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Abstract 

 

A weighted social network data type is analyzed using two different methods. The first method 

used is the Exponential Random Graph Models (ERGM), which is a model used on social 

network analysis (SNA) that includes as parameters the structural characteristics of the network 

and the network’s nodes attributes. However, ERGM does not take into account the weights 

associated with the network’s edges. The second method used is the Cumulative Logistic 

Regression, which incorporates the weights associated to the network’s edges, but it doesn’t take 

into account the network’s structural characteristics. Both methods are illustrated using a 

weighted one-mode data. 

 

 

 

 

Keywords: Social Network Analysis, ERGM, Logistic Regression 
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I. Social Network Analysis 

 

1. Introduction 

 

Social networks represent the relationships between individuals, groups, families, communities, 

regions, etc. Therefore, it can be said that a social network is a ‘category of actors bound by a 

process of interaction among themselves’. 
1
 For example, a social network can represent the way 

how classmates interact with each other in a classroom, or how colleagues interrelate between 

them in a determined corporation, or how the different members of a hierarchical tribe socialized 

with each other.  

 

Social Network Analysis (SNA) is the formal study of social networks, having as main purpose 

to study the relationships between the individuals who are part of the network, rather than 

studying the individuals themselves. SNA has been utilized since the mid 1930s in the field of 

social and behavioral sciences. However, it was not until about 1990 that the interest for social 

networks started to grow rapidly, and the development of new methodologies began to be 

explored by scientists of other fields including computer science and mathematics.
 2

 SNA is not 

focused exclusively on human networks anymore, and currently it is widely used on different 

fields like technological, social, biological, informational, etc.
3
 

 

The upcoming sections will explain the structure of the data used on SNA, as well as the 

quantitative methods utilized to analyze and understand the networks’ structural characteristics. 

In addition, there is an introductory section to statistical models applied to SNA. And finally, on 

the attempt to apply all the concepts mentioned above, a case study is presented at the end.  

 

2. Social Network Data 

 

As mentioned above, SNA studies the relationships between individuals and not the individuals 

themselves. For this reason, social network data presents unique characteristics and concepts that 

make it distinguish from data used on analyses that focus on subjects and their behaviors (i.e. 

data used to analyze the difference between male and female voters political preference). This 

section will explain some of these characteristics.    

 

2.1 Elements of Network Data 

 

 Actors and Relations 

There are two crucial elements in social networks: actors and relations; and both are 

indispensable because, when they relate with each other, both form a social network. Actors can 

include individual actors, such as college students graduating this semester, or employees in a 

specific consulting firm, and collective actors, such as law firms in a particular city, or nations 

participating in a conference.
4
  

                                                 
1
 Models for Social Networks with statistical applications (3) 

2
 Models and Methods in Social Network Analysis (1) 

3
 Statistical Analysis of Network Data: Methods and Models (3) 

4
 Social Network Analysis (e-book 2.2) 
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Relations are the types of connections between two actors. When such relationship exists, they 

can either flow in both directions (symmetric) or in one direction (asymmetric).
5
  

 

Figure 1 

 

 

 

 

 

 

 

Figure 1 shows a graphic representation of a social network, where the circles represent the 

actors and the lines connecting them represent the relations.  

 

2.2 Type of Networks 

 

 Egocentric and Dyadic Networks 

An egocentric network is formed by one actor (ego) and the other actors (alters) to whom the ego 

relates with. In a network with n actors, an egocentric analysis approach will have n units to 

analyze, and each ego can be described by the different characteristics of its ties with the other 

actors. A dyadic network consists of two actors being paired. In a dyadic network with n actors 

where the order of a pair is irrelevant, there will be (n
2
 – n) / 2 units of analysis. However, if the 

order of a pair matters, there will be (n
2
 – n) ordered pairs.

6
  

 

 One-mode and Two-mode Networks 

A one-mode network can be defined as a network that has one set of actors associated by one set 

of relationships.
7
 

A two-mode network data has two different set of entities (i.e. actors and events), and a 

connection that joins the actors with the events. When such data is presented in a matrix form, 

the actors are located in the rows and the events in the columns.
8
  

 

Figure 2 

 

 

 

 

 

 

 

 

               Figure 2.a     Figure 2.b 

                                                 
5
 Models for Social Networks with statistical applications (2) 

6
 Social Network Analysis (electronic book – section 2.4) 

7
 Models and Methods in Social Network Analysis (8) 

8
 Models and Methods in Social Network Analysis (63) 

 A B C D 

A 1 1 0 1 

B 1 0 0 1 

C 1 1 1 0 

D 0 1 1 0 

 E1 E2 E3 

A 1 0 1 

B 1 1 1 

C 0 0 1 

D 1 1 0 

E 1 0 0 
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Figure 2.a represents a one-mode network; where A, B, C and D is a set of actors linked by a set 

of 0s and 1s that represent the absence and/or presence of a relationship. Figure 2.b shows a two-

mode  network, where for example, A, B, C, D and E could represent students from a middle 

school class, and E1, E2, and E3 could represent the afterschool clubs the students belong to. 

 

 Binary and Weighted Networks 

A social network is said to be a binary network when the relationship between actors is presented 

by ‘0s’ and ‘1s’, meaning the absent and present relationship respectively.
9
 See Figure 2.a above 

for a binary network representation. 

In a weighted network the relations between actors or the actors themselves have a ‘weight’ or 

strength associated to them.
10

 For example, if we are analyzing a network from a financial 

services company, the actors labeled as “A” and “C”, could represent the CEO and Jr. Analyst 

respectively, and both have different values.  Or, if we are analyzing a particular relationship 

between the employees of a small call center, actor “A” may interact more with actor “B” than 

with actor “C”, and in this case both relationships (A,B) and (A,C) have different weights.  

 

Figure 3 

  

    

  Figure 3.a     Figure 3.b 

 

Figure 3.a shows the graphic version and figure 3.b shows the matrix representation of weighted 

networks. 

 

2.3 Informant Bias 

 

Sometimes due to the nature of social network data, researchers have to deal with informant bias. 

Informant bias can be defined as the difference between the behavior reported by the actor and 

its actual behavior.
11

 Since social network data that intent to study the relationship between 

persons is collected through surveys, it may not be possible to have a precise definition of how 

strong the ties or relationships are perceived from person to person. For example, a survey asks 

to define your relation with person A as ‘acquaintance’ or ‘friend’. However, the meaning of 

acquaintance and friend could differ widely from one respondent to another, and informant bias 

becomes an issue. Informant bias can be overcome by designing questions with ordinal type 

answers. For example, if we ask “how often have you met with person A for the past month?’, a 

possible set of answers could be ‘0: I don’t know this person’, ‘1:never’, ‘2: weekly’ and so on.
12

  

                                                 
9
 Introduction to social network methods (e-book, 12) 

10
 http://toreopsahl.com/tnet/weighted-networks/defining-one-mode-networks/ 

11
 Social Network Analysis (e-book, section 3.4) 

12
 http://toreopsahl.com/tnet/weighted-networks/defining-one-mode-networks/ 

 A B C D 

A 0 3 1 1 

B 1 0 2 2 

C 1 0 0 1 

D 2 1 3 0 
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3. Social Network Data Representation 

 

Social network data is commonly presented using graphs and matrices, depending on the type of 

information the researcher is trying to observe and/or present. This section will explain the two 

methods briefly; however both concepts have been mentioned previously on Section 2 in order to  

present some definitions and examples. 

  

3.1 Graphs 

 

 Graphs and digraphs 

In order to visualize – and analyze - how actors relate with each other, social networks can be 

conceptualized as graphs. This graphic representation is called a graph if the relationship doesn’t 

have a direction, and it is called a digraph if the relationship has a direction. When presenting the 

network graphically, actors are called nodes or vertices; and the relations between a two actors is 

called tie. Note that, a tie with a direction is called an arc, and tie without direction is called an 

edge. 
13

  

As mentioned previously on Section 1, mathematics is one of the fields that studies also SNA, 

and graph theory provides definitions and techniques that are used on the graphical 

representation of networks. On this context, a graph G = (V, E) is a structure that has a set V of 

nodes, and a set E of edges. In non-directed graphs, the elements of E are unordered pairs, 

meaning that {u,v} = {v,u}; on the other hand, the elements of E in directed graphs are ordered 

pairs such that {u,v} ≠  {v,u}. 
14

 

 

 Families of graphs  

The following are some of the most common families of graphs. 
15

  

 Complete graph: A graph is said to be complete when every vertex is connected to every 

other vertex. And a clique is defined as a complete sub-graph A that is contained in graph 

G. 

 Triangle: A triangle is a complete graph of order three (i.e. three vertices). 

 Tree: A tree is a connected graph that doesn’t have cycles on it. 

 

Figure 4 

 

 
Figure 4.a                   Figure 4.b          Figure 4.c 

             Complete graph               Triangle         Tree 

 

                                                 
13

 Models for Social Network with Statistical Applications (7) 
14

 Statistical Analysis of Network Data: Methods and Models (16)  
15

 Statistical Analysis of Network Data: Methods and Models (18)  
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3.2 Matrix 

 

When a network has too many actors and/or relationships, a graph may not be the most 

appropriate form to present it, since it can be difficult to visualize it; and in such cases, matrix 

representation comes handy. The adjacency matrix is the most common matrix used in SNA, 

which is simply a square matrix, where the rows and columns are the actors in the network data, 

and the elements of the matrix represent the ties between each pair of actors. In a binary 

adjacency matrix, the relationship between two actors is represented by 1, and the non-existence 

of a relationship is represented by 0.
16

 Additionally, depending on the type of relationships 

between actors, an adjacency matrix can be symmetric or asymmetric. 

 

     Figure 5 

 A B C 

A --- 1 0 

B 1 --- 1 

C 0 1 --- 

     Figure 5.a                  Figure 5.b 

              Symmetric Matrix               Asymmetric Matrix 

 

Figure 5.a shows a symmetric matrix that can represent the relationship between friends. For 

example, A is friend of B, and B is friend of A. Figure 5.b shows a different scenario, where A 

considers B as a friend, but B does not feel the same way about A. Note that, in an asymmetric 

matrix the sender of a tie is located in the rows, and the receiver of the tie is located in the 

columns.  

 

4. Social Network Analysis Quantitative Measures 

 

Graphs and matrices offer straightforward ways to visualize which actors are the most active in a 

network (i.e. which actors have the higher number of ties). However, in addition to visual 

techniques, SNA has formal methods to calculate structural properties of the network. Methods 

that focus on finding information about the network’s vertices (i.e. which actors are the most 

important, active, isolated, etc) are known as vertex centrality measures.
17

 Also, there are other 

measures, such as density, that are interested on the network cohesion.
18

 Some of these measures 

can be calculated directly from the graphs or matrices; however, some others are calculated by 

computational algorithms.
19

 In this section we will explain the most generally used SNA 

quantitative measures: degree, closeness, betweenness, eigenvector, and density.  

 

 In-degree and Out-degree Centrality 

Degrees are the number of direct connections an actor has, and depending on the type of 

information (providing/receiving) they can be in-degree or out-degree. In a network, the actors 

with the most direct connections are considered the most active actors in the network. In-degree 

                                                 
16

 Introduction to social network methods (e-book, 55) 
17

 Statistical Analysis of Network Data: Methods and Models (80) 
18

 Statistical Analysis of Network Data: Methods and Models (94) 
19

 Statistical Analysis of Network Data: Methods and Models (23) 

 A B C 

A --- 1 1 

B 0 --- 1 

C 0 1 --- 



STAT 690 – Anahi Rebatta 

 10 

centrality measures the number of incoming ties an actor has, and out-degree measures the 

number of outgoing ties an actor has for a given relationship.
20

  

When analyzing a network, an actor with a high in-degree, is referred as a ‘sink’ or ‘receiver of 

information’, and this actor may be seen as prestigious or more powerful, but also, it may suffer 

from overload information. On the other hand, an actor with a high out-degree could be seen as 

an actor that influences other actors in the network. 
21

 

 

 Closeness 

In a network, closeness measures how ‘close’ an actor is located with respect to many other 

actors; and for practical reason this measure is normalized in order to have values between 0 and 

1, and be able to be compared with other centrality measures. 
22

 Closeness can be interpreted as 

follows: the higher an actor’s closeness score is, the closer the actor is to the other actors; and 

this actor could be considered as the most central in the network.  Note that, closeness is 

calculated based on the sense of the shorter geodesic distance (i.e. the length of the shortest path 

between actors).
23

  

 

 Betweenness 

Betweenness measures how the relationship between a pair of actors that do not have a direct tie 

is controlled by the other actors that lie in between the pair’s geodesic distance. Additionally, 

betweenness indicates which actors have control over the network relationships, therefore those 

actors located in between a large number of pairs have more chance to control over the 

information flow in the network.
24

 

  

 Eigenvector 

Eigenvector centrality measures the status of an actor in a network, and it is calculated by using 

the method of factor analysis.
25

 This measure can be interpreted as ‘the more central the 

neighbors of a vertex are, the more central that vertex itself is’. 
26

  

 

 Density 

The density in an egocentric network measures the overall direct connection among actors (i.e. 

how connected they are among themselves). Let’s define D as density, L as the total number of 

reported dyadic ties, N as the total number of nodes, and NC2 = N! / {2! * (N-2)!}. Depending on 

the type of data you are working on, density can be calculated as follow: 
27

 

 

 Non-directed binary data: 

  D = L / NC2  

 

 For directed binary data 

 D = L / (2 * NC2) 

                                                 
20

 The Hidden Power of Social Network (157) 
21

 Introduction to Social Network Methods (97:100) 
22

 Statistical Analysis of Network Data: Methods and Models (89) 
23

 Social Network Analysis  (e-book, section 4.4) 
24

 Social Network Analysis (e-book, section 4.4) 
25

 Introduction to Social Network Methods (157) 
26

 Statistical Analysis of Network Data: Methods and Models (90) 
27

 Social Network Analysis (4.3) 
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 For valued no directed data 

 D = ∑ Lw / (NC2),  where ∑ Lw represents the sum of all weighted ties 

 

 For valued directed data  

 D = ∑ Lw / (2 * NC2)  

 

Example: The following is a ‘made up’ network that will help illustrate the concepts described 

above. Let’s say that a group of six teenagers (T1, T2,…,T6) were asked whom they considered 

their closest friends within the group. Figure 6, shows the adjacency matrix (6.a) and digraph 

(6.b) of the network. 

 

Figure 6 

 
 

          Figure 6.a        Figure 6.b  

 

At the beginning of this section, it was said that some centrality measures are easy to visualize 

from a graph or matrix. Figure 6.b shows that T5 is the actor with the most incoming ties and T2 

is the actor with the highest outgoing ties; meaning that T5 could be considered as the most 

popular teenager in the group and T2 could be considered the most outgoing one. Additionally, 

the density of this network is equal to 17/30 = 0.57, which it can be interpreted as the probability 

to be chosen as a close friend in this particular group of friends. 

  

Table 1 shows the results of the centrality measures for this network. According to the results, 

and based on the closeness and eigenvector values, T2 is the most central actor, meaning that 

teenager 2 could be seen as the most influential teen in the network (i.e. even though T2 is not 

the most popular among the other teens, he/she can reach others faster than the rest of the teens).  

T1 has the highest betweenness value, meaning that this teen serves as ‘bridge or connector’ 

between the teens that aren’t related (i.e. Figure 6.a shows that T3 and T5 are not related that all, 

and T3 considers T1 as a close friend, as well as, T1 considers T5 as a close friend; then, since 

both teens, T3 and T5, know T1, there is a chance that T3 and T5 would get connected through 

T1).  

 

 

 T1 T2 T3 T4 T5 T6 

T1 0 1 1 0 1 0 

T2 1 0 0 1 1 1 

T3 1 0 0 0 0 1 

T4 0 1 1 0 1 0 

T`5 0 0 0 1 0 1 

T6 1 0 1 0 1 0 

1 

2 

3 

4 

5 

6 
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Table 1 
Node In-degree Out-degree Betweenness Closeness Eigenvector 

T1 3 3 3.50 0.71 0.18 

T2 2 4 2.00 0.83 0.24 

T3 3 2 1.16 0.56 0.12 

T4 2 3 1.83 0.71 0.18 

T5 4 2 2.83 0.63 0.12 

T6 3 3 2.67 0.71 0.16 

 

 

5. Exponential Random Graph Models (p
*
) 

 

Through previous sections we have discussed different methods that are used to measure and 

describe properties of a network and its nodes; and even though these techniques are useful for 

understanding the network and its characteristics, they do not allow the researcher to make 

inferences about the observed network (i.e. does the observed behavior among actors happen by 

chance?). Therefore, in recent years, the study of suitable statistical models, such as Exponential 

Random Graph Models (ERMG), for social networks has been of interest among SNA 

researchers. ERGM, also known as p
*
 models, are important due to their capacity to represent 

social networks structural characteristics,  and their ability to be simulated through stochastic 

processes in order to be compared with the observed network. 
28

 This section will describe 

briefly the methods and applications of ERGM. 

 

5.1 Model 
29

 

 

In conventional statistical methods, it is known that for a discrete variable case, a random vector 

Z is part of the exponential family when its probability mass function (pmf) can be written in the 

form: 

 

   P(Z = z) = exp { θ
T
  g(z) - Ψ(θ)}, (1) 

 

where, θ ϵ R
p
 is a p x 1 vector of parameters, g(.) is a p-dimensional functions of z, and Ψ(θ) is a 

normalization term, that makes possible that  sums of P(.) equals one. The same formula can be 

applied to a continuous random variable. 

 

Now, let’s say that we have a graph G = (V, E) and Y = [Yij] is the random adjacency matrix of 

G, where yij is a binary random variable that indicates the presence or absence of a tie between 

the vertices i and j. Then, the ERGM have the following general form: 

 

  P(Y = y) = (1/k) exp { ∑ θH . gH(y) },  (2) 

      
H 

where, 

 H is defined as a set of possible edges on G, and each H is called a configuration, 

 gH(y) = ∏yijϵH yij, it is equal to one if the configuration H exists, and zero otherwise, 

                                                 
28

 An introductions to exponential random graph (p*) models for social networks (2:3) 
29

 Statistical Analysis of Network Data: Methods and Models (180:181) 
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 θH  is the parameter corresponding to the configuration H, a non-zero value of θH means 

that the Yij are dependent for all pair of vertices in {i,j} in H, conditional upon de rest 

of the graph, 

 k = k(θ) is a normalization constant that assures (2) is an appropriate probability 

distribution, 

 

  k(θ)  = ∑ exp { ∑ θH  . gH(y)}   (3)
 
 

   
Y
   

H
 

 

5.2 Model Construction 
30

 

 

When fitting an ERGM for a social network, the following steps are followed:  

a) Ties are assumed to be random: By assuming that the presence or absence of 

relationships between the network actors is random, we assume that we do not know 

under which circumstances such relationships are formed, and therefore we will expect 

some ‘noise’ in the model. However, this assumption is achieved because we set a 

stochastic framework for the fixed set V of nodes. 

b) State dependence hypothesis: This hypothesis illustrates how social relationships are 

formed. For example, actors that share similar characteristics (i.e. same gender, same 

age group, etc) tend to relate with each other This tendency of actors to associate with 

others like themselves is formally know as homophily.  

c) The hypothesis stated on part b implies a particular form of the model: Based on the 

hypotheses made, then the model represents a particular distribution of random graphs.  

d) Simplification of parameters: If, when fitting the model, we end up with too many 

parameters, interpretation can become difficult. Therefore, techniques like imposing 

homogeneity restrains to the model can alleviate this issue. 

e) Parameters estimation and interpretation 

 

5.3 Bernoulli, Dyadic, and Marcov Random Graphs Models 

 

In this section, we will explain three random graph models in order to have a better 

understanding of ERGM. Note that, ERGM is formed by different statistical models for social 

networks, and they are not limited to these three models since more elaborate models have been 

proposed beyond Marcov random graphs. 

 

 Bernoulli Random Graphs 
31

 

Assuming that in a network all edges are independent (dependence hypothesis), then the 

Bernoulli model is written in the form 

 

  P(Y=y) = (1/k) exp {∑θij yij}   (4) 

              
i,j 

Note that, this model is very similar to model (2), except that in this model every single possible 

edge {i,j} is present and there is a parameter θij for each of the configurations. The probability of 

an edge being observed can be expressed as 

                                                 
30

 An introductions to exponential random graph (p*) models for social networks (5:6) 
31

 Statistical Analysis of Network Data: Methods and Models (182) 
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  pi,j = exp (θij) / [ 1 + exp (θij )]  (5) 

 

However, if we have a network with a large number of nodes, we will end up with a model with 

N * N parameters and this may not be suitable for model fitting and interpretation. To solve this 

problem, and as mentioned in the section above, a homogeneity assumption across G can be 

applied to the model (i.e. one of the many possible ways for imposing homogeneity is defining 

θij ≡ θ), so the model will be written as 

 

  P(Y=y) = (1/k) exp {θ L(y)},   (6) 

 

where, L(y) = ∑i,j yij  is the same as the number of edge reported in the graph. Consequently, the 

probability of an edge being observed is 

 

  p = exp (θ) / [1 + exp (θ)].   (7) 

 

A big disadvantage of this model is that assuming that all edges are independent is not a very 

realistic scenario. In addition, this model does not reflect a lot of the structural properties 

observed in social networks. The Bernoulli model is considered the null model because it is the 

simplest model of interest it can be fit with ERGM. 

 

 Dyadic models  
32

 

Dyadic models are used on directed networks, and in comparison to Bernoulli models, they are 

more complex, although still not very realistic. The dependence hypothesis assumes that dyads 

are independent - instead of the edges, as it is assumed on Bernoulli models - 

Therefore, the model now has two configurations, one for the single edges (i.e. for a specific pair 

{i,j} the tie yij is observed, but yji isn’t), and other for the reciprocated edges (i.e. for a specific 

pair {i,j} both ties yij and yji are observed). Also in order to avoid an over-parameterized model, 

the homogeneity assumption is imposed (i.e. θij ≡ θ). Then, the model is written as 

 

  P(Y=y) = (1/k) exp {θ ∑ yij + ρ ∑ yij yji } = (1/k) exp{ θL(y) + ρM(y)}, (8) 

 

where L(y) is the number of single edges on y, and M(y) is the number of reciprocated edges on 

y. 

 

 Marcov Random Graphs 
33

 

Marcov models’ dependency hypothesis states that two possible ties are conditionally dependent 

whenever they have a common vertex. This means that the ties between pairs {i,j} and {j,k} are 

conditionally dependent since they both share vertex j. With homogeneity assumption imposed, 

the model can be written as 

              Nv-1 

  P(Y=y) = (1/k) exp { ∑ θk Sk(y) + θτT(y)}  (9) 

               
k=1 

 

                                                 
32

 An introductions to exponential random graph (p*) models for social networks (10) 
33

 Statistical Analysis of Network Data: Methods and Models (182:183) 
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where, S1(y) is the number of edges, Sk (y) is the number of k-stars (or trees),  for k ϵ [ 2, Nv-1 ], 

and T(y) is the number of triangles observed on the network. 

 

5.4 Model Fitting and Goodness of Fit     

 

 Model Fitting
34

 

In conventional statistical models, the variables are assumed to be independent and identically 

distributed (iid) and model can be fitted through the method of maximum likelihood estimators 

(MLE), and the estimated parameters θhat have confidence intervals and test statistics. On the 

contrary, ERGM are still being developed and parameters estimation and testing are not as 

straightforward as the ones described above. 

The MLE for the vector θ = (θH) on the general form of ERGM – see equation (2) – is defined as 

θhat = arg maxθ l(θ), where l(θ) is the log-likelihood, and can be express as 

 

  l(θ) = θ
T
 g(y) – Ψ(θ),   (10) 

 

where, g is the vector of function gH and Ψ(θ) = log k(θ). 

On the other hand, if we take the derivatives on each side, and knowing the E [g(Y)] = ∂Ψ(θ)/∂θ, 

the MLE can be written as the solution to  the system of equations 

 

  Eθhat [h(Y)] = g(y)   (11) 

 

Note that, calculation of Ψ(θ) is non-trivial, since it takes into account to summation in equation 

(3) over all possible choices of y, for each θ. In order to calculate approximate values for θhat, 

stochastic processes are used. First, Marcov Chain Monte Carlo (MCMC) maximum likelihood 

estimation is used to estimate the log-likelihood of equation (10); and a stochastic version of the 

Newton-Raphson algorithm is used to approximate the solutions of the system of equations in 

(11).* 
*See Statistical Analysis of Network Data: Methods and Models for detailed calculation.  

 

 Goodness of Fit (GoF) 

Because ERGMs are still on their early stages of study, GoF methods used in conventional 

statistical models cannot be applied to ERGM. So far, in order to asses how good our model is, 

first random graphs are simulated from the fitted model, and then they are compared with the 

observed network. If the simulated network matches closely the characteristics of the observed 

network (i.e. degree centrality), then it is said that the proposed model has a good fit.
35

 

 

6. Software 

 

There is a wide variety of different software used for the analysis of social networks, such as 

UCINET, NetMiner, KrackPlot, Mage, Multinet, and some packages in R, just to mention a few 

of them. However, I will briefly mention the R packages used to present the different definitions 

and examples through the current project. 

 

                                                 
34

 Statistical Analysis of Network Data: Methods and Models (185:186) 
35

 Statistical Analysis of Network Data: Methods and Models (187) 
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 R 

R is an open source programming language used for statistical computing. Due to its open source 

nature, many different contributors around the world had contributed to the development of the 

current R. In the beginning, the program was written by Robert Gentleman and Ross Ihaka (also 

known as R & R) from the Statistics Department of the University of Auckland.
36

  

The following R packages have been used on this project: 

 igraph: A package used for network analysis and graph visualization.
37

 

 statnet: This package, in addition to network analysis, allows the user to perform 

network modeling based on ERGM.
38

 

 network: This package is used to create and manipulate network objects.
39

 

 

7. Example: Consulting firm 

 

This section will illustrate the applications of the different SNA concepts and ERGMs described 

on the previous sections. The data set used in this analysis was obtained from Rob Cross website  

(http://www.robcross.org). 

 

7.1 Data Set 

 

 Data Description 

The observed network ‘Advice Network’ contains an intra-organizational weighted one- mode 

network obtained from a consulting company. A total of 46 employees were asked: 

 How often have you turned to this person for information/advice on work-related topics 

in the last three months? 

0 = I do not know this person, 1 = Never,   2 = Seldom,   

3 = Sometimes,   4 = Often,  5 = Very often 

 

In addition, the data contains attributes about the 46 employees: 

 Gender 

1 = Male   2 = Female 

 Organizational level 

1 = Research Assistant 2 = Junior Consultant  3 = Senior Consultant 

4 = Managing Consultant 5 =Partner 

 Office region 

1 = Europe   2 = United States 

 Office location 

1 = Boston   2 = London   3 = Paris 

4 = Rome   5 = Madrid   6 = Oslo 

7 = Copenhagen 

 

 

 

                                                 
36

 http://www.r-project.org 
37

 http://cran.r-project.org/web/packages/igraph/igraph.pdf 
38

 http://statnet.org 
39

 http://cran.r-project.org/web/packages/network/network.pdf 
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 Data Changes/Corrections 

A few changes have been made to the observed network in order to make the analysis feasible. 

First, it was noticed that two employees (6 and 26) reported that they turned to themselves for 

advice, which in this case was not appropriate since they were asked to respond about other 

employees and not themselves. Therefore, these two ties were removed from the network. 

Additionally, for analysis purposes the observed weighted network was converted into a binary 

network; see below for details: 

 Instead of recording how often a person goes for advices, this network records if a 

person goes or doesn’t go for advice. Consequently, those employees whose ties values 

are equal to 0 and 1, will be now have a new tie equal to 0; and those employees whose 

ties values are equal to 2,3,4,5, will have a new tie equal to 1. 

  

Table 2 
Old values New value Description 

0, 1 0 No, I did not go for advice 

2, 3, 4, 5 1 Yes, I went for advice 

 

7.2 Analysis 
*Note that, instead of using the original advice network, its binary version will be use on the analysis 

section because some of the functions used on the R packages only support binary networks type of data. 

Additionally, for the complete R script and output see Appendix A. 

 

The binary ‘Advice network’ is of interest when studying the flow of seeking advice on topics 

related to work in this particular consulting firm.  

 

 Exploratory/Preliminary Analysis 

By converting the binary data into an object network, the following information is obtained: 

 

 Total of nodes/vertices = 46    

 Total edges / dyads = 521  

 Directed  network = True 

 Total number of mutual / reciprocate dyads = 201  

 Vertex attributes = gender, organizational level, location, region, and ‘id’ employees. 

  

 

The summary above tells us that the network has a total of 46 vertices, and 521 edges out of 

2070 possible edges (i.e. 2 * 46C2 = 2070). In addition, out of the 521 edges, 201 edges are 

mutual (i.e. (i,j) = (j,i) ), this means that if employee A seeks advice on B, then B seeks advice on 

A. 

 

Below, Figure 6 shows the graphic representation of the binary advice network. The vertices 

represent the 46 employees, the vertex shape indicates the employees’ gender (triangle for male 

employees and circles for female employees) and the different colors indicate the employees’ 

positions within the company. Visually, we can identify two isolated vertices, meaning these two 

Research Assistants do not ask for advice to their co-workers, neither are asked for advice by 

other employees. Also, note that most of the Jr. Assistants and all the Research Assistants are 

located in the borders of the graph, meaning that information does not flow as often among them. 
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In addition, it seems that vertices 45, 20, 2, 18, and 38, who happen to hold higher level positions 

in the company, are the most central on the network (due to their position on the graph). When 

looking at gender, it seems that female employees are not as active as their male counterparts, 

and this could be due to a large difference between the number of female and male employees. 

Overall, the graph gives an idea on how the information tends to flow in this company based on 

some of the employees attributes. 

 

Figure 6 

 
 

In addition to the advantages of visualizing possible behavioral patterns on the plot, we can also 

create matrixes that reflect the relationship between actors according to the particular attributes. 

See tables 3, 4 and 5 for more details 

 

Table 3 – Organization Level 
From \ To 1 2 3 4 5 Total   

1 0 5 7 12 3 27  1 = Research  Assistant 

2 3 18 24 32 9 86  2 = Junior Consultant 

3 5 26 30 54 18 133  3 = Senior Consultant 

4 11 31 51 71 33 197  4 = Managing Consultant 

5 4 12 19 37 6 78  5 = Partner 

Total 23 92 131 206 69 521   
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Table 3 suggests that employees with lower organization level positions tend to look for advice 

on those employees that hold higher level positions. This is something somehow expected on 

real world scenarios, for example a research assistant will ask for advice to those employees with 

more experience. Also, employees that hold mid and higher level managerial positions tend to 

interact with employees at their same or higher level position. 

 

Table 4 - Location 
From \ To 1 2 3 4 5 6 7 Total   

1 314 3 18 8 5 5 0 353  1 = Boston 

2 4 0 5 0 0 0 0 9  2 = London 

3 13 3 37 8 4 10 11 86  3 = Paris 

4 8 1 9 1 1 3 0 23  4 = Rome 

 5 2 0 3 1 2 0 0 8  5 = Madrid 

6 5 0 10 4 2 4 1 26  6 = Oslo 

7 0 0 10 0 1 0 5 16  7 = Copenhagen 

Total 346 7 92 22 15 22 17 521   

 

Table 4 shows that employees at the Boston office interrelate the most with their office mates; 

however, employees across Europe tend to ask for advice to the employees at the Paris office. 

One can assume that this pattern may happen because the headquarters in Europe are located in 

Paris. (i.e. one can assume that employees located in the same region, US and Europe, tend to 

interact more with same region employees) 

 

Table 5 - Gender 
From \ To 1 2 Total   

1 361 (83%) 75 (17%) 436  1 = Male 

2 70 (82%) 15 (18%) 85  2 = Female 

Total 431 90 521   

 

Table 5 shows that male employees are asked for advice more often than their female 

counterparts. This may happen due the large difference between the number of male employees 

and female employees. 

 

 Centrality Measures  

After calculating all centrality measures (see Appendix A-II for complete tables), it is concluded 

that employees 20, 2, 45 and 8 have the higher number of in-and-out degrees in the network; this 

means that they seem to be influential employees in the company since information flows in both 

directions through them. In addition, and based on their closeness and eigenvector values, 

employees 2, 20, and 45 are considered the most central actors. Note that these formal results 

confirm what it was observed on the Figure 6.  

Besides that, note that in this particular network, information is received and passed through 

those employees that hold high rank positions, which it can be assumed to be expected in a work 

office environment. Additionally, the density of the network is equal to (521 / 2079) = 0.25. 

 

Since all values of centrality measure have been calculated, we can compute correlations 

between them and determine how closely these measures are related to each other. Table 6 below 

shows that in and out degrees are highly correlated, possibly meaning that looking for advice 

within employees on this company could be reciprocal (i.e. if employee A goes for advice to 
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employee B, employee B may tend to go for advice to employee A). Betweenness is correlated 

with out-degree, this could be interpreted that in this particular company those employees that 

ask for advice tend to control the flow of information in the company (i.e. they serve as bridges 

between those employees that are not associated directly). In and out degrees are highly 

correlated with eigenvector, meaning that those employees that look for advice the most to other 

employees, and those employees that are largely sought for advice by others, are connected to 

other highly related employees, and possibly being the most central employees of the company. 

 

Table 6 
 In-degree Out-degree Betweenness Closeness  Eigenvector  

In-degree 1 0.85 0.69 0.65 0.88 

Out-degree 0.85 1 0.72 0.58 0.86 

Betweenness 0.69 0.72 1 0.39 0.48 

Closeness 0.65 0.58 0.39 1 0.52 

Eigenvector 0.88 0.86 0.48 0.52 1 

 

 Model Fitting and Goodness of Fit 

As mentioned early on this section, we are interested on assessing the effects of seeking for 

advice among the consulting firm employees. Therefore, a few models were fit (see Appendix A 

- II for complete summaries of all fitted models); however, only two models will be presented on 

this section. 

 

First, we fit a Bernoulli model (the simplest model). This model only takes into account the total 

number of edges from the observed network. By using this model we are trying to estimate the 

probability of looking for advice in the observed network, and according to equation (6), we can 

expressed the probability as,  

 

  P(Y=y) = (1/k) exp {θ L(y)} = (1/k) exp {θedges * 521} 

  

The log-odd of one tie is equal to  

  

  logit P(Yij=1) = θedges ∆ (g(y))i,j = θedges * 1    

 

where is an observed tie in Yij, and ∆ (g(y))i,j is the change in g(y). In our case of a binary 

network, since the addition of any tie to the network changes the number of ties by 1, then the 

change ∆ (g(y))i,j is equal to 1 for all ties. 

  

And as mentioned on equation (7), the probability of an edge (i.e. looking for advice) being 

observed is calculated as, 

  prob = exp (θedges) / [1 + exp (θedges)] 

 

Summary of model fit 

 Maximum Likelihood Results: 

        Estimate Std. Error     MCMC s.e.  p-value     

 edges        -1.08961       0.05065                 NA   <1e-04 *** 

 

 AIC: 2337.7    BIC: 2343.4 
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The summary above shows the estimate for the log-odds of a tie, in addition to its standard error 

and p-value of significance. MCMC s.e. stands for MCMC standard error, which in this case is 

not applicable. It also includes two measures of model fit (AIC and BIC).   

By using the edges estimated parameter, the log-odds of any tie (i.e. asking for advice) occurring 

in our network is equal to { (-1.09) * 1 } = (-1.09), and its corresponding probability is equal to 

exp(-1.09) / [1 + exp(-1.09)] ≈ 0.25 - which it happens to be equal to the network’s density -. 

However, it’s already known that this model is unrealistic and it does not reflect the network 

characteristics.  

 

Since, the first model doesn’t take into account any of the network’s structural characteristics; a 

better model (i.e. a model that includes parameters that we are interested on) is fitted.  

On the preliminary analysis it was observed that employees tend to interact the most with those 

employees that are located in the same region, and it was also observed that employees tend to 

ask for advice to employees of their same gender. Also, it was observed that organization level 

has an effect on the way how employees seek for advice. Besides that, we know that about 38% 

of the total observed edges are mutual (201 out of 521). 

 

Then, we fit a model that has three network statistics and six attributes statistics. The network 

statistics are the number of edges, the number of mutual edges, and mixed-two star (i.e. if i goes 

to j, and j goes to h, then there is a potential for i and h to get connected through j). The attributes 

statistics include the main effects for ‘organizational level’ (i.e. the level position of an employee 

tends to affect the way how he/she looks for advice), and the second-order effects for ‘region’ 

and ‘gender’ (i.e. tendency of employees of forming ties with others from the same regions, or of 

the same gender) 

 

The overall model is written as, 

 

 P(Y=y|X=x) = (1 / k(θ,β)) exp {θedges S1(y) + θmutual S2(y) + θm2star S3(y) + β
T
g(y,x)},

 

 

Where g is the vector for the attributes statistics, and β is the corresponding vector of parameters. 

Note that, g(y,x) = ∑1≤i≤j≤Nv  yijh(xi, yj), where h is a function of xi and xj, and xi is the vector of 

observed attributes for the i-th vertex. In our case, h has two categories, one for main effects and 

other for second order effects.  

 

 Main effects:  h(xi , yj) = locationi + locationj  

 Second order effects: h(xi , yj) = I{regioni = regionj} , h(xi , yj) = I{genderi = genderj} 

 

Summary of model fit 

MCMC sample of size 10000  

Monte Carlo MLE Results: 

                       Estimate  Std. Error  MCMC s.e.  p-value     

 edges               -6.302960    0.201777       3.325  <1e-04 *** 

 mutual              2.822515    0.239312        1.147  <1e-04 *** 

 m2star              0.058162    0.006892       0.058  <1e-04 *** 

 nodefactor.level.2   0.653985       0.095175       0.743  <1e-04 *** 
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 nodefactor.level.3   0.706072       0.088235        0.488  <1e-04 *** 

 nodefactor.level.4   0.710419       0.081561        0.727  <1e-04 *** 

 nodefactor.level.5   1.168843       0.033310        0.000   <1e-04 *** 

 nodematch.region   1.781939     0.019971        0.004   <1e-04 *** 

 nodematch.gender  0.346361    0.017694        0.001   <1e-04 *** 

 

 AIC: 1487.5    BIC: 1538.2 

 

The summary provides the estimates and two sets of standard errors. In addition, the summary 

shows that all estimates are significant. Note that before interpreting the estimates, we check that 

the proposed model is a non-degenerate model (see Figure 10 – Appendix A-II).  In Figure 1, the 

plots on the left show the chain as a time series and the plots on the right show the chain in a 

histogram (for each statistic). In a converge model, the statistics will vary stochastically around 

the mean, and if the density histograms have a bell shaped curve (or approximate) then there is 

enough evidence that we have generate a non-degenerate model. 

 

The estimated coefficients of the networks statistics can be interpreted in terms of the log-odds.  

For example, the odds of observing a tie between two employees that have different attributes 

and that doesn’t belong to a reciprocate pair neither have a node in common is exp(-6.30) = 

0.002. However, if the pair described above has a vertex in common, then the odds increases to 

exp(-6.30 + 0.06) = exp(-6.24) = 0.002. And, the odds of observing a tie that is a reciprocate is 

exp (-6.30+2.82) = exp(-3.48) = 0.031. 

 

The estimated coefficients of the main effects (organizational level) attributes can also be 

interpreted as the log-odds ratio (in the sense of all else being equal). Note that ‘Research 

Assistant (level 1)’ is being considered as the baseline and interpretations will be comparing all 

the other levels vs. level 1. For example, we can say that being a ‘senior consultant (level 3)’ 

rather than a ‘research assistant (level1) will increase the odds of seeking advice by nearly two 

times since exp(0.706) ≈ 2.03. Finally, the estimated coefficients of the second order effects are 

also interpreted as the log-odds ration. For example, being from the same region increases the 

odds of looking for advice between two employees by a factor of exp(1.782) ≈ 5.94. Similarly, 

being of the same gender increases the odds of looking for advice by a factor of exp(0.41) ≈ 

1.42.  

 

Now, let’s check the GoF of that last model. First, random graphs are simulated based on the 

model and simulated network is obtained. Then, this simulated network was compared with the 

observed network and we see that some of the structural characteristics we were interested on are 

very similar on both of them (see below). 

 
Table 7 – Observed vs. Simulated Network 

 Edges Density Reciprocate dyads Two paths Triangles 

Observed Network 521 0.25 201 7013 5364 

Simulated Network 526 0.25 197 7163 4706 

 

As mentioned on Section 6, another way of checking GoF is by comparing the degree centrality 

of the observed and simulated network. Figure 8 shows the histograms of the in-and-out degree 
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distributions of both networks, and histograms of the simulated network are very similar to the 

observed ones. 

Figure 8 
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The statnet package also includes a built-in GoF function. This GoF function simulates 100 

networks based on the fitted model, and plot their averages against the observed network.  

 

Figure 9 
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Figure 9 shows the plots from the built-in GoF function on statnet. The black lines represent the 

observed network, and the dotted lines represent 100 realizations from the model with the 

distance and triad census (triangles) parameters. Based on the plots of these two structural 

characteristics, the fit of the model is good in overall.  

 

 

II. Ordinal Categorical Data Analysis 

 

1. Introduction 

 

As it has been described on Section I, SNA offers useful tools when trying to describe and 

understand the relationships formed in a network by its actors. However, SNA does lack 

effectiveness when trying to predict and make inference based on the observed data. More 

specific, this lack of effectiveness becomes an issue when the network has weighted/valued ties 

since the proposed models are only applicable on binary networks, and by converting a weighted 

network into a binary network, the researcher is at risk of possibly loosing important 

information. This lack of efficiency was the motivation to use some conventional statistical 

methods to analyze social network data. Although, instead of analyzing the weighted ties formed 

by the actors, we will analyze the actors themselves.  

Social networks described human relationships, and on weighted networks, the values assigned 

to the actors could describe the hierarchy of an actor in the network, and the values assigned to 

the ties could describe the frequency of an event. Therefore, since there is an obvious order in the 

response variable (i.e. how often do you ask for advice? Don’t know this person, never, ...., very 

often) that can be taken into account the model specifications, it was thought that ordinal logistic 

regression models will be appropriate for this type of data. 

 

2. Ordinal Logistic Regression 

 

As mentioned on Section I–2.2, in a weighted network the relationships between actors can have 

a specific value (and represent an ordered value). If we considered the valued relationship as the 

response variable, a way to recognize the order of the response is by using cumulative logits, 

 

Cumulative Logits 
40

 

If the response variable has c outcome categories with probabilities π1, π2, ... , πc , then the 

cumulative logits are defined as  

 

  logit [ P(Y≤ j) ] = log { P(Y ≤ j) / [1 – p(Y ≤ j) ] }    (12) 

          = log {(π1 +…+  πj) / (πj+1+…+  πc)},  j=1, ..., c-1.  

 

Cumulative Logit Models
41

 

For subject i, yi denotes the outcome category for the response variable, and xi denote a column 

vector of the values of the explanatory variables. And the model uses all c-1 cumulative logits. 

Then the cumulative logit models can be written as, 

 

                                                 
40

 Analysis of Ordinal Categorical Data (44) 
41

 Analysis of Ordinal Categorical Data (46:47) 
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  logit [ P(Y≤ j) ] = αj + β’xi = αj + β1xi1 + β2xi2 + ….,   (13) 

 

for j=1, ..., c-1, and column vector β of parameters that describes the effects of the explanatory 

variables. The expression for the cumulative probability is, 

 

  P (Y≤ j) = exp (αj + β’xi) / {1 + exp (αj + β’xi)},  (14) 

 And the probability of a specific outcome is equal to  

 

 P (Y=j) = exp (αj + β’xi) / {1 + exp (αj + β’xi)}  

  = exp (αj-1 + β’xi) / {1 + exp (αj-1 + β’xi)}  (15) 

 

Goodness of Fit 
42

 

 

When checking the GoF, we are testing  

 

 Ho: The model holds  vs.   Ha: The model doesn’t hold 

 

The Pearson statistics is 

  

  X² = ∑i ∑j [(nij – uij)² / uij],    (16) 

 

The Likelihood Ratio is 

 

  G² = 2 ∑i ∑j nij log(nij / uij).    (17) 

 

Note that in both equations, nij is the observed value, and uij is the predicted value. 

 

When both statistics, X² and G², are significant (i.e. the model doesn’t hold), the Hosmer-

Lemeshow* statistic is used instead of the Pearson and Likelihood ratio test. 

*See ‘An Introduction to Generalized Linear models’ (135:137) for additional information about 

Hosmer-Lemeshow statistic.. 

 

3. Case Study: Consulting Firm 

 

The same network data used on the previous section will be used on this example. However, 

instead of being modeled as a network, the data will be modeled using the cumulative logit 

regression model. The ‘Advice Network’ data has 46 employees and a total of 877 responses to 

the question ‘How often have you turned to this person for information/advice on work-related 

topics in the last three months?’, and the responses were recorded as follow, 

 

1 = Never, 2 = Seldom, 3 = Sometimes, 4 = Often, 5 = Very often 

 

 

 

                                                 
42

 Analysis of Ordinal Categorical Data (67) 
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 Exploratory Analysis 

See Appendix B –III,IV for complete SAS script and output 

 

The plots below on Figure 10 show the proportions of asking for advice among the consulting 

firm employees look for advice according to their organizational level position, region office, 

and gender. The frequency of asking for advice differs depending on the position the employees 

held at the company; although it seems to be a general trend to ask less frequent for advice 

among the employees with higher organizational levels. Also, employees that work in the US 

seem to ask for advice more often then those who work in Europe. In addition, we can see that in 

overall women employees ask for advice less frequent than male employees.  

 

Figure 10 
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 Model Fitting and Goodness of Fit: Explaining frequency of advice seeking by each of the 

explanatory variables. 

 

Organizational Level / Advice 

Let’s apply the cumulative logit model for the following contingency table that treats the 

employees’ answers as the response variable, and the organization level as the explanatory 

variables. By fitting the cumulative logit model we are trying to see if employees ask for advice 

less / more frequent according to their level position. 

 

Table 8 
    ‘How often have you turned to this person for advice on work-related 

     topics in the last three months? 

  1= Never 2 = Seldom 3=Sometimes 4=Often 5=Very often 

1 = Research  Ast 21 11 9 7 0 

2 = Jr. Consultant 94 42 22 12 10 

3 = Sr. Consultant 65 53 40 20 20 

4 = Mng. Consultant 147 73 51 27 46 

5 = Partner 29 32 20 18 8 

 

Summary Organization Level / Advice 

 Parameter Estimate St. Error Wald Chi-Sqr  Pr>ChiSq   

 Intercept 1 0.2209  0.1991  1.2308   0.2672 

 Intercept 2 1.2139  0.2033  35.6483  <0.0001 

 Intercept 3 2.0558  0.2113  94.6256  <0.0001 

 Intercept 4 2.8654  0.2259  160.9239  <0.0001 

 Level  -0.1824 0.0565  10.4281  0.0012 

 

The summary shows the results of the model for the contingency table. Note that there are 4 

parameters intercepts, since the response variable has a total of 5 ordinal variables, and the 

explanatory variable level is being considered as a quantitative variable since it represents the 

order of the hierarchy level organization of the consulting firm. The estimated level parameter 

shows that in general the cumulative probability decreases as organizational level increases.  

 

For example, for Jr. Consultant level we can estimate its correspondent cumulative probability: 

Sometimes: P(Y≤3) = exp{(2.0558)+(2)(-0.1824)} / {1+ exp[(2.0558)+(2)(-0.1824)]} = 0.84 

Often:  P(Y≤4) = exp{(2.8654)+(2)(-0.1824)} / {1+ exp[(2.8654)+(2)(-0.1824)]} = 0.92 

 

If we want to calculate the exact probabilities for each response for Jr. Consultant, 

 P(Y = 4) = P(Y≤4) - P(Y≤3) = 0.08 

 P(Y = 5 ) = 1 - P(Y≤4) = 1 - 0.92 = 0.08 

 

The same calculations can be applied to each different organizational level. 

 

Region/Advice 

Then, let’s apply the cumulative logit model to the following contingency table that treats the 

employees’ answers as the response variable, and region as the explanatory variables. By fitting 

the cumulative logit model we are trying to see if employees ask for advice less / more frequent 
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according to their work region. Note that the proportions of employees located in Europe of 

asking for advice is smaller across all the responses (with the exception of never) 

 

Table 9 
    ‘How often have you turned to this person for advice on work-related 

     topics in the last three months? 

  1= Never 2 = Seldom 3=Sometimes 4=Often 5=Very often 

1 = Europe 208(55%) 88(23%) 41(11%) 15(4%) 24(6%) 

2 = USA 148(30%) 123(25%) 101(20%) 69(14%) 60(12%) 

 

Summary Region / Advice 

 Parameter Estimate St. Error Wald Chi-Sqr  Pr>ChiSq   

 Intercept 1 1.3031  0.2134  37.3059  <0.0001 

 Intercept 2 2.3610  0.2243  110.8455  <0.0001 

 Intercept 3 3.2445  0.2354  189.9404  <0.0001 

 Intercept 4 4.0716  0.2504  264.4468  <0.0001 

 Region  -1.0876 0.1296  70.3986  <0.0001 

 

The summary shows the results of the model for the contingency table. Note that the parameter 

for region is negative, which shows the tendency of employees from US to ask for advice less 

frequent that their counterparts in Europe, and region1 (Europe) is being considered as the 

baseline. 

 

For example, the cumulative probability USA employees of asking for advice is, 

Sometimes: P(Y≤2) = exp{(2.3610)+(2)(-1.0876)} / {1+ exp[(2.3610)+(2)(-1.0876)]} =  0.55 

Often:  P(Y≤3) = exp{(3.2445)+ (2)(-1.0876)} / {1+ exp[(3.2445)+ (2)(-1.0876)]} = 0.74 

 

If we want to calculate the exact probabilities for each response for USA, 

 P(Y = 3) = P(Y≤3) - P(Y≤2) = 0.19 

 

Gender / Advice 

Finally, the cumulative logit model is applied to the following contingency table that treats the 

employees’ answers as the response variable, and the employees’ gender as the explanatory 

variables. By fitting the cumulative logit model we are trying to see if employees ask for advice 

less / more frequent according to their gender. Note that the proportion of women asking for 

advice is slightly larger across all the responses (with the exception for very often) 

 

Table 10 
    ‘How often have you turned to this person for advice on work-related 

     topics in the last three months? 

  1= Never 2 = Seldom 3=Sometimes 4=Often 5=Very often 

1 = Male 296 (40%) 174(24%) 117(16%) 63(9%) 82(11%) 

2 = Female 60 (41%) 37 (26%) 25 (17%) 21(14%) 2(1%) 

 

Summary Gender / Advice 

 Parameter Estimate St. Error Wald Chi-Sqr  Pr>ChiSq   

 Intercept 1 -0.5508 0.2063  7.1965   0.0073 

 Intercept 2 0.4337  0.2050  4.4764   0.0344 
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 Intercept 3 1.2697  0.2101  36.5259  <0.0001 

 Intercept 4  2.0755  0.2231  86.5269  <0.0001 

 Gender  0.1448  0.1658  0.7630   0.3824 

 

The summary shows the results of the model for the contingency table. Note that as on the 

previous model, there are 4 parameters intercepts, since we are using the same response variable, 

and in this case the explanatory variable gender is being considered as a qualitative variable, 

meaning that gender 1 (male) is being used as the baseline.  

 

For example, the cumulative probability of women asking for advice is, 

Sometimes: P(Y≤2) = exp{(0.4337)+(2*0.1448)} / {1+ exp[(0.4337)+(2*0.1448)]} =  0.67 

Often:  P(Y≤3) = exp{(1.2697)+(2*0.1448)} / {1+ exp[(1.2697)+(2*0.1448)]} = 0.82 

 

If we want to calculate the exact probabilities for each response for women, 

 P(Y = 3) = P(Y≤3) - P(Y≤2) = 0.15 

 

Now for male employees, the cumulative probability for asking for advice is 

Sometimes: P(Y≤3) = exp{(1.2697)+(0.1448)} / {1+ exp[(1.2697)+(0.1448)]} =  0.80 

Often:  P(Y≤4) = exp{(2.0755)+(0.1448)} / {1+ exp[(2.0755)+(0.1448)]} = 0.90 

 

If we want to calculate the exact probabilities for each response for women, 

 P(Y = 5) = 1 - P(Y≤4) = 1 – 0.90 = 0.10 

 

Goodness of Fit 

Out of the three models fitted above, Gender/Advice is the only model that shows lack of fit (See 

Appendix B-IV). 

 

 Model Fitting and Goodness of Fit:  

Finally, we would like to build a model using advice as the response variable, and region and 

level as the explanatory variables. 

 

 logit [ P(Y≤ j) ] = β0j + β1j x1 + β2j x2,  j=1,2,...,5. 

 

where,  

 j = 1:Never, 2:Seldom, 3: Sometimes, 4: Often, 5: Very often 

 x1 = Region = 1: Europe and 2: USA 

 x2 =  Level  = 1: Res. Assist 2: Jr. Con.  3: Sr. Con   4: Mng. Con  5: Partner 

 

Summary Model Advice ~ Region + Level 

 Parameter Estimate St. Error Wald Chi-Sqr  Pr>ChiSq   

 Intercept 1 1.9424  0.2881  45.4539  <0.0001 

 Intercept 2 3.0097  0.2989  101.3682  <0.0001 

 Intercept 3 3.9007  0.3093  159.0864  <0.0001 

 Intercept 4 4.7342  0.3219  216.2586  <0.0001 

 Region  -1.0939 0.1300  70.8181  <0.0001 

 Level  -0.1908 0.0576  10.9595  0.0009 
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The summary shows the results of the cumulative logistic regression model. There are 4 intercept 

parameters because, as on the previous models, the response variable has 5 categories. Note that 

the negative parameter of organization level suggests that the cumulative probability decreases as 

the organizational level increases, and the negative parameter of region also suggests that the 

cumulative probability decreases for US when comparing to Europe. 

 

For example, for a fixed organizational level the estimated odds ratio of seeking advice in the US 

vs. Europe below any level j is approximately exp(-1.0939) = 0.33. Also, for a fixed region the 

estimated odds of seeking advice for ‘Research Assistants’ below any level j is approximately 

exp(-0.1908) = 0.83. As well, following the same logic, the estimated odds can be calculated for 

the other organizational levels. 

 

Additionally, the score test for the proportional odds assumptions shows that the model holds, 

meaning that it fits the data (See Appendix B-IV) 

 

III. Conclusions 

 

Social Network Analysis provides appropriate methods to model and analyze social network 

data, and ERGM are only one of the many possible available models that SNA has. We chose 

ERGM because of their capacity to model data based on the structural characteristics and the 

nodes attributes, and also because their assumptions and parameters interpretations are similar to 

the ones used on conventional statistical methods. However, since ERGM are still under 

development there are not formal methods for goodness of fit. In addition, there are theoretical 

ERGM methods that allow working with weighted networks; however, appropriate software 

tools for such data are not yet available. As an alternative, Cumulative Logistic Regression was 

used to include the weights associated to the network; however, we were not able to include any 

of the structural characteristics on the model due to the nature of this conventional statistical 

method.  

Both methods offer different tools depending on what the researcher would like to predict, and 

the results obtained using the two methods were satisfactory. Table 11 shows the differences 

between ERGM and Cumulative Logistic Regression. 

 

Table 11 

 

ERGM 

 

Cumulative Logistic Regression 

• The social network itself is the dependent 

variable  

• The model parameters take into account 

structural networks characteristics and nodes’ 

attributes 

• Estimates the log-odds of observing an edge 

(seeking for advice) between a pair of nodes 

(employees) 

• Non-formal methods of Goodness of Fit 

• For example, being from the same region 

increases the odds of looking for advice 

between two employees by exp(1.782)=5.9 

 The weight associated with the edges is the 

dependent variable 

 The model parameters take into account the 

nodes’ attributes only (and structural 

parameters are not part of the model) 

 Estimates the cumulative log odds of how 

frequent the employees seek advice 

 Formal methods of Goodness of Fit 

 For example, for a fixed level position the 

estimated odds ratio of seeking advice in the 

US vs. Europe below any level j is            

exp(-1.0939)=0.34    
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Appendix A:  SNA Consulting Firm 
 

I. R Script 

library(igraph) 

# Section 1: Social Network Analysis 

# Network 1 = Observed Data 

# Original values 

# 0=dont know this person 

# 1=never 

# 2=seldom 

# 3=sometimes 

# 4=often 

# 5=very often 

network=read.table("Network1_info(advise).txt") 

colnames(network)=c('ego', 'alter', 'advise_tie') 

Network1 = graph.data.frame(network, directed=TRUE) 

Matrix1=get.adjacency(Network1, attr="advise_tie")  

 

# Network 2 = From observed data, a new matrix is created: Going for advise (Yes/No) 

# New values 

# {0,1}=0  No / Do not go for advise 

# {2,3,4,5}=1  Yes / Go for advise 

n2=read.table("Network1_info(advise).txt") 

n2$V3[n2$V3<=1]=0  ## Change values  

n2$V3[n2$V3>=2]=1  ## Change values 

n2 <- graph.data.frame(n2, directed=TRUE) 

Matrix2=get.adjacency(n2, attr="V3")  

Network2=graph.adjacency(Matrix2) ## Network2 

 

# Centrality measures / Descriptive Analysis 

indegree2= as.data.frame(degree(Network2, mode='in')) 

outdegree2= as.data.frame(degree(Network2, mode='out')) 

between2=as.data.frame(betweenness(Network2)) 

close2=as.data.frame(closeness(Network2)) 

evector2=data.frame(evcent(Network2)) 

central_N2=data.frame(c(1:46), indegree2, outdegree2, between2, close2, evector2$vector) 

colnames(central_N2)=c('node', 'indegree', 'outdegree', 'betweenness', 'closeness', 'evector') 

 

# Additionally we can check who are the most 'central' actors according to each measure 

head(central_N2[order(-central_N2$indegree),] ) 

head(central_N2[order(-central_N2$outdegree),] ) 

head(central_N2[order(-central_N2$closeness),] ) 

head(central_N2[order(-central_N2$evector),] ) 

 

# Lets see if the measures are correlated btwn each other 

cor(central_N2[2:6]) 
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library(network) 

library(statnet) 

 

# Setting Matrix2 as an object network Net2  

Net2=as.network.matrix(Matrix2, directed=TRUE, type='edgelist') 

Net2 %v% 'gender' = c(1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 

1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2) 

Net2 %v% 'level' = c(3, 4, 1, 4, 4, 4, 3, 5, 2, 4,4, 4, 2, 4, 3, 3, 1, 3, 3, 5, 4, 2, 3, 1, 2, 4, 2, 3, 2, 1, 

4, 2, 4, 4, 2, 4, 5, 3, 3, 4, 1, 1, 4, 4, 5, 2)  

Net2 %v% 'region' = c(1, 2, 1, 1, 2, 2, 2, 1, 1, 1,2, 1, 2, 2, 1, 1, 2, 2, 2, 2,2, 1, 2, 2, 2, 2, 2, 2, 2, 

2,1, 1, 1, 1, 2, 2, 1, 2, 2, 1,1, 1, 1, 2, 2, 1) 

Net2 %v% 'location' = c(3, 1, 7, 4, 1, 1, 1, 3, 7, 3, 1, 3, 1, 1, 6, 3, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 

1, 4, 3, 3, 5, 1, 1, 3, 1, 1, 6, 2, 5, 3, 1, 1, 7)  

Net2 %e% "myeval" = Matrix2 

Net2 

 

# Plot Network 2, and see how this graph relates to centrality measures 

pdf('net.pdf', height=10, width=10) ### It creates a pdf file for the plot 

lev=Net2 %v% 'level' 

gn=Net2 %v% 'gender' 

col=c('red', 'yellow', 'green', 'blue', 'black') 

set.seed(310) 

plot(Net2, displayisolates=TRUE, displaylabels=TRUE, label.cex=0.7, label.col='black', 

vertex.col=col[lev], vertex.sides=c(3,15)[gn], edge.col='gray') 

legend('topleft', legend=c('R.A', 'Jr.C.', 'Sr.C.', 'Mng', 'Partner'), 

fill= col, cex=0.7) 

dev.off() 

 

Table_Level=mixingmatrix(Net2, "level") 

Table_Region=mixingmatrix(Net2, "region") 

Table_Location=mixingmatrix(Net2, "location") 

Table_Gender=mixingmatrix(Net2, "gender") 

 

# Fitting ERGM model for Network2 

m1=ergm(Net2~edges) 

summary(m1) 

m2=ergm(Net2~edges + nodefactor('level')+ nodematch('region')+nodematch('gender'), 

seed=120) 

summary(m2) 

m3=ergm(Net2~edges + mutual + nodefactor('level')+ nodematch('region')+ 

nodematch('gender'), seed=200) 

m3=logLik(m3, add=TRUE) 

summary(m3) 

m4=ergm(Net2~edges + mutual + triangle + m2star +nodefactor('level')+  nodematch('region')+ 

nodematch('gender'), seed=150) 
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m4=logLik(m4, add=TRUE) 

summary(m4) 

m5=ergm(Net2~edges + mutual + m2star +nodefactor('level')+ nodematch('region')+ 

nodematch('gender'), seed=115) 

m5=logLik(m5, add=TRUE) 

summary(m5)  

m6=ergm(Net2~edges + mutual + m2star + gwdsp(0.5, fixed=T) +nodefactor('level')+ 

nodematch('region')+ nodematch('gender'), seed=100) 

m6=logLik(m6, add=TRUE) 

summary(m6)  

 

pdf('diagnostics_m5.pdf') 

mcmc.diagnostics(m5) 

dev.off() 

save.image() 

 

pdf('diagnostics_m6.pdf') 

mcmc.diagnostics(m6) 

dev.off() 

save.image() 

 

# GoF (2 ways) 

Net5.1=simulate(m5, verbose = TRUE) 

Net5.2=simulate(m5,verbose = TRUE)  

summary(Net2 ~ edges + density + mutual + m2star + triangle ) 

summary(Net5.1 ~ edges + density + mutual + m2star + triangle ) 

summary(Net5.2 ~ edges + density + mutual + m2star + triangle ) 

### Plots / Histograms 

in2= degree(Net2, cmode='indegree') 

in5.2 = degree(Net5.1, cmode='indegree') 

on2 = degree(Net2, cmode='outdegree') 

on5.2 = degree(Net5.1, cmode='outdegree') 

par(mfrow=c(2,2)) 

hist(in2, main='In-Degree Observed Network', xlab=('In-degree')) 

hist(on2, main='In-Degree Observed Network',xlab=('Out-degree')) 

hist(in5.2, main='In-Degree Observed Network',xlab=('In-degree')) 

hist(on5.2, main='Out-Degree Simulated Network',xlab=('Out-degree')) 

Net5.1 

# Using GoF 

m5gof=gof(m5, GOF = ~ distance + triadcensus, 

verbose = TRUE, interval = 5e+4) 

par(mfrow = c(1,2)) 

plot(m5gof) 
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II. R Output 

 

 Actors with higher in-degrees 

head(central_N2[order(-central_N2$indegree),] ) 

         node   indegree   outdegree    betweenness  closeness    evector 

 20       24             30     250.99317  0.3061224  1.0000000 

 2         21             22     157.23989  0.2922078  0.7577223 

 45       19             22     90.36334  0.2903226  0.8810880 

 8         18             20     137.30687  0.2848101  0.4497294 

 19       18             20     35.40246  0.2727273  0.8452790 

 23       18             17     82.50270  0.2830189  0.7500075 

 

 Actors with higher out-degrees 

head(central_N2[order(-central_N2$outdegree),] ) 

          node  indegree   outdegree     betweenness  closeness    evector 

 20       24              30    250.99317  0.3061224  1.0000000 

 2         21              22    157.23989  0.2922078  0.7577223 

 28       18              22     48.46603  0.2777778  0.8785815 

 45       19              22     90.36334  0.2903226  0.8810880 

 8         18              20    137.30687  0.2848101  0.4497294 

 19       18              20     35.40246  0.2727273  0.8452790 

 

 Actors with higer closeness 

head(central_N2[order(-central_N2$closeness),] ) 

         node    indegree   outdegree    betweenness  closeness    evector 

 20       24              30     250.99317  0.3061224  1.0000000 

 2         21              22    157.23989  0.2922078  0.7577223 

 38       18              20    104.84418  0.2903226  0.7003435 

 45       19              22     90.36334  0.2903226  0.8810880 

 18       11              19     64.67870  0.2866242  0.5711277 

 8         18              20    137.30687 0.2848101  0.4497294 

 

 Actors with higher evector values  

head(central_N2[order(-central_N2$evector),] ) 

          node   indegree    outdegree    betweenness  closeness    evector 

 20       24               30    250.99317  0.3061224  1.0000000 

 45       19               22    90.36334  0.2903226  0.8810880 

 28       18               22     48.46603  0.2777778  0.8785815 

 19       18               20     35.40246  0.2727273  0.8452790 

 26       18               17     53.14866  0.2812500  0.7925086 

 2         21               22    157.23989  0.2922078  0.7577223 

 

 Fitting ERGM for Network2 

Summary Model 1 

Formula:   Net2 ~ edges 

Newton-Raphson iterations:  5  
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Maximum Likelihood Results: 

        Estimate    Std. Error  MCMC s.e.  p-value     

 edges   -1.08961    0.05065        NA            <1e-04 *** 

AIC: 2337.7    BIC: 2343.4  

 

Summary Model 2 

Formula:   Net2 ~ edges + nodefactor("level") + nodematch("region") + nodematch("gender") 

Newton-Raphson iterations:  5  

Maximum Likelihood Results: 

            Estimate   Std. Error   MCMC s.e. p-value     

edges                -5.9730     0.3614          NA       <1e-04 *** 

nodefactor.level.2    1.2178     0.1886         NA         <1e-04 *** 

nodefactor.level.3    1.6152     0.1852         NA         <1e-04 *** 

nodefactor.level.4    1.4205     0.1776         NA         <1e-04 *** 

nodefactor.level.5    2.4695     0.2187         NA         <1e-04 *** 

nodematch.region     2.6174     0.1481         NA         <1e-04 *** 

nodematch.gender    0.5956     0.1326         NA          <1e-04 *** 

AIC: 1741.2    BIC: 1780.7  

# Note, this second model has a smaller AIC than m1 (a sign of better fit). However this model 

doesn't represent any structural characteristics 

 

Summary Model 3 

Formula:   Net2 ~ edges + mutual + nodefactor("level") + nodematch("region") +  

nodematch("gender") 

MCMC sample of size 10000  

Monte Carlo MLE Results: 

                     Estimate Std. Error MCMC s.e.  p-value     

edges               -5.18974    0.32425     0.014   < 1e-04 *** 

mutual              2.84500    0.25219     0.008   < 1e-04 *** 

nodefactor.level.2   0.73197    0.19083     0.013  0.000129 *** 

nodefactor.level.3   1.00266    0.19821     0.011   < 1e-04 *** 

nodefactor.level.4   0.90136    0.17638     0.011   < 1e-04 *** 

nodefactor.level.5   1.56162    0.22637     0.014   < 1e-04 *** 

nodematch.region   1.62815    0.15453     0.002   < 1e-04 *** 

nodematch.gender  0.39786    0.05903     0.008   < 1e-04 *** 

AIC: 1512    BIC: 1557.1  

# Note that all parameters are significant, and AIC got smaller, lets add transitivity parameters 

 

Summary Model 4 

Formula:   Net2 ~ edges + mutual + triangle + m2star + nodefactor("level") +  

nodematch("region") + nodematch("gender") 

MCMC sample of size 10000  

Monte Carlo MLE Results: 

                     Estimate Std. Error  MCMC s.e.   p-value     

edges               -3.32527    0.87805     0.840       0.000157 *** 

mutual              2.21303    1.02520     4.243       0.030994 *   



STAT 690 – Anahi Rebatta 

 36 

triangle             0.12554    0.02991     0.009       < 1e-04 *** 

m2star              -0.10017    0.04689     0.057      0.032773 *   

nodefactor.level.2  0.43716    0.45167     0.845        0.333213     

nodefactor.level.3  0.69044    0.03213     0.558       < 1e-04 *** 

nodefactor.level.4  0.57438    0.05582     0.004       < 1e-04 *** 

nodefactor.level.5   1.41958    0.05867     0.001       < 1e-04 *** 

nodematch.region   0.18247    0.04139     0.002       < 1e-04 *** 

nodematch.gender  0.43055    0.03926     0.000       < 1e-04 *** 

AIC: 2221.4    BIC: 2277.8  

#Note that AIC got a lot bigger, and one parameter isn’t significant, lets take out the transitivity 

parameters 

 

Summary Model 5 

Formula:   Net2 ~ edges + mutual + m2star + nodefactor("level") + nodematch("region") + 

nodematch("gender") 

MCMC sample of size 10000  

Monte Carlo MLE Results: 

                     Estimate       Std. Error MCMC s.e. p-value     

edges               -6.302960   0.201777     3.325       <1e-04 *** 

mutual              2.822515   0.239312     1.147       <1e-04 *** 

m2star               0.058162   0.006892     0.058       <1e-04 *** 

nodefactor.level.2   0.653985   0.095175     0.743       <1e-04 *** 

nodefactor.level.3   0.706072   0.088235     0.488       <1e-04 *** 

nodefactor.level.4   0.710419   0.081561     0.727       <1e-04 *** 

nodefactor.level.5   1.168843   0.033310     0.000       <1e-04 *** 

nodematch.region   1.781939   0.019971     0.004       <1e-04 *** 

nodematch.gender  0.346361   0.017694     0.001       <1e-04 *** 

 AIC: 1487.5    BIC: 1538.2  

#Note that model improved again, although, lets try to include transitivity with the most robust 

term for triangle (term gwdsp)  

 

Summary Model 6 

Formula:   Net2 ~ edges + mutual + m2star + gwdsp(0.5, fixed = T) + nodefactor("level") + 

nodematch("region") + nodematch("gender") 

MCMC sample of size 10000  

Monte Carlo MLE Results: 

                     Estimate       Std. Error    MCMC s.e.  p-value     

edges               -3.128491   1.135427    12.309          0.005915 **  

mutual               2.571611   0.666113     9.691           0.000117 *** 

m2star               0.031090     0.034721     0.112           0.370664     

gwdsp.fixed.0.5          -0.229674    0.070096     0.762           0.001068 **  

nodefactor.level.2   0.165406     0.015157     0.206           < 1e-04 *** 

nodefactor.level.3   0.467801     0.018140     0.001           < 1e-04 *** 

nodefactor.level.4   0.290019     0.005846     0.003           < 1e-04 *** 

nodefactor.level.5   1.352092     0.040972     0.031           < 1e-04 *** 

nodematch.region     0.645542     0.012776     0.011           < 1e-04 *** 
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nodematch.gender     0.367843     0.008031     0.001           < 1e-04 *** 

AIC: 2335.2    BIC: 2391.6  

#Note that AIC increased again, and not all parameters are significant. 

 

We keep Model 5: Even though model 5 doesn’t have the smallest AIC, it is the only one that 

produced a non-degenerate model (which in our case is good!)  

 

 

Figure 10 – Diagnostic Plots Model 5 
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Appendix B:  Cumulative Logistic Regression Consulting Firm 

 

I.R Script 

level.adviceA=c(21,11,9,7,0,94,42,22,12,10,65,53,40,20,20,147,73,51,27,46,29,32,20,18,8) 

level.adviceA = matrix(level.adviceA, nrow=5,ncol=5, byrow=TRUE) 

dimnames(level.adviceA)=list(Level=c('R.A', 'Jr.C','Sr.C','Mg.C','Partner'), 

Freq.Advice=c('1','2','3','4','5')) 

level.adviceA 

gender.adviceA= c(296,174,117,63,82,60,37,25,21,2) 

gender.adviceA=matrix(gender.adviceA, nrow=2,byrow=TRUE) 

dimnames(gender.adviceA)=list(Gender=c('Male','Female'), Freq.Advice=c('1','2','3','4','5')) 

gender.adviceA 

region.adviceA=c(208,88,41,15,24,148,123,101,69,60) 

region.adviceA=matrix(region.adviceA, nrow=2, byrow=TRUE) 

dimnames(region.adviceA)=list(Region=c('Europe','US'),Freq.Advice=c('1','2','3','4','5')) 

region.adviceA 

level.rows=apply(level.adviceA,1,sum) 

level.proportions=level.adviceA/level.rows 

region.rows=apply(region.adviceA,1,sum) 

region.proportions=region.adviceA/region.rows 

gender.rows=apply(gender.adviceA, 1, sum) 

gender.proportions=gender.adviceA/gender.rows 

# Plot Level Proportions 

plot( c(1:5),level.proportions[ , 1], type="b", ylim=c(0,0.7), lty=1, xlab="Level Position", 

ylab="Proportion") 

lines(c(1:5), level.proportions[ , 2],lty=2, type="b", col=2) 

lines(c(1:5), level.proportions[, 3], lty=3, type="b", col=4) 

lines(c(1:5), level.proportions[, 4], lty=4, type="b", col=3) 

lines(c(1:5), level.proportions[, 5], lty=5, type="b", col=14) 

legend('topright',legend=c("Never", "Seldom", "Sometimes", "Often", "Very often"), 

lty=c(1,2,3,4,5),col=c(1,2,4,3,14)) 

### Plot Region Proportions 

plot(region.proportions[ , 1], type="b", ylim=c(0,0.7), xaxt='n', lty=1, xlab="Region", 

ylab="Proportion") 
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lines(region.proportions[ , 2],lty=2, type="b", col=2) 

lines(region.proportions[, 3], lty=3, type="b", col=4) 

lines(region.proportions[, 4], lty=4, type="b", col=3) 

lines(region.proportions[, 5], lty=5, type="b", col=14) 

legend('topright',legend=c("Never", "Seldom", "Sometimes", "Often", "Very often"), 

lty=c(1:5),col=c(1,2,4,3,14)) 

axis(1, at=1:2, label=c('Europe','USA')) 

### Plot Gender Proportions 

plot(gender.proportions[ , 1], type="b", ylim=c(0,0.6), xaxt='n',  lty=1, xlab="Gender", 

ylab="Proportion") 

lines(gender.proportions[ , 2],lty=2, type="b", col=2) 

lines(gender.proportions[, 3], lty=3, type="b", col=4) 

lines(gender.proportions[, 4], lty=4, type="b", col=3) 

lines(gender.proportions[, 5], lty=5, type="b", col=14) 

legend('topright',legend=c("Never", "Seldom", "Sometimes", "Often", "Very often"), 

lty=c(1:5),col=c(1,2,4,3,14)) 

axis(1, at=1:2, label=c('Male','Female')) 

 

II.R Output 

Tables and plots are shown on Section II – 3 

 

III.SAS Script 

*Organizational level and Advice; 

data level_advice; input level advice count;  

datalines; 

1 1 21 

1 2 11 

1 3 9 

1 4 7 

1 5 0 

2 1 94 

2 2 42 

2 3 22  

2 4 12 

2 5 10 

3 1 65 

3 2 53 

3 3 40 

3 4 20 

3 5 20 

4 1 147 

4 2 73 

4 3 51 

4 4 27 

4 5 46 

5 1 29 
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5 2 32 

5 3 20 

5 4 18 

5 5 8 

; 

run; 

*when the number of responses categories excess two, by default the proc ligstic fits the 

cumulative model; 

proc logistic; weight count;   

model advice=level / lackfit; run; 

 

 

* Gender and advice; 

data gender_advice; input gender advice1 count1;  

datalines; 

1 1 296 

1 2 174 

1 3 117 

1 4 63 

1 5 82 

2 1 60 

2 2 37 

2 3 25 

2 4 21 

2 5 2 

; 

run; 

proc logistic; weight count1;  

model advice1=gender/ lackfit; run;  

 

**** Region and advice; 

data region_advice; input region advice2 count2;  

datalines; 

1 1 208 

1 2 88 

1 3 41 

1 4 15 

1 5 24 

2 1 148 

2 2 123 

2 3 101 

2 4 69 

2 5 60 

; 

run; 

proc logistic; weight count2;   
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model advice2=region/ lackfit; run; 

 

Cumulative Logistic Regression 

data advice; input region level advice count;   

datalines; 

1 1 1 14 

1 1 2 7 

1 1 3 3 

1 1 4 6 

1 1 5 0 

1 2 1 50  

1 2 2 20 

1 2 3 5 

1 2 4 2 

1 2 5 7 

1 3 1 45 

1 3 2 4 

1 3 3 4 

1 3 4 0 

1 3 5 1 

1 4 1 84 

1 4 2 44 

1 4 3 23 

1 4 4 2 

1 4 5 14 

1 5 1 15 

1 5 2 13 

1 5 3 6 

1 5 4 5 

1 5 5 2 

2 1 1 7 

2 1 2 4 

2 1 3 6 

2 1 4 1 

2 1 5 0 

2 2 1 44 

2 2 2 22 

2 2 3 17 

2 2 4 10 

2 2 5 3 

2 3 1 20 

2 3 2 49 

2 3 3 36 

2 3 4 20 

2 3 5 19 

2 4 1 63 
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2 4 2 29 

2 4 3 28 

2 4 4 25 

2 4 5 32 

2 5 1 14 

2 5 2 19 

2 5 3 14 

2 5 4 13 

2 5 5 6 

; 

run; proc logistic; weight count;   

model advice=region level / lackfit; run; 

IV.SAS Output 
Goodness of Fit for Level, Region and Gender  tables 

 

Level / Advice GoF 

 

Model Information 

Data Set WORK.LEVEL_ADVICE 

Response Variable Advice 

Number of Response Levels 5 

Weight Variable Count 

Model cumulative logit 

Optimization Technique Fisher's scoring 

 

Region / Advice GoF 

Model Information 

Data Set WORK.REGION_ADVICE 

Response Variable advice2 

Number of Response Levels 5 

Weight Variable count2 

Model cumulative logit 

Optimization Technique Fisher's scoring 

 

Gender / Advice GoF 

Score Test for the Proportional 

Odds Assumption 

Chi-Square DF Pr > ChiSq 

1.2421 3 0.7429 

Score Test for the Proportional 

Odds Assumption 

Chi-Square DF Pr > ChiSq 

6.1538 3 0.1044 

Model Information 
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Advice ~ Region + Gender, GoF 

Model Information 

Data Set WORK.ADVICE 

Response Variable Advice 

Number of Response Levels 5 

Weight Variable Count 

Model cumulative logit 

Optimization Technique Fisher's scoring 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data Set WORK.GENDER_ADVICE 

Response Variable advice1 

Number of Response Levels 5 

Weight Variable count1 

Model cumulative logit 

Optimization Technique Fisher's scoring 

Score Test for the Proportional 

Odds Assumption 

Chi-Square DF Pr > ChiSq 

12.6665 3 0.0054 

Score Test for the Proportional 

Odds Assumption 

Chi-Square DF Pr > ChiSq 

8.4404 6 0.2076 
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