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I. Introduction

When one represents a physical system of harmonic oscillators, it is possible to represent the system in many ways.
For a system with three degrees of freedom, one could represent a single particle in three dimensions which would be
equivalent to three particles in one dimension. The main idea here is that in each case, the total degrees of freedom must
be equal for di�erent representations of a given system. There are many other ways that someone can represent a physical
system in three dimensions. The system can be represented in Cartesian coordinates, cylindrical coordinates, or spherical
coordinates, just to name a few. Then within each of these representations, one could imagine rotating the coordinate
systems or scaling them di�erently. As a result, one speci�c state of the multidimensional quantum harmonic oscillator
can be represented in many di�erent ways. The purpose of this research project is to calculate di�erent coe�cients for
translating from one representation to another.

II. Computational Approach to Transformation Matrices

Schrödinger's Equation, Hermite Polynomials, and Stationary States

Before we describe the speci�c methods/thought processes used in this project, we must develop a background language
of terms and de�nitions that will be used when describing the systems and the coe�cients. First, it is useful to note that
the primary tool to �nd these coe�cients is that of Quantum Mechanics, since the systems modeled are Quantum harmonic
oscillators. The technical computing program Mathematica is used to de�ne the functions and computationally intensive
integrals that are necessary to �nd the coe�cients, and the High Performance Computing Cluster, Zorro, at American
University is often used to do the actual calculations.

To start we must de�ne the Schrödinger equation in one dimension for the stationary states, which is(
−~2

2m

d2

dx2
+

1

2
k x2

)
ψ(x) = E ψ(x) (1)

Here, the term in parentheses is the Hamiltonian with the �rst term being the kinetic energy and the second being the
potential energy. On the right hand side, E is the total energy of the system. Stationary state solutions to the harmonic
oscillator potential are of the following form,

ψn(x) =
(σ2π)−1/4√

2nn!
Hn

(x
σ

)
e−

x2

2σ2 (2)

where n is the nth energy level of the harmonic oscillator, σ =
√

~
mω , and Hn(x) is the Hermite polynomial of degree n in

the variable x, so in our case, the variable is instead x
σ . One feature that is essential in quantum mechanics is the fact that

one cannot know exactly a particle's position and its momentum. The best we can do is to use the wave function squared
to �nd the probability of a particle being found in a speci�c region. The expectation value is the average if many trials
were taken measuring a speci�c feature of the system. What is meant by stationary state, is that even if these states were
left to evolve in time, the expectation values (the value that one would predict) for each observable would be constant
throughout all time. The �rst several Hermite polynomials are shown in Figure 1.
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Figure 1:a) The formulas for the �rst 6 Hermite polynomials. b) The graphs of the �rst 6 Hermite
polynomials

Next, we will take a look at the �rst 6 stationary states of the harmonic oscillator as in equation (2). In this case, n
gives the number of nodes, so the �rst one is labeled n = 0 and so on, similar to the Hermite polynomials. Notice that
ψn(x) is a Hermite polynomial multiplied by a Gaussian. Therefore even though the Hermite polynomials would go to
in�nity as x → ±∞, since they are multiplied by a Gaussian that goes to 0 more quickly, so the net result is the wave
function going to 0 at the edges. This is essential, because as noted above, the squared wave function gives the probability
density and we know that the probability must be 1 of �nding the particle somewhere. Thereforeˆ ∞

−∞
|ψn|2dx = 1

In the graph below, I have shifted the stationary states up so they are at their correct energy levels (looking more like
the energies of a classical particle in a harmonic oscillator). Namely, on the graph En = ~ω(n + 1

2 ), where we have let
~ = 1 and ω = 1 to scale the graphs.
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Figure 2: The �rst 6 energy levels of the quantum harmonic oscillator, shifted to their respective locations on the graph.

Components of a general state.

A general wave function or state, can be comprised of a combination of the stationary states discussed above. Since
each of the stationary states satisfy the Schrödinger equation, and since it is a linear homogeneous system of equations,
we know that any linear combination of stationary states will also satisfy the Schrödinger equation. Therefore, in general,
we can construct any state Ψ(x) as the sum of stationary states, notated as follows

Ψ(x) =

∞∑
n=0

cnψn(x) (3)

where cn is a complex number representing the amount of each stationary state ψn(x) in Ψ(x). Likewise, if we instead
know Ψ(x), we can decompose it into the components. First let us multiply both sides of equation (3) by ψ∗n′(x) and then
take the integral with respect to x. Equation (3) then becomes
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ˆ ∞
−∞

ψ∗n′(x)Ψ(x) dx =

ˆ ∞
−∞

∞∑
n=0

cnψ
∗
n′(x)ψn(x) dx (4)

Note, that since n′ is not in the sum, the sum can be taken outside. Also since each of the stationary states are mutually
orthogonal, when their product is integrated from negative in�nity to in�nity, it becomes the Kronecker Delta, δn′n. The
equation therefore becomes ˆ ∞

−∞
ψ∗n′(x)Ψ(x) dx = cn′ (5)

This means that we can �nd the component of each stationary state in Ψ(x) simply by doing the above integral.

Stationary States in Two Dimensions, x and y.

Let us now imagine multiplying a stationary state in one direction by one in another. This seems reasonable since each
state is completely independent and normalized so the multiplication should preserve normalization. Therefore let us
de�ne:

ψnxny (x, y) = ψnx(x)ψny (y) (6)

Similarly to the one dimensional case, we can express any state, Ψ(x, y), which may or may not be a superposition of
many stationary states, as

Ψ(x, y) =
∑
nx,ny

cnxnyψnxny (x, y) (7)

where cnxny is the weight of the ψnxny (x, y) stationary state in the state Ψ(x, y). Once again, analogously, we can �nd the
coe�cients from equation (7) like in we did for the one dimensional case in equation (5) as

cnxny =

ˆ ∞
−∞

ˆ ∞
−∞

ψ∗nxny (x, y)Ψ(x, y) dx dy (8)

Rotating a Wave Function.

Let us now suppose that we wished to rotate a wave function about the origin by θ. We would need to transform each
point (x, y) to a new point, say (x′, y′). It can be shown that from the properties of trigonometry, if we wish to rotate a
point (x, y) about the origin by θ, we can multiply the point by the following matrix to obtain the new coordinate in the
old coordinate system: (

cos(θ) -sin(θ)
sin(θ) cos(θ)

)(
x
y

)
=

(
x′

y′

)
(9)

For example, if the point (1,0) is rotated by π/4, we would obtain the new point(
cos(π/2) -sin(π/2)
sin(π/2) cos(π/2)

)(
1
0

)
=

( √
2
2 −

√
2
2√

2
2

√
2
2

)(
1
0

)
=

( √
2
2√
2
2

)

Let us call this matrix in equation (9) of coordinate rotation, T . There is another simple transformation that one
could imagine doing in 2 dimensions. For this new transformation, lets call it T̄ , we could imagine rotating the axes of the
coordinate system by θ. We would then look at what the coordinates of the old (unmoved) point in the new coordinate
system would be. To �nd this new point, (x̃, ỹ), we multiply T̄ by (x, y), which is de�ned as follows:(

cos(θ) sin(θ)
-sin(θ) cos(θ)

)(
x
y

)
=

(
x̃
ỹ

)
(10)

Again, for example, lets suppose that we rotate the coordinate system by π/6. We can �nd the new coordinates of
(1, 0) as follows: (

cos(π/6) sin(π/6)
-sin(π/6) cos(π/6)

)(
1
0

)
=

( √
3
2

1
2

− 1
2

√
3
2

)(
1
0

)
=

( √
3
2
− 1

2

)
The examples are illustrated below:
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The reason we discussed the rotation matrices above is so that we can apply the rotations to the wave functions. Let
us therefore de�ne

φνxνy (x, y) = ψnxny

(
T̄

(
x
y

))
(11)

This new wave function φνxνy (x, y) is simply the original wave function rotated about the origin in the x− y plane by θ
as de�ned in the matrix T̄ . Our new goal is to �nd the components of the wave functions of the form ψnxny (x, y) that
make up each rotated state φνxνy (x, y). We can de�ne this in the way that we found the components of the total wave
function Ψ(x, y) as in equation (8). In this case, we will substitute φνxνy (x, y) in for Ψ(x, y), giving us

cνxνynxny =

ˆ ∞
−∞

ˆ ∞
−∞

ψ∗nxny (x, y)φνxνy (x, y) dx dy (12)

One very important point to notice, is that due to the symmetries of the quantum harmonic oscillator, each state
ψnxny (x, y) that is present in the rotated state φνxνy (x, y) will have the property that N = nx + ny = νx + νy. We
therefore only have to calculate N integrals as in (12) to �nd all of the possible components c

νxνy
nxny of the rotated state

φνxνy (x, y) in terms of the original states ψnxny (x, y). For example if nx = 0 and ny = 0, the total is zero and thus we
see that both νx and νy must also be zero. This also makes intuitive sense, because the ψ00(x, y) state is rotationally
symmetric about the origin so it shouldn't matter how much the states are rotated, they must always be 0 0.

Since φνxνy (x, y) is only made up of the ψnxny (x, y) parts that have the above property described, we could imagine
writing each state in terms of its components. For example, lets take φ20(x, y) for some arbitrary rotation of θ. We know
that it will be of the form

φ20(x, y) = aψ02(x, y) + bψ11(x, y) + cψ20(x, y) (13)
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for some constants a, b, and c. A very important property that restricts these constants is the fact that | a |2 + | b |2 + |
c |2= 1. This is required by normalization as noted above. Therefore the probability of �nding the particle in some state
must be 1, while the probability, in this example, for �nding it in the ψ02(x, y) would be | a |2. The absolute value or
magnitude signs here are important, because the constants may be imaginary and thus we must take a times its complex
conjugate, in symbols written as | a |2= a∗a. This is very useful, because that quantity is always real and thus the
probability of �nding a particle in a given state is also always real.

The constants, a, b, and c in the above example will all depend on θ. It would then make sense if we could �nd a
succinct way to express these factors. We would want to �nd all of the factors cν1ν2n1n2

and write them in a compact form.
A way to do this is to represent all of the factors in matrix form. Let us look at a simple state �rst then we can generalize
it to larger states. Let us write the components for the state with N = nx + ny = νx + νy = 1 in a matrix. This matrix
would be (

cν1ν2n1n2
cν1ν2n1n2

cν1ν2n1n2
cν1ν2n1n2

)
→
(
c0 1
0 1 c1 0

0 1

c0 1
1 0 c1 0

1 0

)
If we now write the general rotated state φ10(x, y) as a vector, we would be able to multiply it by the above matrix to
obtain the components of ψ01(x, y) and ψ10(x, y) in the state φ10(x, y). To follow the convention above as you go down a
column vector, �rst you have the 01 state and then the 10 state. In general, you would start with the n, 0 state at the
top of the column vector, then the n− 1, 1 then all the way to the 0, n state at the bottom of the column vector. In the
actual column vector would go the components of the original state in each of the stationary states. In this case, the state
is solely the φ10(x, y) state, which can be written as

(0)φ01(x, y) + (1)φ10(x, y) =

(
0
1

)
Therefore to �nd the components in the ψ01(x, y) and ψ10(x, y) states we take the product(

c0 1
0 1 c1 0

0 1

c0 1
1 0 c1 0

1 0

)(
0
1

)
=

(
c1 0
0 1

c1 0
1 0

)
Finally, we see that φ10(x, y) = c1 0

0 1ψ01(x, y) + c1 0
1 0ψ10(x, y), which we could have easily seen from equation (7). Using

Mathematica, we can calculate these coe�cients by doing the integral in equation (12) for each of them. For a general θ,
and we can show that the matrix above is actually equal to(

Cos[θ] -Sin[θ]
Sin[θ] Cos[θ]

)
Following are some more matrices of transformations from φν1ν2(x, y) to the states ψn1n2

(x, y) given that the dimension
of the matrix corresponds to N + 1 = ν1 + ν2 + 1 = n1 + n2 + 1. Cos[θ]2 −

√
2Cos[θ]Sin[θ] Sin[θ]2√

2Cos[θ]Sin[θ] Cos[2θ] −
√

2Cos[θ]Sin[θ]

Sin[θ]2
√

2Cos[θ]Sin[θ] Cos[θ]2




Cos[θ]3 −
√

3Cos[θ]2Sin[θ]
√

3Cos[θ]Sin[θ]2 −Sin[θ]3√
3Cos[θ]2Sin[θ] 1

2Cos[θ](−1 + 3Cos[2θ]) 1
4 (Sin[θ]− 3Sin[3θ])

√
3Cos[θ]Sin[θ]2√

3Cos[θ]Sin[θ]2 1
2 (1 + 3Cos[2θ])Sin[θ] 1

4 (Cos[θ] + 3Cos[3θ]) −
√

3Cos[θ]2Sin[θ]

Sin[θ]3
√

3Cos[θ]Sin[θ]2
√

3Cos[θ]2Sin[θ] Cos[θ]3




Cos[θ]4 −2Cos[θ]3Sin[θ]
√

6Cos[θ]2Sin[θ]2 −2Cos[θ]Sin[θ]3 Sin[θ]4

2Cos[θ]3Sin[θ] 1
2 (Cos[2θ] + Cos[4θ]) − 1

2

√
3
2Sin[4θ] (1 + 2Cos[2θ])Sin[θ]2 −2Cos[θ]Sin[θ]3

√
6Cos[θ]2Sin[θ]2 1

2

√
3
2Sin[4θ] 1

4 (1 + 3Cos[4θ]) − 1
2

√
3
2Sin[4θ]

√
6Cos[θ]2Sin[θ]2

2Cos[θ]Sin[θ]3 (1 + 2Cos[2θ])Sin[θ]2 1
2

√
3
2Sin[4θ] 1

2 (Cos[2θ] + Cos[4θ]) −2Cos[θ]3Sin[θ]

Sin[θ]4 2Cos[θ]Sin[θ]3
√

6Cos[θ]2Sin[θ]2 2Cos[θ]3Sin[θ] Cos[θ]4


III. Algebraic Approach to Transformation Matrices.

First recall that the raising/lowering operators a±x act as follows, a−x | n〉 =
√
n | n − 1〉 and a+x | n〉 =

√
n+ 1 | n〉.

Another key fact is that a+x = (a−x )
∗
. We could therefore construct any state | nx〉 =

(a+x )
nx

√
nx!

| 0〉 or in the case of the two
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dimensional state, | nxny〉 =
(a+x )

nx

√
nx!

(a+y )
ny

√
ny !
| 00〉. We can also write each rotated state as | νxνyθ〉 =

(a+x′)
νx

√
νx!

(
a+
y′

)νy
√
νy !
| 00θ〉.

Therefore the coe�cients that were calculated before can be written as

〈nxn | νxνyθ〉 =

(
〈00 | (a−x )

nx

√
nx!

(
a−y
)ny√
ny!

)(a+x′

)νx
√
νx!

(
a+y′
)νy√
νy!

| 00θ〉

 (14)

The x′ and y′ referred to above come from the rotated states because

(
x′

y′

)
=

(
T11 T12
T21 T22

)(
x
y

)
=

(
T11x+ T12y
T21x+ T22y

)
,

where the square matrix is the rotation matrix. Since x′ is comprised of both the x and y components of the previous
state, let us assert that

a+x′ = T11a
+
x + T12a

+
y (15)

and similarly that
a+y′ = T21a

+
x + T22a

+
y (16)

Now, by making use of the de�nition of a binomial expansion; (a+ b)r =
∑r
k=0 a

kbr−k r!
k!(r−k)! , we can substitute (15)

and (16) into equation (14) and write it as a double sum.

〈nxn | νxνyθ〉 =
1√

nx!ny!νx!νy!

νx∑
j=0

νy∑
k=0

νx!

j!(νx − j)!
νy!

k!(νy − k)!
(continued below)

(
〈00 |

(
a−x
)nx (

a−y
)ny (

T11a
+
x

)j (
T12a

+
y

)νx−j (
T21a

+
x

)k (
T22a

+
y

)νy−k | 00〉
)

We can now bring the powers of the matrix elements outside the bracket because they are not operated on by the raising
and lowering operators. Let us rewrite the second line of the above sum as

T j11T
νx−j
12 T k21T

νy−k
22 〈00 |

(
a−x
)nx (

a−y
)ny (

a+x
)j (

a+y
)νx−j (

a+x
)k (

a+y
)νy−k | 00〉

We can now let the raising operators act on the ket resulting in

T j11T
νx−j
12 T k21T

νy−k
22

√
(j + k)!(νx + νy − j − k)!〈00 |

(
a−x
)nx (

a−y
)ny | (j + k)(νx + νy − j − k)〉

We know that in order for the sum to be non-zero, we need the number of raising operators to be equal to the number
of lowering operators for each independent variable x and y. Therefore we see that the sum will only be non-zero when
nx = j+ k and when ny = (νx− j) + (νy − k) or in other words when ny = νx + νy − j− k. By substituting in nx− k = j,
we have ny = νx + νy − (nx− k)− k → nx +ny = νy + νx. This condition is obviously necessary as before since each state
can only be comprised of other states with the same energy due to the symmetries of the quantum harmonic oscillator.
By now supplying the conditions that nx = (j + k) and therefore that j + k− nx = 0, which is required to get a non-zero
sum and that ny = νx + νy − j − k which leads to 0 = νx + νy − j − k − ny, we can use the lowering operators. Then the
previous brackets become√

(j + k) · (j + k − 1) · ... · (j + k − nx)
√

(νx + νy − j − k) · (νx + νy − j − k − 1) · ... · (νx + νy − j − k − ny)

(times the above line)〈00 | (j + k − nx)(νx + νy − j − k − ny)〉
This inner product is only non-zero when j + k − nx = 0 and νx + νy − j − k − ny = 0 so it simpli�es as follows,√

(j + k)!(νx + νy − j − k)!

(j + k − nx)!(νx + νy − j − k − ny)!
〈00 | 00〉 =

√
(j + k)!(νx + νy − j − k)!

Here we used the fact that 10 · 9 · 8 · 7 = 10!
(10−4)! the same trick used in proving the binomial coe�cients. We can then

combine the factor from the raising operators with the one from the lowering operators to obtain√
(j + k)!(νx + νy − j − k)!

√
(j + k)!(νx + νy − j − k)! = (j + k)!(νx + νy − j − k)!

Finally, we will substitute these results, and the fact that that we can bring the νx!νy! outside the sum, into our original
double sum giving us√

νx!νy!

nx!ny!

νx∑
j=0

νy∑
k=0

1

j!(νx − j)!k!(νy − k)!
T j11T

νx−j
12 T k21T

νy−k
22 (j + k)!(νx + νy − j − k)!
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We can now substitute in j = nx − k to eliminate one of the sums.√
νx!νy!

nx!ny!

νy∑
k=0

1

(nx − k)!(νx − nx + k)!k!(νy − k)!
Tnx−k11 T νx−nx+k12 T k21T

νy−k
22 (nx − k + k)!(νx + νy − nx −+k − k)!

For the another simpli�cation, we can note for one last time that ny = νx + νy − nx√
νx!νy!

nx!ny!

νy∑
k=0

1

(nx − k)!(νx − nx + k)!k!(νy − k)!
Tnx−k11 T νx−nx+k12 T k21T

νy−k
22 (nx)!(ny)!

Finally, by taking the (nx)!(ny)! out of the sum, we have

〈nxn | νxνyθ〉 =
√
νx!νy!nx!ny!

νy∑
k=0

1

(nx − k)!(νx − nx + k)!k!(νy − k)!
Tnx−k11 T νx−nx+k12 T k21T

νy−k
22 δnx+ny,νx+νy

Using this, we can generate the transformation matrices that were found using integrals above. Here, T11 = Cos[θ],
T12 = −Sin[θ], T21 = Sin[θ], and T22 = Cos[θ]. The fact that the elements of the matrix involve a sum makes sense if you
observe the above matrices which are identical to these except they were generated in a di�erent manner.

IV. Discussion

The time scales on which the two methods of matrix generation occurred were quite di�erent. For the integration method,
I used the high performance computing cluster at AU called Zorro. The time needed to generate the matrices was from
1.5 seconds to 5291 seconds for matrices of unto a total N = 10 (an 11×11) matrix. On the right are the times for matrix
generation on my laptop with the max of a 101 × 101 matrix, which was generated in 82 seconds, faster than the 4 × 4
matrix using the integrals.

Energy Time (sec)
0 1.55967
1 6.69498
2 32.0691
3 110.419
4 278.474
5 623.997
6 1062.91
7 1724.45
8 2503
9 3692
10 5291

Energy Time (sec)
0 0
10 0.202
20 0.951
30 1.825
40 3.51
50 6.833
60 16.505
70 28.252
80 42.963
90 59.951
100 82.946

V. Conclusion

I may have included too much of Quantum Mechanics that was not necessary for understanding my results, but I thought
it was better to have too much rather than too little. I spent a lot of my time while researching messing with fun/pretty
graphs. Here are some of the more boring ones, but enough to give a picture of what they looked like. Eventually we
were searching for eigen vectors/values for these matrices, but Mathematica was taking too long to compute them for the
general θ so we need a new way to do this. Here is an eigen state for rotation by π.
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