 6(t)dt= f g(t)S(t) = 5(0) = 1. 

JR JR. 

This verifies (i). Now, note that for any t ^ 0, there exists a n € N such that ^ < \t\. 

Thus, fn(t) = 0, verifying (ii). Also, each fn(t) > 0 for all n e N, t £ R, verifying (iii). 



In general we cannot interchange the limit and the integrand; this is again a heuristic 

argument. We are also interested in the S functional with respect to the Fourier Transform. 

Let Sto=S(t-t0). Then 

8(u>) = [ 6(t) exp-2nituJ dt = exp- 2 7 ^ 0 ^ = 1 
JR 

M w ) = f S(t - t0) exp-2™*" dt = exp 
JR 

and with respect to the inverse transform 

S(t) = [ 5{u) exp2™'" dt = e x p 2 ^ 0 * = i 
JR 

5~W0(t) = f 8{u- uQ) exp-2nituJ dt = exp 
JR 

2iritoui 

2irituJo 

To introduce the idea of band-limit, we shall use the cosine function, which has a 

well defined frequency. Using the definition of cosine on C, note that 

cos(27rat) = \ [exp27rito - exp-2"**01] = \ [5{u -a)- 8[u + a)} 

and taking the Fourier Transform, we get 

cos(27TQ;i) = - [S(u — a) — 5{UJ + a)] = - [5(u — a) — S(UJ + a)} 

The last equality is 'justified' by the linearity of the transform and the fact that transform 

and the inverse transform cancel out, i.e. / = / = / for all / 6 L1(R). Again, this 

is a heuristic argument since cosine is not a L1(M) function. However, this allows us to 

observe that cos(27ra£) is a band-limited, as it should be since a is the singular frequency 

of cos(27rai). 

Definition 1.7 (Band-limited) The function f : R —»• R is called Cl-band-limited if the 

support of its Fourier transform f is contained within the bounded interval [—0,, Q] in R, 
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i.e. supp(f) C [—fi,fi]. 

Letting 

f(t) = cos(2irat) 

and taking Fourier Transform using the earlier analysis, we arrive at 

f(u) = 5(u — a) — 5(u + a). 

Thus f(d>) = 0 for all u 0 [—a, a], as desired. 

More rigorous development of generalized functions, and specifically the Dirac delta 

functional, can be found in [Erd62] and [Lig62]. 

1.4 Paley-Wiener Theorem 

A compactly supported function f(t) has a real analytic Fourier transform f(uj) that 

can be analytically continued to the entire complex plane C This continuation is the 

Fourier-Laplace transform of / denned by 

7(0= [ f(t)e-2^<dt,CeC. 
JR 

The Fourier transform can be thought of as the restriction of the Fourier-Laplace transform 

to the real axis. Further analysis of this transform gives way to the following theorem. 

Theorem 1.1 (Paley-Wiener) The Fourier-Laplace transform of an infinitely differen-

tiable function f with compact support contained in {\t\ < A} is an entire function /(£) in 

C which satisfies the following property: 

For every integer n > 0 there exists a positive constant Cn such that 

1/(01 < Cn(l + |C|)-nexp27rAl°^l for all C € C. 

Conversely, every entire function in C satisfying this property is the Fourier-Laplace trans

form of a C°° function with compact support contained in {\t\ < A}. 
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The classical Paley-Wiener theorem says that a square-integrable complex-valued 

function, defined over the real line, can be extended off the real line as an entire function of 

exponential type A if and only if its Fourier transform F{u) is identically zero for \u\ > A, 

i.e., if and only if F is band-limited to [—.A, A]. (For a derivation, see [DM72].) 



2 Classical Sampling Theorem 

Sampling theory is the basis for the digital representation of analog signals. The 

original goal in this area of research was to convert a continuous analog signal into a discrete 

amount of data that completely represents the original signal, demonstrated in the following 

theorem. 

2.1 Statement of the Theorem 

Theorem 2.1 (Classical Sampling Theorem) Let f be a continuous, fl-band-limited 

function of finite energy on R, i.e. / G L2(R). 

i. IfT < 1/2Q, then for all t G R, 

fit) = T > finT)—^ ——. 
JKJ *-zJK ' ir(t-nT) 

ii. IfT < l/2fi and f(nT) = 0 for all n G Z, then / = 0. 

This theorem is at the heart of digital representation of an analog signals. It states 

that certain functions can be perfectly represented by sample values of the function taken at 

regular intervals. The requirement of a limit on the bandwidth of the signal is fundamental 

in determining the upper bound on the sample rate. The discovery of this rate is credited to 

Nyquist, and thus the rate is commonly referred to as the Nyquist rate [Nyq28]. Sampling 

at or above5 this rate allows for complete reconstruction; sampling any faster does not add 

any information. 

The history of the development of this theorem is fairly complex and includes a 

dispute over who initially discovered the result. The theorem has several names associated 

with it: the cardinal series, the Whittaker Sampling Theorem, the Kotelnikov Theorem, and 

'Above' refers to a faster rate. 
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the Shannon Sampling Theorem; here we shall simply refer to it as the classical sampling 

theorem as a distinction from the multi-rate sampling theorem discussed later in the paper. 

2.2 Proof of the Theorem 

The proof of this theorem can be found, in varying forms, in texts such as [Ben74] or 

[Hig96]. This proof is recreated from [CaslO]. 

Proof of Theorem 2.1: Let / be Q-band-limited, i.e. supp(/) C [—Q, fi]. Then for all 

n £ Z , let 

J(u) if u G [-CI, CI] 

f(u - 2Cln) if it e [2Cln - Cl, 2Ctn + Cl]. 

g(u) = < 

We call g(u) the 2Q-periodic extension of / outside the support of / . Since g is 2fi-periodic 

by construction, we can represent it by its Fourier Series (Def 1.2): 

g(u) = J2cn<*P~i™u/Q, (4) 

with coefficients cn given by 

= 2 ^ / f(u)ex^nu/Qdu 

- —f(—). 2ClJ \2ttJ 

The second equality is due to the fact that / = g on [—Q,Q]. The third is due to the fact 

that / = 0 on (—oo, —CI) U (CI, oo). The final equality is simply the recognition of the inverse 

file:///2ttJ
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Fourier transform in the above line. Clearly, / = g • X[_QQJ. Substituting this into (4) 

/ (u) = ^ c e x p - ^ ^ . X ^ n j H 
neZ 

The inverse Fourier transform and the uniform convergence of the Fourier series give 

way to the representation 

/Or) = [ f(u)exp2"iuxdu 

= 55 E *s»> /R
 exp_i™"/n '̂-"."i H p " ° * 

1 V f( n
 )2o

sin7r(2nx-n) 
2Q^J{2Cl) 7r(2fix-n) 

neZ v ; 

E n sin7r(2f2a; — n) 
_"^2?T n(2VLx-n) ' 

Due to uniform convergence, we can exchange the integral and summation in the third 

equality. The fourth equality follows from the nature of XIQQ-I Allowing T = 1/2^, we 

have our desired result. 

/W = £ / ( » r ) = ^ 
neZ 

TT(X/T - n) 

D 
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2.3 Application to Audio Recording 

Fundamentally, sound is an analog signal; waves travel through the molecules of air 

and are sensed by our ears. The first audio recording devices, such as Edison's cylinder 

phonograph, recorded the continuous amplitude of sound into a cylinder of wax. The 

phonograph played back the sound by measuring the amplitude recorded in the wax with 

a needle. Vinyl records were a direct extension of this technology, as were cassette tapes, 

which left a magnetic imprint, rather than a physical one. 

Since human hearing is band limited, the classical sampling theorem can be applied 

to any audible sound. Human hearing cannot detect frequencies above 20 kHz. This does 

not guarantee that the actual sound is band limited, however. This disconnect between the 

physical phenomenon of sound and the mathematical construct of the classical sampling 

theorem can be resolved. Suppose we have a function which describes a sound, / , but is 

not band limited. We can construct a new function which only contains content below some 

frequency fi. Let 

? = / -X[-n,n]-

Taking the inverse Fourier transform (g) = g, we arrive at a function which is band limited. 

If we do this for Q = 20kHz, then the human ear will be unable to distinguish between / and 

g. This is not a mathematical statement, but instead an assumption that audio engineers 

make when designing, building, and using microphones. 

Any realizable microphone can detect frequencies in a limited range. This is equiv

alent to the above mathematical process and allows us to apply the classical sampling 

theorem. Sampling at 44.1 kHz is above the Nyquist rate for human hearing; this is the 

sampling rate of sound recorded on a CD. Digital audio recording measures the amplitude 

of a signal at sufficiently small, constant intervals. Typically the right and left channels 

are recorded separately; surround sound recording systems use up to 7.1 channels (the .1 

referring to a separate bass channel for a subwoofer). We are not concerned with channels, 

as each one can be treated as an individual audio signal. 

High definition audio is usually recorded at 96 kHz with each sample stored as 24 bits. 
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This rate is well above the Nyquist rate6. Prom this master recording, CDs are resampled to 

44.1 kHz and each sample is reduced to 16 bits. Other formats, such as MP3s and the FLAC 

lossless codec, also exist. The process of resampling will be discussed later in Section 4. 

6In fact it is roughly the typical engineering solution to working with a bound: double it and add 10. 



3 Multi-Rate Sampling Theory 

The classical sampling theorem shows that a bandwidth-limited function can be com

pletely reconstructed by sampling at or above the Nyquist rate. If the sampling rate is 

slower, the function cannot be reconstructed using the classical theorem. Research in sub-

Nyquist sampling has proven effective using other methods. The theorem presented here 

was discovered and proved by Casey and Walnut [CW94]. 

The purpose of the theorem is to develop a process of sampling at multiple, sub-

Nyquist rates which together can reconstruct the signal completely, i.e. as if it were sampled 

above the Nyquist rate. The rates are required to be incommensurate for the theorem to 

hold. This condition guarantees that there is no overlapping data between the samples 

taken at different rates. 

3.1 Multichannel Deconvolution 

Deconvolution has proven itself to be a useful mathematical tool in the field of signal 

and image processing. For images, it acts as an enhancing filter to correct out-of-focus blurs 

in a picture. For signals, it can be used to correct distorted line shapes without a loss of 

signal-noise ratio (SNR). In essence, deconvolution is useful in areas of signal and image 

processing where the incoming data contains a high degree of information. The reason this 

works so naturally is because the convolution equation models a number of linear systems. 

For our purposes, the convolution equation s — f * // models linear, translation 

invariant systems (e.g. microphones). In this model, / is the input signal function, /i is the 

system impulse response distribution, and s is the output (received) signal. However, in 

many physical applications, s is often a poor approximation of the signal / . This motivates 

us to deconvolve / from // to attain the original signal. Results have shown that if the 

convolver \i is time-limited (i.e. compactly supported) and non-singular (i.e. not a delta 

16 
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generalized function), then this problem is 'ill-posed' in the sense of Hadamard [Par89]. 

It has been shown to be ill-posed for all realizable convolvers, i.e. all convolvers that can 

be built. To circumvent this scenario, a theory of multichannel deconvolution has been 

developed to solve these equations. A multichannel system preserves information about the 

signal that would otherwise be lost. Thus, data lost by one convolver can still be retained 

by another convolver. Together, the signals Si overdetermine / since 

Si = f * fa, i = l,...,n. 

If the convolvers {fa} satisfy the condition of being strongly coprime, deconvolving / is now 

well-posed. 

Definition 3.1 (Strongly Coprime) A set of convolvers {fa} that satisfy the inequality 

/ n \ 1/2 

( X > ( O N >Aexp-*l*4.(l + |C|)-" 

for every £ € C, where A and B are positive constants, N is a positive integer and Qz 

denotes the imaginary part of z, is said to be strongly coprime. 

Note that this tells us that y^—p.^ia satisfies the Paley-Weiner growth bound. If this is 

so, then there exists a set of time-limited deconvolvers {i/j} such that 

fa * v\ H V fax * vn = 6 

and, consequently 

Mi-Pi-I h/xn-i/n = l, (5) 

where 6 is the Dirac delta functional. Equation (5) above is the analytic Bezout equation. 

The existence of such deconvolvers is guaranteed by the following theorem: 

Theorem 3.1 (Hormander) For compactly supported and strongly coprime distributions 
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{//j}"=1 on M, there exists compactly supported distributions {vi}f=i such that 

5 = iii * v\ H h nn * ^„. 

Moreover, the set of convolvers {ui} and deconvolovers {vi} satisfy the analytic Bezout 

equation (5) if and only if the set of distributions {/Xj}"=1 are strongly coprime. 

By Hormander's theorem, a strongly coprime set has a solution in the analytic Bezout 

equation. Thus, given the deconvolvers and output signals, / is naturally produced. 

]PSi * ^ = ̂ ( / * m ) * ^ = ] P / * (m *v^ = f *^2(IM *ui) = f*s = f. 
i i i i 

The system is such that no information is lost in this process. This occurs because the con

dition of being strongly coprime guarantees that the zeros in the analytic Bezout equation 

do not cluster quickly as |£| —> oo. If the {/Ij} did have a common zero, then si(C) = 0 at 

that zero and information about / would be lost. Because the system is engineered toward 

eliminating any common zero, no information about / is lost and the problem is well-posed. 

Thus, the signal / is gathered by this strongly coprime system, and these received signals 

are then filtered by the deconvolvers to reconstruct / . 

These methods are linear and 'realizable,' thus deconvolution at some time sample 

only depends on the information near that time sample. Unfortunately, Hormander's The

orem is an existence theorem; it does not reveal what the deconvolvers might be. One 

obvious solution is 

The deconvolvers have been shown not to be unique, and so, for certain scenarios one set 

of deconvolvers may be better than another. More in this direction is given in [CW94]. 

3.2 Non-Commensurate Sampling Lattices 

The theory developed here merges the two ideas of multichannel deconvolution and 

classical sampling theory together. It has been developed by Casey [Cas07], Casey and 
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Sadler [CSOO], and Walnut [Wal96]. 

By the results in multichannel deconvolution, we need to create a set of strongly 

coprime convolvers {/ij} in order for the problem to be well-posed. First, we present three 

definitions. Then, the following theorem will be useful in creating such a set. 

Definition 3.2 A number a G R is said to be poorly approximated by rationals if there exists 

an integer n G N : n > 2 and a constant Ca > 0 such that for all integers p, q 6 Z : q > 2, 

, p 
a - | - > 

Cn 

This class of numbers will be denoted by P. 

Definition 3.3 A number a G (K\Q) is said to be well approximated by rationals if for all 

n G N : n > 2 and for all constants C > 0, there exists integers p, q € Z : q > 2, 

a 
C 

< —. 
qn 

This class of numbers will be denoted by 

Definition 3.4 (Liouville numbers) A number a £ (M\Q) is said to be a Liouville num

ber if for all n € N : n > 2 there exists integers p, q G Z : q > 2, 

a — I — 
1 

< —. 

This class of numbers will be denoted by L. 

From Definition 3.2 and 3.3, it is clear that P is the complement of W with respect 

to (R\Q). It is also clear from Definition 3.3 and 3.4 that W C L. It is established, as a 

exercise in the final chapter of [TBB01], that A(L) = 0, and thus A(W) = 0. Therefore P 

has full measure: it is the complement of a zero measure set with respect to a set of full 

measure. The proof that L is of measure zero uses the fact that 
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L = (R\Q) n f | Gn 
ra=2 

where Gn are open sets denned as 

00 °° / 1 1 \ 

g=2p=—00 

A little work yields the fact that this intersection can be covered by arbitrarily small 

intervals; thus, L has measure zero. The Golden Mean is a classic example of an irrational 

which is poorly approximated by rationals, however there are uncountably many. The 

(irrational) algebraic numbers are a subset of P, and P is dense in E. We shall use this class 

of numbers to construct strongly coprime sets. 

Theorem 3.2 (Petersen-Middleton) Let 0 < r\ < • • • < r m , m > d = 1 satisfy the 

condition that for all i 7̂  j , Ti/rj are in P, then {Xr_r. r.id} is a strongly coprime set. 

Then to create a set of appropriate convolvers, we need only find such a set whose 

ratios are poorly approximated by rationals. 

Suppose / € L2(R) and let a € P. Now the pair /xi = X ^ ^ ] , ^2 = *[-a,a] a r e 

strongly coprime. Thus, the problem of solving the analytic Bezout equation for v\ and v<i 

£1 • vi + JLt2 • v<i = 1 

is well-posed. Now, /2i(a;) = n™ and foO^) = „.̂  have zeros7 

?="»}•*-{£ ZPl= — :keN , % = <! — :A;GN 

Thus, one solution to the analytic Bezout equation is V\{LJ) = 2 ~ l / \ for u; € Z ^ and, 

likewise, V2(UJ) = o^f 1 f° r w G ^fe- Then, the problem simply becomes an interpolation 

problem on the set of zeros T = Z^ [j Zp2. We then have a new reconstruction formula for 

7Here and throughout, 0 £ N. 
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Theorem 3.3 (Casey-Walnut) Let 

r - { ^ = *6N}u{i=t6N} 

and let Aj 6 T, a € P. If f is a (1 + a)-band-limited function, then f can be conditionally 

reconstructed by the formula 

f(t) = Y,fWG/{x)(t-\) + lW)Ki(t) + f'(0)K2(t)} 

where 

G{t) = sin(27rt) • sin(27ra:£) 

G(t) 
W) = G"(0)f2 

W) - G(i> G"(0)f 

The interpolators at the origin appropriately model the function at the origin, i.e. 

Ki(0) = 1 while K[(0) = 0 and K2(0) = 0 while K'2(<$) = 1. Also, note that the information 

contained in the signal can be reconstructed uniquely by sampling at each A € V U {0} 

[Wal96]. The signal is conditionally reconstructed with respect to conditions on specialized 

projections into Hilbert subspaces. More on this can be found in [Cas07] and [CW94]. 

Here, it is also important to note that the sampling rates correspond to 1-band-limited 

functions and a-band-limited functions. 1 and a add up to the band-limit of the function 

to be sampled. Thus, we have here a reconstruction of a (1 + a)-band-limited function via 

significantly lower sampling rates. 

This result generalizes for an arbitrary number of sampling rates. Let {rj}"=1 be a 

strongly coprime set. Then, our convolvers have the form /ij(i) = X[_r.r.](i). These {m} 
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model the impulse response of a multichannel system and have Fourier transforms 

~ ,n _ sin(27rriC) 
•KQ 

with zeros sets Zj = {^r : k G N}. Note that exclusive of the origin, the zeros sets are 

nonrepetitive. Let Tj = Zi and T = UiLl ^i- Thus, we can reconstruct / on its values at F. 

This can also be done via techniques in complex interpolation theory. 

Thus, we have the following theorem: 

Theorem 3.4 (Casey-Walnut) Let {r;}"= 1 be a strongly coprime set, and let f be a 

(]C ri)-band-limited function. Let 

for k € N and i = 1 , . . . , n. Also, let 

n 

r = Ur, 

Then f is uniquely determined by 

{/(A):Aer} | J {f(o),...,r-\o)}. 

Furthermore, f can be conditionally reconstructed from its values on r (J{0} by the following 

formula 

where 
n 

G(t) = JJsin(27rrit) 
i = l 

and the interpolating functions Ki(t) at the origin are a linear combination of - j j , j = 

1 , . . . ,n, chosen so that K\ (0) = 5ij,, i,l = 1 , . . . ,n. 
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3.3 Appl icat ions of the Theorem 

As mentioned in the introduction, the multi-rate theorem improved techniques mea

suring the flatness of a silicon chip. Casey and Walnut developed this theorem to simulate 

a sensor that was more precise than any physically realizable sensor. There are other useful 

applications to ultra-wideband signal detection, specifically with respect to communication 

and radio telescope technology. 

This paper develops an application of the theorem to audio signal representation. 

The aim is to sample audio at multiple, incommensurate, sub-Nyquist rates. In theory, the 

audio signal can be perfectly reconstructed from union of the samples taken at each rate. It 

can also be estimated from a subset of the samples. Currently, when audio is streamed over 

a network, it is done in a single file at constant quality. If the bandwidth of the network 

is too low for the quality, a new lower-quality file must be loaded. This is not a seamless 

process and causes a break in playback. Using the multi-rate sampling theorem, we develop 

strategy for a streaming music system which can change quality on the fly. 



4 Digital to Analog Conversion 

The previous sections have dealt with analog to digital conversion, i.e., transforming 

a continuous, band-limited, time signal into a discrete set of data. This is useful for digital 

storage of these types of signals, specifically audio files. However, when a sound is played 

from through a speaker, it receives an analog signal. Thus, the computer, specifically the 

sound card, takes the discrete audio samples, along with the sampling rate, and reconstructs 

an analog signal which is electrically feed to the speaker. While many high end audio cards 

can work on a range of sampling rates, audio is typically sampled at 44.1kHz. 

4.1 Constructing the Analog Signal 

At first it seems that the analog signal can be accessed directly using the classical 

sampling theorem. Suppose we have an audio signal which is sampled at a rate T < l/2f2, 

i.e. f(nT) is known for all n € Z. Then the audio signal is given by 

f(t) = T^f(nT) . 
neZ V ' 

A few things are immediately clear. Our audio file, for obvious reasons, is not of 

infinite length, and if it were, it would be computationally impossible to compute this 

infinite sum. For a sound signal of finite length, we can attempt to compute this sum over 

each samples, however in practice this is impractical. The sum generates round off errors 

over time and, since an appropriate sampling rate yields thousands of samples a second, the 

reconstruction ultimately fails. Thus, we turn to other forms of interpolation to construct 

the analog signal. 

24 
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4.2 Polynomial Interpolat ion 

Given a set of A; + 1 data points (t\, f(t\)),..., (£fc+i, /(ifc+i)) w e c a n construct a kth 

degree polynomial whose graph intersects each point in the set [BF05]. 

Definition 4.1 (Lagrange Interpolating Polynomial) Let (t\, f(h)),..., (ifc+i, /(£fc+i)) 

be k + 1 distinct known values of a function. Then 

fc+1 
p(i):=X;/(*,%•(*) 

3 = 1 

where 

j ,.\ TT _*_ — *i _ t — t\ t — tj-l t — tj + l t — tk+i 

i=l i-j-j \7 ti tj t\ tj tj-i tj Cj+l tj tfc+l 

Note that for t = tj and m ^ j 

fc+i , _ . fc+i 

««= n ^f= n i-i. 

k+1 /• /. 

Therefore 

ft3-t^ 

\tm~ tj J 

fc+1 , . 

) n f^. =<°> n f ^ 
. . . . . , . ^m n 

= 0. 

fc+1 fc+1 fc+1 

i= l i=\,i^j i=\ 

as desired. That is, the interpolating polynomial p(i) is equivalent to the function f(t) at 

each of the k + l points. 

The difference between the function and the interpolating polynomial is bounded if 

you have knowledge of the k + l derivative and it is bounded. Suppose each U G [a, b]. Then 

for any t G [a, b] there exists a & € (a, b) such that 
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This agrees with the above analysis showing that f(ti) = p(ti) for each ij, since 

fc+i fc+i fc+i 

Y[(ti-tj)=(ti-ti) n (t i-t i)=o. n ^-^0=0. 

Just as in the case of the classical sampling formula, this polynomial is excessively 

computationally demanding to interpolated over every sample point in the audio file. More

over, interpolating with high degree polynomials suffer from Runge's phenomenon: extreme 

oscillation resulting in a large error term. Thus, we construct a distinct polynomial Pt0(t) for 

each £0 we wish to resample at using only the close points in our data set ij e (to — e,to + e). 

We then evaluate pt0(to) to approximate the value of f(to). Each of these polynomials is 

called a 'spline'; the process of using cubic splines is the above process using four inter

polation points (and thus a third degree, or cubic, polynomial). Splines are typically cut 

and pasted together to construct a new continuous interpolating function. However, we are 

not concerned with the construction of such a function, but only the function value at an 

unknown time to-

4.3 Sample Ra te Conversion 

The process of sample rate conversion has been heavily studied. The audio tracks on 

digital video are typically recorded at 48kHz, while digital audio is typically recorded at 

44.1kHz or 96kHz. Assuming the audio recorded at 96kHz has no content with frequencies 

above 24kHz, we can simply remove every other point. The classical sampling theorem 

provides the motivation for this and shows that if we sample down past the Nyquist rate, 

we will not be able to reconstruct the signal perfectly. 

Suppose we wanted to convert to a new rate, 7*1, which is not simply half the initial 

rate, ro- If the two rates have a rational ratio, then we sample up to their least common 

multiple, lcm(ro,ri). This could be done by interpolation, however in practice it is not. 

Regardless of how it is done, this signal will contain frequencies above ^-. A digital low 

pass filter is then used to remove all frequencies above ^-. We can then take every kth 

sample, where k = l c m ( r o ' r i ) , and we will have a file which is sampled at our new rate r\. 
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I did not extensively research this method since, by construction, we choose rates 

which do not have rational ratios. However, the method above does not resample to move 

up to the lcm(ro, r\) rate, but instead just adds the value of 0 for all the unknown samples. 

The application of the digital low pass filter acts similarly to an interpolator, adjusting the 

values of each sample. Also, each of these sample values does not need to be computed, 

only the kth value that is needed for the r\ rate. Since these processes are not directly 

applicable, further discussion in this area is not presented here. More information in these 

processes can be found in [Lyo04] and [CR83]. Further research in these types of niters may 

help improve and refine the process described in the following section. 

4.4 Audio Card Hardware 

In a computer, sounds are stored as digital data. An audio card receives this digital 

data, the sample points and the corresponding rates, and outputs a continuous electric 

signal which connects to a speaker. Before the development of this technology, computers 

were restricted to MIDI sounds. Rather than taking in sample values, and the rate which 

they were sampled at, the computer told the audio card which note to play. Middle A on a 

piano is described by sin((440)27ri), for example. This however, limits the signals that can 

be played to combinations of basic musical notes. Clearly this technology is not sufficient 

for playing recorded sound. 

The ideal audio card would take these samples recorded above the Nyquist rate, 

interpolate the original audio signal, and output an electric signal to a speaker. Figure 1 

illustrates a signal with samples taken at regular intervals. The function is the ideal signal 

we aim to reconstruct. However, in practice, the signal is not interpolated by the audio 

card. Most sound cards use a process called a 'zero-order hold', illustrated in Figure 2. The 

audio card simply outputs the sample value over the sample interval, resulting in a piecewise 

constant (discontinuous) function. Slightly more advanced systems use a 'first-order hold', 

which constructs a piecewise linear (continuous) function which connects each sample value. 

The illustration in Figure 3 is an example of this process, however it is not typically used 
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in hardware. It is also important to note that when we resample at incommensurate rates, 

we require a higher degree of accuracy then either of these methods. 

Figure 1: Ideal Digital to Analog Conversion [Pet06b] 

I I 
I I 
I I 

I • I 

Lu-n 

Figure 2: Zero-Order Hold [Pet06c] 

Figure 3: First-Order Hold [Pet06a] 



5 Program Structure 

5.1 Architecture 

These flow charts outline the architecture of the program on the server and client 

side. The strategy is to use resampling techniques to generate three new files, each at new 

incommensurate rates, from the original file. These files are then streamed individually, with 

different priority, over a broadband channel or cell phone network. The client receiving the 

stream will then re-interpolate back at the Nyquist rate from all the files, or a subset, 

depending on which have loaded sufficiently. This re-interpolated file is then sent to the 

computer's audio card. Figure 4 outlines the server side function, and Figure 5 outlines the 

client side function. 

file:: 
rate a\T 

stream 

filez: 
rate rfT 

s * 

Figure 4: Server Side Programing Outline 

file0: 
original 

audio file 

> 
resample 
at new 
rates 

-
file2: 

rate a2T 

29 
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send to 
audio card 

rate rfT 

Figure 5: Client Side Programing Outline 

5.2 Resampl ing at Incommensurate Rates 

The process of resampling is not trivial; due to the complexity of the classical sampling 

formula, other methods of approximation are used. As described in Section 4.2, constructing 

low degree polynomials from near by known values may be an appropriate method. Recall 

the definition (4.1) of the Lagrange interpolating polynomial. 

Suppose we want to resample a file of length t at the new rate aT. Then we wish to 

resample at the time values naT for each n € N such that naT < i, where T is the original 

above Nyquist sampling rate. So let to = noaT for the no we are currently attempting to 

resample at. The value f(mT) is known for all mT < i, m € N. We want to collect r 

points near to, so we will create an auxiliary look up function which will return a vector, 

m = (mi,m2, ...,mT). These vectors will be initially computed so that miT is the closest 

point to to, TT^T is the second closest point, and so on. Figure 6 outlines the process of 

estimating f(t) at each to. 

file i-
rate a\T 

stream 
file2: 

rate a-fT 

resample 
at Nyquist 

rate 

* • 
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file0: 
original file 

». look up 
m for to 

>• 

for each 
rajGm 

add 

/tor) 
to SET 

*~ 

construct 
polynomial 
p(t) from 

SET 

>• 

add value 
p(*o) to 

audio file 

Figure 6: Resampling Algorithm 

5.3 Choosing Incommensurate Rates 

There is a fundamental issue with using an incommensurate sampling rate numer

ically. Each rate a from Theorems 3.3 and 3.4 must be an irrational which is poorly 

approximated by rationals. Since every number in a computer is rational by the physical 

reality of computation, we cannot satisfy the conditions of the theorems. However, in prac

tice representing these numbers with 64-bits seems to have sufficient results. Recall again 

Theorem 3.4, which will motivate the following theorem. A (l + a i + 0:2) bandwidth limited 

function with a\, a2, ^ € P is completely determined by the function values on the set 

Theorem 5.1 Suppose f(t) is an VL-band limited function and letT = ^ . Ifr) 6 N, ct\, a2, 

and their ratios are poorly approximated by rationals, and 

„ ft ft ft 
ft < - + h—. 

?7 Ct\ Oil 
(6) 

Then f(t) is completely determined on the set 

T = {±kVT : k e N} (J {±kaxT : k € N} (J {±ka2T : k G N} 
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Proof of Theorem 5.1: Applying Theorem 3.4, f(t) is completely determined on the set 

Since we have chosen T = ^ , substituting completes the proof. 

r = {±krjT : k G N} ( J {±kaxT : k G N} ( J {±ka2T : k G N} 

Now, dividing Equation (6) by Cl we arrive at 

• 

1 1 1 
1 < - + — + — (7) 

r\ OL\ a2 

which is useful in choosing rj, a\, a.?,. We are not limited to using three rates, but we choose 

three now for simplicity. The preceding theorem extends to n incommensurate rates in the 

obvious way. To obtain the files sampled at rates a\T, a2T, we will have to resample using 

the procedure in the previous section. However, the file which is sampled at r]T is simply 

a subset of the original audio file. The process of resampling has an error term which we 

attempt to minimize, but selecting a subset of audio sample is exact. Also, when the file is 

reconstructed, each of the points in this file correspond exact with some of the points we 

reconstruct. Thus, the lower r/, the more sample points that are kept without error and the 

faster the client side reconstruction. 

We shall use the notation used in Figure 4 and Figure 5. 

file0 = ({kT€N},f({kT})) 

file, - ({*air},/({fcaiT})) 

file2 = ({ka2T},f({ka2T})) 

file, = ({kVT},f({kVT})) 
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Here we omit k G N from the set notation since in each file, k will reach a distinct maximum 

determined by the length of the original file. If 77 = 1, then we simply have the original 

file, file0. Thus, we shall choose 77 = 2. Then file3 will contain half the data in file0. The 

choice of a i and 0:2 rely mainly on Equation (7), however we also wish include more data 

in file 1, so that if /iZe2 lags behind during the streaming, most of the can be reconstructed 

from file3 and filex. Let a\ = §<?!> and a2 = 3\/3, where <j> is the Golden mean. Then a quick 

numerical calculation shows Equation (7) is satisfied. 

— « 0.34335 

— « 0.19245 

- + — + — » 1.03580 
77 ai OLi 

- + — « 0.84335 
f] ai 

Also note that about 84.3% of the data is contained in just filei and file3. 

5.4 Resampling for Playback 

Once we have created filei,file2, and file3, we must develop a process for recon

structing and playing the audio. We aim to allow the quality to change as the bandwidth 

fluctuates. This paper does not address the technicalities of steaming data over a network 

and simply assumes that available bandwidth can be allocated differently to each stream. 

We shall give highest priority to file3, since it both contains most of the data and requires 

far less processing for playback. The next highest priority is given to filex and the lowest 

to file2, agreeing with the relative data stored in each. 

The software will resample the audio signal at the original rate T, finding the values 

of f(to) at values to = kT for appropriate k € N with respect to the length of the audio file. 

These values will be put into a new file, filer. We will again be using a Lagrange interpolating 

polynomial discussed in Section 4.2 to estimate the signal function f(t), unless the points 

are already contained in file3. Every other point we wish to find will be in file3 and directly 
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added to filer. Figure 7 outlines the process for estimating f(to) for to $ file3. 

rate a\T 

file2: 
rate a2T 

file3: 
rate r(T 

' no / 

\ 

i = i + 1 

no 

is m,i E m N 

loaded? 

/ / 
s 

s 
s / 

\ yes 

add 
(mi,f(mi)) 

to SET 

* • k = k + l 

construct 
polynomial 
from SET; 
add sample 

point to 
audio file 

Figure 7: Playback Algorithm 

Playback Algorithm. Playback requires resampling the signal at the Nyquist Rate. This 
flowchart describes determining the value of the signal at an unknown value to while the 
signal is being played at t. 



6 Programing in Mathemat i ca l6 

Our overall programming strategy is to take a file which is sampled at or above 

Nyquist, reconstruct the analog signal, and resample this function at our incommensurate 

rates. These multiple data sets, each with a corresponding rate, will comprise the new audio 

file. Since the audio hardware takes a single rate, the software which will play the audio 

file will use the data from each of these new file and re-interpolate at the Nyquist rate of 

44.1kHz. 

6.1 'Interpolation' Function 

The 'Interpolation' in Mathematical6 fits polynomial curves between data points. 

By default, these polynomials are of third degree, however a higher (or lower) order can 

be specified. This is exactly the process described in Section 4.2. Deciding which order 

to use depends on desired accuracy and available computational time. If we assume that 

the initial construction of filel and file2 will be done once and stored, accuracy is more 

important than computational time. However, on the client side, processing power may be 

limited, and this interpolation must be computed faster than the audio is played. Thus 

computation is the more important factor in the process described above in Figure 7. 

6.2 Generating New Data Points 

The following code was used in M a t h e m a t i c a l to generate the new files, filel, file2, 

and file^, resampled at incommensurate rates. The rates used were 

2T; ^ T ; 3\/3T 
5 

for <f> = Golden Mean, T = 44.1kHz as discussed in Section 5.3. 
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SetDirectory["PATH_TO_FILE"] 

Import["original.aif", "Elements"] 

MasterList = Import["original.aif", "Data"] 

LeftMasterList = MasterList[[1]] 

RightMasterList = MasterList[[2]] 

Rate = Import["original.aif", "SampleRate"] 

Size = Length[LeftMasterList] 

SampleTimes = Range[0, Size/Rate - 1/Rate, 1/Rate] 

LeftSamplePoints = Transpose[{SampleTimes, LeftMasterList}] 

RightSamplePoints = Transpose[{SampleTimes, RightMasterList}] 

LeftTestFunction = 

Interpolation[LeftSamplePoints, InterpolationOrder -> 7] 

RightTestFunction = 

Interpolation[RightSamplePoints, InterpolationOrder -> 7] 

a = N[(9/5) GoldenRatio] 

a2 = N[3*Sqrt[3]] 

n = 2 

aSampleTimes = N[Range[0, Size/Rate, a/Rate]] 

aLeftSampleList = LeftTestFunction[aSampleTimes] 

aLeftSamplePoints = Transpose[{aSampleTimes, aLeftSampleList}] 

aLeftSamplePoints2 = Delete[aLeftSamplePoints, 1] 

aRightSampleList = RightTestFunction[aSampleTimes] 

aRightSamplePoints = Transpose[{aSampleTimes, aRightSampleList}] 

aRightSamplePoints2 = Delete[aRightSamplePoints, 1] 

a2SampleTimes = N[Range[0, Size/Rate, a2/Rate]] 

a2LeftSampleList = LeftTestFunction[a2SampleTimes] 

a2LeftSamplePoints = Transpose[{a2SampleTimes, a2LeftSampleList}] 

a2LeftSamplePoints2 = Delete[a2LeftSamplePoints, 1] 
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a2RightSampleList = RightTestFunction[a2SampleTimes] 

a2RightSamplePoints = Transpose[{a2SampleTimes, a2RightSampleList}] 

a2RightSamplePoints2 = Delete[a2RightSamplePoints, 1] 

nSampleTimes = Range[0, Size/Rate - 1/Rate, n/Rate] 

nLeftSampleList = LeftMasterList[[1 ;; Size ;; n]] 

nLeftSamplePoints = Transpose[{nSampleTimes, nLeftSampleList}] 

nRightSampleList = RightMasterList[[1 ;; Size ;; n]] 

nRightSamplePoints = Transpose[{nSampleTimes, nRightSampleList}] 

aSampleList = {aLeftSampleList, aRightSampleList} 

a2SampleList = {a2LeftSampleList, a2RightSampleList} 

nSampleList = {nLeftSampleList, nRightSampleList} 

ReconstructedList = {LeftReconstructedList, RightReconstructedList} 

Export["testalphal.aif', ListPlay[aSampleList, 

SampleRate -> Round[N[Rate/a], 1]]] 

Export[Mtestalpha2.aif", ListPlay[a2SampleList, 

SampleRate -> Round[N[Rate/a2] , 1]]] 

Export["testn.aif", ListPlay[nSampleList, 

SampleRate -> Round[N[Rate/n], 1]]] 

6.3 Combining Layered Data 

The following code was used to reconstruct two new files. The first is reconstructed 

from file1: file2 and file3, and the second was reconstructed only from filei and file%. The 

purpose of creating this file from only file^ and file3 was to examine the quality of the sound 

in the context of streaming. This file is an example of the quality when the bandwidth drops 

and filey drops out of the stream. 

LeftJoinedList = 

Join[nLeftSamplePoints, aLeftSamplePoints2, a2LeftSamplePoints2] 

LeftJoinFunction = Interpolation[LeftJoinedList] 
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LeftReconstructedList = LeftJoinFunction[SampleTimes] 

RightJoinedList = Join[nRightSamplePoints, aRightSamplePoints2, 

a2RightSamplePoints2] 

RightJoinFunction = Interpolation[RightJoinedList] 

RightReconstructedList = RightJoinFunction[SampleTimes] 

ReconstructedList = {LeftReconstructedList, RightReconstructedList} 

Export["reconstruct.aif", ListPlay[ReconstructedList, SampleRate -> Rate]] 

LeftJoinedListl = Join[nLeftSamplePoints, aLeftSamplePoints2] 

LeftJoinFunctionl = Interpolation[LeftJoinedListl] 

LeftReconstructedList1 = LeftJoinFunctionl[SampleTimes] 

RightJoinedList1 = Join[nRightSamplePoints, aRightSamplePoints2] 

RightJoinFunctionl = Interpolation[RightJoinedList1] 

RightReconstructedListl = RightJoinFunctionl[SampleTimes] 

ReconstructedListl = -[LeftReconstructedListl, RightReconstructedListl} 

Export["part_reconstruct.aif", ListPlay[ReconstructedListl, 

SampleRate -> Rate]] 



7 Conclusions 

7.1 Programing in Python 

The next step in this research is to develop it in a more robust programing environ

ment. The Python programming language offers a suitable environment to do much of this 

computation. Python has an extended mathematics library, as well as an import support 

for audio files. There are a number of open source projects for audio compression. 

Ideally, this algorithm would be incorporated into a compression algorithm, optimiz

ing the playback process. This is critical to the utility of the algorithm: a compressed audio 

file is far smaller than even half the original size. Broadcasting uncompressed audio files 

would require much more bandwidth than the entire compressed file. 

7.2 Other Similar Processes 

While completing this research, I listened to a streaming audio service on my cell 

phone. The audio at the very beginning, maybe half a second of audio, of the first song 

played usually starts at a low quality and quickly improves. This is done without stopping 

and loading a new stream, but simply changing quality on the fly. I do not know what 

algorithm was used using, however I doubt they are using the process I have invented. This 

motivated me to think of other possible processes which would allow for quality to change 

during playback. 

The simplest process I could construct breaks an audio file into 2 audio files, by 

removing every other sample value from the original file and placing it into new file. These 

files can be streamed separately, with different bandwidth priority. If both files load, audio 

plays back as normal; if only one loads, the file plays back at the same quality as file3 

introduced in Section 5. This process could be extended to by breaking the files up into 

any of the following parts without resampling: {5 ,3 ,5} , { 5 , 3 , 3 } , {2' 3' §> g}> anc^ s o o n-
39 



40 

Such a system has the advantage of simplicity. There is also no interpolation and thus 

no loss in data when all streams load. This saves processing power on both the server and 

client side. However using incommensurate sampling rates allows for much more control 

over the percentage of information stored in each stream. Studies on peoples ability to 

distinguish the difference between these two processes, and their preferences, would be 

useful in comparing the given utility between the two. One process may also be more useful 

with respect to the compression algorithms, which usually rely on eliminating redundancies 

in the frequency domains. 

7.3 Error Analys is 

The following tables, Figure 8 and Figure 9, give some of the statistics on the recon

structed files. The statistics are run on the difference between the original data points and 

the reconstructed data points. The Mathematica code below gives the exact calculations. 

The most illuminating statistic is the ratio between the mean of the original points, and 

the mean of the difference. This is can be thought of as the proportion of error, however 

this is not an exact process. 

PreDifference = MasterLis t [ [1]] - ReconstructedList[[1]] 

Difference = PreDifference~2 

Max = Max[Difference] 

Mean = Mean[Difference] 

Standard Deviation = StandardDeviation[Difference] 

MasterMean = Mean[MasterList[[1]]"2] 

Ratio = Mean/MasterMean 

7.4 Appl icat ion t o Video 

The advancement of higher speed cellular internet connections may soon make this 

entire process unnecessary due to the relatively small size of audio files. However, there 

may be an application to video. A video file is represented by a three-dimensional matrix 
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Reconstructed File 

Example 1 
Example 2 
Example 3 
Example 4 

Max 

1.115 x 1CT1 

1.491 x 10~a 

9.520 x 10-4 

1.011 x 10u 

X 

1.054 x 10~5 

1.057 x 10~7 

7.350 x 10-* 
2.825 x 10~5 

CTx 

2.565 x 10~4 

3.552 x 10-° 
1.840 x 10-° 
1.702 x 10-3 

Ratio 

4.486 x 10-4 

1.515 x 10-5 

1.134 x 10-5 

6.015 x 10-4 

Figure 8: Statistics on Reconstructed Files 

Partially Reconstructed 

Example 1 
Example 2 
Example 3 
Example 4 

Max 

3.948 x 10"2 

1.876 x 10~4 

6.704 x 10-b 

2.596 x 10-2 

X 

1.622 x 10~5 

1.557 x 10-B 

1.231 x 10-7 

4.099 x 10-6 

Ox 

2.065 x 10-4 

1.396 x 10-6 

7.260 x 10~7 

8.728 x 10-4 

Ratio 

6.902 x 10"4 

2.231 x 10-5 

1.900 x 10~5 

2.119 x 10-4 

Figure 9: Statistics on Partially Reconstructed Files 

composed of color information. Each entry in the matrix is a pixel; the first two dimensions 

spans the height and width of video frames, and the third dimension spans the frames over 

time. Current compression algorithms exploit redundancies over both the spacial and time 

information. 

Since the light our eyes can see is bandwidth limited, between 400-790 THz8, the 

classical sampling theorem should apply, as well as the multi-rate sampling theorem. How

ever, currently the fastest frame rate commercially used in high definition video is around 

60 frames per second, clearly far less than 2ft = 2 • (790THz) = 1580 THz, i.e. 158 x 1013 

frames per second. The relationship between sampling theory and video may not be quite 

as obvious as with audio, at least with respect to time. It could, however, be quite useful 

over the spatial dimensions of the video. The multi-rate sampling theorem could also be a 

useful tool to increase the maximum frame rate currently possible by using multiple cameras 

recording at incommensurate frame rates. Further research in this area and collaboration 

with video engineers could reach interesting results. 

THz is short for terahertz, 1012 Hz. 



REFERENCES 

[Ben74] J. J. Benedetto, Harmonic analysis and appliations, CRC Press, Boca Raton, FL, 
1974. 

[BF05] Richard L. Burden and J. Douglas Faires, Numerical analysis, 8th ed., Thomas 
Brooks/Cole, 2005. 

[Cas07] S. Casey, Two problems from industry and their solutions via harmonic complex 
analysis, The Journal of Functional Analysis 2 (2007), no. 4, 427-460, Research 
partially supported from ARO Grant DAAD19-02-1-0210 and Battelle Contract 
DAAD19-02-D-0001. 

[CaslO] , An introduction to sampling theory, Notes in progress under partial sup
port from ARO Grant DAAD19-02-1-0210 and Battelle Contract DAAD19-02-D-
0001, 2010. 

[CR83] R. E. Crochiere and L. R. Rabiner, Multirate digtal signal processing, Prentice-
Hall, 1983. 

[CS00] S. Casey and B. Sadler, New directions in sampling and multi-rate a-d conversion 
via number theoretic methods, Proceedings of the Acoustics, Speech, and Signal 
Processing 1 (2000), 336-339. 

[CW94] S. Casey and D. Walnut, System of convolution equations, deconvolution, shannon 
sampling and the gabor and wavelet transform, SIAM Review 36 (1994), no. 4, 
537-577. 

[DM72] H. Dym and H. P. McKean, Fourier series and integrals, Academic Press, New 
York, 1972. 

[Erd62] A. Erdelyi, Operational calculus and generalized functions, Holt, Rinehart, and 
Winston, 1962. 

[Hig96] J. R. Higgins, Sampling theory infourier and signal analysis: Foundations, Claren
don Press, Oxford, 1996. 

[Lig62] M. Lighthill, Fourier analysis and generalised functions, Cambridge University 
Press, 1962. 

[Lyo04] R. G. Lyons, Understanding digital signal processing (2nd edition), Prentice Hall 
PTR, Upper Saddle River, NJ, USA, 2004. 

[Nyq28] H. Nyquist, Certain topics in telegraph transmission theory, AIEE Trans. 47 
(1928), 617-644. 



[Par89] S D. Parker (ed.), Mcgraw-hill dictionary of scientific and technical terms, 4th ed., 
McGraw-Hill book company, New York, 1989. 

[Pet06a] en:User: Petr.adamek, First order hold - Wikipedia, the free encyclo
pedia, Public Domain. Petr.adamek grants anyone the right to use this 
work for any purpose, without any conditions, unless such conditions are 
required by law. http://upload.wikimedia.Org/wikipedia/commons/thiMib/5/5e/ 
F i r s to rde rho ld . s igna l . svg /500px-F i r s to rde rho ld . s igna l . svg .png , June 2006. 

[Pet06b] , Sampled signal - Wikipedia, the free encyclopedia, Public Do
main. Petr .adamek grants anyone the right to use this work for any 
purpose, without any conditions, unless such conditions are required 
by law. http://upload.wikimedia.org/wikipedia/commons/thumb/8/88/Sampled. 
s ignal .svg/500px-Sampled.signal .svg.png, June 2006. 

[Pet06c] , Zero order hold - Wikipedia, the free encyclopedia, Public 
Domain. Petr .adamek grants anyone the right to use this work for 
any purpose, without any conditions, unless such conditions are re
quired by law. http:/ /upload.wikimedia.Org/wikipedia/commons/thumb/l/15/ 
Zeroorderhold.s ignal .svg/500px-Zeroorderhold.s ignal .svg.png, June 2006. 

[TBB01] B. Thomson, J. Bruckner, and A. Bruckner, Elementary real analysis, Prentice-
Hall, 2001. 

[Wal96] D. Walnut, Nonperiodic samping of bandlimited functions on unions of rectangular 
laticces, J. Fourier Analysis Application 2 (1996), 435-452. 

43 

http://upload.wikimedia.Org/wikipedia/commons/thiMib/5/5e/
http://upload.wikimedia.org/wikipedia/commons/thumb/8/88/Sampled
http://upload.wikimedia.Org/wikipedia/commons/thumb/l/15/

	ADPC13E.tmp
	Technical Report No. 2013-2




