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1. INTRODUCTION

Mathematics has a way of creating bizarre connections between
seemingly disparate subjects. One of those bizarre connections
is in the study of automorphisms of models of arithmetic, which
links ideas from arithmetic, mathematical logic, abstract alge-
bra, permutation group theory, and even some topology. The fact
that there even can be automorphisms of models of arithmetic is
somewhat surprising, but under nice conditions they turn out to
not only exist in abundance, but to have a metrizable topological
group structure.

The theory of arithmetic is motivated by trying to express the
behavior of the natural numbers as a set of logical axioms. Arith-
metic being a rather fundamental aspect of mathematics, it has
been well-studied by logicians. The reader is probably familiar
with Gödel’s Incompleteness Theorems, which are really results
in the theory of arithmetic. And while those theorems state that
any theory that can effectively perform arithmetic is too strong to
be both complete and consistent, it turns out that any such theory
is also too weak in a certain sense as well. It turns out that other
objects that are not the natural numbers also satisfy the theory
of arithmetic. This is the starting point for the study of what ex-
actly these other objects are - the study of nonstandard models of
arithmetic.

The goal of this thesis is to exposit the key results of the sub-
ject, with an eye towards presenting two open problems related to
the structure of the groups of automorphisms of a model of arith-
metic. Section 2 will present preliminary results and definitions,
discussing the axioms of Peano Arithmetic (PA), and deriving key
theorems in the model theory of arithmetic. Section 3 will discuss
recursive saturation, which is the key to building automorphisms
of models of arithmetic. Essentially, recursive saturation is all
about building models “just rich enough” to have many elements
that are free to move under an automorphism. Finally, Section 4
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will cover results at the cutting edge1 of the subject, and present
two open problems.

2. PRELIMINARIES

2.1. Definitions. For the purposes of this paper, we adopt the
following conventions:

• Caligraphic letters like M denote structures and models
where the normal font equivalent, M denotes the underly-
ing set. L with various subscripts denotes a language. LA

refers to the language of arithmetic. When needed to be
made explicit, we superscript an element with the model
or set it belongs to.
• The letter N refers to the standard model of arithmetic,

(N,+,×, <, 0, 1) all being interpreted in the usual way.
• The notation x̄ is an abbreviation for a tuple of elements

(x0, x1, ...xn−1), with the length of the tuple being clear by
context.
• The symbols ≺ and � mean that a structure is either an

elementary extension or an elementary substructure of an-
other.
• The complexity or hierarchy of a formula is related to the

level of quantifier alternation. A formula is ∆0 if the only
quantifiers that occur in the formula are bounded, mean-
ing that the quantifier is of the form ∃x ≤ t or ∀x ≤ t,
where t is a term that does not depend on x. For n = 0,
∆0 = Σ0 = Π0. A formula is of the form Σn+1 if it is of
the form ∃ȳφ(x, ȳ) where φ(x, ȳ) is Πn. A formula is of the
form Πn+1 if it is of the form ∀ȳφ(x, ȳ) where φ(x, ȳ) is Σn.
By way of example, the formula ∀x∃y(x > y) would be a
Π2 formula. Of course, any formula can be expanded by
meaningless quantifiers, so the really important classifica-
tion of a formula is the lowest level of the hierarchy which

1As in, the author was alive when they were published.
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contains a formula logically equivalent to the one in ques-
tion.
• Unless explicitly stated otherwise, all models are count-

able. While many of the results do go through in higher
cardinalities, we do not examine those here.
• We take the meta-theory to be ZFC, Zermelo-Fraenkel Set

Theory with the Axiom of Choice, although this is signifi-
cantly more powerful than strictly needed for most results.
• For each countable model M � T , Type(M) is the set of

complete 1-types realized in M, while Type(T ) is the col-
lection of complete 1-types realized in some model of T . In
other words,

Type(T ) = ∪{Type(M)|M � T}

• The sequence coded by an element x is denoted as (x), and
the nth member of that sequence is denoted as (x)n.

This thesis focuses on models of Peano Arithmetic (abbreviated
PA), so we begin with that.

Definition 1. We define LA as the language of arithmetic, which
consists of the function symbols +,×, the relation <, and the con-
stant symbols 0, 1. The most common structure for LA is the nat-
ural numbers N.

Definition 2. [12] PA refers to Peano Arithmetic. Peano Arith-
metic is the axiom schema for arithmetic. There are many equiv-
alent axiomatizations of PA, so the particular form the axioms
take is not particularly important. We give one of them here, but
by no means is this axiomatization canonical.

PA1 : ∀x, y, z[(x+ y) + z = x+ (y + z)]

PA2 : ∀x, y[x+ y = y + x]

PA3 : ∀x, y, z[x · y = y · x]

PA4 : ∀x, y, z, [x · y = y · x]

PA5 : ∀x, y, z[x · (y + z) = (x · y) + (x · z)]
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PA6 : ∀x[x+ 0 = x]

PA7 : ∀x[x · 0 = 0]

PA8 : ∀x[x · 1 = x]

PA9 : ∀x¬[x < x]

PA10 : ∀x, y[x < y ∨ x = y ∨ y < x]

PA11 : ∀x, y, z[x < y ∧ y < z → x < z]

PA12 : ∀x, y, z, [x < y → x+ z < y + z]

PA13 : ∀x, y, z, [0 < z ∧ x < y → x · z < y · z]

PA14 : ∀x, y[x < y → ∃z(x+ z) = y]

PA15 : ∀x[x = 0 ∨ 0 < x]

PA16 : ∀x[0 < x→ x = 1 ∨ 1 < x]

These axioms form the theory PA−. The last “axiom” of PA is
not really an axiom - it is an axiom schema. For each formula
ϕ(x, ȳ), the axiom of induction on x in ϕ(x, ȳ), Ixϕ is the sentence:

∀ȳ(ϕ(0, ȳ) ∧ ∀x(ϕ(x, ȳ)→ ϕ(x+ 1, ȳ))→ ∀xϕ(x, ȳ))

Ixϕ states that if ϕ is a formula (potentially with parameters ȳ),
such that ϕ holds for 0 and if for every x, if ϕ holds for x, then ϕ

holds for x+1, then ϕ holds for all x. The last “axiom” is to include
Ixϕ for every formula ϕ in LA. This cannot be written as a single
axiom because there are infinitely many formulas of LA.[3]2

PA− is best thought of as the theory of the non-negative parts of
discretely ordered rings. By discrete ordering, we mean that there
is a first element, and every element has an immediate successor,

2This induction axiom schema is extremely powerful, as well as somewhat un-
natural, and much research has been done on weaker theories than full PA as
a result. Some of the most common ones, in addition to PA−, are I∆0, induc-
tion for formulas with at most bounded quantifiers, as well as IΣ1 and IΠ1,
induction on formulas with an unbounded existential quantifier or unbounded
universal quantifier, respectively. I∆0 has a special name called “bounded
arithmetic,” which is of particular interest as a so called “weak fragment” of
PA. It is also provable that there is no finite axiomatization of PA - in other
words, this infinite axiomatization is no “worse” than any other axiomatization
of PA.
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and if nonzero, also an immediate predecessor. Likewise, the ring
axioms as applied to the positive parts also hold - for instance
∀x, y, z(x ≤ y → zx ≤ zy), and ∀x, y, z(x ≤ y → z + x ≤ z + y).
In fact there are models of PA− that do not outwardly resemble
arithmetic.[3]

An obvious question is: Just how weak is PA−? It would be nice
if PA− proved enough of arithmetic such that we would not have
to bother with full PA. As it turns out, PA− fails to prove many
basic arithmetical truths. The easiest way to demonstrate this
fact is to create a model of PA− that fails to satisfy a very basic
property in arithmetic: that every number is either even or odd.

Consider the ring Z[X], the ring of polynomials with coefficients
from Z. Z[X] can be represented in LA by defining the order <
such that for a0, a1, . . . , an ∈ Z with an 6= 0, then we define a0 +

a1X + · · · + anX
n > 0 iff an > 0. Given any two polynomials p, q ∈

Z[X], we define p > q iff p − q > 0, subtraction here being the
usual polynomial subtraction. Then we can define Z+[X] to be the
ring of non-negative polynomials in Z[X], in other words all the
polynomials greater than or equal to 0 under the ordering just
defined. It turns out that this ring can be verified to satisfy PA−

since the axioms are either satisfied by the order just defined or
by the fact that Z[X] is a ring. However,3

N � ∀x∃y(2y = x ∨ 2y + 1 = x)

This is demonstrably false in Z+[X] by the simple example of
the polynomials X + 0 and X − 1 being indivisible by anything
except themselves. Therefore PA− fails to prove the basic fact
that every number is either even or odd. Full PA by contrast has
more than enough strength to prove this statement - for any m ∈
M , M being a structure satisfying PA, 2×0 = 0, and if m satisfies
the “even-odd property”, then either 2 × y = m, or 2 × y + 1 = m.

3The pedantic reader may note that 2, or more generally any n are not defined
symbols in our language, but we can treat them as abbreviations for the term

(expressible in LA)

n−times︷ ︸︸ ︷
1 + 1 + 1 + ..., and sometimes denoted as 2, or n.
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Thus either m + 1 = 2 × y + 1, or m + 1 = 2 × y + 2. However,
by PA5, the latter statement is equivalent to m + 1 = 2× (y + 1).
Either way, the “even-odd” property holds in every model of PA,
and thus Z+[X] is not a model of PA. Heuristically, PA proves
everything that it is supposed to - basic arithmetical truths are
satisfied in all models of PA.

Definition 3. A model of arithmetic is a mathematical structure
that interprets the formal language of arithmetic, and satisfies
the axioms of PA. We also deal with models of PA− and certain
other variants of PA as well. The set N, along with interpreting
<,+,×, 0, and 1 in the usual way is a model of PA, and we refer
to it as N . [3]

We now begin by stating the two fundamental theorems of math-
ematical logic. While Gödel’s incompleteness results get most of
the attention, the completeness theorem is the practically impor-
tant one. While there are many different equivalent formulations
of these theorems, they all express extremely deep facts about
mathematical logic, and provide a partial justification for the pri-
macy of first order logic. In fact, first order logic is the strongest
logic where completeness and compactness hold, and thus the pri-
mary reason why higher order logics are problematic. Compact-
ness is especially useful as a tool in this thesis because it lets us
exploit the weaknesses of first order logic to create new models
with desirable properties.

Theorem 4. (Compactness) A set of first order sentences has a
model if and only if every finite subset of those sentences has a
model.[3]

Theorem 5. (Gödel Completeness) Every consistent, countable the-
ory has a finite or countable model.4

4In general, both of these theorems are equivalent to each other and to weak
versions of the axiom of choice. For countable languages, there are actually
no choice requirements, and both theorems are provable from ZF alone. For
uncountable languages, both theorems hold with a weak form of the axiom
of choice, the most famous of the equivalent formulations being the Boolean
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The next result is one of the key theorems of model theory, al-
beit one with some disturbing consequences. Essentially, it states
that logical theories T cannot specify the cardinality of their mod-
els, and that while there are countable models of arithmetic, there
are also uncountable models of arithmetic. Even more disturbingly,
theories such as Th(R), the theory of the real numbers, in a count-
able language have a countable model according to this theorem.
In other words, from a first order perspective there are countable
sets that satisfy the exact same sentences as the real numbers.

Theorem 6. (Löwenheim-Skolem) For every infinite model M in
a language L with cardinality σ, and every cardinal κ ≥ σ, there
is a model R of cardinality κ such that if |M| ≤ κ, then M is an
elementary submodel ofR, and if |M| ≥ κ, thenR is an elementary
submodel of M. (Alternately, M is an elementary extension of

prime ideal theorem, which states that every Boolean algebra contains a prime
ideal.

The prettiest proof of compactness, which hides most of the topology needed in
the other proofs, involves ultraproducts, at the expense of using the full axiom
of choice instead of its weak variants. The statement that if a theory has a
model, then any finite subset of it has a model is trivial - we prove the other
direction.
That proof proceeds by considering a language L, and letting Σ be the set of
sentences of L. We let I = [Σ]ℵ0 , the collection of all countable subsets of Σ, and
for each i ∈ I, let Mi be a model of i. (Note here that the i′s are themselves
sets of sentences.) For each σ ∈ Σ, we let σ̂ be the set of all i ∈ I such that
σ ∈ I. Then the set

E = {σ̂ : σ ∈ Σ}
has the finite intersection property (the intersection of any finite collection of
sets of E being non-empty) because {σ1, . . . , σn} ∈ σ̂1 ∩ . . . ∩ σ̂n. Therefore E is
a filter over I. By the ultrafilter theorem, E is extendable to an ultrafilter D
over I. If i ∈ σ̂, σ ∈ i, thereforeMi � σ. Therefore, for each σ ∈ Σ,

{i ∈ I :Mi � σ} ⊇ σ̂
And since σ̂ ∈ D,

{i ∈ I :Mi � σ} ∈ D
since D being an ultrafilter must contain any set X for which σ̂ ⊆ X ⊆ I.
Therefore by the fundamental theorem of ultraproducts (which is choice de-
pendent), ∏

i∈I
Mi/D � Σ

as desired. [11, 1]
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R.) If the language L is countable, then every infinite model M
in the language L has elementarily equivalent5 models in every
cardinality.

This is a key result for us since it allows us to strengthen the
compactness theorem slightly, by permitting us to treat the model
created by compactness as countable.

2.2. Existence of nonstandard models. This section discusses
how to justify the existence of nonstandard models of arithmetic.
We begin by constructing one nonstandard (i.e. not N ) model of
arithmetic, and then discuss how to construct many such models.
The key tools we use in these constructions are the compactness
theorem, and Gödel’s Incompleteness Theorem. We end by prov-
ing that while there are continuum many distinct models of PA
that do not satisfy all of the same sentences as N, there are also
continuum many distinct models of Th(N), or of any other com-
pletion of PA.

2.2.1. Existence of nonstandard models via compactness.

Theorem 7. There is a countable model of arithmetic that is not
N , and is thus “nonstandard.”

Proof. From theorem 4, we see that if we can exhibit a set of first
order sentences such that every finite subset of those sentences
is satisfiable, then a model exists that has to satisfy all of the
sentences.
5Whenever we use the word “elementary”, we don’t mean something is easy!
Elementary equivalence means that two models satisfy the same first order
sentences, and so whenever the word “elementary” appears as a descriptor we
mean it in this sense. This is a strictly weaker condition than two models be-
ing isomorphic. One way to see this is as an immediate consequence from
Lowenheim-Skolem Theorem, which states that theories have elementarily
equivalent models in different cardinalities, which can’t possibly be isomorphic
because of the absence of a bijective map between them. Another way to un-
derstand the difference is that isomorphisms require that an element and its
image under isomorphism must satisfy the exact same formulas - elementary
equivalence only requires that some element satisfy those formulas. Formally,
isomorphisms preserve types (we’ll define those in a bit), while elementary
equivalence provides no such guarantee.
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Therefore, we can create a model by starting with Th(N), the
theory of the natural numbers. In addition, we expand the lan-
guage of arithmetic by adding a constant symbol c. This is all
first-order sentences that are true about N, and add the following
additional sentences.

φ1 : c > 1

φ2 : c > 2

...

φn : c > n

...

Every finite subset of these sentences is satisfiable by the stan-
dard model N itself, because N satisfies Th(N), and for any finite
set of the additional φ sentences, c can be interpreted so as to sat-
isfy all of them - if the last φ sentence included is φm, then the
element c = m+ 1 satisfies all the included φ sentences. There-
fore, by compactness there has to be a countable model that sat-
isfies all the φ sentences as well as Th(N). This model cannot be
the standard model, as N does not have an element larger than
everything in itself.

Therefore, we have created a modelM that satisfies Th(N) (and
thus PA), but is not N . While this model is in the expanded lan-
guage, the reduct of the model it by omitting explicit reference to
c in the language is still a model of PA and is not N . However,
compactness is just an existence result - it tells us nothing about
the underlying structure of the model, although some structure
can be gleaned from the proof in footnote 5. �

Theorem 8. There are continuum-many countable models of Th(N).
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Proof. We can repeat a similar compactness argument as above,
but in a slightly different form. We define the formulas

ϕn = "The nth prime divides c"

Each of these formulas can be implemented in LA ∪ {c}. A set
of formulas in n free variables is called an n-type. A complete
n−type is a type that is maximal with respect to inclusion, i.e
every formula or its negation is included in the type, and we recall
that we denote the set of all the complete 1-types of a model by
Type(M), and all the complete 1-types of all models of a theory by
Type(T ). An sequence of elements (or in a 1-type, just an element)
realizes a type, if when that sequence of elements is substituted
for the free variables in the type, then all the formulas in the type
are satisfied.

We show that there are uncountably many 1-types expressible
from the ϕ′ns. Consider that for a given 1-type Σ, Σ can either in-
clude ϕn, or include the negation of ϕn. Therefore Σ can be seen as
a map from the set of ϕ′ns to 0 or 1 - 1 if the formula is included in
the type and 0 if it is not. Therefore we have precisely 2ℵ0 distinct
types. Each of these types is finitely satisfiable because for any
finite combination of these sentences, there are many elements of
N that could have the desired property.6

Therefore by compactness, there exist models of Th(N) that re-
alize each distinct 1-type. Moreover, each countable model cre-
ated in this way could realize at most countably many of the 1-
types, because to realize each different type requires a different
element (no element could be both divided and not divided by the
nth prime). Yet we had stated that Type(T ) = 2ℵ0.

We define an equivalence relation on all of these models by
M∼M′ iff Type(M) = Type(M′), and moreover see that if two
models don’t realize the same types, they can’t be isomorphic7.

6For instance, an element that satisfies the first 4 ϕ′ns would be 2 · 3 · 5 · 7.
7For two models to be isomorphic, an element and its image under isomor-
phism must satisfy the same formulas. Therefore if some type Γ is realized in
M but not in M′, then some element c must realize Γ in M, and there is no
element f(c) that realizes Γ inM′.
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And since each of the different models created via the compact-
ness argument can realize only countably many types, each model
could share the same types with only countably many others.
Therefore, the size of each [M] is countable.

It is a theorem of ZFC that if A is a family of countable sub-
sets of a set X such that ∪A = X, where X is of size continuum,
then A is also of size continuum8. That is precisely the situa-
tion here - each [M] is countable, and therefore there must be
continuum many equivalence classes [M]. Therefore we have es-
tablished that there are continuum-many non-isomorphic models
of Th(N). �

2.2.2. Existence via Gödel Incompleteness. Another method of demon-
strating the existence of nonstandard models of Arithmetic is to
utilize perhaps the best known result in Mathematical Logic - the
theorem of Gödel that PA is incomplete.9

Theorem 9. (Gödel Incompleteness) If PA is consistent, then there
is a sentence σ such that neither PA ` σ nor PA ` ¬σ. Moreover,
any finite extension T of PA also has a sentence τ such that neither
T ` τ nor T ` ¬τ . 10

8To see this result, consider that | ∪A | ≤ |A | · ℵ0 because each member of the
union is a countable set. Therefore 2ℵ0 ≤ |A | · ℵ0, which by cardinal arithmetic
forces |A | ≥ 2ℵ0 . Let [X]ℵ0 be the full collection of countable subsets of X, then
|[X]ℵ0 | = (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0 . Since A ⊆ [X]ℵ0 , |A | = 2ℵ0 .
9The result presented in this section also goes through for PA− and many
other theories weaker than PA. Gödel’s Incompleteness Theorems are some-
times erroneously thought to rest on the induction axiom schema of PA. They
actually hinge on the ability of the theory to prove “enough” of the theory of
the natural numbers, along with having the axioms of the theory be “effectively
generated”, or “recursively enumerable.” Both PA− and Robinson arithmetic
(also known as Q) satisfy these conditions. (In fact it should not be surprising
that PA− and Q are incomplete since they are in the same language as PA but
are much weaker.) An example of a theory that is sufficiently weak to avoid
incompleteness is Presburger arithmetic, which essentially removes multipli-
cation and the ordering relation from LA and the corresponding axioms from
PA, but retains induction - this theory is provably consistent, complete, and
decidable.
10We explicitly avoid presenting a proof of this theorem, even though it is not
terribly far afield, because this thesis is not about Gödel’s Theorems, their
philosophical implications, or the countless other conundrums generated by
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Corollary 10. Let T ⊇ PA be at most a finite extension of PA.
Then T has 2ℵ0 complete countable extensions.

Proof. Because T is incomplete, there are sentences σ such that
T ∪ {σ} and T ∪ {¬σ} are both consistent, such that models exist
for both. We create the following tree of theories, where s is some
sequence of 0s and 1s:

T∅ = T

Ts0 = Ts + σTs

Ts1 = Ts + ¬σTs
For each function f : N→ {0, 1}, let Tf be ∪n∈NTf�n, where f � n

is the finite sequence f(0), f(1), f(2), . . ., f(n − 1), of 0s and 1s.
Each Tf is consistent by construction, and therefore each Tf can
be extended to a complete consistent theory T ′f . Then, we’d like
to demonstrate that if f 6= g, then T ′f 6= T ′g. Since there are 2ℵ0

distinct functions from N→ {0, 1}, this suffices. Again the nature
of our construction comes into play here - if f 6= g, then there
is a first n where they disagree - in other words f � n = g � n

but f(n) 6= g(n), and therefore Tf and Tg disagree on σTf�n, thus
requiring T ′f 6= T ′g, as desired.[3]

Each of these theories has a countable model by completeness,
thus producing 2ℵ0 non-elementarily equivalent (and thus non-
isomorphic) countable models of PA. Only one of these theories
could be Th(N), so the rest of the countable models produced in
this way cannot be isomorphic to N and are thus nonstandard.

�

them. There are other interesting subjects in models of arithmetic besides
Gödel. This section is really meant to be a minor digression into proving ex-
istence of nonstandard models of arithmetic, and not an investigation into the
rather laborious machinery used to prove these theorems.
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Remark 11. By Corollaries 8 and 10, we achieve the satisfying
result that there 2ℵ0 pairwise non-elementarily equivalent count-
able models of arithmetic, with each of those having 2ℵ0 elemen-
tarily equivalent but pairwise non-isomorphic models.

2.2.3. An explicit construction of a nonstandard model of arith-
metic using definable ultrapowers. This section is a slight digres-
sion in that it relies on tools that are not used in automorphisms
of models of arithmetic. That said, it provides a useful look at the
notion of definability, a subject which is of critical importance for
automorphisms.

From above we have the notion of a definable set, and thus de-
finable functions. Because the number of formulas in LA is count-
able, and every definable function is equivalent to a formula of
LA, the number of definable functions and definable sets in every
model of arithmetic is countable.

We let B be the Boolean Algebra of Sets of definable sets of
N, and let U be an ultrafilter over B. We let F be the family of
functions from N→ N that are definable from N . Then we form
the ultrapower:

M∗ =
∏
F,U

N

We see that the universe of M∗ is

{[f ] : f ∈ F}

where
f ∼ g ⇐⇒ {n ∈ N : f(n) = g(n)} ∈ U

We make two remarks at this point. First, without the restric-
tion to definable functions, this ultrapower would be uncountable.
The universe would be all functions from N → N, which is un-
countable. Although it is not a trivial argument, the equivalence
relation formed by a non-trivial ultrafilter will not change the un-
countability.11 Secondly, while in general with ultrapowers U is
11Suppose the set of all equivalence classes E := {[f ]U |f ∈ NN}, the set of
equivalence classes of functions from N to N under a non-trivial ultrafilter U ,
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left inexplicit, on N any ultrafilter contains the Frechet filter, or
all co-finite sets. All cofinite sets are definable in N by a formula
expressing that x is not equal to a finite list of things, so therefore
these sets are in B. And this U can be made into an ultrafilter.12

M∗ is a model of arithmetic, and we can see that it is non-
isomorphic to N because of the presence of the id function, which
sends the first copy of N to 1, the second copy of N to 2, and so
on. M∗ contains an initial segment isomorphic to N since the
functions [0], [1], [2] (which assign 0, 1, 2 to each copy of N ) are
easily shown to be isomorphic to N. However, M∗ contains the
function id, which assigns 0 to the first copy of N , 1 to the second
copy of N , and so on. This function is larger than everything in
the initial segment. It is easy to prove [id] > [n] since from the set
of places where [id] > n is cofinite, and thus in U . [2]

In fact, very little of our discussion depended onM. If we mod-
ify the hypotheses of this discussion to require that, if M is a
model of arithmetic, if we let B be the algebra of sets definable

was countable. Then we could form an enumeration of them, [f1], [f2], [f3], . . .
with representative members f1, f2, f3, . . . , and create a new function g by a
diagonalization type argument:

g(1) = f1(1) + 1

g(2) = f1(2) + f2(2) + 1

g(n) = f1(n) + f2(n) + . . .+ fn(n) + 1

By construction g is guaranteed to disagree with fk for all n ≥ k. This is the
key use of non-trivial ultrafilters: since g and fk disagree on a co-finite set,
[g] 6= [fk] since an non-trivial ultrafilter on N must contain all co-finite sets.
Therefore we have created a [g] not listed in the enumeration, and thus the set
of equivalence classes E could not have been countable.
12Consider we can show that the set of all cofinite sets is a filter F . First, the
empty set is not a member of F , if A and B are definable sets, A is cofinite, and
a subset of B, then B clearly is cofinite itself and thus in U . If A and B are
cofinite, then their intersection must also be cofinite. Only the last condition
on ultrafilters poses difficulty - there are definable sets that are neither finite
nor cofinite - an obvious example is the even numbers. However, we can use
the classic result of ultrafilters that every filter is extendable to an ultrafilter.
Although there are also explicit constructions for U , we don’t need anything
nearly as powerful here. We can be satisfied with making sure U contains F ,
and thus contains all cofinite sets.
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with parameters, and F be set of definable functions with parame-
ters, then we can prove the MacDowell-Specker Theorem, a result
we reach later via more standard techniques.

Theorem 12. (Countable MacDowell-Specker Theorem via Ultra-
products) Every countable model of PA has an elementary end ex-
tension.

Proof. The key is the in the construction of the ultrafilter. In the
N case, every definable function with bounded range ended up
equivalent to some constant function, since it had to be below
some [n] function, and we had already stated that the [n] functions
formed an initial segment isomorphic to N. That concept can be
extended for an arbitrary model M, to construct a U such that
every definable map with a bounded range is constant on a mem-
ber of U . Then by precisely the argument that [id] was greater
than all the constant functions, that once again is the case here.
M forms an initial segment of the newM∗ by the constant func-
tions, and the new [id] function must be greater than all such
constant functions. ThereforeM∗ is an elementary end extension
not isomorphic toM. [2] �

2.3. What happens in non-standard models.

2.3.1. Basic results of nonstandard models. One of the key early
results of nonstandard models is to look at the order type of all
such models. We can prove that all models of arithmetic take the
form N+ZQ, or a copy of the natural numbers, then a dense copy
of the integers.

Definition 13. IfM and R are two LA structures with R a sub-
structure ofM, and every element ofM\R is greater than every
element ofR, thenR is an initial segment ofM andM is an end-
extension of R. If R 6= M, then R is a proper initial segment of
M. If R is cofinal inM, thenM is a cofinal extension of R. [3]

Definition 14. A cut of a model of arithmetic is a subset of the
model that is closed under the successor operation. A proper cut
is a proper subset of the model that is a cut. [3]
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Definition 15. A injective map between two models M and R
that preserves functions, relations, and formulas is called an ele-
mentary embedding. [1]

Definition 16. A set A ⊆ M is definable in M if there is some
formula ϕ(x) such that a ∈ A ⇐⇒ M � ϕ(a). A set A is definable
with parameters from B if there is a formula ϕ(x, ȳ) such that
a ∈ A ⇐⇒ M � ϕ(a, b̄). [3]

Theorem 17. All models of arithmetic have an initial segment
isomorphic to N .

Proof. The axioms of PA− show that the map n→ nM respects ad-
dition, multiplication, and ordering13. Because it respects order-
ing, the map must also be an embedding (one-to-one) since N is
discretely ordered. Finally, to show that this map actually creates
an initial segment, consider that we can show that for all k ∈ N,
PA− ` ∀x(x ≤ k → x = 0 ∨ x = 1 ∨ · · · ∨ x = k) because the base
case (k = 0) is trivial, and since PA− ` ∀x, y(y > x → y ≥ x + 1),
which makes the induction case hold. Therefore the image of this
map, N = {nM |n ∈ N} is an initial segment ofM. [3] �

The upshot of this theorem is that we can talk about the natural
numbers in any nonstandard model of arithmetic, or even models
of weaker theories like PA− without ambiguity - even though they
may be called something else when interpreted in that particular
model, they are isomorphic to N .

Theorem 18. All countable nonstandard models of PA take the
form N + ZQ.

13Formally, consider that if n, l, k ∈ N and n = l+k, then PA− ` n = l+k since if
k = 0, PA6 achieves the desired result, and the rest follows by simple induction
and PA1 (only needed to stage n at most, as opposed to infinite induction,
which requires full PA). Likewise, if n = l · k, then PA− ` n = l · k by the fact
that if k = 0, PA6 carries the day. Then if PA− proves that n = l · k, then for
k′ = k + 1 and n′ = n+ l, then PA− ` l · (k + 1) = l · k + l by PA5 and PA7, and
thus PA− � l · k′ = n + l, and thus PA− ` l · k′ = n′. And if n < k, then PA−

proves n < k again by induction on k and PA14, PA11, and PA8.
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Proof. LetM be a nonstandard model of PA. The elements 0, 1, 2, ..

are an initial segment of M with order type isomorphic to N.
Therefore M is of the form N + X, where X is some linear or-
der. If we take some nonstandard element a, we can let the set [a]

as “the set of points finitely far from a”, or formally,

{x|∃n ∈ N(x+ n = a ∨ a+ n = x}

This is called a Z block of a, since a is at the center of two copies
of N, one above a and one below a. If we have another nonstandard
element b > a, such that b− a is nonstandard, then consider that
[a] ∩ [b] = ∅, and thus that if x ∈ [a] and y ∈ [b], then x < y. Let
A be the set of all Z blocks. We’ve now shown A is linear ordered,
defined as:

[a] < [b] ⇐⇒ a /∈ [b] ∧ a < b

This relation is reflexive, transitive, and anti-symmetrical. Like-
wise, A has no least element, since either a

2
or a+1

2
exists14, is

nonstandard, and is not in [a] since the distance between them
is either a

2
or a−1

2
, both nonstandard. A has no greatest element

since [2a] > [a] (the distance between a and 2a is nonstandard.)
Therefore A is a linear order without endpoints. Finally, consider
that for any [a], [b], either a+b

2
or a+b+1

2
exists, and [a+b

2
] or [a+b+1

2
]

is not [a] or [b] by the same distance argument. Therefore A is a
dense linear order without endpoints, which is the order type of
Q. [3, 1] �

Corollary 19. LetM � PA be countable and nonstandard. Then
M has 2ℵ0 proper cuts I.

Proof. Consider that by the previous result M has the order type
N + ZQ. Therefore if S is a cut of Q (in the sense that ∀x ∈ S∀y ∈
14To see this, we wish to prove that PA � ∀x ≥ 1(2|x ∨ 2|(x + 1)), where |
means divides as usual. While | is an abbreviation it is not hard to write it as
a formal statement of PA. The proof is inductive - consider that 2|2, which is
the base case. So, we assume that the result holds to n, and consider n + 1.
Suppose 2|n. Then 2 · q = n, and 2 · 1 = 2 Therefore 2 · (q + 1) = n+ 2 and thus
2|(n+ 1) + 1. Otherwise 2|(n+ 1) and we are done. Perhaps unexpectedly, this
theorem actually requires more than PA− to prove - the previously mentioned
example of a model PA− as Z+[x] fails this theorem.
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Q(y < x → y ∈ S)15, then the set N + ZS must be a proper cut
of M since S 6= Q and yet each Z block is closed under successor.
In other words, each of these cuts of Q simply removes Z blocks
from the end of the model. Moreover each distinct S generates
a distinct cut. Finally, we see that there are uncountably many
such cuts because the reals are in fact defined by each distinct cut
of Q, i.e.

r → {q ∈ Q|q < r}
�

The next results we give are related to how nonstandard mod-
els of arithmetic behave in the sense of mathematical properties
transferring from initial segments to later ones, and from later
ones to initial ones. These results matter a great deal because
they give us some insight as to what has to be happening in these
segments. Like other famous “lemmas”, we adhere to convention
in referring to them as lemmas although in terms of importance
they should probably be Theorems.

Lemma 20. (Overspill) LetM � PA be non-standard and let I be
a proper cut of M . Suppose ā ∈ M and ϕ(x, ā) is an LA formula
such that

M � ϕ(b, ā) for all b ∈ I
Then there is a c > I such that

M � ∀x ≤ c[ϕ(x, ā)]

Proof. The key is in the detail that I is a proper cut. Recall that
a proper cut is an initial segment that also happens to be closed
under successor. Any proper cut necessarily cannot be defined by
a formula. Suppose it was - then

I = {b ∈M |M � ψ(b, ā)}

15The concept of cut in these remarks is intentionally used in two different
senses. In fact, it is less ambiguous than it seems at first - while a cut of
a model M outwardly does not look anything like the Dedekind Cut and its
variants from set theory, this result actually proves that they are very alike,
so the terminology is well chosen.
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Then
M � ψ(0, ā) ∧ ∀x(ψ(x, ā)→ ψ(x+ 1, ā))

By the induction axiom in PA, and since I is closed under suc-
cessor,

M � ∀xψ(x, ā)

Which contradicts the fact that I was a proper cut. This gives
us the insight to prove overspill - suppose that the conclusion of
overspill was false. Then

M � ∀y < x[ϕ(y, ā)]

would be a definition of the proper cut. [3] �

Corollary 21. Let M � PA be nonstandard and I a proper cut of
M . Suppose ϕ(x, ā) is an LA formula with ā ∈ M , and that for all
x ∈ I there exists y ∈ I such that

M � y ≥ x ∧ ϕ(y, ā)

(there are unboundedly many y ∈ I satisfying ϕ(y, ā). Then for
each c > I in M there exists b ∈M with I < b < c and

M � ϕ(b, ā)

(i.e. there are arbitrarily small b > I satisfying ϕ(b, ā).

This is especially useful when I = N, since (for instance) this
gives us the ability to see results like “there are arbitrarily small
nonstandard prime numbers” when I is taken to be N and ϕ a
formula expressing the primality of b. More importantly though,
overspill provides the key tool to ensure that logical properties
holding in initial segments can be transferred to segments later
in the model.

We now return briefly to the subject of proper cuts and closure
properties. We have previously proven that there are 2ℵ0 proper
cuts of any countable nonstandard model M . It turns out with
overspill we can prove much more. The cuts that we have previ-
ously exhibited were weak in the sense that they were closed only
under successor. The proof of the order type of PA used the fact
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that we could merely add to get out of each cut and get into the
next one. For our purposes, it will be very useful to have cuts that
are much harder to get out of - cuts that are not only closed under
successor, but also addition, multiplication, and exponentiation.

Theorem 22. LetM � PA be countable and nonstandard. Then
M has 2ℵ0 proper cuts that are closed under +, ·, and exponentia-
tion.

Proof. Recall the tetration, or iterated exponentiation function, as

na = a

n−times︷︸︸︷
aa

..
.

. Instead of our equivalence relation being the finitely
away relation, we now use the “finite tetration away” equivalence
relation16

a ∼ b iff M � b < n(a+ 2) ∨ a < n(b+ 2) for some n ∈ N

We see that this is in fact an equivalence relation - reflexivity
and symmetry come for free by our definition. The only difficulty
is transitivity. We need the statement that if n(a + 2) > b, and
n′(b + 2) > c, then there is some m ∈ N such that m(a + 2) > c.
While intuitively this seems clear - it requires a bit of subtlety in
the proof because exponentiation is not associative. We first need
a short lemma.

Consider
(nx)

nx

We would like to show that

(nx)
nx ≤2n x

Consider that

(xx
xx

)x
xx

x

= xx
xx ·xxx

x

= xx
xx+xx

x

In fact, there was nothing special about our choice of n = 4 -
a similar pattern would result for any choice of n. That similar
pattern is:
16We use the +2’s to avoid pathological situations that can result from a, b, or
n being 0. In the normal case that a or b is nonstandard, the 2′s should not
matter.
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(nx)
nx = xx

m+1x+mx

where m = n− 2.
Consider that in general,

mx+m+1 x ≤2m+1 x

for obvious reasons. Therefore we have

≤ xx
2m+1x

= xx
2n−3x ≤2n−1 x ≤2n x

This gives us the insight to prove the result - consider that if
n′(b+ 2) > c, then

n′(b+ 2) = (b+ 2)

n′−times︷ ︸︸ ︷
(b+ 2)(b+2).

..

> c.

Since b >n (a+ 2)

n′(b+ 2) ≤n (a+ 2)

n′−times

n

︷ ︸︸ ︷
(a+ 2)

n(a+2).
..

> c.

Consider the last two entries in this power tower are identical
to the result first proved. Therefore

≤n (a+ 2)

n′−1−times

n

︷ ︸︸ ︷
(a+ 2)

n(a+2).
..2n(a+2)

Since n and n′ are finite, this process can be iterated using a
very similar argument to the original one.

n′·n(a+ 2) > c

Therefore this is an equivalence relation, and so we can look at
A = (M\[0])/ ∼. We see that A is a linearly ordered set, for largely
the same reason that the finitely away relation was a linear order
- if a < b and [a] 6= [b], then [a] <A [b].

We now set out to prove that this linear order is dense. Suppose
that [a] <A [b]. Then N < a < b (recall that we removed the first
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equivalence class, which can be easily verified to correspond to N,
since finite tetrations of natural numbers are natural.) Therefore

M � ∃x(n(a+ 2) < x < n(x+ 2) < b

for each n ∈ N. This heavily relies on the fact that tetration
(and exponentiation) actually can be defined as formulas in PA -
a subject that we will turn to in a moment. For now we can take
it on faith that na is a valid abbreviation for an actual formula
of PA. As for the statement, it merely states that since a and
b are more than a finite tetration away, once we fix a particular
n ∈ N there must be an x between a and b such that x is more
than n(a + 2) and n(x + 2) < b. Therefore by overspill, there must
be some c,d > N such that

M � c(a+ 2) < d < c(d+ 2) < b

Therefore
[a] <A [d] <A [b]

And thus this linear order is dense. Moreover by a similar con-
struction it is quite clear that there can be no first nor last el-
ement of this linear order - thus we have a dense linear order,
which once again is the order type of Q. Therefore each cut of Q
induces a cut of M , and there are 2ℵ0 such cuts.

Moreover, each of these cuts is closed under exponentiation.
Take any element e in some initial segment I = [a] created in
this way, and without loss of generality take e. Then consider
that since

e < na

for some n, e is in the equivalence class of a, and therefore [a] =

[e]. Then we see that 1e = ee must be contained in [a] as well.
Thus ee ∈ I, and therefore I is closed under exponentiation.

Closure under multiplication, addition, and successor is obvious
from here. Therefore M has 2ℵ0 proper cuts closed under addition,
multiplication, and exponentiation, as desired. �
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Our next few results discuss the ability of models of arithmetic
to be extended. It turns out that models of arithmetic can be ex-
tended both cofinally (that is, with every new element being below
some old element), as well as end (that is, with every new element
above every old element.) These results are somewhat surprising
if one considers the standard model, since N certainly cannot be
extended cofinally. The first result appears to have nothing to
with extensions at all, but it turns out to be of critical importance
in proving these results.

Theorem 23. (MacDowell-Specker via standard means) Every model
of arithmetic has a proper elementary end extension.

The proof of this seminal result in nonstandard models of arith-
metic requires the use of very small models. The broad idea is
that if M ≺ K with K an end extension of M and c ∈ K\M then
K satisfies the theory:

{ϕ(ā)|ā ∈M � ϕ(ā)} ∪ {c > a|a ∈M}

To even state this theory requires a massive language expan-
sion - here we add a constant that names each a ∈ M and an
additional constant c. Since K is an end extension, it has to omit
at least these types:

pa(x) = {x < a} ∪ {x 6= b|b ∈M � b ≤ a}

K fails to realize these types because there is no choice of x ∈M
such that x > a and x < a. Because we are omitting lots of types -
at least countably many, and possibly more if our original model
was uncountable, we know that at least K can’t be “huge”, or
saturated. The goal is to define K = K(N ;M ∪ {c}) for some
c ∈ N\M . The work is in constructing N and c.

If we do find an extension K � M with K ⊇e M , and c ∈ K\M ,
then if we have a formula ϕ(x, ȳ) and every b̄ ∈ M , K � ϕ(c, b̄)

means that
M � ∀z∃x(x > z ∧ ϕ(x, b̄))
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Essentially, this is stating that if one element in the extended
model K satisfies a formula, then there must be unboundedly
many things that also satisfy it in the original model M . This is
so because of the fact that the extension is elementary. We denote
this property - that unboundedly many things satisfy a formula,
as Qxϕ(x, b̄). The needed expansion of the language we denote
as LA(M), the Language of Arithmetic supplemented by constant
symbols for each element of M . [3]

Proof. While a proof for the general case is given in [3], we present
a proof of the countable case. Consider that since M is countable,
we can enumerate all the LA(M) formulas in one free variable as
θ0(x), θ1(x), ..... We construct a sequence of formulas ϕ0, ϕ1, ... such
that M � Qxϕi(x) for all i.

We let ϕ0(x) be
x = x

Next, for each i ≥ 0, if θi(x) is ∃y < b(ψ(x, y)) for some ψ and
some b ∈M , then we let

ϕi+1(x) = ϕi(x) ∧ ψ(x, c) ∧ c < b

for some c ∈M , or:

ϕi+1(x) = ϕi(x) ∧ ¬θi(x)

If θi(x) is any other LA(M) formula,

ϕi+1(x) = ϕi(x) ∧ θi(x)

We first show that this construction in fact means that for all ϕi,
Qxϕi(x). Consider the unbounded formula ϕ and the arbitrary
formula θ. If θ is a bounded formula (in the sense all elements
that satisfy the formula are less than some d ∈ M ), then ¬θ is
satisfied by all elements greater than y. Therefore ϕ ∧ ¬θ would
be unbounded. Likewise if ¬θ is bounded, then ϕ ∧ θ would be
unbounded. Finally, if θ and ¬θ are both unbounded, then if ϕ ∧ θ
was bounded, then ϕ ∧ ¬θ is necessarily unbounded.
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This leaves the case where θi(x) = ∃y < b(ψ(x, y)). By collec-
tion17 Qx∃y < b(ψ(x, y)) → ∃y < bQx(ψ(x, y)). This latter formula
says that there is a fixed y < b such that unboundedly many x

satisfy ψ. Therefore, if θi(x) is unbounded, then ϕi ∧ψ(x, c)∧ c < b

must also be unbounded by the previous combinatorial argument
and replacing the fixed y by c. If θi(x) is not unbounded, then we
can conjoin its negation as usual and retain an unbounded for-
mula.

Therefore, the ϕ′ns are a sequence of unbounded formulas. We
can thus see that:

M∗ � Th(M,m)m∈M + {ϕi(d) : i ∈ N}+ {d > m : m ∈M}

where (M,m) is M with constant symbols added for each el-
ement exists by compactness. (The theory is consistent since for
any finite combination of formulas, d can be made large by the un-
boundedness of each of the ϕ′s). Moreover M∗ is not M because
it contains d > m for all m ∈ M . However, this is not necessarily
an end-extension.

Instead, we examine M0, which we define as the submodel of
M∗ generated by M ∪ {d}. We claim that this M0 is in fact an
elementary end-extension. M0 is an elementary extension since
it is a submodel ofM∗ and d > M . To show it is an end extension,
we need to show that no new elements are added toM. Suppose
one was, that is,

M0 � τ(m, d) < b

for some b ∈M . We’d like to show that τ(m, d) is already defined
byM. Consider that by elementarity,

M∗ � τ(m, d) < b

Therefore -
M � Qxτ(m,x) < b

17Collection is a property of PA, and the traditional statement of it is that a
function f with finite domain has a finite range. The way it is used here is a
variant of collection that allows us to interchange the order of quantifiers.
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Thus
M � Qx∃y < b(y = τ(m,x))

But now this must be one of the θi’s, and thus by construction
∃y0 < b ∈M such that

M � Qxy0 = τ(m,x)

�

Essentially, the work involved in the proof is not in construct-
ing a model that contains the original model. There are many
constructions of such models via compactness. The hard part is
to prove that we can come up with a model that is also an end
extension - that it preserves the original model in its entirety,
without adding any new elements under any old elements. That
requires the more careful construction we exhibited in this proof.

2.3.2. The relationship between recursion and arithmetic. There
is a deep and rich connection between recursion theory and arith-
metic, which we do not examine in great detail. The key results
we need are that:

Proposition 24. A ⊆ Nk is recursively enumerable iff there is a
Σ1 formula ψ(x1, x2...xk) such that for all x̄ ∈ N, x̄ ∈ A iff N � ψ(x̄).
[3]

Proposition 25. A ⊆ Nk is recursive iff there is a Π1 formula
ψ(x1, x2, ...xk) such that for all x̄ ∈ N, x̄ ∈ A iff N � ψ(x̄). [3]

Informally, the notion is that a recursively enumerable set is
“semi-decidable” - to determine if a number is in a set, there is an
algorithm that will eventually terminate if the number is in the
set, but is not guaranteed to terminate if the number is not in the
set. A recursive set is completely decidable, in that there is an
algorithm that will terminate in a finite length of time and give
an answer as to whether or not the number is in the set.

We focus primarily on recursive sets and their properties.
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Proposition 26. (Church’s Thesis) Every function whose values
can be found by some purely mechanical algorithm is a recursive
function. [3]

This statement can’t be proven as it is a heuristic statement
rather than a formal mathematical one, but it is essentially ac-
cepted. It takes real work to come up with non-computable func-
tions, somewhat like creating a non-measurable set. While prov-
ably the vast majority of functions in arithmetic are non-recursive,
(there are only countably many recursive functions because each
recursive function can be defined by a formula of LA), all the usual
functions that we would be interested in, such as addition, mod-
ified subtraction, multiplication, exponentiation, tetration, and
essentially anything else we can name is computable, and thus
by Church’s Thesis is computable. While Church’s Thesis is a
helpful guide to which functions are recursive, and helps to avoid
long, drawn out proofs, proofs do exist for any function we use.

Proposition 27. Gödel Numbering: There is a computable (and
thus recursive) function that assigns a natural number to every
well formed formula in the Language of Arithmetic.

One of the key aspects of arithmetic is that it has immense abil-
ity to formalize mathematics within the theory, rather than out-
side. Nowhere is that more evident than in the ability to repre-
sent statements of mathematical logic as natural numbers. This
means that proofs, sentences, and other traditional constructs of
mathematical logic can be represented as statements about nat-
ural numbers. This is the key technique used in the proofs of
incompleteness and other results. While there are many differ-
ent numbering systems available, for our purposes the key result
is that we can represent formulas as a natural number. The no-
tation we use is that the Gödel number of a formula ϕ is dϕe.

Proposition 28. A nonstandard element c can be seen as coding
a sequence of numbers through a computable function.



AUTOMORPHISMS OF MODELS OF ARITHMETIC 30

Perhaps the easiest way of coding a sequence is to use the fact
that every number has a unique binary expansion. This property
is just as true of nonstandard integers as it is of standard ones.
Consider that for any integer c,

c =
∑
i=0

n · 2i

A particular integer i is included in the sequence if the value
of n for that i is 1, and is not if the value of n is 0. The sequence
coded by a particular integer is denoted as (c)n. With this coding,
numerous benefits accrue. For instance, exponentiation can be
defined as χ(x, y, z) = ∃w[(w)0 = 1 ∧ ∀i < y((wi+1) = x · (w)i ∧ z =

(w)y. There are many other coding mechanisms that also work
just as well - a more formalistic argument involves a result called
Gödel’s Lemma and is detailed in [3].

3. RECURSIVE SATURATION AND ITS CONSEQUENCES

3.1. Introduction. The intuitive picture of a model of arithmetic
is a rigid structure. And in fact it is quite clear that the standard
model N has no non-trivial automorphisms. Therefore the obvi-
ous question is: what is so different in nonstandard models that
they can have non-trivial automorphisms?

It turns out that while rigid nonstandard models exist (in fact,
in abundance) - we can also construct models of arithmetic with
uncountably many automorphisms. We begin this section by con-
sidering a weaker theory than arithmetic, then develop the theory
and existence of recursively saturated models of arithmetic. Fi-
nally, we show how recursively saturated models are rich enough
to have non-trivial automorphisms.

3.2. Automorphisms of N + ZQ. By weakening the theory to
just considering the theory of the set N + ZQ as a linear order
(formally, the theory of Discrete Linear Orders with a first ele-
ment), we see that it is intuitively plausible that this set at least
has automorphisms. Aut(Q) (where Q is considered as an order)
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is of size continuum, and each of these naturally induces an auto-
morphism of N + ZQ.

We can even consider the case of the theory of the set N + Z as
a linear order, and see that each automorphism of Z (Z here con-
sidered solely as a linear order), which are “shifts”, also induces
an automorphism on N + Z.

One interesting thing to note here is that in neither of these
theories is any element outside of N definable by a formula. In
the language consisting just of equality and < we can uniquely
define 0 [∃x∀y(y > x)], and thus we can define each member of
N. But that’s as far as it goes - it is hopeless to uniquely define
any element in Z or ZQ, since our language is not strong enough
to distinguish among them. This makes intuitive sense: because
adding 1 or n to each element results in an identical set as an or-
dering, and we know that automorphisms preserve types, all ele-
ments of Z as an order must have the exact same type. Therefore
each member of Z cannot be uniquely defined by a formula, and
therefore each member of Z is what we call “undefinable”. Each
undefinable appears to be able to be mapped to another undefin-
able that shares the same complete type by an automorphism. In
fact here, all of the undefinable share the same complete type,
although this is by no means a requirement for more general
models. The existence (and in fact, abundance) of undefinable
elements and their relative freedom to move in automorphisms
plays a key role in the creation of automorphisms of models of
arithmetic.

3.3. Recursive Saturation. One of the key objects of study in
Model Theory are the consequences of types being realized or
omitted. Some theories are extremely rigid, or “categorical”, mean-
ing that there is no flexibility in what types can or can’t be in-
cluded in a model of a theory. But many other theories, including
PA, have far more freedom with types. The extreme cases of types
being included or excluded are saturated models and prime mod-
els, respectively. In short, a prime model realizes as few complete
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types as possible, while a saturated model realizes as many as
possible.

The best way to think about a saturated model is as a model
that is extremely “rich.” In a saturated model, informally, “as
many things that can happen do happen.” Formally, that trans-
lates into as many complete types as possible being realized. From
the fact that there are uncountably many distinct models of PA,
the total number of types in LA is uncountable, which would be
problematic for a study of saturated countable models of PA.

However, in arithmetic, it turns out to be helpful to look at re-
cursive saturation. Recursive saturation means that every recur-
sive type is realized by some element in the model. While these
structures are slightly less rich than full saturation, in that in-
stead of all types, we are commuted to realizing just all recursive
types, their chief benefit is that recursive types also are definable
in the language of arithmetic, which is not guaranteed with full
saturation. One immediate benefit is that this limits us only to
countably many recursive types (since there are only countably
many formulas). Therefore we can modify the statement above
about saturated models to “everything (recursive) that can hap-
pen, does happen.” This fertile intersection between definability
and saturation properties leads to the results that follow.

3.3.1. Existence. We begin by formalizing the definition of a re-
cursive type.

Definition 29. A recursive type is a type p(x̄) whose set of Gödel
numbers {pϕ(x)q|ϕ(x̄) ∈ p(x̄)} is recursive. [3]

Definition 30. A type over M is a set p(x̄) of formulas ϕ(x̄, ā) of
LA ∪ {ā}, where x̄ is a fixed finite tuple of free variables and ā is a
fixed finite tuple of parameters such that p(x̄) is finitely satisfied
in M , i.e

M � ∃x̄
k∧
i=1

ϕi(x̄, ā)
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for each finite subset ϕ1(x̄, ā), . . . ϕk(x̄, ā). p(x̄) is a recursive type
over M if the set of Gödel numbers of these formulas is recursive,
or formally if the set,

{pϕ(x̄, ȳ)q|ϕ(x̄, ā) ∈ p(x̄)} ⊆ N

is a recursive set, where ȳ is a tuple of variables disjoint from
x̄ (this caveat is necessary because of the way Gödel numbering
functions are defined.) As usual, a type is complete iff for all for-
mulas ϕ(x̄, ā) involving the same free-variables x̄ as p(x̄) and the
same parameters ā as p(x̄), then either ϕ or ¬ϕ is in the type.[3]

Definition 31. A model M � PA is recursively saturated iff every
recursive type over M is realized in M .

We have seen before that an element can be seen as coding a
set - we formalize this as “the set coded by a in M” is the set

S = {n ∈ N|M � (a)n 6= 0}

The precise definition of (a)n here is not important as long as
it is consistent - perhaps the nicest one is the binary expansion
function, although others work just as easily.

We then define the “standard system” of a model M , denoted
SSy(M) as the collection of all subsets of N coded in M , or

SSy(M) = {S ⊆ N|S = {n ∈ N|M � (a)n 6= 0} for some a ∈M}

Two results that illuminate the behavior of SSy(M) are that
every recursive subset of the natural numbers is coded in all
nonstandard models of PA, and the converse that for every non-
recursive set, there is a nonstandard model that does not code
that set. [3]

Lemma 32. If S ⊆ N is recursive than S is coded in all nonstan-
dard models of PA.

Proof. We define the type

p(x) := {(x)i 6= 0|i ∈ S} ∪ {(x)i = 0|i /∈ S}
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These formulas state that “x codes the ith” element of S for each
i. Therefore if p(x) is realized, that all of these formulas are re-
alized - in other words some element codes S. And if S is coded,
then some element x has to be doing the coding - therefore p(x) is
realized.

Now we use the recursion hypothesis: since S is recursive, it is
definable by a formula ϕ - therefore

n ∈ S ⇒ PA ` ϕ(n)

n /∈ S ⇒ PA ` ¬ϕ(n)

Therefore p(x) is realized if the type:

q(x) = {(x)i 6= 0↔ ϕ(i)|i ∈ N}

is also realized in M .
At this point, we make an overspill argument: for k ∈ N

M � ∃x∀i < k[(x)i 6= 0↔ ϕ(i)]

since x is just the binary expansion of a sequence. Therefore

M � ∃x∀i < b[(x)i 6= 0↔ ϕ(i)]

for b nonstandard. Because b is nonstandard, some a nonstan-
dard realizes q(a), and therefore a codes the set S. [3] �

We also observe that the proof of this statement gives us addi-
tional detail about SSy(M) - the interaction between a set being
coded and a type being realized tells us that the sets in SSy(M)

correspond to which types are realized in M . [3]

We turn back to the problem of actually constructing a recur-
sively saturated model.

Proposition 33. Let M be an countably infinite model of LA.
Then there exists an LA structure M ′ that elementarily extends
with M ′ recursively saturated and countable.18

18The theorem as proved in Kaye is actually stronger than this - it states
that there are recursively saturated extensions of any infinite model of any
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Proof. For each m,n ∈ N there are countably many sets

p(x0, . . . xm, y0, . . . yn)

of formulas
ϕ(x0, . . . xm, y0, . . . yn)

with at most m+n free variables and whose set of Gödel numbers

{pϕ(x̄, ȳ)q|ϕ ∈ p(x̄, ȳ)}

is recursive. Over n,m ∈ N, the collection of all of these is a count-
able union of countable sets, and thus countable. We can there-
fore enumerate this as p0(x̄, ȳ), p1(x̄, ȳ), . . . , pi(x̄, ȳ) . . . such that the
free variables in pi(x̄, ȳ) are x0, . . . xmi

, y0 . . . yni
.

We now set up an elementary chains argument. In the first
stage, we let M0 = M . The cardinality of the set of all finite length
sequences inM is the same as the cardinality ofM , again because
they are a countable union of countable sets, and denote that set
as M<ω. A representative element of M<ω is ā = (a0, a1, . . . am) ∈
M of length m+ 1.

At this point, we consider each pair of pi(x̄, ȳ) and tuples ā.
The goal will be to define new constant symbols for each of the
free variables x̄ such that pi(x̄, ā) can be expressed using constant
symbols for each member of x̄. This is easy enough to do - we add
the constant symbols ci,ā,0, ci,ā,1, . . . ci,ā,mi

, and while the triple in-
dexing is abhorrent, it merely means that each constant symbol
depends on which of the i types it is coming from, the choice of ā,
and its position in x̄. We also expand the language to name each
element a ∈M0. While this is a massive language expansion, it is
still countable.

recursive language, not just LA, a recursive language meaning that there is a
Gödel Numbering that assigns numbers to each constant, relation, function,
and variable such that the set of all constants, the set of all relations, the set
of all functions, and the set of all variables as numbered are recursive. This is
rather trivial for LA since there are only finitely many constants, relations, and
functions, and no variables. We also only prove the countable case although the
general case requires a slight modification.
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Then, we consider the theory T in this expanded language L,
with axioms:

(a) θ(ā) for every L-formula θ(x̄) and every ā ∈ M0 for which
M0 � θ(ā)

(b) ϕ(ci,ā,0, . . . ci,ā,m, ā) for every ϕ(x̄, ȳ) ∈ pi, every i ∈ N, and
every a0, a1, . . . ani

∈ M such that p(x̄, a0, a1, . . . , ani
) is a type over

M0.
This argument has a very definition-chasing flavor to it: the

definition of type over M0 requires that each type be finitely sat-
isfiable, and the axioms including true statements are necessar-
ily consistent. Therefore by compactness there is countable model
M1 satisfying T . Moreover, becauseM1 must have an element that
realizes the constant for each a ∈M0, M1 �M0, and moreover M1

must realize every recursive type over M0.
We can continue to proceed in this way, such that we have a

chain of models M0 ≺ M1 ≺ . . . of models all of countable cardi-
nality such that Mj+1 realizes every recursive type of Mj. Then
consider the model

M ′ =
⋃
j∈N

Mj

By the fact that this is an elementary chain, it is an elementary
extension of M0, and M ′ is countable as a union of countable sets.
Finally, if q(x̄) is a recursive type over M ′ that involves a finite
number of parameters b̄, then this recursive type must have been
contained in Mj for some j since b̄ ∈ Mj for some j. Therefore
this type would have been realized in Mj+1, and therefore in M ′

since M ′ � Mj+1. The reduct of M ′ to LA must still be recursively
saturated since we are only removing constant symbols. [3] �

3.4. Automorphisms of recursively saturated models. The
key aspect of recursively saturated models is that they realize
so many types, while having the vast majority of elements re-
main undefinable, even with finitely parameters. This gives fer-
tile grounds for creating non-trivial automorphisms by moving el-
ements. The result we trace here is due to Smorynski, and proves
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rather more than just creating one automorphism. Instead, we
prove that there are continuum many automorphisms that point-
wise fix any initial segment closed under exponentiation.

A new bit of notation we need is that we consider a0, . . . , an−1 ≡
b0, . . . bn−1 mod c iff the n-tuples have the same types relative to
parameters less than or equal to c.19 The idea is that c represents
how much of the model that can be preserved.

Lemma 34. Smorynski’s Basic Back-and-Forth Lemma: Let M
be recursively saturated. Let c, a0, . . . , an−1, b0, . . . , bn−1, an ∈ |M | be
given with c nonstandard and a0, . . . an−1 ≡ b0, . . . bn−1 mod c. Then
there is an element bn ∈M such that a0, . . . , an−1, an ≡ b0, . . . , bn−1, bn mod

d where 22d ≤ c.

Proof. Suppose for all θ,

M � ∀v0, . . . vm−1 ≤ c̄[θ(v0, . . . , vm−1, a0 . . . an−1)↔ θ(v0, . . . , vm−1, b0, . . . , bn−1)]

Then consider the set τ(v, a0, . . . an−1, an, b0, . . . bn−1, d), which we
denote as τv, defined as

∀v0, . . . vm−1 ≤ d̄[θ(v0, . . . vm−1, a0, . . . an−1, an)↔ θ(v0, . . . vm−1, b0, . . . bn−1, v)]

We try and show that if d is sufficiently small, then τv is a type.
We now create the set of code numbers that satisfy each θi. We

define

Dθi
ei

= {〈c0, c1, . . . , cm−1〉|c0, . . . cm−1 ≤ d∧M � θi(c0, . . . cm−1, a0, . . . an−1, an)}

Dx is the set that contains each member of its binary expansion.
Dθi
ei

contains the tuples of all substitutions for the free variables
v0, . . . vm−1 that satisfy θi. ei is the number that results from the
binary expansions of the result of the Cantor Pairing function.
We can show that each of these ei < c, if c ≥ 22d. Consider that for

19Formally, this is stated as a0, . . . an−1 ≡ b0, . . . bn−1 mod c if and only if for all
formulas θ with no parameters and m + n free variables, M � ∀v0 . . . vm−1 ≤
c̄[θ(v0 . . . vm−1, a0 . . . an−1)↔ θ(v0 . . . vm−1, b0 . . . bn−1).
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any θ1, . . . θk, k finite,

M � ∃v∀v0, . . . vm−1 ≤ d
k∧
i

[θi(v0, . . . vm−1, a0, . . . , an−1, v)↔ 〈v0, . . . vm−1〉 ∈ Dθi
ei

]

This is simply definition chasing - here v is simply an, and the
rest follows by the way Dθi

ei
was created. But since a0, . . . an−1 ≡

b0, . . . bn−1 mod c, and d, e1, . . . ek < c,

M � ∃v∀v0, . . . vm−1 ≤ d
k∧
i

[θi(v0, . . . vm−1, b0, . . . bn−1, v)↔ 〈v0, . . . vm−1〉 ∈ Dθi
ei

]

Therefore

M � ∃v∀v0, . . . vm−1 ≤ d
k∧
i

[θi(v0, . . . , vm−1, b0, . . . bn−1, v)↔ θi(v0, . . . , vm−1, a0, . . . an−1, an)]

Therefore τv is a type. Since this is a recursive type, andM is
recursively saturated,M is realized by some element bn ∈M , and
thus a0, . . . an ≡ b0, . . . bn mod d. [7] �

Lemma 35. Smorynski’s Combinatorial Lemma: LetM be recur-
sively saturated, I ⊂eM an initial segment closed under exponen-
tiation. Let I < a and I < b be given. Then there are c, d with
I < c < d < a and d not definable from b together with any param-
eters less than or equal to c.

Proof. We select c such that 22c ≤ a and count the number of possi-
ble definitions. The number of definitions using a finite number k
parameters, each parameter less than or equal to c, together with
b must have an upper bound of the number of formulas times the
number of k-tuples with each parameter less than c.

In other words, #(definitions) ≤ #(formulas)×#(k − tuples)
However, the number of formulas of LA must be contained within

I 20, and thus

≤ c ·
(
c+ 1

k

)
20More specifically - the set of Gödel Numbers of each formula of LA is an
embedding into N, and therefore must be lower than any nonstandard element.



AUTOMORPHISMS OF MODELS OF ARITHMETIC 39

Therefore

≤
ω∑
i=0

c ·
(
c+ 1

k

)
≤ c(

c+1∑
i=0

(
c+ 1

i

)
≤ c · 2c+1 ≤ 22c+1

The first inequality follows by taking k over all finite numbers,
the second by pulling c out and summing over more terms than
originally used, the third by the fact that the sum of the (c + 1)st

row of Pascal’s Triangle is (c+ 1)2 ≤ 2(c+1), and the last by the fact
that c ≤ 2c.

But since 22c ≤ a, there are more elements between c and a than
there are definitions. Therefore we can select a d not definable as
desired.[7] �

Lemma 36. Let M be recursively saturated. Let a0, . . . an−1, c ∈M
with an undefinable from a0, . . . an−1 and e0, . . . , ek−1 for any ei ≤ c.
InM there is an a′n 6= an such that:

a0, . . . , an−1, an ≡ a0, . . . an−1, an mod d

where 22d ≤ c.

Proof. Consider that τ(v, a0, . . . an−1, an, d) :

∃v 6= an∀v0, . . . vm−1 ≤ d[θ(v0, . . . vm−1, a0, . . . , an−1, an)↔ θ(v0, . . . , vm−1, a0, . . . , an−1, v)]

Then consider that if this set of formulas is inconsistent, then
for some finite set of formulas θ0, . . . , θk

M � ∀v0, . . . , vm−1 ≤ d

k∧
i=0

[θi(v0, . . . , vm−1, a0, . . . , an−1, v)↔ 〈v0, . . . , vm−1〉 ∈ Dθi
ei

]→ v = an

But then we have precisely a definition of an from a0, . . . , an−1

and the e′is, and we had stated that an was undefinable. [7] �

Theorem 37. Let M be a countable recursively saturated model
of arithmetic, I ⊂eM an initial segment closed under exponentia-
tion. There is a continuum of automorphisms which pointwise fix
I.
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Proof. By ω− step mod 3 back and forth argument. We enumerate
M , and require that c0, c1, . . . be a sequence of elements in M such
that 22cn+1

< cn, and that the c′ns are downward cofinal in M\I, in
other words that they are arbitrarily close to I.

Then at stages where k ≡ 0 mod 3,

a0, . . . , ak−1 ≡ b0, . . . , bk−1 mod cnk

Then we let ak be the first element in the enumeration of M not
among a0, . . . , ak−1 and use lemma 34 to find a bk such that

a0, . . . , ak ≡ b0, . . . , bk mod cnk+1

and we can therefore set nk+1 = nk + 1.
At stages where k ≡ 1 mod 3, we do the same thing except we

map bk to ak.
At stages where k ≡ 2 mod 3, we have that

a0, . . . , ak−1 ≡ b0, . . . bk−1 mod cnk

We can apply lemma 35 to find c, a such that

c < a < cnk

with a undefinable from 〈a0, . . . , ak−1〉 with any parameters less
than or equal to c. Therefore we can choose cm ≤ c, and letting
ak = a, find via lemma 34 and lemma 36 distinct elements b, b′such
that a0, . . . , ak ≡ b0, . . . , bk−1, b ≡ b0, . . . , bk−1, b

′ mod (cm+3) . We can
choose one of b and b′ to be bk and let nk+1 = m+ 3.

Then after ω steps, every element of M will have been treated
at some point by the steps congruent to 0 and 1, thus forcing us
to have an automorphism by mapping the a tuple to the b tuple,
which after all necessarily have the same types relative to I. Be-
cause in the steps where k ≡ 2 mod 3, we had two choices, after
ω steps we now have a continuum of of automorphisms. Further-
more, elements arbitrarily low above I are moved by virtue of the
k ≡ 2 step because the c′ns are downward cofinal. Finally, ev-
ery member of I is fixed because for a ∈ I, a < cn for every n, and
therefore can be defined using parameters from below cn - namely
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itself. Because it is definable in this way it has to be mapped to
itself. [7] �

Therefore, we have proved rather more than just that recur-
sively models of arithmetic have automorphisms. Indeed, we achieve
the satisfying statement that:

Theorem 38. In a recursively saturated model of arithmetic, there
are continuum many initial segments I that are closed under expo-
nentiation, each of which has continuum many distinct automor-
phisms for which I is the largest initial segment fixed pointwise.

We can also prove an interesting converse to this result. What
we had previously shown was that initial segments closed under
exponentiation were maximal segments fixed by some automor-
phism. They also turn out to be the minimal fixed segment of
an automorphism as well. We denote the largest initial segment
pointwise fixed by an automorphism g as Ifix(g). [4]

Proposition 39. If g ∈ G and I = Ifix(g) then I is closed under
exponentiation.

Proof. This is proof that exploits the use of even infinite (from
outside the model) binary expansions of elements being able to
be reduced to a formula, and thus being preserved under auto-
morphism . Recall that g is an automorphism, so suppose g fixes
{x ∈M : M � x < a} and y < 2a. Then we define the formula u ∈ v
to be “the uth digit of the binary expansion of v is 1”21. Then, for
all x ∈M , if M � x ∈ y, we have x < a so that

M � x ∈ y

Because g is an automorphism, all formulas satisfied by the old
elements must also be satisfied by the new one:

⇐⇒ M � g(x) ∈ g(y)

21This poses no definability issues since INSIDE the model u is just a natural
number - even though from outside it appears to be infinite.
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But since x < a,
⇐⇒ M � x ∈ g(y)

Therefore x is in the binary expansion of g(y), and since y and
g(y) must now have the same binary expansion, y = g(y). �

The key use of the fact that y < 2a is that all the elements of
the binary expansion are under a, since if there was an element
b in the binary expansion of y that was larger than a, that would
imply that 2b < y, which is impossible since y > 2a.[4]

4. A BIT ABOUT THE OPEN PROBLEMS

A very interesting connection between automorphisms of PA
and the rest of mathematics are in the fact that they have a topo-
logical group structure. In fact, the general structure of automor-
phisms of any countable structureM have similar topological and
algebraic properties to PA. In this section, we merely trace out
some of the results in this area, mostly without proofs, and state
two problems that remain open in the subject.

Fact 40. The automorphisms of a countable recursively saturated
modelsM, or Aut(M) have a mertrizable topological permutation
group structure.

The permutation group hereG turns out to have cardinality 2ℵ0.
The topology is metrizable; enumerate the model as {xn : n < ω}
22, and then define d(f, g) = 1

2n+1 , where n is the least such n for
which xfn 6= xgn or (xn)f

−1 6= (xn)g
−1. Moreover, this group has some

other interesting properties: G has to be Hausdorff, complete, the
index of all open subgroups can be at most countable. We can also
describe the basic open subgroups: they take the form

Ga = {g ∈ G : g(a) = a} over all a ∈M

[4]
22This exploits yet another strange feature of models of arithmetic: while they
are not the natural numbers, they remain countable, and thus in bijection with
them! We can therefore enumerate a nonstandard model of arithmetic using
the natural numbers.
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Fact 41. Types correspond to orbits.

We recalled earlier the notion of types as the set of formulas re-
alized by a particular element. It turns out that because the au-
tomorphism group of a recursively saturated model is “strongly
ℵ0 homogenous”, each type corresponds to an orbit of the auto-
morphism group. This actually should not be terribly surprising:
if a complete type can be realized by more than one element (and
thus realized by infinitely many such elements), then by 34 an au-
tomorphism can be constructed mapping these elements to each
other in a non-trivial way. Therefore each complete type corre-
sponds to an orbit of the permutation group.[4]

Remark 42. The open problems relate to the closed normal sub-
groups of Aut(M). In order to phrase the problem, we need a few
more notions and notations. G(A) is the subgroup of the automor-
phism group that fixes the set A pointwise; G{A} is the subgroup
that fixes A setwise. G(>I) is the set of all automorphisms such
that Ifix(g) )I. An initial segment I is “invariant” if every auto-
morphism in G fixes I setwise, that is, G{I} = G. It turns out
that for an initial segment I closed under exponentiation, G(I)

and G(>I) are normal iff I is invariant. Moreover, G(I) is always
necessarily closed. The key result of [4] is that:

Theorem 43. For M recursively saturated, and G a topological
group with the usual topology

(a) For initial segments I, J of M: G(I) and G(J) are closed;
G(I) = G(J) iff they have the same closure under exponentiation,
and G(I) is normal iff exp(I) is invariant. Also, for N C G, Ifix(N)23

is invariant and closed under exponentiation.
(b) The operations

I → G(I)

and
N → Ifix(N)

23A slight abuse of notation - this means the largest initial segment pointwise
fixed by the group of automorphisms N



AUTOMORPHISMS OF MODELS OF ARITHMETIC 44

defined on invariant initial segments I of M closed under expo-
nentiation, and closed normal subgroups N of G are inverse to
each other. [4]

As Kaye points out, this leads to some interesting remarks;
first, due to another result, this means that there are nontriv-
ial normal closed subgroups for a model of PA if and only if there
are nonstandard definable elements. But the really interesting
questions are:

Problem 44. Classify all normal subgroups, showing that they
are all G(I) or G(>I) for invariant I. [4]

Problem 45. Give a group-theoretic characterization of the closed
subgroups that occur asG(I)for some initial segment I ofM . Given
such a characterization, extend the Galois correspondence in The-
orem 43 to all such groups. [4]

We end on that note - Kaye offers some suggestions on how to
solve the first, but the second remains completely open.

A short note on references is worth making here. I cite nu-
merous references that aren’t used in the paper; these references
were helpful to me although not directly used in the paper. Of
course, I have been studying this subject for nearly two years,
and have been reading both for general knowledge as well as this
paper. Inevitably some sources will be left out. Everything I use
directly in the paper should be cited. I also benefited greatly from
conversations with Dr. Ali Enayat; his influence is throughout
this paper as well and nearly everything should also have a cita-
tion to him.
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