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JEFFREY D. ADLER AND LOREN SPICE

ABSTRACT. We compute the characters of many supercuspidal repre-
sentations of reductivep-adic groups. Specifically, we deal with rep-
resentations that arise via Yu’s construction from data satisfying a cer-
tain compactness condition. Each character is expressed interms of a
depth-zero character of a smaller group, the (linear) characters appearing
in Yu’s construction, Fourier transforms of orbital integrals, and certain
signs and cardinalities that are described explicitly in terms of the datum
associated to the representation and of the element at whichthe character
is evaluated.
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0. INTRODUCTION

0.1. History. SupposeF is a non-Archimedean local field,G is a con-
nected reductiveF -group, andG = G(F ). For simplicity of the present
discussion, assume thatF has characteristic zero. Forπ an irreducible, ad-
missible representation ofG, let Θπ denote the distribution character ofπ,
a linear functional on the spaceC∞

c (G) of locally constant, compactly sup-
ported functions onG. Howe [35] and Harish-Chandra [29] showed that
Θπ can be represented by a locally constant function on the set of regular,
semisimple elements ofG. We will also denote the representing function
by Θπ.

A great deal is known about the asymptotic behavior of characters (as
functions) near singular points. For example, the blow-up of Θπ is con-
trolled by the fact, due to Harish-Chandra [30], that|DG|1/2 Θπ is locally
integrable onG, whereDG is a certain polynomial function onG, thedis-
criminantof G. From Howe [33] and Harish-Chandra [30], we know that,
near a singular point,Θπ (composed with a suitable logarithmic map) has an
expansion in terms of Fourier transforms of nilpotent orbital integrals. More
recent work has made precise where these expansions hold (see [27,45] for
a conjecture, [21] for the main result, and [5] for a generalization); pre-
sented other expansions, where the collection of orbital integrals involved is
smaller and depends onπ (see [47–50]); or done both (see [4,18,23,37,38]).

Despite the work mentioned above, in most cases, we do not have explicit
character formulas, even in a limited domain, because neither the orbital in-
tegrals nor their coefficients are understood explicitly (though see [7,20,55]
for exceptions). In practice, such formulas usually arise from explicit infor-
mation about the construction of representations. However, the construction
methods can be quite complicated.

Let us restrict our attention to supercuspidal representations. Suppose
that the residual characteristicp of F is odd. Then earlier work has yielded
character formulas for all of the supercuspidal representations ofSL2 [53]
(using the construction in [52], which is known to be exhaustive by [54]);
PGL2 [60]; GL2 [59]; GLℓ [17, 19]; SLℓ [61]; and division algebras of
degreeℓ [16, 17]. In the latter cases,ℓ is a prime that is sufficiently small
with respect top. In addition, one knows the characters of many depth-
zero representations of unramified groups [22] (namely, those induced from
inflations of Deligne–Lusztig representations of associated finite groups of
Lie type), certain depth-zero character values forSp4 [8], and inductive
formulas for characters of division algebras [15].

An earlier announcement [3] contains formulas for the characters of (nec-
essarily supercuspidal) representations of the multiplicative group of a cen-
tral division algebra over ap-adic field. The present paper generalizes these
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results to the setting of general tame reductive groups overap-adic field of
odd residual characteristic, where the construction of J.-K. Yu (see [65] and
our§2) can be used to replace that of Corwin, Howe, and Moy (see, for ex-
ample, [14, 34, 44]). Ifp is large enough, then all supercuspidals ofG arise
via this construction (see [39]). IfG is GLn or the multiplicative group of
a central division algebra overF of indexn, then the Corwin–Howe–Moy
construction is known to be exhaustive even if we assume onlythatp does
not dividen (see [44]). In [26,§3.5], Hakim and Murnaghan discuss the
relationship between this construction and Yu’s.

There are other constructions of supercuspidal representations that make
no tameness assumptions. These start with [40,41] and presently culminate
in [9–11, 57, 63]. However, an attempt to use these to computeexplicit
character formulas would require a different approach in order to overcome
many serious technical difficulties. For example, among many other things,
we make use of Bruhat–Tits theory and Moy–Prasad filtrations, both of
which behave poorly under wild Galois descent.

0.2. Outline of this paper. In order to evaluate the characterΘπ of a rep-
resentationπ at a regular, semisimple elementγ in G, we require first of all
thatγ lie near a tameF -torus. If p is larger than a constant determined by
the root system ofG, then all semisimple elements ofG have this property.
Second, we require thatγ be well approximated by a product of good ele-
ments. Such approximations, called “normalr-approximations”, are analo-
gous to truncations of expressions of elements ofF× in the form

εm0̟d ·
∞∏

i=1

(1 + εmi̟i),

where̟ is a uniformizer ofF andε is a root of unity inF of order co-
prime top. From Lemma 8.1 of [6], we see that many tame elements ofG
have such an expansion. Under mild hypotheses, which are always satis-
fied whenG is an inner form ofGLn, all tame elements ofG have such an
expansion. The expansions we require, together with their basic properties,
are discussed in [6]. The reader may find it particularly convenient to have
at hand the statements of Lemmata 5.29 and 5.32, Proposition5.40, and Re-
marks 6.7 and 6.10 ofloc. cit. (Analogous approximations, with analogous
properties, exist for elements of the Lie algebra ofG. The proofs are similar
to, but easier than, those inloc. cit.)

After presenting our basic notation in§1, we outline (in§2) Yu’s con-
struction of supercuspidal representations (see [65]). Briefly, Yu starts with
a sequence(G0 ( · · · ( G

d = G) of reductive groups, together with (an
inducing datum for) a depth-zero, supercuspidal representationπ′

0 of G0, a
characterφi of eachGi, and a pointx in the reduced building ofG0 over
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F , all satisfying certain properties. He then constructs inductively, for each
i = 0, . . . , d, a smooth representationρ′i of an open compact modulo center
subgroup ofGi such that the representationπi of Gi induced fromρ′i ⊗ φi
is irreducible and supercuspidal.

We will assume for the remainder of this subsection thatd > 0 and
G
d−1/Z(G) is F -anisotropic. (Notice that the latter hypothesis follows

from the former ifG isF -anisotropic, or ifG isGLℓ or SLℓ with ℓ a prime.)
The reason for this assumption is that we require very precise control over
the behavior, with respect to a given Moy–Prasad filtration,of certain com-
mutators (see, for example, Propositions 4.3 and 5.3.2). Since the computa-
tion of the character ofπ requires the evaluation of an integral formula (see
(6.5)) involving arbitrary conjugates of the element in which we are inter-
ested, we cannot guarantee this good behavior for arbitrarygroupsGd−1;
but it doesoccur when our compactness condition is satisfied (see Corol-
lary 4.5). Even without the compactness condition, we can still compute
the character values at many points of a representationτ = τd induced from
ρ′d ⊗ φd to a large open compact modulo center subgroup ofG (see§2). (In
our situation, the representationτi of §2 is equal toπi for 0 ≤ i < d.)

Since Weil representations over finite fields play an essential role in Yu’s
construction of supercuspidal representations, in§3 we compute some of
their characters at certain elements, following Gérardin(see [25]).

After the Weil representation computations, our charactercomputations
broadly follow the strategies pursued in [17] and [19], bothof which rely
on vanishing results to cut down the support of the relevant characters. In
[17], these vanishing results are approached by computing first not the full
induced character, but rather the character of a representation induced to
a smaller open and compact modulo center subgroup. For us, this is the
representationσi defined in§2. The desired vanishing results are discussed
in §4, where we use the fact that the character ofσi transforms by a linear
character near the identity (see Corollary 4.6) to prove Proposition 4.3

In §5, we compute the character ofσi, using the results of§4 to cut down
the class of elements we must consider. Although Proposition 5.3.3 is the
result that is used most often in the sequel, the heart of thissection is really
Proposition 5.3.2. The proof of this result involves fairlyintricate manipula-
tions of the Frobenius formula (see [56]), based on our detailed understand-
ing of the behavior of taking commutators with an elementγ (see [6,§7]).
Historically, supercuspidal character formulas (specifically, Theorem 4.2(c)
of [17], Theorem 5.3.2 of [19], and Theorem 4(2) of [3]) have involved
Gauss sums in some form. These sums also appear in the presentsetting,
but in disguise. We devote§5.2 to recognising and computing them.

With vanishing results in place for this partially induced representation, it
becomes easier to describe the character of the full inducedrepresentation.
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After proving a few results (Lemmata 6.1–6.3) to show that certain naturally
arising integrals converge, we compute the full character in Theorem 6.4
using Harish-Chandra’s integral formula.

The construction of [65] is inductive, in the sense that an inducing datum
for πi is constructed from an inducing datum forπi−1 and some additional
data. This means that, in order to compute the character ofπ = πd, we
focus on explicating the relationship between the characters ofπd−1 andπd
(or, in the notation of§2, τd−1 andτd). Theorem 6.4 is actually a statement
about this relationship. Accordingly, the groupsG

i and representationsπi
for 0 ≤ i < d − 1 play no explicit role in our calculations until§7, where
we unroll the inductive computations of§§3–6 to obtain an explicit formula
for πd in terms of the original datum.

The result of this unrolling is contained in Theorem 7.1. Applying the
inductive formulas of the preceding sections, we obtain there a formula for
Θπ = Θπd

in terms of the character ofπ′
0, the (linear) charactersφi, and

Fourier transforms of certain orbital integrals. (IfG
d−1/Z(G) is not F -

anisotropic, then we compute instead the character ofτ = τd in terms of
essentially the same data, but withρ′0 in place ofπ′

0.) Also appearing in
the character formulas are some explicitly defined positiveconstants (the
numbersc(~φ, γ′<r) of Theorem 7.1) — essentially the square roots of cardi-
nalities of certain quotients of filtration subgroups ofG— and signsε(φ, γ)
andG(φ, γ) — computed in Propositions 3.8 and 5.2.13 in terms of the root
system ofG and various fields associated to the representationπ and to the
elementγ.

Thus, we obtain formulas for evaluating, at many points, many supercus-
pidal characters of many groups.

0.3. Future goals. Our hypotheses are weak enough that, in the case of
“tame” division algebras, i.e., those of index coprime top, we can evaluate
all characters at all points. In this case, the presence of considerable addi-
tional structural information (and fine control over conjugacy, thanks to the
Skolem–Noether theorem) allows us to make the formula of Theorem 7.1
more explicit. In the process, we will correct an error in Theorem 4 of [3]
(some of whose corollaries remain valid). This will be carried out in future
work.

Work of Henniart (see [31]) has suggested that it is valuableto be able to
recognise a representation given only the values of its character in a certain
domain. Theorem 7.1 may be sufficiently explicit to allow us to describe
a domain for which this can be done (at least, if we restrict ourselves to
appropriate supercuspidal representations). This would nicely complement
[26, Chapter 6], which describes another way of identifyingsupercuspidal
representations.
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The stability calculations of [22] proceed from Proposition 10.1.1 ofloc.
cit., a “reduction formula”. We have modelled our Theorem 6.4 after this
reduction formula, and believe that the similarity of statements should pro-
vide a guide to stability calculations for positive-depth supercuspidal repre-
sentations.

0.4. Acknowledgements.This work could not have been completed with-
out the notes of the late Lawrence Corwin, written in collaboration with
Paul Sally, on their computation of characters of division algebras. The
work was actually begun by Allen Moy and Paul Sally, who computed, in
[16], the formal degrees of representations of division algebras and general
linear groups. Our§5.1 is translated from these notes, with the notation and
techniques adapted to our present setting (in particular, using the tools of
[6]). The general strategy of our work was also suggested by these notes.

This work has also benefited from our conversations with PaulSally,
Gopal Prasad, Stephen DeBacker, Brian Conrad, and J.-K. Yu,and from
the referee’s comments. It is a pleasure to thank all of thesepeople.

1. NOTATION AND PRELIMINARIES

1.1. Generalities on fields and linear reductive groups.Let R̃ = R ⊔{
r+

∣∣ r ∈ R
}
⊔ {∞}, and extend the order and additive structures onR to

ones oñR in the usual way (see, for example, [6,§3.1]). ForF a finite field,
let sgn

F
denote the character ofF× with kernel precisely(F×)2.

If F is a valued field with valuationord, andr ∈ R̃≥0, then letFr denote{
t ∈ F

∣∣ ord(t) ≥ r
}

. Then the residue fieldf = fF of F is the quotient
F0/F0+ of F0 by F0+. We will identify functions onF0 that are trivial on
F0+ with functions onf. In particular, iff is finite, then we have the function
sgnf onF0 .

From now on, assume thatF is locally compact, and that the character-
istic p of its residue fieldf = fF is not 2. Fix an algebraic closureF of
F , and letF un andF sep denote the maximal unramified and separable ex-
tensions ofF in F . SinceF is Henselian, there is a unique extension of
ord to each algebraic extensionE/F (in particular, toF/F ), which we will
denote again byord.

Fix a square root
√
−1 of−1 in C, and an additive characterΛ ofF that is

trivial onF 0+ and induces onf = F0/F0+ the charactert 7→ exp
(
2π

√
−1 trf/Fp(t)/p

)
,

whereFp is the finite field withp elements. We may, and do, write againΛ
for the resulting character offE, for any discretely valued algebraic exten-
sionE/F . Except in§5, we will be concerned only with the restriction toF
of Λ. All Fourier transforms will be taken with respect toΛ. The particular
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choice of square root will be of interest only in the statement of Proposition
5.2.13.

If we denote an algebraicF -group by a bold, capital, Latin letter, such
asH, then we will sometimes denote its Lie algebra by the corresponding
bold, small Gothic letter, such ashhh. We will denote sets of rational points
by the corresponding non-bold letters, such asH andh.

For any setS ⊆ X, we denote by[S] the characteristic function ofS.
(The “universe”X will be understood from the context.) IfS is finite, then
we denote by|S| its cardinality. IfH ′ ⊆ H are groups andf is a function
on H ′\H, then

∑
g∈H′\H f(g) will be shorthand for

∑
H′g∈H′\H f(H ′g).

Similar notation will be used for sums over double coset spaces.
Let G denote a reductiveF -group. For the moment, we do not assume

thatG is connected. LetG◦ denote the identity component ofG. Write g∗

for the dual Lie algebra ofG, i.e., the vector-space dual ofg.
Suppose thatX∗ ∈ g∗ is semisimple, in the sense that it is fixed by the

coadjoint action of some maximal torus inG. Any G-equivariant identifi-
cation ofg∗ with g carriesX∗ to a semisimple element ofg (in the usual
sense), so one knows thatG/CG(X∗) carries an invariant measure, saydġ,
and that the integral ∫

G/CG(X∗)

f(gX∗)dġ

converges forf ∈ C∞
c (g∗). Thus we may define a distribution̂µX∗ ong by

µ̂X∗(f) =

∫

G/CG(X∗)

f̂(gX∗)dġ for f ∈ C∞
c (g).

By Theorem A.1.2 of [4],̂µX∗ is representable by a locally constant function
on the regular semisimple set ing. We may, and do, sometimes regard
µ̂X∗ as defined by an integral overG/Z, whereZ is any closed cocompact
unimodular subgroup ofCG(X∗). By abuse of notation, we will denote
again byµ̂X∗ (or µ̂GX∗, if we wish to emphasize the ambient groupG) the
representing function. Notice that this function depends on the measure
chosen.

If M is a Levi (not necessarilyF -Levi) subgroup ofG, then, as in [65,
§8], we identify the dual Lie algebras ofZ(M) andM with the fixed points
in the dual Lie algebra ofG for the coadjoint actions ofM andZ(M),
respectively.

1.2. Hypotheses.Assume now, and for the remainder of the paper, thatG

is connected, splits over some tame extension ofF , and satisfies Hypotheses
(B) and (C) of [6]. By Remark 2.2 ofloc. cit., Hypotheses (A) and (D)
follow from the tameness ofG. Thus, we may apply all the results of [6].
In some places, we also assume Hypothesis 2.3.
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1.3. Buildings and filtrations. For any algebraic extensionE/F of finite
ramification degree, letBred(G, E) andB(G, E) denote the reduced and
enlarged Bruhat–Tits buildings ofG(E), respectively. ThenB(G, E) is the
product ofBred(G, E) and an affine space. For a pointx ∈ B(G, E), let x
denote the image ofx under the natural projection toBred(G, E).

If H is a closed subgroup ofG andx ∈ B(G, F ), then we will abbreviate
H ∩ stabG(x) to stabH(x). Note that, in this notation,x is an element
of Bred(G, F ), notBred(H, F ), even ifH = H(F ) with H a compatibly
filteredF -subgroup ofG (as in Definition 4.3 of [6]) andx ∈ B(H, F ).
Of course, if furtherZ(H)/Z(G) isF -anisotropic, then actually there is no
ambiguity, since we may regardBred(H, F ) as a subcomplex ofBred(G, F ).

SupposeT is a maximalF -torus inG. Then we letΦ(G,T) denote the
set of roots ofT in G, and putΦ̃(G,T) = Φ(G,T) ∪ {0}. For each root
α ∈ Φ(G,T), let Lie(G)α andUα denote the corresponding root space
and root group, respectively. Ifα = 0, then putLie(G)α = Lie(T) and
Uα = T. If T is F -split, then there are associated toT an affine space
A(T) underX∗(T) ⊗Z R, the lattice of cocharacters ofT (tensored with
R), and an embedding ofA(T) in B(T, F ). For us, anaffine rootwill be
either an affine functionψ onA(T) whose gradienṫψ belongs tõΦ(G,T),
or a function of the formψ+: x 7→ ψ(x)+ with ψ as above. For each affine
root ψ, we have a compact subgroupFUψ of Uψ̇ and a latticeFuψ in gψ̇.
Note that other authors reserve the term “affine root” for an affine function
ψ such thatψ̇ ∈ Φ(G,T) andFUψ 6= FUψ+.

In [45, §§2.6, 3.2] and [46,§§3.2–3], Moy and Prasad have defined, for
eachx ∈ B(G, F ), filtrations(Gx,r)r∈R≥0

, (gx,r)r∈R, and(g∗
x,r)r∈R of G by

compact open subgroups,g by lattices, andg∗ by lattices, respectively. We
extend these filtrations in the usual fashion to be defined forall r ∈ R̃ (or
r ∈ R̃≥0, in the case of the filtration onG). If x ∈ B(G, F ) andg ∈ Gx,0 ,
then we letdx(g) be the greatest indext such thatg ∈ Gx,t . We define
similar functions ong andg∗ (not justgx,0 andg∗

x,0), and denote them also
by dx.

If a groupG has a filtration(Gi)i∈I , then we shall frequently writeGi:j
in place ofGi/Gj whenGj ⊆ Gi (even if the quotient is not a group). For
example, we putFr:t = Fr/Ft, Uψ1:ψ2 = Uψ1/Uψ2 , andGx,r:t = Gx,r/Gx,t

for r ≤ t (andr ≥ 0, in the last case) and for affine rootsψ1 andψ2 such
thatψ̇1 = ψ̇2 andψ1 ≤ ψ2.

By Proposition A.8, for each finite, tamely ramified extension E/F ,
tamely ramified maximalF -torusT, and pointx ∈ B(G, E) (respectively,
x ∈ B(G, F )), we have mapseEx,t:u andeT,x satisfying Hypotheses A.1 and
A.7. We writeex,t:u for e

F
x,t:u . If the choice ofT is unimportant, then we

will sometimes writeex for eT,x.
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In Definition 5.14 of [6], following [65,§§1–2], we defined, forT a tame
maximalF -torus, filtration subgroupsTGx,f ofG associated to a pair(x, f)
consisting of a pointx ∈ B(T, F ) and aGal(F sep/F )-invariant concave
function f on the root system ofT in G (see Definition 5.7 of [6]). It
will be convenient here to define filtration latticesT Lie(G)x,f in g in the
analogous fashion, by

T Lie(G)x,f :=
∑

Euψ ∩ g ,

whereE/F is a tame splitting field forT, the sum is taken over those affine
rootsψ of T in G with ψ(x) ≥ f(ψ̇). (In Definition 5.14 of [6], we had to
take considerable care — for example, intersecting with someGx′,0 instead
of just withG, since parahorics tend to behave badly under ramified descent;
but, since Lie algebra filtrations are considerably better behaved (see, for
example, Proposition 1.4.1 of [1]), such care is not necessary here.)

If (T, ~G) is a tame reductiveF -sequence inG, in the sense of Defini-
tion 5.1 of [6], and~r is an admissible sequence, in the sense of Definition
5.8 of loc. cit. (with associated concave functionf~G,~r), then, by analogy

with the definition~Gx,~r = TGx,f~G,~r
of Definition 5.14 ofloc. cit., we put

Lie( ~G)x,~r = T Lie(G)x,f~G,~r
. It is shown in Lemma 5.20 ofloc. cit. that

~Gx,~r is independent of the choice of torusT. The proof of the analogous re-
sult forLie( ~G)x,~r is, except for minor changes, the same. For convenience,
by abuse of notation, we will often writeLie(TGx,f) in place ofT Lie(G)x,f
andLie( ~Gx,~r) in place ofLie( ~G)x,~r .

1.4. Normal approximations. We now define some basic concepts that
will be needed in what follows. Since the definitions do not necessarily
give the full flavor of what is going on, we give a “pictorial” example in
Example 1.4.2 and describe a detailed computation in§1.5.

If t ∈ R̃ andγ = (γi)0≤i<t is a good sequence inG (in the sense of
Definition 6.4 of [6]), then put

C
(t)
G

(γ) =
( ⋂

0≤i<t

CG(γi)
)◦

,

and

C
(t)
G (γ) = C

(t)
G

(γ)(F ).

In particular,C(t)
G

(γ) = G if t ≤ 0. Note that the intersection defining

C
(t)
G

(γ) is really afinite intersection ift < ∞ (and, if t = ∞, then we

have thatC(∞)
G

(γ) = C
(t′)
G

(γ) for t′ ∈ R sufficiently large). We say (as
in Definition 6.8 of loc. cit.) that γ is a normal t-approximationto an
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elementγ ∈ G if there is an elementx ∈ B(C
(t)
G

(γ), F ) such thatγ ∈(∏
0≤i<t γi

)
C

(t)
G (γ)x,t . Sometimes, we will say for emphasis that(γ, x) is

a normalt-approximation. In this case, we put

C
(t)
G

(γ) = C
(t)
G

(γ)

C
(t)
G (γ) = C

(t)
G (γ),

Z
(t)
G

(γ) = Z(C
(t)
G

(γ)),

and

Z
(t)
G (γ) = Z

(t)
G

(γ)(F ).

By Proposition 8.4 ofloc. cit., these groups are all independent of the choice
of normalt-approximation toγ. Note that, ift′ ∈ R̃ andt′ ≤ t, thenγ is

also a normalt′-approximation toγ, so the notationsC(t′)
G

(γ) andZ(t′)
G

(γ)

are defined; and we have thatZ(t′)
G

(γ) ⊆ Z
(t)
G

(γ) ⊆ C
(t)
G

(γ) ⊆ C
(t′)
G

(γ).
We will also writeγ<t =

∏
0≤i<t γi andγ≥t = γ−1

<t γ (so that, with the

point x ∈ B(C
(t)
G

(γ), F ) as above, we haveγ≥t ∈ C
(r)
G (γ)x,t). These ele-

ments should be thought of as the “head” and “tail” ofγ, respectively. By
Corollary 6.14 ofloc. cit., C(t)

G
(γ) = CG(γ<t)

◦. Although the head and
tail are not independent of the choice of normalt-approximation toγ, they
are usually “well determined enough” (as described precisely in Proposition
8.4 of loc. cit.) that we need not specify the choice.

If t > 0, then we putBt(γ) =
{
x ∈ B(C

(t)
G

(γ), F )
∣∣∣ dx(γ≥t) ≥ t

}
. By

Lemma 9.6 ofloc. cit., this is uniquely determined, even thoughγ≥t is not.
(An analogous set can also be defined whent = 0, as in Definition 9.5 of
loc. cit.; but we do not need this.) Sincedx(γi) ≥ i for 0 ≤ i < t andx ∈
B(C

(r)
G

(γ), F ) (in particular, forx ∈ Bt(γ)), we have thatBt(γ) ⊆ Bt′(γ)
whenevert′ ∈ R̃>0 andt′ ≤ t.

If t ∈ R̃≥0 andγ ∈ G has a normalt-approximation, then, in the notation
of Definition 5.14 of [6], we put~G = (C

(t−i)
G

(γ))0<i≤t and~s = (i/2)0<i≤t ,
and writeJγ; x, tK = ~Gx,~s .

We will also need various “truncations”Jγ; x, tK(j) of Jγ; x, tK, as in Def-
inition 9.3 of loc. cit. These arise by taking only those terms in~G and~s
above with0 < i < 2j. We will append a subscriptG′ (writing instead
Jγ; x, tKG′ or Jγ; x, tK

(j)
G′ ) to indicate that we are constructing the analogous

object, but inside the ambient groupG′, rather thanG.

Definition 1.4.1. If ~G = (G0, . . . ,Gd = G) is a tame reductive sequence
in G, in the sense of Definition 5.1 of [6], and~r = (r0, . . . , rd) ∈ R̃d+1

≥0 ,
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Gx, 7
2

= C
(0)
G (γ)x, 7

2

❄

❄

✁
✁

✁
✁✁☛

✄
✄
✄
✄
✄
✄
✄
✄
✄✎

✄
✄
✄
✄
✄
✄
✄
✄✎

C
(3+)
G (γ)x,0+ = C

(∞)
G (γ)x,0+

C
(2+)
G (γ)x,2 = C

(3)
G (γ)x,2

C
(1+)
G (γ)x, 5

2
= C

(2)
G (γ)x, 5

2

C
(0+)
G (γ)x,3 = C

(1)
G (γ)x,3

FIGURE 1. Illustration ofJγ; x, 7K in Example 1.4.2

then we writeT (~G, ~r) for the set
{
δ ∈ G

∣∣ δ has a normalrd−1-approximation andδ<ri ∈ Gi for 0 ≤ i < d
}
.

(Note thatrd is a “dummy number” that has no effect on the resulting set
T .)

Example 1.4.2.Suppose thatγ has a normal∞-expansion(γi)i≥0 with the
property thatγi = 1 when i 6∈ Z or i > 3. Thus,γ = γ0γ1γ2γ3. Then
the groupJγ; x, 7K is a product of various filtration subgroups of centralizer
subgroups ofG. (See Figure 1.) The larger the centralizer subgroup that
is involved, the deeper is the filtration subgroup that appears. The group
Jγ; x, 7K(3) corresponds to the region between the vertical dotted linesin
Figure 1.

1.5. Example computation ofJγ; x, rK. We give an extended example to
illustrate how to compute normal approximations and groupsJγ; x, rK in
practice. This involves a considerable amount of notation,all of which
should be regarded as being in force for this subsection only.

Suppose thatG = GL(V ) for some finite-dimensionalF -vector space
V . Let γ be an element ofG = GLF (V ). Suppose for simplicity thatγ is
compact and semisimple. We describe a recipe for computing the leading
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term in a normal approximation toγ. This gives an inductive recipe for
computing a normal approximation toγ, from which falls out an explicit
description ofC(r)

G
(γ), Br(γ), andJγ; x, rK for r ∈ R̃≥0. (Although we do

not do so here, it is very easy also to compute the group[γ; x, r] occurring
in Definition 9.3 of [6] from our description.) Remember thatwe write
Jγ; x, rKG rather than justJγ; x, rK, andBG

r (γ) rather than justBr(γ), when
we wish to emphasise the ambient group.

Note that, in general, there is no canonical choice of normalapproxima-
tion. This is reflected in our recipe in the fact that we have tomake some
choices (namely, of a fieldL and a uniformizer̟ L of L). The point is that,
as remarked earlier, the groupsC(r)

G
(γ) andJγ; x, rK, and the setBr(γ), are

nonetheless well defined.
For λ ∈ (F sep)×, write Eλ(V ) for the minimalγ-stableF -subspace of

V such that the action ofγ on V/Eλ(V ) does not haveλ as an eigen-
value. ThenEλ(V ) = {0} unlessλ ∈ (F sep)×0 ; Eλ(V ) = Eσλ(V ) for
σ ∈ Gal(F sep/F ); andV =

⊕
λ∈(Ḟ sep)× Eλ(V ), where(Ḟ sep)× is a set

of representatives for the action ofGal(F sep/F ) on (F sep)×. We have for
λ ∈ (Ḟ sep)× thatEλ(V ) carries the structure of anF [λ]-vector space, where
λ acts byγ.

PutT = Z(CG(γ)), so thatT = T(F ) is the set of allg ∈ GLF (V ) that
act on eachEλ(V ) as scalar multiplication by an element ofF [λ]×. Note
thatT is maximal if and only ifγ is regular. Assume further thatγ is tame,
i.e., that there exists a finite, tamely ramified, Galois extensionL of F that
contains all of the eigenvalues ofγ. ThenT is anL-split, hence tame, torus.

We now choose, for eachd ∈ R≥0, a setΛd of coset representatives
for L×

d:d+ as follows. Let̟L be a uniformizer ofL such that̟ e(L/F )
L ∈

F . Write Λ0 for the set of absolutely semisimple elements ofL×
0 (that is,

elements whose order is finite and prime top). If d > 0 andLd = Ld+,
then putΛd = {1}. If d > 0 andLd 6= Ld+, then there is some integerk
such that̟ k

L ∈ Ld r Ld+. PutΛd =
{

1 + λ0̟
k
d

∣∣ λ0 ∈ Λ0

}
. It is easy to

verify that, for anyd ∈ R≥0 andλ ∈ Λd, the stabilizers inGal(L/F ) of λ
andλL×

d+ are the same.
Let d be the least indexi ∈ R≥0 ∪ {∞} such thatEλ(V ) 6= 0 for some

λ ∈ L×
i . Thend = d(γ). If d = ∞, thenγ = 1; so we assume thatd <∞.

Put Gλ = RF [λ]/F GL(Eλ(V )). Then there is a natural isomorphism
of

∏
λ∈Λd

Gλ with CG(T), hence a natural injection of it intoG. Cor-
responding to this injection is an injection ofB(

∏
λ∈Λd

Gλ, F ), hence of∏
λ∈Λd

B(Gλ, F ), into B(G, F ) with certain properties (see Proposition
2.1.5 of [42] or Proposition 4.6 of [6] for details). We will regard these
injections as inclusions.
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Remember that we have chosen a setΛd of representatives forL×
d:d+. For

λ ∈ L×
d , write sλ for the element ofΛd ∩ λL×

d+. Let γd be the element of
GLF (V ) that acts onEλ(V ) by scalar multiplication bysλ ∈ F [λ] for all
λ ∈ L×

d . We claim thatγd ∈ Td is good, in the sense of Definition 6.1 of
[6]. Indeed, ifα ∈ Φ(G,T), then we have thatα(γd) = sλs

−1
λ′ for some

λ, λ′ ∈ L×
d . Suppose thatα(γd) ∈ L×

d+. Sincesλ andsλ′ are elements of a
set of representatives forL×

d:d+, we have thatsλ = sλ′ , hence thatα(γd) = 1,
as desired.

Further,γ ≡ γd (mod Td+). Thus,(γd) is a normal(d+)-approximation
to γ. Putγ>d = γ−1

d γ ∈ GLF (V ). By abuse of notation, we will also write
γ>d for the restriction of this element to any spaceEλ(V ).

The groupsC(r)
G

(γ) andJγ; x, rK, and the setsBG

r (γ), look different de-
pending on the relative values ofr andd. For “small values” ofr, we have

C
(r)
G

(γ) = G for r ≤ d,

and

Jγ; x, rKG = GLF (V )x,0+ for r ≤ d+ andx ∈ B(C
(r)
G

(γ), F ).

For “large values” ofr, remember that we have identified
∏

λ∈Λd
B(Gλ, F )

with a subset ofB(G, F ). If x ∈ B(G, F ) lies in this subset andλ ∈ Λd,
then we will writexλ for the image ofx under the natural projection to
B(Gλ, F ). With this notation, we have

C
(r)
G

(γ) =
∏

λ∈Λd

C
(r)
Gλ

(γ>d) for r > d,

BG

r (γ) =
∏

λ∈Λd

BGλ
r (γ>d) for r ≥ d,

and

Jγ; x, rKG = Gx,(r−d)/2·
∏

λ∈Λd

Jγ>d; xλ, rKGλ
for r > d+ andx ∈ B(C

(r)
G

(γ), F ).

In particular,

C
(d+)
G

(γ) =
∏

λ∈Λd

Gλ

and

BG

d (γ) =
∏

λ∈Λd

B(Gλ, F ).

Although the recipe given always works, it can result in normal approx-
imations with more non-1 terms than necessary. In practice, it is usually
easy to find a shorter normal approximation to a given elementof G. We
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illustrate this in caseV = F 3, so thatG = GL3(F ). There are too many
cases to consider them all, so we give only a few representative examples.

If γ is regular elliptic, then we have thatT is isomorphic to the multi-
plicative group of a cubic extension ofF . If γ 6∈ Z(G)Td+, then(γ) is a
normal∞-approximation toγ. If there existsr ∈ R with r > d such that
γ ∈ Z(G)Tr rZ(G)Tr+, sayγ = zt with z ∈ Z(G) andt ∈ Tr, then(z, t)
is a normal∞-approximation toγ.

If γ is neither split nor regular elliptic, then we may writeV = V ′ ⊕ V ′′,
whereV ′ andV ′′ are γ-stableF -subspaces ofV of dimensions1 and 2
respectively. Writeγ′ andγ′′ for the restrictions ofγ to V ′ andV ′′, respec-
tively; G′′ for GLF (V ′′); andT ′′ for Z(CG′′(γ′′)). When convenient, we
will abuse notation and consider an operator onV ′ to be an operator onV
that acts trivially onV ′′ (and vice versa). Sinceγ′ is an operator on a1-
dimensional vector space, it acts as multiplication by a scalar λ′. We divide
this case into subcases depending on which ofγ′ andγ′′ has depthd.

• Suppose thatγ′ andγ′′ both have depthd. If γ′′ 6∈ Z(G′′)T ′′
d+, then

(γ) is a normal∞-approximation toγ. On the other hand, ifγ′′ ∈
Z(G′′)T ′′

d+, thenλ′−1γ′′ ∈ Z(G′′)T ′′
d+. Sinceγ is not split, there

existsr ∈ R with r > d such thatλ′−1γ′′ ∈ Z(G′′)T ′′
r rZ(G′′)T ′′

r+.
Writeλ′−1γ′′ = z′′t with z′′ ∈ Z(G′′) andt ∈ T ′′

r . If z′′ has depthd,
then(λ′z′′, t) is a normal∞-approximation toγ. If d < d(z) < r,
then(λ′, z′′, t) is a normal∞-approximation toγ.

• Now suppose thatγ′ has depthd andγ′′ has depths > d. Sinceγ is
not split, there existsr ∈ R with r ≥ s such thatγ′′ ∈ Z(G′′)T ′′

r r
Z(G′′)T ′′

r+. If r = s, then(γ′, γ′′) is a normal∞-approximation
for γ. If r > s, then we may writeγ′′ = z′′t with z′′ ∈ Z(G′′) and
t ∈ T ′′

r rT ′′
r+, in which case(γ′, z′′, t) is a normal∞-approximation

for γ.
• The subcase whereγ′′ has depthd andγ′ has depth greater thand is

straightforward, but involves several sub-subcases, so weomit it.

There remains the case whenγ is split. This is handled similarly, but the
plethora of possibilities for depths and congruences amongvarious eigen-
values makes it impractical to give a complete list.

1.6. Representations and characters.Recall that, ifπ is a smooth ad-
missible representation ofG, then the character ofπ is a distribution on
G. From work of Harish-Chandra [29] and G. Prasad [4, AppendixB] (see
also Corollary A.11 of [12]), this distribution is represented on the regular
semisimple set inG by a locally constant function. As mentioned in§0.1,
we will denote byΘπ both the function and the distribution. IfH is an
open subgroup ofG andρ is a finite-dimensional representation ofH, then
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we will often denote byθρ the functionh 7→ tr ρ(h) onH, and byθ̇ρ the
function onG that is equal toθρ onH, and to0 onGrH.

2. REVIEW OF J.-K. YU’ S CONSTRUCTION

We review here the construction of supercuspidal representations found
in [65]. The terminology of this section will remain in forcethroughout the
remainder of the paper.

If φ is a character ofG andx ∈ B(G, F ), then denote bydx(φ) the
smallest indexd ∈ R≥0 such thatφ is trivial onGx,d+ .

Definition 2.1. A cuspidal datumis a quintupleΣ = (~G, ~φ,~r, x, ρ′0), where

• ~G = (G0, . . . ,Gd = G) is a tame LeviF -sequence, andZ(G0)/Z(G)
isF -anisotropic;

• x lies inB(G0, F ), andx ∈ Bred(G0, F ) is a vertex;
• ~r = (r0, . . . , rd) is a sequence of real numbers satisfying0 ≤ r0 <
· · · < rd−1 ≤ rd andr0 > 0 if d > 0;

• ~φ = (φ0, . . . , φd), where, for each0 ≤ i < d, φi is a character of
Gi such thatdx(φi) = ri andφi is G

i+1-generic relative tox (in the
sense of [65,§9]), anddx(φd) = rd, orφd = 1 andrd = rd−1;

• ρ′0 is an irreducible representation ofstabG0(x) whose restriction to
G0
x,0 contains the inflation of a cuspidal representation ofG0

x,0:0+ .

For the remainder of this paper, fix a cuspidal datumΣ, with associated
notation as above. For0 ≤ i ≤ d, we have the following objects associated
to Σ:

• non-negative real numberssi = ri/2;
• subgroups

Ki = stabG0(x)(G0, . . . , Gi)x,(0+,s0,...,si−1)

and (fori > 0)

J i = (Gi−1, Gi)x,(ri−1,si−1),

and

J i+ = (Gi−1, Gi)x,(ri−1,si−1+);

• representationsρ′i of Ki (see Remark 2.2); and
• irreducible supercuspidal representationsπi = IndG

i

Ki(ρ′i ⊗ φi) of
depthri, in the sense of [46,§3.4].

In particular,π0 = IndG
0

stab
G0 (x) ρ

′
0 ⊗ φ0 is a twist of a depth-zero irreducible

supercuspidal representation. Since our calculations offer no new informa-
tion about depth-zero supercuspidal representations, we assume throughout
thatd > 0.
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Remark2.2. In [65, §11], for 0 ≤ i < d, Yu constructs a canonical repre-
sentationφ̃i of stabGi(x) ⋉ J i+1. (However, by Proposition 3.26 of [26],
one actually has considerable freedom in constructing thisrepresentation.)
Then, by [65,§4], ρ′i+1 is the push-forward of̃φi⊗ ((ρ′i⊗φi)⋉1) along the
mapKi ⋉ J i+1 −→ KiJ i+1 = Ki+1.

For 0 ≤ i ≤ d, write againφi for the character ofGi
x,si+:ri+

induced by
φi. Then there is an elementX∗

i ∈ gi ∗x,−ri such that

φi ◦ ex,si+:ri+

∣∣
gi

x,si+:ri+
= Λ ◦X∗

i

∣∣
gi

x,si+:ri+
.

(Note that the right-hand side makes sense as a map ongix,si+:ri+
, because

X∗
i (g

i
x,ri+

) ⊆ F0+ ⊆ ker Λ.) By the definition of genericity, we haveX∗
i ∈

z(gi)∗x,−ri + gi ∗x,(−ri)+. Note thatX∗
i is determined only up to translation by

gi ∗x,−si
.

For the results of§5.2, we require a hypothesis on the elementsX∗
i that is

a weaker version of Hypothesis C(~G) of [26,§2.6]. In particular, by Lemma
2.50 ofloc. cit., it holds wheneverG = GLn.

Hypothesis 2.3.X∗
i ∈ z(gi)∗ + gi+1 ∗

x,−si
for 0 ≤ i < d.

This hypothesis is used only in the proofs of Corollaries 5.2.6 and 5.2.9
to allow the invocations there of Lemma 4.1. These results, in turn, are
necessary only for the computations of Propositions 5.2.12and 5.2.13. If
the hypothesis were dropped, then we could still prove a version of Theo-
rem 7.1, but it would involve the undetermined quantityG̃(φ, γ) (see§5.2),
hence be less explicit.

By Proposition 5.40 of [6],stabGi(x)Gx,si+ = stabGi(x)(Gi, G)x,(ri+,si+).
We denote bŷφi the character ofstabGi(x)Gx,si+ that agrees withφi on
stabGi(x) and is trivial on(Gi, G)x,(ri+,si+). (In particular,φ̂i is trivial on
Gx,ri+ .) If we write againφ̂i for the induced character ofGx,si+:ri+ , then
we have that

φ̂i ◦ ex,si+:ri+ = Λ ◦X∗
i

as maps ongx,si+:ri+ .
In order to study the variousπi via induction in stages, we putKσi

=

stabGi−1(x)Gi
x,0+ andσi = Ind

Kσi

Ki ρ
′
i for 0 ≤ i ≤ d. Since we cannot yet

compute the character of the full induced representationsπi in all cases, we
will sometimes consider instead the character ofτi := Ind

stab
Gi (x)

Ki ρ′i⊗φi =

Ind
stab

Gi (x)

Kσi
σi ⊗ φi for 0 ≤ i ≤ d.
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Since we will need to use induction on the lengthd of Σ, we abbreviate
G

′ = G
d−1 (andG′ = G

′(F )). Further, we put

r = rd−1, s = sd−1, φ = φd−1, X
∗ = X∗

d−1, φ̂ = φ̂d−1, φ̃ = φ̃d−1,

K = Kd = stabG0(x) ~Gx,(0+,s0,...,sd−1),

Kσ = Kσd
= stabG′(x)Gx,0+,

J = Jd = (G′, G)x,(r,s),

J+ = Jd+ = (G′, G)x,(r,s+),

ρ′ = ρ′d, σ = σd = IndKσ

K ρ′, τ = τd = Ind
stabG(x)
Kσ

(σ ⊗ φd),

and

π = πd = IndGKσ
(σ ⊗ φd).

That is, omitting a sub- or superscripti will be the same as takingi =

d, except forr, s, φ, X∗, φ̂, and φ̃, where it will be the same as taking
i = d − 1. The “basic ingredient” in our character formula forπ will be
π′

0 := IndG
0

K0 ρ′0, a depth-zero supercuspidal representation.
Finally, putρ̃ = Ind

stabG′ (x)K
K ρ′.

Lemma 2.4. For k ∈ Kd−1 andj ∈ J ,

θρ̃(kj) = θφ̃(k ⋉ j)θτd−1
(k).

Proof. By the Frobenius formula,

θρ̃(kj) =
∑

g∈K\ stabG′ (x)K

θ̇ρ′(
g(kj)).

We may, and do, actually regard the sum as running over(K∩stabG′(x))\ stabG′(x).
Note that, by Lemmata 5.33 and 5.29 of [6],

K ∩ stabG′(x) = stabG0(x) ~Gx,~s ∩ stabG′(x)

= stabG0(x) ~Gx,~s(d−1) = Kd−1

(where~s = (0+, s0, . . . , sd−2, sd−1) and~s(d−1) = (0+, s0, . . . , sd−2,∞).)
Fix g ∈ stabG′(x). By Corollary 5.21 of [6],stabG′(x) normalizesJ . In

particular,gj ∈ J . SinceJ ⊆ K, we have thatg(kj) ∈ K if and only if
gk ∈ K, i.e., if and only ifgk ∈ K ∩ stabG′(x) = Kd−1. Therefore, either

(1) g(kj) 6∈ K, sogk 6∈ Kd−1, and

θ̇ρ′(
g(kj)) = 0 = θφ̃(

gk ⋉ gj)θ̇ρ′d−1⊗φ
(gk);

or
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(2) g(kj) ∈ K, sogk ∈ Kd−1, and, by Remark 2.2,

θρ′(
g(kj)) = θφ̃(

gk ⋉ gj)θρ′
d−1⊗φ

(gk).

Sinceφ̃ is a representation ofstabG′(x)⋉J , its character has the same value
at gk ⋉ gj = g⋉1(k ⋉ j) as atk ⋉ j for all g ∈ stabG′(x).

Thus

θρ̃(kj) =
∑

θφ̃(
gk ⋉ gj)θ̇ρ′

d−1⊗φ
(gk)

= θφ̃(k ⋉ j)
∑

θ̇ρ′
d−1⊗φ

(gk)

= θφ̃(k ⋉ j)θτd−1
(k),

where both sums run over those cosets inKd−1\ stabG′(x) containing an
elementg such thatgk ∈ Kd−1, and the last equality comes from another ap-
plication of the Frobenius formula and the fact thatτd−1 = Ind

stabG′ (x)

Kd−1 ρ′d−1⊗
φ. �

Lemma 2.5.Res
stabG′ (x)K
J+

ρ̃ andResKσ

Gx,r
σ are φ̂-isotypic, andRes

stabG(x)
Gx,r+

τ
is φd-isotypic.

Proof. The statement about the restriction ofρ̃ follows from our Lemma
2.4, and Theorem 11.5 of [65] (reproduced as Theorem 3.4 below). For the
statement about the restriction ofσ, fix γ ∈ Gx,r , and remember we have
the Frobenius formula

θσ(γ) =
∑

g∈stabG′ (x)K\Kσ

θ̇ρ̃(
gγ).

We may, and do, choose coset representativesg in the sum belonging to
Gx,0+ , so thatgγ ≡ γ (mod Gx,r+). By the first statement,Gx,r+ ⊆ ker ρ̃.
Therefore,ResKσ

Gx,r
σ is ρ̃-isotypic, so the second statement follows from

another application of the first statement.
Similarly, for γ ∈ Gx,r+, we have thatgγ ∈ Gx,r+ , hence thatθσ(gγ) =

deg(σ)φ̂(gγ) = deg(σ) (by the second statement), forg ∈ stabG(x). Thus

θτ (γ) = φd(γ)
∑

g∈Kσ\ stabG(x)

θσ(
gγ) = [stabG(x) : Kσ] deg(σ)φd(γ),

and the third statement follows. �

3. CHARACTERS OFWEIL REPRESENTATIONS

In this section, we make Lemma 2.4 more explicit by computingthe char-
acter of the representatioñφ appearing there. We begin with two general
results on extensions of finite fields. These will be useful inthis section,
and in§5.2.
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In this section, ifB is a non-degenerate bilinear or sesquilinear form on a
vector spaceV over a fieldF, then we will writedetB for the determinant
of the matrix ofB with respect to some fixed but arbitrary basis ofV . Since
changing the basis does not change the square class of the resulting deter-
minant, it will not be necessary for our purposes to specify the particular
bases chosen.

Lemma 3.1. Let

• E/F be a degree-n extension of odd-characteristic finite fields,
• η0 an element ofGal(E/F) with η2

0 = 1, and
• ∆ the determinant of theη0-Hermitian form onE given by

(t1, t2) 7→ trE/F(t1η0(t2)).

Then
sgn

F
(∆) =

(
− sgn

F
(sgnGal(E/F)(η0))

)n+1
,

wheresgnGal(E/F) is the linear character ofGal(E/F) whose kernel is the
group of squares.

Proof. Let η be a generator ofGal(E/F), and
{
ei

∣∣ 0 ≤ i < n
}

a basis for
E over F. The matrix, with respect to the chosen basis, of the indicated
pairing isM · η0(M)t, whereM is then × n matrix with (i, j)th entry
ηjei for 0 ≤ i, j < n. Sinceη induces a permutation of the columns ofM
that has parity opposite to that ofn, we have thatdetM ∈ F× (equivalently,
(detM)2 ∈ (F×)2) if and only ifn is odd; i.e.,sgn

F

(
(detM)2

)
= (−1)n+1.

Similarly,η0 induces a permutation of the columns ofM that is even or odd
according assgnGal(E/F)(η0)

n+1 is 1 or −1, so∆ = detM · η0(detM) =

sgnGal(E/F)(η0)
n+1(detM)2. The result follows. �

There is an analogue of Lemma 3.1 for arbitrary finite cyclic Galois ex-
tensions of fields, with essentially the same proof; but its statement is more
complicated, so we omit it.

Lemma 3.2. Let

• F be an odd-characteristic finite field,
• η0 an automorphism ofF with η2

0 = 1,
• ε ∈ {±1},
• V a finite-dimensionalF-vector space, and
• B a non-degenerate(ε, η0)-Hermitian form onV .

Then the Witt index ofB (see[36, §6.5]) is ⌊dim V/2⌋ unless

• dimV is even,
• η0 = 1,
• ε = 1, and
• detB is not in the square class of(−1)dimV/2,
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in which case it is(dimV/2) − 1.

The Hermitian condition onB means precisely that it is linear in the first
variable, andεB(v, w) = η0(B(w, v)) for v, w ∈ V .

Proof. LetQ : v 7→ B(v, v) be the quadratic form associated toB, andF′

the fixed field ofη0. Denote byN the mapt 7→ t · η0(t) from F to F′. Note
that the image ofN is contained in the set of squares inF.

Let V = V+ ⊕ V0 ⊕ V− be a Witt decomposition ofV , so thatV+ and
V− are maximal totallyQ-isotropic subspaces ofV that are in duality byB,
andV0 = (V+ ⊕ V−)⊥ isQ-anisotropic. Then the matrix ofB onV+ ⊕ V−,

with respect to a suitable basis, is of the form
(

0 η0(M)

εM t 0

)
for some matrix

M ; sodetB
∣∣
V+⊕V−

= (−ε)dimV+ ·N(detM) belongs to the square class of

(−ε)dimV+ . LetB be aB-orthogonal basis forV0, so thatQ
(∑

v∈B avv) =∑
v∈BN(av)Q(v) for any constantsav ∈ F.
Suppose thatη0 = 1 andε = 1. If there are distinctv1, v2 ∈ B such that

Q(v2) belongs to the square class of−Q(v1) — sayQ(v2) = −λ2Q(v1),
with λ ∈ F× — thenQ(λv1 + v2) = 0, which is a contradiction. Thus, if
−1 ∈ (F×)2, then no two elementsQ(v), for v ∈ B, lie in the same square
class, implying that|B| ≤ 2; and if−1 6∈ (F×)2, then all of the elements
Q(v), for v ∈ B, lie in the same square class. In this latter case, if|B| > 2,
then letv1, v2, andv3 be distinct elements ofB, and writeQ(v3) = c2iQ(vi),
with ci ∈ F×, for i = 1, 2. ThenQ(c1λv1+c2µv2+v3) = 0, whereλ, µ ∈ F

are such thatλ2 + µ2 = −1, which is a contradiction. Thus
• |B| ≤ 1, or
• B = {v1, v2}, andQ(v2) does not belong to the square class of
−Q(v1).

In the former case, ifdimV is even, then|B| = 0, sodim V+ = dimV/2,
V+ ⊕ V− = V , anddetB belongs to the square class of(−1)dimV/2. In the
latter case,− detB

∣∣
V0

= −Q(v1)Q(v2) is a non-square inF, sodetB =

(detB
∣∣
V+⊕V−

)(detB
∣∣
V0

) does not belong to the square class of(−1)dimV+(−1) =

(−1)dimV/2.
If η0 = 1 andε = −1, then every vector is isotropic forQ, soV0 = {0}.
If η0 6= 1, then, sinceN surjects ontoF′, we have that

{
Q(v)

∣∣ v ∈ B
}

is linearly independent overF′. On the other hand, sinceB is (ε, η0)-
Hermitian, we have that

{
Q(v)

∣∣ v ∈ B
}

is contained in theε-eigenspace
for η0 acting onF, which is1-dimensional overF′. Thus|B| ≤ 1. �

Theorem 3.3.(Theorem 4.9.1 of[25].) LetV be anf-vector space equipped
with a non-degenerate symplectic form〈·, ·〉, andζ an additive character of
f. Denote byW V

ζ the Weil representation ofSp(V ) associated toζ (defined
in [25, §2.4]). Fix g ∈ Sp(V ).
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(1) If g has no non-zero fixed points, then letV+ be a maximalg-
invariant totally isotropic subspace ofV and putV0 = V ⊥

+ /V+.
Then

θWV
ζ

(g) = sgnf((−1)dimV0/2 det(g
∣∣
V+

) det(g − 1
∣∣
V0

)).

(2) If g fixes pointwise a lineV+ ⊆ V , but V+ does not have ag-
invariant complement inV ⊥

+ , then

θWV
ζ

(g) = θ
W

V0
ζ

(g),

whereV0 = V ⊥
+ /V+.

(3) If g fixes pointwise a lineV+ ⊆ V , andV0 is a g-invariant sub-
space ofV ⊥

+ such thatV ⊥
+ = V+ ⊕ V0, then

θWV
ζ

(g) = θ
W

V0
ζ

(g)
∑

v∈V ⊥
0 /V+

ζ(〈gv, v〉).

In [65, §11], there are described a symplectic structure onJ/J+ , an ac-
tion of Sp(J/J+) on J/ ker φ̂, and an extension of the Weil representation
of Sp(J/J+) associated tôφ to a representation ofSp(J/J+)⋉J/ ker φ̂. We
have that̃φ (see Remark 2.2) is the pull-back of this extension tostabG′(x)⋉

J via the map that restricts to the usual projectionJ −→ J/ ker φ̂, and that
takesk ∈ stabG′(x) to the symplectic transformation ofJ/J+ induced by
the conjugation action ofk onJ .

Theorem 3.4.(Theorem 11.5 of[65].) φ̃
∣∣
{1}⋉J+

is φ̂-isotypic, and̃φ
∣∣
G′

x,0+⋉{1}

is 1-isotypic.

Proposition 3.5. The character of̃φ vanishes except on conjugacy classes
intersectingstabG′(x) ⋉ J+ .

Proof. This result is proved for an “abstract” Weil representationin [32].
The details of how to apply the result in our situation are in [65,§11]. �

Denote byΓ the Galois groupGal(F sep/F ). For η ∈ Γ, we will abuse
notation and also denote byη the corresponding element ofGal(f/f), where
f is the residue class field ofF un.

Fix a bounded-modulo-Z(G) elementγ ∈ G′ (i.e., an element whose or-
bits inBred(G′, F ) are bounded in the sense of metric spaces). By Proposi-
tion 2.41 of [62] and Remark 6.9 of [6],γ has a normal(0+)-approximation
(γ0) (in G andG′). We assume thatx ∈ B0+(γ). Let T be a maximal tame
F -torus (hence, a tame maximalF -torus) inG

′, containingγ0, such that
x ∈ B(T, F ); and letE/F be a tame, Galois, strictly Henselian extension
over whichT splits.
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Notation 3.6. Forα ∈ Φ̃(G,T), put

• Γα = stabΓ α;
• Fα = (F sep)Γα;
• eα = e(Fα/F ), the ramification index ofFα/F , andfα = f(Fα/F ),

the residual degree ofFα/F ; and
• fα = fFα.

If −α ∈ Γ · α, then

• ηα is any element ofΓ such thatηαα = −α;
• F±α is the fixed field of〈Γα, ηα〉;
• f±α = f(F±α/F ); and
• f±α = fF±α

.

Notation 3.7. In the remainder of§3 only, forα ∈ Φ(G,T), denote byVα

the image of
Lie(G)α(E) ∩ Lie(G′,G)(E)x,(r,s)

in
Lie(G′,G)(E)x,(r,s):(r,s+),

and byVα the set ofΓα-fixed points inVα. More concretely, we have
that Vα = {0} if α ∈ Φ(G′,T); and, if α 6∈ Φ(G′,T), thenVα

∼=
Eu(α+s):(α+s)+ , whereα + s is the affine root with gradientα whose value
at x is s. SinceT is E-split, we have thatGal(F sep/E) acts trivially on
Φ(G,T), so thatFα ⊆ E — hence, in particular,eα is not divisible byp —
for all α ∈ Φ(G,T). PutΞ(φ) =

{
α ∈ Φ(G,T)

∣∣ Vα 6= {0}
}

, and

Ξ1(φ, γ) =
{
α ∈ Ξ(φ)

∣∣ α(γ0) = 1
}

= Ξ(φ) ∩ Φ(C
(0+)
G

(γ),T),

Ξ1(φ, γ) =
{
α ∈ Ξ(φ)

∣∣ α(γ0) 6= 1
}
,

Ξsymm,−1(φ, γ) =
{
α ∈ Ξ(φ)

∣∣ −α ∈ Γ · α andα(γ0) = −1
}
⊆ Ξ1(φ, γ),

Ξ−1
symm(φ, γ) =

{
α ∈ Ξ(φ)

∣∣ −α ∈ Γ · α andα(γ0) 6= ±1
}
⊆ Ξ1(φ, γ),

and

Ξsymm(φ, γ) =
{
α ∈ Ξ(φ)

∣∣ −α 6∈ Γ · α andα(γ0) 6= 1
}
⊆ Ξ1(φ, γ).

We will omit φ andγ from the notation when convenient. Note that all
of these sets areΓ × {±1}-stable. (Recall that(−α)(γ) is α(γ)−1, not
−(α(γ)).) We denote bẏΞ1(φ, γ), Ξ̇symm,−1(φ, γ), andΞ̇−1

symm(φ, γ) sets of

representatives for theΓ-orbits in the appropriate sets; and byΞ̈symm(φ, γ)
a set of representatives for theΓ × {±1}-orbits in Ξsymm. Finally, put
Ξ̇symm(φ, γ) = Ξ̇symm,−1 ∪ Ξ̇−1

symm, Ξ̇1(φ, γ) = Ξ̇symm∪ ±Ξ̈symm, Ξ̇(φ, γ) =

Ξ̇1 ∪ Ξ̇1, andf(Ξ̇symm(φ, γ)) =
∑

α∈Ξ̇symm
fα.
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Proposition 3.8. With notation and assumptions as above, we have

θφ̃(γ ⋉ 1) = |(C(0+)
G′ (γ), C

(0+)
G (γ))x,(r,s):(r,s+)|1/2 ε(φ, γ),

where

ε(φ, γ) = sgnf(−1)f(Ξ̇symm(φ,γ))/2 ·
∏

α∈Ξ̈symm(φ,γ)

sgnfα
(α(γ0))

×
∏

α∈Ξ̇−1
symm(φ,γ)

sgnfα
(1 − α(γ0)).

We are using Theorem 3.3 (Theorem 4.9.1 of [25]) in our calculations.
Since we are only evaluating the character of the Weil representation at
semisimple elements, it may be convenient for some purposesto use Corol-
lary 4.8.1 of [25] to write the signε(φ, γ) in a different form. We do not do
this here.

Proof. WriteV = (G′, G)x,(r,s):(r,s+),V(0+) = (C
(0+)
G′ (γ), C

(0+)
G (γ))x,(r,s):(r,s+),

VVV = (G′,G)(E)x,(r,s):(r,s+), andV = Lie(G′,G)(E)x,(r,s):(r,s+). Recall
thatV = J/J+ carries a symplectic pairing; we will describe it explicitly
below. By Corollaries 2.3 and 2.4 of [65], we have anInt(γ)-equivariant
isomorphismVVV ∼= V (essentially, the restriction ofeEx,s:r) that restricts to
an isomorphismj1 : V ∼= V

Γ (also Int(γ)-equivariant, of course). We
have thatφ̂([g1, g2]) = Λ(X∗[j1(g1), j1(g2)]) for g1, g2 ∈ V. The Int(γ)-
equivariant map

(Xα)α∈Ξ̇ 7→
∑

α∈Ξ̇

∑

η∈Γ/Γα

η(Xα)

furnishes an isomorphismj2 :
⊕

α∈Ξ̇ Vα
∼= V

Γ such thatj1(V(0+)) and
j2

(⊕
α∈Ξ̇1 Vα

)
are complementary. Thus, there is anInt(γ)-equivariant iso-

morphism

(3.1) V ∼= V(0+) ⊕
⊕

α∈Ξ̇symm

Vα ⊕
⊕

α∈Ξ̈symm

V±α =: V,

whereV±α = Vα ⊕ V−α for α ∈ Ξ̈symm.
The (additive) pairing onV is (g1, g2) 7→ trf/Fp

X∗[j1(g1), j1(g2)], where
Fp is the finite field withp elements. (In [65,§11], Yu works instead with
the multiplicative pairing(g1, g2) 7→ φ̂([g1, g2]); but this is identified with
our pairing after an appropriate choice of embeddingFp →֒ C×.) We write
B for the pairing onV induced by (3.1). ThenV(0+) isB-orthogonal toVα
for all α ∈ Ξ̇, Vα isB-orthogonal toVβ unless−β ∈ Γ · α, and
(3.2)
B(X,X ′) = eα trfα/Fp

X∗[X, ηαX
′] for X,X ′ ∈ Vα with α ∈ Ξ̇symm.
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In particular, the sums on the right-hand side of (3.1) areB-orthogonal.
Write againγ for the symplectomorphism ofV induced byγ. By Corol-

lary 2.5 of [25],

(†) θφ̃(γ ⋉ 1) = θ
WV(0+)

ζ

(γ) ·
∏

α∈Ξ̇symm

θWVα
ζ

(γ) ·
∏

α∈Ξ̈symm

θ
W

V±α
ζ

(γ),

whereζ is the character induced by the restriction ofφ̂ to J+ (as in [65,
§11]).

By Theorem 3.3(3), sinceγ acts trivially onV(0+), we have that

(3.3) θ
WV(0+)

ζ

(γ) = pdimFp V(0+)/2 = |(C(0+)
G′ (γ), C

(0+)
G (γ))x,(r,s):(r,s+)|1/2 .

For α ∈ Ξ̇1, we have thatγ acts onVα without non-zero fixed points.
Thus, our remaining calculations may, and will, use Theorem3.3(1).

Forα ∈ Ξ̈symm, we have thatVα is a maximalγ-invariant totally isotropic
(indeed, a maximal totally isotropic) subspace ofV±α; andV ⊥

α /Vα = {0}
(the perpendicular taken inV±α). Sinceγ acts onVα ∼= fα by multiplica-
tion byα(γ0), we have thatdetFp(γ

∣∣
Vα

) = Nfα/Fp(α(γ0)); so, by Theorem
3.3(1),

(3.4) θ
W

V±α
ζ

(γ) = sgn
Fp

(Nfα/Fp
(α(γ0))) = sgnfα

(α(γ0)).

Forα ∈ Ξ̇symm,−1, the restriction ofB toVα is nondegenerate, sodimFp Vα
is even. Any maximal totally isotropic subspace ofVα is γ-invariant, so rea-
soning as above gives
(3.5)
θWVα

ζ
(γ) = sgn

Fp
(−1)dimFp Vα/2 = sgnf(−1)dimf Vα/2 = sgnf(−1)fα/2.

(We have used the fact that, if[f : Fp] is even, thensgnf(−1) = 1; and, if
[f : Fp] is odd, thensgnf(−1) = sgnFp

(−1).)

Finally, fix α ∈ Ξ̇−1
symm. Note thatGal(F sep/F un

α ) acts onVα by a
linear character, andGal(F un

α /Fα) acts onVα via the natural projection

to Gal(f/fα). Thus,Vα = V
Gal(f/fα)
α is a 1-dimensionalfα-vector space.

ChooseXα ∈ Vα \{0}, hence anfα-linear isomorphismια : Vα −→ fα, and
put cα = X∗[Xα, ηαXα] ∈ fα, so thatηαcα = −cα. By (3.2), ια identifies
the restriction ofB toVα with the pairing(t1, t2) 7→ eα trfα/Fp(cα · t1ηα(t2))
on fα.

Suppose thatW is aγ-invariant totallyB-isotropicFp-subspace ofVα.
By abuse of notation, we identifyW with its imageια(W ) ⊆ fα. Since
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γ acts onW by multiplication byα(γ0), we have thatW is anFp[α(γ0)]-
subspace. Further, fort1, t2 ∈W , we have that

eα trFp[α(γ0)]/Fp

(
λ trfα/Fp[α(γ0)](cα · t1ηα(t2))

)

= eα trfα/Fp(cα · (λt1)ηα(t2)) = 0

for all λ ∈ f[α(γ0)]; soB′(t1, t2) := trfα/Fp[α(γ0)](cα · t1ηα(t2)) = 0 (since
eα is not divisible byp). That is,W is totallyB′-isotropic. Conversely, it is
clear that anFp[α(γ0)]-subspace offα that is totallyB′-isotropic is carried
by ι−1

α to aγ-invariant totallyB-isotropicFp-subspace ofVα.
Let fα = (fα)+ ⊕ (fα)0 ⊕ (fα)− be a Witt decomposition forB′, so that

(fα)+ is a maximal totallyB′-isotropicFp[α(γ0)]-subspace offα. We have
thatB′ is (−1, ηα)-Hermitian. Denote byα(γ0) the image infα of α(γ0).
Sinceηαα(γ0) = α(γ0)

−1 6= α(γ0), we have thatηα is non-trivial on
Fp[α(γ0)]. We record two consequences of this fact.

• Fp[α(γ0)] is not contained in the unique quadratic subfieldf±α = fηα
α

of fα, sodimFp[α(γ0)] fα is odd.
• PutQ = |Fp[α(γ0)]

ηα |. Then alsoηαα(γ0) = α(γ0)
Q. This means

thatα(γ0)
Q+1 = 1, so

(∗) sgnFp[α(γ0)](α(γ0)) = α(γ0)
(Q2−1)/2 = 1.

Now Lemma 3.2 gives

dim(fα)+ = (dim fα − 1)/2 = dim(fα)−,

sodim(fα)0 = 1 (all dimensions being taken overFp[α(γ0)]). Put(Vα)ε =
ι−1
α

(
(fα)ε

)
, whereε ∈ {+,−, 0}. Then(Vα)+ is a maximalγ-stable, to-

tally B-isotropicFp-subspace ofVα, and(Vα)
⊥
+/(Vα)+

∼= (Vα)0 (the per-
pendicular taken inVα). Sinceγ acts onVα ∼= fα by multiplication by
α(γ0), we have thatdetFp(γ

∣∣
(Vα)+

) = NFp[α(γ0)]/Fp(α(γ0))
(dim fα−1)/2 and

detFp(γ − 1
∣∣
(Vα)0

) = NFp[α(γ0)]/Fp
(α(γ0) − 1); so, by Theorem 3.3(1) and

(∗),

(3.6)

θWVα
ζ

(γ) = sgn
Fp

(−1)dimFp Fp[α(γ0)]/2 sgn
Fp[α(γ0)](α(γ0) − 1)

× sgnFp[α(γ0)](α(γ0))
(dim fα−1)/2

= sgnf(−1)fα/2 sgnfα
(α(γ0) − 1)

(where we have used in the last equality the facts thatfα/2 is the product of
dimFp Fp[α(γ0)]/2 and the odd numberdimFp[α(γ0)] fα, and thatsgnFp[α(γ0)] =

sgnfα
onFp[α(γ0)]

×).
Upon combining (†) with (3.3)–(3.6), we obtain the desired formula.�
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4. VANISHING RESULTS FORθσ

In this section, we consider the support of the character of the represen-
tationσ = σd of Kσ = stabG′(x)Gx,0+ induced from the representation
ρ′ = ρ′d of K = Kd. We will show that it is much smaller than would
naı̈vely be expected from an understanding of the support ofthe character
of ρ′ (or, better, of̃ρ).

Recall that we have associated toφ = φd−1 an elementX∗ = X∗
d−1 ∈

z(g′)∗−r + g′∗
x,(−r)+ . For any finite, tamely ramified extensionE/F , let

φ̂E be the linear character ofG(E)x,s+:r+ such thatφ̂E ◦ e
E
x,s+:r+ = Λ ◦

X∗
∣∣
Lie(G)(E)x,s+:r+

. We will also viewφ̂E as a character ofG(E)x,s+. This

is analogous to the definition of̂φ in §2; in fact,φ̂E
∣∣
Gx,s+

= φ̂
∣∣
Gx,s+

.

Lemma 4.1. Suppose that

• E/F is a finite, tamely ramified extension,
• d ∈ R andd > s,
• H is a reductive, compatibly filteredE-subgroup ofG (as in Defi-

nition 4.3 of[6]),
• H contains anE-split maximal torusT in G

′,
• x ∈ A(T), and
• X∗ ∈ Lie(T)∗(E) + Lie(G′)∗(E)x,(−d)+ .

Thenφ̂E is trivial on (H,G)(E)x,(r+,d).

Proof. We may, and do, assume, after replacingF by E, thatT is F -split
andX∗ ∈ Y ∗ + g′∗

x,(−d)+ with Y ∗ ∈ t∗. Further, there is no harm in taking

d ≤ r. Sinceφ̂F = Λ ◦ X∗ ◦ e
−1
x,s+:r+ as maps on(H,G)x,(r+,d):(r+,r+)

(indeed, onGx,s+:r+), and since, by Hypothesis A.1(6),ex,s+:r+ carries
Lie(H,G)x,(r+,d):(r+,r+) onto (H,G)x,(r+,d):(r+,r+), it suffices to show that
Λ ◦X∗ is trivial onLie(H,G)x,(r+,d).

By an easy analogue of Proposition 5.40 of [6],

Lie(H,G)x,(r+,d) ⊆ hx,r+ ⊕ (t⊥ ∩ gx,d),

wheret⊥ =
⊕

α∈Φ(G,T) gα. Sincedx(X
∗) = −r, we havehx,r+ ⊆ ker(Λ ◦

X∗). ForX ∈ t⊥ ∩ gx,d , we have thatX∗(X) ≡ Y ∗(X) = 0 (mod F0+),
hence thatΛ(X∗(X)) = 1. �

Remark4.2. Preserve the notation of Lemma 4.1. Sinceφ̂
∣∣
Gx,s+

= φ̂F and

X∗ ∈ z(g′)∗ + g′∗
x,(−r)+ ⊆ t∗ + g′∗

x,(−r)+ , we always have that̂φ is trivial
on (H,G)x,(r+,r). If X∗ ∈ z(g′)∗ + g′∗

x,−s (for example, if Hypothesis 2.3
is satisfied), then, by applying Lemma 4.1 to a decreasing sequence ofd’s
converging tos, we see that̂φ is trivial on (H,G)x,(r+,s+).
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Proposition 4.3. Suppose thatt ∈ R≥0 andγ ∈ G. If

• t < r,
• t ≤ s, or γ has a normalt-approximation andx ∈ Bt(γ), and
• γ ∈ stabG′(x)Gx,t r Gx,0+(stabG′(x)Gx,t+),

thenθ̇σ(γ) = 0.

Proof. Note thatγ 6∈ Kσ(stabG′(x)Gx,t+). Recall thatσ = IndKσ

K ρ′, so
supp θσ ⊆ Kσ supp θρ′ . By Remark 2.2 and Proposition 3.5,supp θρ′ ⊆
K(stabG′(x)Gx,s+). Thus the result is clear fort ≤ s, so we assume that
t > s.

By Proposition 9.14 of [6], there isk ∈ Gx,0+ such thatkZ(t)
G (γ) ⊆ G′.

Sinceθσ(kγ) = θσ(γ) andx = kx ∈ Bt(kγ), we may, and do, replaceγ by
kγ.

Then, sincex ∈ Bt(γ), we have thatγ≥t ∈ Gx,t . Now, forh ∈ C
(t)
G (γ)x,r−t ,

we have that[γ−1, h] = [γ−1
≥t , h] ∈ Gx,r ; so, by Lemma 2.5,

θσ(γ) = θσ(
hγ) = θσ(γ)φ̂([γ−1

≥t , h]) = θσ(γ) · [γ≥t, φ̂](h),

where[γ≥t, φ̂] is the characterg 7→ φ̂([γ−1
≥t , g]) of Gx,r−t .

If [γ≥t, φ̂] is non-trivial onC(t)
G (γ)x,r−t , then we are done; so suppose

that it is trivial there. Then considerh ∈ (C
(t)
G (γ), G)x,((r−t)+,r−t). By

Lemma 5.32 of [6],[γ−1
≥t , h] ∈ (C

(t)
G (γ), G)x,(r+,r). By Lemma 4.1 and

Remark 4.2, we have that̂φ is trivial on (C
(t)
G (γ), G)x,(r+,r). Therefore,

[γ≥t, φ̂](h) = φ̂([γ−1
≥t , h]) = 1. Thus [γ≥t, φ̂] is trivial on C

(t)
G (γ)x,r−t

and (C
(t)
G (γ), G)x,((r−t)+,r−t), hence, by Proposition 5.40 ofloc. cit., on

Gx,r−t . By Lemma B.1, this means thatγ≥t ∈ (G′, G)x,(t,t+). Sinceγ<t ∈
Z

(r)
G (γ) ⊆ G′ andγ<t ∈ stabG(x) (by Remarks 6.10(1) and 6.10(2) of

loc. cit., respectively), we haveγ = γ<tγ≥t ∈ stabG′(x)Gx,t+ , which is a
contradiction. �

Corollary 4.4. If γ has a normalr-approximation andx ∈ Br(γ), then
θ̇σ(γ) = 0 unlessγ<r ∈ Gx,0+ stabG′(x).

Proof. By Proposition 4.3,θσ(γ) = 0 unlessγ ∈ Gx,0+(stabG′(x)Gx,r).
By Corollary 9.16 of [6],γ ∈ Gx,0+(stabG′(x)Gx,r) if and only if γ<r ∈
Gx,0+ stabG′(x). �

Corollary 4.5. If γ has a normalr-approximation andG′/Z(G) is F -
anisotropic, theṅθσ(γ) = 0 unlessx ∈ Br(γ) andγ<r ∈ Gx,0+ stabG′(x).

Proof. This follows from Lemma 9.13 and Corollary 9.16 of [6], and Corol-
lary 4.4. �
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Corollary 4.6. If γ has a normalr-approximation andG′/Z(G) is F -
anisotropic, then

θ̇σ(γ) = θ̇σ(γ<r) · [Gx,r](γ≥r)φ̂(γ≥r)

= θ̇σ(γ<r) · [B(C
(r)
G

(γ), F )](x) · [Gx,r](γ≥r)φ̂(γ≥r)

= [Gx,0+G′](γ<r)θσ(γ<r) · [B(C
(r)
G

(γ), F )](x) · [Gx,r](γ≥r)φ̂(γ≥r).

The notation indicates thatθ̇σ(γ) = θσ(γ<r)φ̂(γ≥r) if all the characteris-
tic functions appearing are1, andθ̇σ(γ) = 0 otherwise.

Proof. By Corollary 4.5θ̇σ(γ) = 0 unlessγ≥r ∈ Gx,r . By Lemma 2.5,
if γ≥r ∈ Gx,r , then θ̇σ(γ) = θ̇σ(γ<r)φ̂(γ≥r). By Corollary 4.5 again,
θ̇σ(γ<r) = 0 unlessx ∈ B(C

(r)
G

(γ), F ) andγ<r ∈ Gx,0+G′. If γ<r ∈ Gx,0+G′,
thenγ<r is in the domain ofσ, soθ̇σ(γ<r) = θσ(γ<r). �

5. INDUCTION TO stabG′(x)Gx,0+

We have just shown that the character ofσ vanishes “far fromG′ ”. In
this section, we will compute the character on a large subsetof stabG′(x).
By Lemma 2.5, we will then have character values on a large subset of
stabG′(x)Gx,r. (To be more precise, unless certain tameness and compact-
ness conditions are satisfied, we must place mild restrictions on the ele-
ments at which we evaluate the character. See the following paragraph and
the beginning of§6 for details.) The resulting formula (see Proposition
5.3.3) will be expressed in terms of the character of the representationτd−1

of stabG′(x) induced from the representationρ′d−1 ⊗ φ of Kd−1.
In this section, we suppose thatγ ∈ G′ has a normalr-approximation

γ = (γi)0≤i<r inG, and thatx ∈ Br(γ). In particular, by Remark 6.10(2) of
[6], we have thatγ ∈ stabG′(x). We will eventually (after Corollary 5.1.5)
also require thatγ be semisimple.

5.1. The Frobenius formula for θσ. The followingad hocdefinitions are
useful for cutting down the number of summands appearing in the Frobe-
nius formula.

Definition 5.1.1. Forg ∈ Gx,0+ , put

j(g) = sup
{
j ∈ R≥0 ∪ {∞}

∣∣ g ∈ Jγ; x, rKGx,j

}

and

j⊥(g) = sup
{
j(g′g)

∣∣ g′ ∈ G′
x,0+

}
.
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If j(g) <∞, put

i(g) = sup
{
i ∈ R ∪ {∞}

∣∣∣ g ∈ Jγ; x, rK(C
(i)
G (γ), G)x,(j(g),j(g)+)

}

and

t(g) = sup
{

dx([γ
−1, gh])

∣∣ h ∈ Gx,j(g)+

}
.

If j⊥(g) <∞, put

i⊥(g) = sup
{
i(g′g)

∣∣ g′ ∈ G′
x,0+, j(g

′g) = j⊥(g)
}

and

t⊥(g) = sup
{
t(g′g)

∣∣ g′ ∈ G′
x,0+, j(g

′g) = j⊥(g)
}
.

The numbersi(g) andj(g) are different measures of how farg is from ly-
ing in the groupJγ; x, rK. Remember from Figure 1 on page 12 thatJγ; x, rK
looks somewhat like a skyscraper that becomes narrower toward the top.
The vertical direction represents depth, while horizontalmotion toward the
center is analogous to moving through successively smallerfull-rank re-
ductive subgroups ofG (the connected-centralizer subgroupsC

(i)
G

(γ)). The
quantityj(g) tells us the vertical distance fromg down to a roof ofJγ; x, rK.
(Of course, ifg ∈ Jγ; x, rK, then we havej(g) = ∞.) The quantityi(g) an-
swers the question: When we’ve gone downj(g) floors, landing on a roof
of the skyscraper, how far toward the center must we travel inorder to hit a
wall?

Remark5.1.2. Sinceg, [γ−1, g] ∈ Gx,0+ , we have thatj(g), t(g) > 0. How-
ever, it is possible thati(g) = 0.

Since
{
j ∈ R≥0

∣∣ Gx,j 6= Gx,j+

}
is discrete, the supremum in the def-

inition of j(g) is actually a maximum. Suppose thatj(g) < ∞. Since{
i ∈ R

∣∣∣ C(i)
G (γ) 6= C

(i+)
G (γ)

}
is discrete, the supremum in the definition

of i(g) is actually a maximum. If[γ−1, gh] = 1 for someh ∈ Gx,j(g)+ , then
obviously the supremum in the definition oft(g) is a maximum. Otherwise,
h 7→ dx([γ

−1, gh]) is locally constant on the compact setGx,j(g)+ , so the
supremum in the definition oft(g) is again a maximum.

By Proposition 5.40 of [6],

Jγ; x, rK(C
(r−2j(g))
G (γ), G)x,(j(g),j(g)+) ⊆ Jγ; x, rKGx,j(g)+ ,

soi(g) < r − 2j(g).
If h ∈ Gx,j(g)+ , theni(gh) = i(g), j(gh) = j(g), andt(gh) = t(g).

SinceGx,s ⊆ Jγ; x, rK, we have thatj(g) < ∞ if and only if j(g) < s, so
the functionsi, j, andt are all invariant under translation byGx,s .
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The functiong′ 7→ j(g′g) is locally constant on the compact setG′
x,0+ ,

so the supremum in the definition ofj⊥(g) is actually a maximum. If
j⊥(g) < ∞, theng′ 7→ i(g′g) andg′ 7→ t(g′g) are also locally constant
on the compact set

{
g′ ∈ G′

x,0+

∣∣ j(g′g) = j⊥(g)
}

, so the suprema in the
definitions ofi⊥(g) andt⊥(g) are also maxima.

As above, ifj⊥(g) < ∞ andh ∈ Gx,j⊥(g)+ , then i⊥(gh) = i⊥(g),
j⊥(gh) = j⊥(g), andt⊥(gh) = t⊥(g). Furthermore,j⊥(g) < ∞ if and
only if j⊥(g) < s, so the functionsi⊥, j⊥, andt⊥ are all invariant under
translation byGx,s . Obviously, they are also invariant under left translation
byG′

x,0+ , hence (by Proposition 5.40 of [6]) also by(G′, G)x,(0+,s) and (if
j⊥(g) <∞) by (G′, G)x,(0+,j⊥(g)+).

Lemma 5.1.3.Fix g ∈ Gx,0+ . If j(g) <∞, thent(g) = i(g) + j(g).

Proof. Puti0 = i(g), j0 = j(g), andt0 = t(g), sog ∈ Jγ; x, rK(C
(i0)
G (γ), G)x,(j0,j0+).

Sincei0 < r − 2j0, we have by Proposition 5.40 and Remark 6.7(4) of
[6] that

Jγ; x, rK(C
(i0)
G (γ), G)x,(j0,j0+) = Jγ; x, rK(j0)C

(i0)
G (γ)x,j0Gx,j0+ .

Chooseh ∈ Jγ; x, rK(j0)gGx,j0+ ∩ C
(i0)
G (γ)x,j0 . Then there isk1 ∈ Gx,j0+

such thath ∈ Jγ; x, rK(j0)gk1.
Note that[γ−1, h] = [γ−1

≥i0
, h] ∈ Gx,i0+j0 . If [γ−1, h] ∈ Gx,(i0+j0)+ ,

then Lemma 9.8 ofloc. cit. givesh ∈ (C
(i0+)
G (γ), G)x,(j0,j0+), so g ∈

Jγ; x, rK(C
(i0+)
G (γ), G)x,(j0,j0+), contradicting the definition ofi0. Thusdx([γ−1, h]) =

i0 + j0.
Suppose that[γ−1, h] ∈ Gx,t0+ . Then, by Remarks 6.7(1) and 6.10(3)

of loc. cit., the fact thatgk1h
−1 ∈ Jγ; x, rK(j0) implies that[γ−1, gk1h

−1] ∈
Gx,r−j0 , hence that[γ−1, h] ≡ [γ−1, gk1] (mod Gx,r−j0). By the definition
of t(g), we have[γ−1, gk1] 6∈ Gx,t0+ . Thusr − j0 ≤ t0, so [γ−1, h] ∈
Gx,r−j0 . By Lemma 9.8 ofloc. cit., h ∈ (C

(r−2j0)
G (γ), G)x,(j0,j0+) ⊆

(C
(i0+)
G (γ), G)x,(j0,j0+), sog ∈ Jγ; x, rK(C

(i0+)
G (γ), G)x,(j0,j0+), contradict-

ing the definition ofi(g).
Thus[γ−1, h] 6∈ Gx,t0+ , soi0 + j0 ≤ t0. Suppose thati0 + j0 < t0. Then

there isk2 ∈ Gx,j0+ such that[γ−1, gk2] ∈ Gx,t0 ⊆ Gx,(i0+j0)+ . We have
h ∈ Jγ; x, rK(j0)Gx,j0+gk2 — say,h = h′gk2, with h′ ∈ Jγ; x, rK(j0)Gx,j0+ .
SinceJγ; x, rK(j0) ⊆ Jγ≥i0; x, rK

(j0) ⊆ [γ≥i0; x, (i0 + j0)+], and clearly
Gx,j0+ ⊆ [γ≥i0; x, (i0 + j0)+], we have that

[γ−1, h] = [γ−1
≥i0
, h] = [γ−1

≥i0
, h′] · h′[γ−1

≥i0
, gk2] ∈ Gx,(i0+j0)+ · h′[γ−1

≥i0
, gk2].

By Lemma 9.8 of [6],gk2 ∈ [γ; x, t0], where[γ; x, t0] is as in Definition 9.3
of loc. cit. Since[γ; x, t0] ⊆ [γ≥i0; x, t0], we have by Remark 6.10(3) ofloc.
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cit. that [γ−1
≥i0
, gk2] ∈ Gx,t0 ⊆ Gx,(i0+j0)+ , so also[γ−1, h] ∈ Gx,(i0+j0)+ , a

contradiction. �

Corollary 5.1.4. Fix g ∈ Gx,0+ . If j⊥(g) < ∞, thent⊥(g) = i⊥(g) +
j⊥(g).

Proof. By Remark 5.1.2, there is someg′ ∈ G′
x,0+ such thati(g′g) = i⊥(g)

andj(g′g) = j⊥(g). Thust⊥(g) ≥ t(g′g) = i(g′g) + j(g′g) = i⊥(g) +
j⊥(g). Similarly, there is someg′′ ∈ G′

x,0+ such thatj(g′′g) = j⊥(g) and
t(g′′g) = t⊥(g). Thus t⊥(g) = t(g′′g) = i(g′′g) + j(g′′g) ≤ i⊥(g) +
j⊥(g). �

Corollary 5.1.5. Fix g ∈ Gx,0+ . If j(g) < ∞, thent(g) < r − j(g). If
j⊥(g) <∞, thent⊥(g) < r − j⊥(g).

From now on, suppose thatγ is semisimple. This condition can be re-
moved if desired by observing that all the functions in whichwe will be
interested are locally constant; but, since we will only usethe main result of
this section (Proposition 5.3.3) when the semisimplicity condition is already
satisfied, it is not a serious restriction.

By Lemma 8.2 of [6],γ is a normalr-approximation toγ in G′, so that it

makes sense to speak of groups such asC
(i⊥(g))
G′ (γ) below.

Lemma 5.1.6.Fix g ∈ Gx,0+ with j⊥(g) <∞. There isg⊥ ∈ (G′, G)x,(0+,j⊥(g)+)·g
such that

[γ−1, g⊥] ∈ (C
(i⊥(g))
G′ (γ), C

(i⊥(g))
G (γ))x,(t⊥(g)+,t⊥(g)).

Proof. Put i0 = i⊥(g), j0 = j⊥(g), and t0 = t⊥(g), so i0 + j0 = t0
(by Corollary 5.1.4) andt0 < r − j0 (by Corollary 5.1.5). Put alsoH =

C
(i0)
G

(γ) andH
′ = C

(i0)
G′ (γ). By Remark 5.1.2, there isg′ ∈ G′

x,0+ such
that i(g′g) = i0 andj(g′g) = j0. By Lemma 5.1.3, we have thatt(g′g) =
i(g′g) + j(g′g) = i0 + j0 = t0. In particular,g′g ∈ Jγ; x, rK(H,G)x,(j0,j0+).
By Remark 6.7(4) and Proposition 5.40 of [6],

Jγ; x, rK(H,G)x,(j0,j0+) = Jγ; x, rK(j0)(H,G)x,(j0,j0+)

and

(H,G)x,(j0,j0+) = (H ′, G)x,(j0,j0+)(H
′, H)x,(j0+,j0).

Since the commutator ofGx,0+ with (H,G)x,(j0,j0+) ⊆ Gx,j0 lies inGx,j0+ ⊆
(H,G)x,(j0,j0+), we have thatJγ; x, rK(j0) ⊆ Gx,0+ normalizes(H,G)x,(j0,j0+).
Thus we may writeg′g = k′g1k−, with k′ ∈ (H ′, G)x,(j0,j0+), g1 ∈ (H ′, H)x,(j0+,j0),
andk− ∈ Jγ; x, rK(j0). Sinceγ≥i0 ∈ H ′

x,i0
(or stabH′(x), if i0 = 0), Lemma
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5.32 (or Corollary 5.21, ifi0 = 0) of [6] gives

[γ−1, g1] = [γ−1
≥i0
, g1] ∈ (H ′, H)x,(t0+,t0).

Further, Remarks 6.7(1) and 6.10(3) ofloc. cit. give

[γ−1, k−] ∈ Hx,r−j0 ⊆ Hx,t0+ ,

henceg1[γ−1, k−] ∈ Hx,t0+ . Thus, ifg⊥ = g1k−, then

[γ−1, g⊥] = [γ−1, g1] · g1[γ−1, k−] ∈ (H ′, H)x,(t0+,t0).

Sinceg⊥g−1 = k′−1g′ ∈ (G′, G)x,(0+,j0+), we are done. �

5.2. Gauss sums.In this section, we consider (in the context of our char-
acter computations) certain sums associated to non-degenerate quadratic
forms on vector spaces over finite fields. We call these sums Gauss sums
since, for a1-dimensional vector space, they are a special case of classical
Gauss sums (see [43,§5.2]). We begin with a simple result that computes
such objects.

Definition 5.2.1. Recall that, in§1.1, we chose a square root
√
−1 of −1

and used it to construct a non-trivial additive characterΛ of f. Put

GΛ(f) =

{
−(−1)logp|f|, p ≡ 1 (mod 4)

(−
√
−1)logp|f|, p ≡ 3 (mod 4).

Lemma 5.2.2.Let V be a finite-dimensionalf-vector space, andB a non-
degenerate symmetric bilinear form onV . PutG(V,B) = |V |−1/2 ∑

v∈V Λ(B(v, v)).
Then

G(V,B) = sgnf(detB)GΛ(f)dimf V .

Proof. Notice that, ifV is 1-dimensional andv0 ∈ V r {0}, then
∑

v∈V

Λ(B(v, v)) =
∑

t∈f

Λ(t2B(v0, v0))

=
∑

t∈f

sgnf(t)Λ(tB(v0, v0)) = sgnf(B(v0, v0))
∑

t∈f

sgnf(t)Λ(t),

where sgnf(0) = 1. By Theorem 5.15 of [43], this latter sum equals
sgnf(B(v0, v0))GΛ(f) = sgnf(detB)GΛ(f)dimV . Now notice that, ifV =⊕

i∈I Vi is an orthogonal direct sum decomposition and, fori ∈ I, Bi de-
notes the restriction ofB toVi×Vi, then we have (with the obvious notation)
G(V,B) =

∏
i∈I G(Vi, Bi). By Theorem 6.21 of [43], we are done. �

Remark5.2.3. It is also possible to compute a Gauss sum as in Lemma 5.2.2
by re-writing it as

∑
b∈fNbΛ(b), whereNb =

∣∣{v ∈ V
∣∣ B(v, v) = b

}∣∣ for
all b ∈ f. We can then use the explicit computations ofNb in Theorems 6.26
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and 6.27 of [43], together with the fact thatGΛ(f)2 = sgnf(−1), to obtain
the desired result.

Definition 5.2.4. Put

G̃(φ, γ) =
∑

g∈Jγ;x,rK
(s)

G′ C
(0+)
G (γ)x,s\Jγ;x,rK

(s)

φ̂([γ−1, g])

and

G(φ, γ) = |G̃(φ, γ)|−1
G̃(φ, γ).

In this subsection, we will compute|G̃| = |G̃(φ, γ)| andG = G(φ, γ).
The proof of the main result (Proposition 5.2.13) is quite close, in structure
and content, to that of Proposition 3.8. A similar result appears in [64,
§VIII.5].

Recall (see Definition 6.8 of [6]) that, sinceγ is a normalr-approximation
to γ in G′, in particularγ<r is tame inG

′. Let T be a maximalF -tame
(hence, sinceG′ is F -tame, anF -tame maximal) torus inG′ containing
γ<r. LetE/F be the splitting field ofT. Recall that we defined, at the be-
ginning of§5, a character̂φE of G(E)x,s+ that extendŝφ

∣∣
Gx,s+

and is trivial

onG(E)x,r+ .
Forg, g1, g2 ∈ Jγ; x, rK

(s)
G(E), put

Q(g) = φ̂E([γ−1, g]) and B(g1, g2) = φ̂E
([

[g2, γ
−1], g1

])
.

Except in Corollary 5.2.9, we will be interested only in the restrictions of
Q andB to Jγ; x, rK(s) (respectively,Jγ; x, rK(s) × Jγ; x, rK(s)); however,
we could not find a proof of Corollary 5.2.9 that did not involve passing
to extension fields. We will show thatQ is, in some sense, a quadratic
form (see Corollary 5.2.9), so that we can realizeG as a Gauss sum (see
Proposition 5.2.13).

It is straightforward to verify that

(5.2.1) Q(g1g2) = Q(g1)Q(g2)B(g1, g2) for g1, g2 ∈ Jγ; x, rK
(s)
G(E).

By Proposition 5.40 of [6], any elementh ∈ Jγ; x, rK
(s)
G(E) may be written

as

(5.2.2) h =
∏

0<i<r

hi, with hi ∈ C
(i)
G

(γ)(E)x,(r−i)/2 for 0 < i < r.

If g1, g2 ∈ Jγ; x, rK
(s)
G(E) and gj =

∏
0<i<r gji are decompositions as in

(5.2.2) forj = 1, 2, then one verifies inductively that there are elementsg′i ∈
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g1ig2iC
(i)
G

(γ)(E)x,((r−i)/2)+ for 0 < i < r such that
(∏

i0<i<r
g1i

)(∏
i0<i<r

g2i

)
=∏

i0<i<r
g′i for 0 ≤ i0 < r. In particular, fori0 = 0, we obtain

(5.2.3) g1g2 =
∏

0<i<r

g′i.

Lemma 5.2.5. If g ∈ Jγ; x, rK
(s)
G(E) andg =

∏
0<i<r gi is a decomposition

as in(5.2.2), thenQ(g) =
∏

0<i<rQ(gi).

Proof. One verifies inductively that[γ−1, g] ≡ ∏
i0<i<r

[γ−1, gi] (mod G(E)x,r+)

for 0 ≤ i0 < r. SinceG(E)x,r+ ⊆ ker φ̂E, evaluatingφ̂E at both sides of
the above identity fori0 = 0 gives the desired result. �

Corollary 5.2.6. Q is constant on cosets ofJγ<r; x, r+K
(s)
G(E). The restric-

tion ofQ to Jγ; x, rK(s) is constant on right cosets ofJγ; x, rK
(s)
G′ .

The appearance ofJγ<r; x, r+K
(s)
G(E) in the statement of the corollary is

somewhat unexpected. It appears becauseγ itself might not have a normal
(r+)-approximation. If (as will usually be the case, by Lemma 8.1of [6]) it
does have such an approximation, thenJγ; x, r+K

(s)
G(E) = Jγ<r; x, r+K

(s)
G(E).

Proof. By Proposition 5.40 of [6], any elementg+ ∈ Jγ<r; x, r+K
(s)
G(E) may

be written asg+ =
∏

0<i<r g+,i, with g+,i ∈ C
(i)
G

(γ<r)(E)x,((r−i)/2)+ =

C
(i)
G

(γ)(E)x,((r−i)/2)+ for 0 < i < r. If g ∈ Jγ; x, rK
(s)
G(E) andg =

∏
0<i<r gi

is a decomposition as in (5.2.2), then, by (5.2.3) and Lemma 5.2.5,Q(g) =∏
0<i<rQ(gi) andQ(g+g) =

∏
0<i<rQ(g′i), whereg′i ∈ g+,igiC

(i)
G

(γ)(E)x,((r−i)/2)+ =

C
(i)
G

(γ)(E)x,((r−i)/2)+gi for 0 < i < r, so it suffices to show thatQ(g′i) =

Q(gi) for 0 < i < r. Indeed, for suchi, putki = g′ig
−1
i ∈ C

(i)
G

(γ)(E)x,((r−i)/2)+.
Upon applying Lemma 5.2.5 again (this time, withki playing the role of
gi−ε for ε sufficiently small), we obtain thatQ(g′i) = Q(ki)Q(gi) = φ̂E([γ−1, ki])Q(gi).
Further,

[γ−1, ki] ≡ [γ−1
<r , ki] (mod G(E)x,r+ ⊆ ker φ̂E),

so it suffices to show that[γ−1
<r , ki] ∈ ker φ̂E. Since

[γ−1
<r , ki] ∈ G(E)x,((r+i)/2)+ = (C

(r)
G

(γ),G)(E)x,(((r+i)/2)+,((r+i)/2)+)

andγ<r ∈ Z(C
(r)
G (γ)), Lemma 5.30 of [6] gives

[γ−1
<r , ki] ∈ (C

(r)
G

(γ),G)(E)x,(r+,((r+i)/2)+),

and Lemma 4.1, Remark 4.2, and Hypothesis 2.3 give that[γ−1
<r , ki] ∈

ker φ̂E, as desired.
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If g ∈ Jγ; x, rK(s) andg′ ∈ Jγ; x, rK
(s)
G′ , then, sincêφE

∣∣
Gx,s+

= φ̂
∣∣
Gx,s+

andφ̂ is invariant under conjugation byG′
x,0+ , we have

Q(g′g) = φ̂E([γ−1, g′g]) = φ̂([γ−1, g′g])

= φ̂(γ−1)φ̂g
′

(γ)φ̂g
′

([γ−1, g]) = φ̂([γ−1, g])

= φ̂E([γ−1, g]) = Q(g). �

Lemma 5.2.7. If g1, g2 ∈ Jγ; x, rK
(s)
G(E) andgj =

∏
0<i<r gji are decompo-

sitions as in(5.2.2)for j = 1, 2, thenB(g1, g2) =
∏

0<i<r B(g1i, g2i).

Proof. By (5.2.1), (5.2.3), Lemma 5.2.5, and Corollary 5.2.6, we have that,
for suitableg′i,

Q(g1)Q(g2)B(g1, g2) = Q(g1g2) =
∏

0<i<r

Q(g′i) =
∏

0<i<r

Q(g1ig2i)

=
∏

0<i<r

Q(g1i)Q(g2i)B(g1i, g2i) = Q(g1)Q(g2)
∏

0<i<r

B(g1i, g2i). �

For0 < i < r, letYi be any element ofe−1
x,i:i+(γi). If g1, g2 ∈ Jγ; x, rK

(s)
G(E)

andgj =
∏

0<i<r gji are decompositions as in (5.2.2) forj = 1, 2, then put

(5.2.4) logΛ

√
B(g1, g2) = 1

2

∑

0<i<r

X∗
[
[Yi, X2i], X1i

]
,

wheret 7→ t is the natural map fromE0 to fE, andXji ∈ (eEx,((r−i)/2):((r−i)/2)+)−1(gji)∩
Lie(C

(i)
G

(γ))(E)x,(r−i)/2 for 0 < i < r andj = 1, 2. Note that there do ex-
ist elementsXji in the indicated intersection, by Lemma A.4; and that this
definition does not depend on the choices of the variousYi andXji.

Lemma 5.2.8. logΛ

√
B andB are symmetric, and

B(g1g
′
1, g2) = B(g1, g2)B(g′1, g2),

logΛ

√
B(g1g

′
1, g2) = logΛ

√
B(g1, g2) + logΛ

√
B(g′1, g2),

and (
Λ(logΛ

√
B(g1, g2))

)2
= B(g1, g2)

for g1, g
′
1, g2 ∈ Jγ; x, rK

(s)
G(E).

Of course,B and logΛ

√
B exhibit analogous behaviors in the second

variable, by symmetry.

Proof. The symmetry and multiplicativity ofB will follow from those of
logΛ

√
B.
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By Lemma 5.2.7 and (5.2.4), it suffices to show the desired facts on each
C

(i)
G

(γ)(E)x,(r−i)/2 . Accordingly, fix0 < i < r andg1, g2 ∈ C
(i)
G

(γ)(E)x,(r−i)/2 .

LetXj ∈ Lie(C
(i)
G

(γ))(E)x,(r−i)/2 satisfygj ∈ e
E
x,((r−i)/2):((r−i)/2)+(Xj) for

j = 1, 2. Then
[
[Yi, X1], X2

]
=

[
[Yi, X2], X1

]
+

[
Yi, [X1, X2]

]

by the Jacobi identity.
SinceT is a maximal torus inC(i)

G
(γ), we haveγi ∈ Z

(i)
G (γ) ⊆ T . Since[

γi, [g1, g2]
]

∈ C
(i)
G

(γ)(E)x,r , Lemma 5.30 of [6] gives
[
γi, [g1, g2]

]
∈

(T, C
(i)
G

(γ))(E)x,(r+,r). By two applications of Hypothesis A.1(5), we have
that

[
Yi, [X1, X2]

]
∈ (eEx,r:r+)−1

[
γi, [g1, g2]

]
, hence (by Hypothesis A.1(6))

that [
Yi, [X1, X2]

]
∈ Lie(T, C

(i)
G

(γ))(E)x,(r+,r).

By an easy analogue of Proposition 5.40 of [6],
[
Yi, [X1, X2]

]
∈ Lie(T)(E)r+⊕

(Lie(T)⊥(E) ∩ Lie(G)(E)x,r), whereLie(T)⊥ =
⊕

α∈Φ(G,T) Lie(G)α.
SinceX∗ ∈ z(g′)∗ + g∗

x,r+ ⊆ t∗ + g∗
x,r+ , we have thatX∗

[
Yi, [X1, X2]

]
∈

E0+ , so

logΛ

√
B(g2, g1) = 1

2
X∗

[
[Yi, X1], X2

]
= 1

2
X∗

[
[Yi, X2], X1

]
= logΛ

√
B(g1, g2).

Now fix g′1 ∈ C
(i)
G

(γ)(E)x,(r−i)/2 , and chooseX ′
1 ∈ Lie(C

(i)
G

(γ))(E)x,(r−i)/2
such thatg′1 ∈ e

E
x,((r−i)/2):((r−i)/2)+(X ′

1). Then, sinceeEx,((r−i)/2):((r−i)/2)+ is
a homomorphism, we have thatg1g

′
1 ∈ e

E
x,((r−i)/2):((r−i)/2)+(X1+X

′
1), and it

follows immediately thatlogΛ

√
B(g1g

′
1, g2) = logΛ

√
B(g1, g2) logΛ

√
B(g′1, g2).

Finally, note that
[
[g2, γ

−1], g1

]
=

[
[g2, γ

−1
≥i ], g1

]
≡

[
[g2, γ

−1
i ], g1

]
(mod Gx,r+)

and, by two applications of Hypothesis A.1(5) and the fact that γ−1
i ∈

e
E
x,r:r+(Yi), that

[
[g2, γ

−1
i ], g1

]
∈ e

E
x,r:r+

([
[Yi, X2], X1

])
, so

B(g1, g2) = φ̂E
([

[g2, γ
−1], g1

])
= Λ

(
X∗

[
[Yi, X2], X1

])

=
(
Λ

(
1
2
X∗

[
[Yi, X2], X1

]))2

=
(
Λ(logΛ

√
B(g1, g2))

)2
. �

Corollary 5.2.9. We haveQ(g) = Λ(logΛ

√
B(g, g)) for g ∈ Jγ; x, rK

(s)
G(E).

Proof. Note thatγi ∈ Z
(r)
G (γ) ⊆ T for 0 < i < r. Since the choice ofYi ∈

e
−1
x,i:i+(γi) does not matter in (5.2.4), by Lemma A.4, we may, and do, take

Yi ∈ t. If 0 < i < r, α ∈ Φ̃(C
(i)
G

(γ),T), andg ∈ Uα(E) ∩ G(E)x,(r−i)/2 ,
then choose

X ∈ Lie(Uα)(E) ∩ Lie(G)(E)x,(r−i)/2
such that

g ∈ e
E
x,((r−i)/2):((r−i)/2)+(X).
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(Such anX exists, by Lemma A.6.) SinceLie(Uα) is Abelian and preserved
by ad(Yi), we have that

[
[Yi, X], X

]
= 0, hence that

logΛ

√
B(g, g) = 1

2
X∗

[
[Yi, X], X

]
= 0.

If α = 0, then[γ−1
<r , g] = 1 ∈ ker φ̂E. Otherwise, by Lemma 4.1, Remark

4.2, and Hypothesis 2.3, we have

[γ−1
<r , g] ∈ Uα(E) ∩G(E)x,(r+i)/2 ⊆ (T,G)(E)x,(r+,s+) ⊆ ker φ̂E.

In either case,

Q(g) = φ̂E([γ−1, g]) = φ̂E([γ−1
<r , g]) = 1 = Λ(logΛ

√
B(g, g)).

By Definitions 5.13 and 9.3 of [6], we have shown equality on a set of
semigroup generators forJγ; x, rK

(s)
G(E). Sinceg 7→ Q(g)Λ(logΛ

√
B(g, g))−1

is multiplicative by (5.2.1) and Lemma 5.2.8, we have equality everywhere.
�

Lemma 5.2.10. If g2 ∈ Jγ; x, rK(s) is such thatB(g, g2) = 1 for all g ∈
Jγ; x, rK(s), theng2 ∈ Jγ; x, rK

(s)
G′ Jγ<r; x, r+K(s).

As remarked after Corollary 5.2.6, the unexpected appearance ofJγ<r; x, r+K(s)

in place ofJγ; x, r+K(s) compensates for the fact thatγ might not have a
normal(r+)-approximation.

Proof. By Lemma 5.2.7 (and the fact that, by Proposition 5.40 of [6],all the
terms in a decomposition (5.2.2) of anF -rational element may be taken to
beF -rational), it suffices to consider the case thatg2 ∈ C

(i)
G (γ)x,(r−i)/2 for

some0 < i < r. Notice that[g2, γ
−1] = [g2, γ

−1
≥i ] ∈ C

(i)
G (γ)x,(r+i)/2 . There-

fore, if g ∈ (C
(i)
G (γ), G)x,(((r−i)/2)+,(r−i)/2), then Lemma 5.32 of [6] gives

that
[
[g2, γ

−1], g
]
∈ (C

(i)
G (γ), G)x,(r+,r), hence, by Lemma 4.1 and Remark

4.2, that
[
[γ−1, g2], φ̂

]
(g) := φ̂

([
[g2, γ

−1], g
])

= 1. That is,
[
[γ−1, g2], φ̂

]
is

trivial on (C
(i)
G (γ), G)x,(r+,r). By hypothesis, it is also trivial onC(i)

G (γ)x,r ,
hence, by Proposition 5.40 of [6], onGx,r . By Lemma B.1,

g2 ∈ (C
(i)
G′ (γ), C

(i)
G (γ))x,((r−i)/2,((r−i)/2)+) ⊆ Jγ; x, rK

(s)
G′ Jγ<r; x, r+K(s),

as desired. �

Via (5.2.1), we may view Lemma 5.2.10 as an “upper bound” on the size
of the level set ofQ containing a fixed elementg. Since Corollary 5.2.6
describes uniform “lower bounds” on the sizes of the level sets of Q, we
have quite precise local constancy information.
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Notation 5.2.11. In addition to Notation 3.6, forα ∈ Φ(G,T), let Vα

denote the image of

Lie(G)α(E) ∩ Lie(Jγ; x, rK
(s)
G(E))

in
Lie(Jγ; x, rK

(s)
G′(E)Jγ<r; x, r+K

(s)
G(E))\Lie(Jγ; x, rK

(s)
G(E)),

andVα the set ofΓα-fixed points inVα. (The symbolsVα andVα had
a different meaning in§3.) More concretely, we have thatVα = {0}
if α ∈ Φ(G′,T) ∪ Φ(C

(r)
G

(γ),T) or α 6∈ Φ(C
(0+)
G

(γ),T); and, if α ∈
Φ(C

(0+)
G

(γ),T)r(Φ(G′,T)∪Φ(C
(r)
G

(γ),T)), thenVα
∼= Eu(α+(r−i)/2):(α+(r−i)/2)+ ,

wherei = ord(α(γ<r)−1) andα+(r− i)/2 is the affine root with gradient
αwhose value atx is (r−i)/2. PutΥ(φ, γ) =

{
α ∈ Φ(G,T)

∣∣ Vα 6= {0}
}

,
and

Υsymm,unram(φ, γ) =
{
α ∈ Υ(φ, γ)

∣∣ −α ∈ Γ · α andηα 6= 1 on fα
}
,

Υsymm,ram(φ, γ) =
{
α ∈ Υ(φ, γ)

∣∣ −α ∈ Γ · α andηα = 1 on fα
}
,

and

Υsymm(φ, γ) =
{
α ∈ Υ(φ, γ)

∣∣ − α 6∈ Γ · α
}
.

We will omit φ andγ from the notation when convenient. Note that all
of these sets areΓ × {±1}-stable. We denote bẏΥsymm,unram(φ, γ) and
Υ̇symm,ram(φ, γ) sets of representatives for theΓ-orbits in the appropriate
sets; and bÿΥsymm(φ, γ) a set of representatives for theΓ × {±1}-orbits
in Υsymm. Finally, putΥ̇symm(φ, γ) = Υ̇symm,unram∪ Υ̇symm,ram, Υ̇(φ, γ) =

Υ̇symm∪ ±Ϋsymm, andf(Υ̇symm,ram(φ, γ)) =
∑

α∈Υ̇symm,ram
fα.

The proof of the following result is a relatively straightforward applica-
tion of results from [6] that allow us to combine and manipulate groups of
the formTGx,f .

Proposition 5.2.12.

|G̃(φ, γ)| =
[
Jγ<r; x, rK : Jγ<r; x, rKG′Gx,s

]1/2

×
[
Jγ<r; x, r+K : Jγ<r; x, r+KG′Gx,s+

]1/2

× |(C(0+)
G′ (γ), C

(0+)
G (γ))x,(r,s):(r,s+)|−1/2

Proof. Since none of the quantities involved change if we replaceγ by γ<r,
we do so. WriteV = Jγ; x, rK

(s)
G′ Jγ; x, r+K(s)\Jγ; x, rK(s). For 0 < j < s,

we have that(C(r−2j)
G′ (γ), C

(r−2j)
G (γ))x,(j,j):(j,j+) is naturally isomorphic to

a subgroup ofV. It is straightforward to check thatV is the direct sum of
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these subgroups. Then reasoning as in the proof of Proposition 3.8 (applied
to each direct summand) shows that

(5.2.5) V ∼=
⊕

α∈Υ̇symm

Vα ⊕
⊕

α∈Ϋsymm

V±α =: V,

where, as before, we have writtenV±α = Vα ⊕ V−α for α ∈ Ϋsymm. Write
B for the pairing onV induced by (5.2.5) (and the pairinglogΛ

√
B onV).

Notice thatB is f-bilinear. By Lemma 5.2.10,B is non-degenerate.
By Corollaries 5.2.6 and 5.2.9,

G̃ =
[
Jγ; x, rK

(s)
G′ Jγ; x, r+K : Jγ; x, rK

(s)
G′C

(0+)
G (γ)x,s

] ∑

g∈V

Q(g)

=
[
Jγ; x, rK

(s)
G′ Jγ; x, r+K : Jγ; x, rK

(s)
G′C

(0+)
G (γ)x,s

] ∑

X∈V

Λ(B(X,X)).

SinceB is non-degenerate, we have by Lemma 5.2.2 that (in the notation
of that lemma)

∣∣∣∣∣
∑

X∈V

Λ(B(X,X))

∣∣∣∣∣ =
∣∣∣|V |1/2 G(V,B)

∣∣∣ = |V |1/2 = |V|1/2 .

Thus

(5.2.6)

|G̃| =
[
Jγ; x, rK

(s)
G′ Jγ; x, r+K(s) : Jγ; x, rK

(s)
G′C

(0+)
G (γ)x,s

]

×
[
Jγ; x, rK(s) : Jγ; x, rK

(s)
G′ Jγ; x, r+K(s)

]1/2

=
[
Jγ; x, rK

(s)
G′ Jγ; x, r+K(s) : Jγ; x, rK

(s)
G′C

(0+)
G (γ)x,s

]1/2

×
[
Jγ; x, rK(s) : Jγ; x, rK

(s)
G′C

(0+)
G (γ)x,s

]1/2

.

(In the second and third expressions being compared, the first terms are the
same, except that the latter contains an extra exponent of1/2.) By Remarks
6.7(1) and 6.7(4) of [6],

(5.2.7) Jγ; x, rK(s)Gx,s = Jγ; x, rK.

Upon writingJγ; x, r+K(s) andJγ; x, r+K(s+) as groups of the formTGx,f ,
using Definition 9.3 ofloc. cit., we see thatJγ; x, r+K(s) = Jγ; x, r+K(s+).
Therefore, again by Remarks 6.7(1) and 6.7(4) ofloc. cit., we have that

(5.2.8) Jγ; x, r+K(s)Gx,s+ = Jγ; x, r+K.
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By Proposition 5.40 and Lemma 5.29 of [6], we have the following equali-
ties:

Jγ; x, rK(s) ∩ Jγ; x, rKG′Gx,s = Jγ; x, rK
(s)
G′C

(0+)
G (γ)x,s ,(5.2.9)

Jγ; x, r+K(s) ∩ Jγ; x, rK
(s)
G′C

(0+)
G (γ)x,s = Jγ; x, r+K

(s)
G′C

(0+)
G (γ)x,s ,

(5.2.10)

Jγ; x, r+K(s) ∩ Jγ; x, r+KG′(C
(0+)
G (γ), G)x,(s,s+) = Jγ; x, r+K

(s)
G′C

(0+)
G (γ)x,s ,

(5.2.11)

and

(C
(0+)
G′ (γ), C

(0+)
G (γ))x,(r,s) ∩ Jγ; x, rKG′Gx,s+ = (C

(0+)
G′ (γ), C

(0+)
G (γ))x,(r,s+).

(5.2.12)

By (5.2.7) and (5.2.9), we have a bijection

Jγ; x, rK
(s)
G′C

(0+)
G (γ)x,s\Jγ; x, rK(s) −→ Jγ; x, rKG′Gx,s\Jγ; x, rK,

so
(5.2.13)[

Jγ; x, rK(s) : Jγ; x, rK
(s)
G′C

(0+)
G (γ)x,s

]
=

[
Jγ; x, rK : Jγ; x, rKG′Gx,s

]
.

By (5.2.8), sinceGx,s+ ⊆ Jγ; x, r+KG′(C
(0+)
G (γ), G)x,(s,s+), we have that

Jγ; x, r+KG′(C
(0+)
G (γ), G)x,(s,s+)\Jγ; x, r+K

is naturally in bijection with
(
Jγ; x, r+KG′(C

(0+)
G (γ), G)x,(s,s+) ∩ Jγ; x, r+K(s)

)
\Jγ; x, r+K(s),

which, by (5.2.11), is just

Jγ; x, r+K
(s)
G′C

(0+)
G (γ)x,s\Jγ; x, r+K(s).

By (5.2.10), this latter set is naturally in bijection with

Jγ; x, rK
(s)
G′C

(0+)
G (γ)x,s\Jγ; x, rK(s)

G′ Jγ; x, r+K(s).

Thus,

(5.2.14)
[
Jγ; x, rK

(s)
G′ Jγ; x, r+K(s) : Jγ; x, rK

(s)
G′C

(0+)
G (γ)x,s

]

=
[
Jγ; x, r+K : Jγ; x, r+KG′(C

(0+)
G (γ), G)x,(s,s+)

]
.

By (5.2.12), we have an injection

(C
(0+)
G′ (γ), C

(0+)
G (γ))x,(r,s):(r,s+) −→ Jγ; x, r+KG′Gx,s+\Jγ; x, r+K.

By Proposition 5.40 of [6], the cokernel of this injection is

Jγ; x, r+KG′(C
(0+)
G (γ), G)x,(s,s+)\Jγ; x, r+K,
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so

(5.2.15)
[
Jγ; x, r+K : Jγ; x, r+KG′Gx,s+

]

= |(C(0+)
G′ (γ), C

(0+)
G (γ))x,(r,s):(r,s+)|

×
[
Jγ; x, r+K : Jγ; x, r+KG′(C

(0+)
G (γ), G)x,(s,s+)

]

= |(C(0+)
G′ (γ), C

(0+)
G (γ))x,(r,s):(r,s+)|

×
[
Jγ; x, rK

(s)
G′ Jγ; x, r+K(s) : Jγ; x, rK

(s)
G′C

(0+)
G (γ)x,s

]
.

(where the last equality follows from (5.2.14)). Upon plugging (5.2.13) and
(5.2.15) into (5.2.6), we obtain the desired formula for|G̃|. �

Proposition 5.2.13.

G(φ, γ) = (−1)|Υ̇symm(φ,γ)|(−GΛ(f))f(Υ̇symm,ram(φ,γ))

×
∏

α∈Υ̇symm,ram(φ,γ)

[
sgnfα

(
1
2
eαNFα/F±α

(wα)dα
∨(X∗)(α(γ<r) − 1)

)

× sgnF±α
(G±α)

]
,

where

• GΛ(f) is as in Definition 5.2.1;
• dα∨(X∗) = X∗(dα∨(1));
• wα is any element ofFα, of valuation

(
r − ord(α(γ<r) − 1)

)
/2,

whose square lies inF±α;
• G±α is the group generated by the root subgroupsUα andU−α of

G; and
• sgnF±α

(G±α) is +1 or −1 according asG±α is or is notF±α-split,
respectively.

We will show in the proof that an elementwα as in the statement exists.

Proof. As in the proof of Proposition 5.2.12, we may, and do, replaceγ
by γ<r. Recall the notationB andV from the proof of Proposition 5.2.12,
and the elementsYi chosen before Lemma 5.2.8. By the way we defined
logΛ

√
B and the isomorphism in (5.2.5),Vα is B-orthogonal toVβ unless

−β ∈ Γ · α, and

(5.2.16) B(X,X ′) =
∑

η∈Γ/Γα

η
(

1
2
X∗

[
[Yi, X], ηαX

′
])

for X,X ′ ∈ Vα with α ∈ Υ̇symm,

wherei = ord(α(γ) − 1). In particular, the sums on the right-hand side of
(5.2.5) areB-orthogonal.
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Put G = G(φ, γ). We showed in the proof of Proposition 5.2.12 that
G = G(V,B), in the notation of Lemma 5.2.2; so, by that lemma, we have
thatG = sgnf(detB)GΛ(f)dimf V . By (5.2.5),
(†)
G =

∏

α∈Υ̇symm

sgnf(detB
∣∣
Vα

)GΛ(f)dimf Vα ·
∏

α∈Ϋsymm

sgnf(detB
∣∣
V±α

)GΛ(f)dimf V±α .

We will use in our calculations below the fact thatGΛ(f)2 = sgnf(−1).
For α ∈ Ϋsymm, the matrix of the restriction ofB to V±α, with respect

to a suitable basis, is of the form
(

0 M
M t 0

)
for some matrixM . Thus the

determinant of this restriction is in the square class of(−1)dimf V±α/2, so

(5.2.17) sgnf(detB
∣∣
V±α

)GΛ(f)dimf V±α = 1.

Fix α ∈ Υ̇symmand puti = ord(α(γ)−1). Sinceα ∈ Φ(C
(0+)
G

(γ),T), we
have thati > 0. As in the proof of Corollary 5.2.9, we may, and do, assume
thatYi ∈ t. As in the proof of Proposition 3.8, we have an isomorphism
ια : Vα ∼= fα. PutXα = ι−1

α (1) andcα = X∗
[
[Yi, Xα], ηαXα

]
∈ f±α. By

(5.2.16),ια identifies the restriction ofB to Vα with the pairing

(t1, t2) 7→ 1
2
eα trfα/f(cα · t1ηα(t2))

on fα. The determinant of this pairing is

(∗)
(

1
2
eα

)fα
Nfα/f(cα)∆,

where∆ is the determinant of(t1, t2) 7→ trfα/f(t1ηα(t2)).

If α ∈ Υ̇symm,unram, thenfα = dimfVα is even (so
(

1
2
eα

)fα is a square) and
ηα is a(dimfVα/2)th power of a generator ofGal(fα/f), sosgnGal(fα/f)(ηα) =

(−1)dimf Vα/2 (wheresgnGal(fα/f) is as in Lemma 3.1). Further, we have that
Nfα/f(cα) = Nf±α/f(cα)

2 ∈ (f×)2. By Lemma 3.1,

sgnf(∆) =
(
− sgnf(−1)dimf Vα/2

)fα+1
= − sgnf(−1)dimf Vα/2,

so (∗) gives

(5.2.18) sgnf(detB
∣∣
Vα

)GΛ(f)dimf Vα = sgnf(∆)(GΛ(f)2)dimf Vα/2

= − sgnf(−1)dimf Vα/2 sgnf(−1)dimf Vα/2 = −1.

If α ∈ Υ̇symm,ram, thenFα/F±α is totally ramified. Sinceηαα(γ) =
α(γ)−1, we have thati = ord(α(γ)−1) ∈ ord(F×

α )rord(F×
±α). Similarly,

sinceηαdα∨(X∗) = −dα∨(X∗), we have that−r ∈ ord(F×
α ) r ord(F×

±α).
Sinceord(F×

α )/ ord(F×
±α)

∼= Z/2Z, we have thatr − i ∈ ord(F×
±α), so

(r − i)/2 ∈ ord(F×
α ). Let ̟α be a uniformizer ofFα that is negated by

ηα, and letwα be a power of̟ α that has valuation(r − i)/2. In particular,
w2
α ∈ F±α.
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PutHα = dα∨(1) ∈ Lie(G±α)(Fα), so thatdα∨(X∗) = X∗(Hα). Then
Lie(G±α) is the sum of theα-weight spaceLie(G)α, the (−α)-weight
spaceLie(G)−α, and the Cartan subgrouptttα spanned byHα. Since[Xα, ηαXα]
andHα both belong to the1-dimensionalFα-spacetttα(Fα) andHα 6= 0, we
have that there is a constanttα ∈ Fα so that[Xα, ηαXα] = tαHα. SinceHα

and[Xα, ηαXα] are both negated byηα, we have thattα ∈ F±α. Then

cα = X∗
[
[Yi, Xα], ηαXα

]
= X∗(dα(Yi)tαHα) = tαdα∨(X∗)dα(Yi).

We claim thatord(tα) = r − i. Indeed, sincedx(Hα) = 0, we have that
ord(tα) = dx([Xα, ηαXα]) ≥ r − i. Suppose that we hadord(tα) > r − i.
Sinceord(dα∨(X∗)) ≥ −r andord(dα(Yi)) ≥ i, this would mean thatcα
was the projection tofE of an element ofE0+ ; that is, thatcα = 0. (Both
inequalities of valuations in the previous sentence are actually equalities;
but we do not need this.) ThusVα would be totallyB-isotropic — which,
by orthogonality of the sum in (5.2.5), would be a contradiction of the non-
degeneracy ofB.

We claim thattαNFα/F±α
(wα)

−1 projects to a square inf×α if and only if
G±α is F±α-split; i.e., if and only ifLie(G±α) is F±α-isomorphic tosl2.
Once we have shown this, we will have that

(∗∗) sgnf(Nfα/f(cα)) = sgnfα
(cα)

= sgnfα

(
NFα/F±α

(wα)dα
∨(X∗)dα(Yi)

)
sgnF±α

(G±α).

If the image infα of tαNFα/F±α
(wα)

−1 equalsθ
−2

for someθ ∈ f×α , then,
sincefα = f±α andp 6= 2, we may find an elementθ ∈ F×

±α such that
tαNFα/F±α

(wα)
−1 = θ−2. Then the uniqueFα-linear mapLie(G±α) −→

sl2 satisfying

Xα 7→ wα
2θ

(
−1 ̟−1

α

−̟α 1

)
, ηαXα 7→ ηαwα

2θ

(
−1 −̟−1

α

̟α 1

)
,

Hα 7→
(

0 ̟−1
α

̟α 0

)

is anF±α-isomorphism of Lie algebras.
Suppose, on the other hand, thatι : Lie(G±α) −→ sl2 is an F±α-

isomorphism of Lie algebras. Then the co-character latticeof ι(tttα) contains
a simultaneous(−1)-eigenvector for every element ofηα ·Gal(F sep/Fα), so
the CartanF±α-subalgebraι(tttα) is GL2(F±α)-conjugate to the CartanF±α-

subalgebrattt′ spanned by
(

0 ̟−1
α

̟α 0

)
. Replaceι by its composition with the

indicated conjugation. Note thatdα ◦ ι−1 is a weight for the adjoint action
of ttt′ on sl2, hence is of the form±dα′, wheredα′ is the functional onttt′

sending
(

0 ̟−1
α

̟α 0

)
to 2. After further conjugating by( 0 1

−1 0 ) if necessary,
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we may, and do, assume thatdα ◦ ι−1 = dα′. Then there is a constant
t′α ∈ Fα such that

ι(Xα) = t′α

(
−1 ̟−1

α

−̟α 1

)
,

hence

ι(ηαXα) = ηα(ι(Xα)) = ηα(t
′
α)

(
−1 −̟−1

α

̟α 1

)
.

Recall thatι(Hα) ∈ ttt′(Fα) is a scalar multiple of
(

0 ̟−1
α

̟α 0

)
. Since

dα′(ι(Hα)) = dα(Hα) = 2 = dα′

(
0 ̟−1

α

̟α 0

)
,

in fact ι(Hα) =
(

0 ̟−1
α

̟α 0

)
. Thus,

ι(tαHα) = ι([Xα, ηαXα]) = [ι(Xα), ι(ηαXα)] = NFα/F±α
(2t′α)ι(Hα).

That is,tα = NFα/F±α
(2t′α). Sinceord(tα) = r − i, we haveord(t′α) =

(r − i)/2. Then

tαNFα/F±α
(wα)

−1 = NFα/F±α
(2t′αw

−1
α ) ≡ (2t′αw

−1
α )2 (mod (F×

α )0+),

i.e.,tαNFα/F±α
(wα)

−1 projects to the square of2t′αw
−1
α .

By Lemma 3.1,sgnf(∆) = (−1)fα+1. Now (∗) and (∗∗) give

(5.2.19) sgnf(detB
∣∣
Vα

)GΛ(f)dimf Vα

= (−1)fα+1
(
sgnf(

1
2
eα)GΛ(f)

)fα

× sgnfα
(NFα/F±α

(wα)dα
∨(X∗)dα(Yi)) sgnF±α

(G±α)

= −(−GΛ(f))fα

× sgnfα
(1

2
eαNFα/F±α

(wα)dα
∨(X∗)dα(Yi)) sgnF±α

(G±α).

We have used thatsgnfα
(n) = sgnf(n)fα for n ∈ f. (Note that, iffα is even,

then 1
2
eα ∈ f× ⊆ (f×α )2, andGΛ(f)fα = sgnf(−1)fα/2.)

Upon combining (†) with (5.2.17)–(5.2.19), and the facts that

• dα(Yi) ∈ (α(γi) − 1) + Ei+ (by Lemma A.5),
• α(γi) ∈ α((γ<r)≥i) + Ei+ , and
• α((γ<r)≥i) = α(γ<r),

we obtain the desired formula. �
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5.3. A formula for θσ onG′. The following easy technical result on inte-
gration is probably well known, but we could not find a reference.

Lemma 5.3.1.Suppose thatA is a locally compact, Hausdorff topological
group, andB andC are closed subgroups ofA such that

• B\A carries a quotient measure;
• the image ofC under the projectionA −→ B\A is open; and
• B ∩ C is compact.

Then, for any right Haar measuresda and db, onA andB, respectively,
there is a right Haar measuredc onC such that

∫

BC

f(a)da =

∫

C

∫

B

f(bc)db dc

for all continuous, compactly supported functionsf onA.

Proof. The choice ofda anddb fixes a choice of quotient measuredȧ on
B\A. Since(B ∩ C)\C embeds naturally as an open subset ofB\A, dȧ
induces a quotient measuredċ on (B ∩ C)\C. Let db′ be the Haar measure
onB ∩ C such thatmeasdb′(B ∩ C) = 1. The choice ofdċ anddb′ fixes a
choice of measuredc onC. Then

∫

BC

f(a)da =

∫

A

[BC](a)f(a)da

=

∫

B\A

∫

B

[BC](ba)f(ba)db dȧ

=

∫

B\A

[BC](a)

∫

B

f(ba)db dȧ.

Since the support of the outer integral is contained in (the image of)(B ∩
C)\C, we have by our choice ofdċ that

∫

BC

f(a)da =

∫

(B∩C)\C

∫

B

f(bc)db dċ

=

∫

(B∩C)\C

∫

B∩C

∫

B

f(bb′c)db db′ dċ

=

∫

C

∫

B

f(bc)db dc. �

Recall thatγ is semisimple andx ∈ Br(γ).
Proposition 5.3.2.

θσ(γ) =
∑

g∈Jγ;x,rK
(s)

G′ C
(0+)
G (γ)x,s\Jγ;x,rK

(s)

θρ̃(
gγ).



SUPERCUSPIDAL CHARACTERS 47

Proof. By the Frobenius formula,

θσ(γ) =
∑

g∈stabG′ (x)Gx,s\ stabG′ (x)Gx,0+

θ̇ρ̃(
gγ).

SincestabG′(x)Gx,s∩Gx,0+ = G′
x,0+Gx,s — which, by Proposition 5.40 of

[6], is (G′, G)x,(0+,s) — the indexing set for the sum is naturally in bijection
with (G′, G)x,(0+,s)\Gx,0+ . Thus

(∗) θσ(γ) =

∫

Gx,0+

θ̇ρ̃(
gγ)dg,

wheredg is the Haar measure onGx,0+ normalized so that(G′, G)x,(0+,s)
has measure1.

PutS∞ = G′
x,0+Jγ; x, rK =

{
g ∈ Gx,0+

∣∣ j⊥(g) = ∞
}

, and, fori0, j0 ∈
R, put

Si0j0 =
{
g ∈ Gx,0+

∣∣ i⊥(g) = i0, j
⊥(g) = j0

}
.

Note that the setsSi0j0, together withS∞, form a partition ofGx,0+ . By
Remark 5.1.2, they are open. We will show that the portion of (∗) taken
over eachSi0j0 vanishes, so that the integral may be taken instead overS∞.

Fix i0, j0 ∈ R, and put
• t0 = i0 + j0,
• H = C

(i0)
G (γ),

• H ′ = C
(i0)
G′ (γ),

• B = (G′, G)x,(0+,j0+), and
• C =

{
g ∈ (H,G)x,(0+,t0+)

∣∣ [γ−1, g] ∈ (H ′, H)x,(t0+,t0)
}

.
We claim thatSi0j0 ⊆ BC.

This is obvious ifSi0j0 = ∅, so assume thatSi0j0 6= ∅. Fix s ∈ Si0j0 ,
so t⊥(s) = t0 (by Corollary 5.1.4). By Remark 5.1.2 and Corollary 5.1.5,
i0 < r − 2j0 andt0 < r − j0. By Lemma 5.1.6, there is

b1 ∈ (G′, G)x,(0+,j0+) = B

such that[γ−1, b−1
1 s] ∈ (H ′, H)x,(t0+,t0). By Lemma 9.8 of [6],b−1

1 s ∈
[γ; x, t0], where[γ; x, t0] is as in Definition 9.3 ofloc. cit. Puts1 = b−1

1 s.
By Remark 5.1.2,i⊥(s1) = i0, j⊥(s1) = j0, andt⊥(s1) = t0. Thus

s1 ∈ G′
x,0+Jγ; x, rK(H,G)x,(j0,j0+).

By Proposition 5.40 and Remark 6.7(4) of [6],

Jγ; x, rK(H,G)x,(j0,j0+) = Jγ; x, rK(j0)(H,G)x,(j0,j0+);

(H,G)x,(j0,j0+) = (H ′, G)x,(j0,j0+)(H
′, H)x,(j0+,j0);

and, since the commutator ofGx,0+ with (H ′, G)x,(j0,j0+) ⊆ Gx,j0 lies in

Gx,j0+ ⊆ (H ′, G)x,(j0,j0+), we have thatJγ; x, rK(j0) ⊆ Gx,0+ normalizes
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(H ′, G)x,(j0,j0+). Thus we may writes1 = k′k−k, with k′ ∈ G′
x,0+(H ′, G)x,(j0,j0+),

k− ∈ Jγ; x, rK(j0), andk ∈ (H ′, H)x,(j0+,j0). By Proposition 5.40 ofloc.
cit., k′ ∈ (G′, G)x,(0+,j0+) = B. By Remark 6.7(1) ofloc. cit.,

(5.3.1) Jγ; x, rK(j0) ⊆ [γ; x, r − j0]
(j0)

⊆ [γ; x, r − j0] ∩ C(r−2j0)
G (γ)x,0+ ⊆ [γ; x, t0+] ∩Hx,0+ .

Also, (H ′, H)x,(j0+,j0) ⊆ Hx,j0 ⊆ [γ; x, t0]. Sinces1 ∈ [γ; x, t0], this means
thatk′ ∈ [γ; x, t0]∩ (G′, G)x,(0+,j0+). By Lemma 5.29 and Proposition 5.40
of loc. cit.,

[γ; x, t0] ∩ (G′, G)x,(0+,j0+) = [γ; x, t0]
(j0+)
G′ ([γ; x, t0] ∩Gx,j0+).

Write k′ = k′′k′+, with k′′ ∈ [γ; x, t0]
(j0+)
G′ andk′+ ∈ [γ; x, t0] ∩ Gx,j0+ . By

Remark 6.7(1) ofloc. cit., [γ; x, t0]
(j0+)
G′ ⊆ H ′

x,0+ , so

[γ−1, k′′] ∈ H ′
x,0+ ∩G′

x,t0
= H ′

x,t0
⊆ (H ′, H,G)x,(t0,t0+,t0).

By Lemma 9.1 ofloc. cit.,

[γ−1, k′+] ∈ (H,G)x,(t0+,t0) ⊆ (H ′, H,G)x,(t0,t0+,t0).

Since the commutator ofGx,0+ with (H ′, H,G)x,(t0,t0+,t0) ⊆ Gx,t0 lies
in Gx,t0+ ⊆ (H ′, H,G)x,(t0,t0+,t0), in particulark′′ ∈ Gx,0+ normalizes
(H ′, H,G)x,(t0,t0+,t0). Thus

[γ−1, k′] ∈ (H ′, H,G)x,(t0,t0+,t0).

Now, using (5.3.1) and imitating the above argument that[γ−1, k′′] ∈
H ′
x,t0 , we see that[γ−1, k−] ∈ Hx,t0+ ⊆ (H ′, H)x,(t0+,t0). Also, by Lemma

5.32 (or Corollary 5.21, ifi0 = 0) of [6],

[γ−1, k] = [γ−1
≥i0
, k] ∈ (H ′, H)x,((i0+j0)+,i0+j0) = (H ′, H)x,(t0+,t0).

Thus, sincek− ∈ Hx,0+ normalizes(H ′, H)x,(t0+,t0),

[γ−1, k−k] ∈ (H ′, H)x,(t0+,t0).

Thuss = bc, whereb := b1k
′ ∈ B andc := k−k ∈ C.

Now we claim that ∫

Si0j0

θ̇ρ̃(
gγ)dg = 0.
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Once again, this is obvious ifSi0j0 = ∅, so supposeSi0j0 6= ∅. Note that
(H ′, H)x,((r−t0)+,r−t0) ⊆ B. By Lemma 5.3.1, applied to the function send-
ing g ∈ G to [Si0j0](g)θ̇ρ̃(

gγ), we have that

(5.3.2)
∫

Si0j0

θ̇ρ̃(
gγ)dg = (const)

∫

B

∫

C

[Si0j0 ](bc)θ̇ρ̃(
bcγ)dc db

= (const)
∫

B

∫

C

∫

(H′,H)x,((r−t0)+,r−t0)

[Si0j0 ](bhc)θ̇ρ̃(
bhcγ)dh dc db.

Supposeb ∈ B, h ∈ (H ′, H)x,((r−t0)+,r−t0), andc ∈ C. By Remark 5.1.2,
[Si0j0 ](bhc) = [Si0j0](c). We have that

(5.3.3) hcγ = [h, γ] · cγ ·
[
[c, γ−1], h

]
.

By Lemma 5.32 (or Corollary 5.21, ifi0 = 0) of [6],
(5.3.4)

[h, γ] = [h, γ≥i0] ∈ (H ′, H)x,(r−t0+i0)+,r−t0+i0) ⊆ (G′, G)x,(r+,r−j0).

By the definition of the groupC, we have[c, γ−1] ∈ Gx,t0 . Thus, since
h ∈ Gx,r−t0 , we have

(5.3.5)
[
[c, γ−1], h

]
∈ Gx,r .

Combining (5.3.3)–(5.3.5) gives

bhcγ ∈ b(G′, G)x,(r+,r−j0) · bcγ · b
[
[c, γ−1], h

]

⊆ (G′, G)x,(r+,r−j0) · bcγ ·
[
[c, γ−1], h

]
Gx,r+

for b ∈ B = (G′, G)x,(0+,j0+). The containment on the second line fol-
lows from the fact that, by Corollary 5.18 of [6],(G′, G)x,(r+,r−j0) is nor-
malized byB = (G′, G)x,(0+,j0). Now, by Lemma 2.5 and the fact that
(G′, G)x,(r+,r−j0) ⊆ ker φ̂,

θ̇ρ̃(
bhcγ) = φ̂

([
[c, γ−1], h

])
θ̇ρ̃(

bcγ) =
[
[γ−1, c], φ̂

]
(h)θ̇ρ̃(

bcγ),

where
[
[γ−1, c], φ̂] is the character ofGx,r−t0 given byg 7→ φ̂

([
[c, γ−1], g

])
.

In particular, the inner integral in (5.3.2) is0 unlessc ∈ C ∩ Si0j0 and[
[γ−1, c], φ̂] is trivial on (H ′, H)x,((r−t0)+,r−t0).

Fix c ∈ C ∩ Si0j0 for which the indicated character is trivial. Ifg ∈
G′
x,r−t0

, then, by two applications of Hypothesis A.1(5)
[
[γ−1, c], φ̂

]
(g) = φ̂

([
[c, γ−1], g

])
= 1.

If g ∈ (H,G)x,((r−t0)+,r−t0), then, since[c, γ−1] ∈ (H ′, H)x,(t0+,t0) ⊆
Hx,t0 , we have by Lemma 5.32 of [6] that

[
[c, γ−1], g

]
∈ (H,G)x,(r+,r). By

Lemma 4.1 and Remark 4.2,(H,G)x,(r+,r) ⊆ ker φ̂, sog ∈ ker
[
[γ−1, c], φ̂

]
.
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We have seen that
[
[γ−1, c], φ̂

]
is trivial on the group generated by(H ′, H)x,((r−t0)+,r−t0),

G′
x,r−t0

, and(H,G)x,((r−t0)+,r−t0), which, by Proposition 5.40 of [6], is all
of Gx,r−t0 . By Lemma B.1, this means that[γ−1, c] ∈ (G′, G)x,(0+,t0+).
Sincec ∈ C, also[γ−1, c] ∈ (G′, G)x,(t0+,t0); so in fact[γ−1, c] ∈ Gx,t0+ .
This contradicts the fact thatt0 = t⊥(c). Thus the inner integral in (5.3.2)
is always0, so

∫
Si0j0

θ̇ρ̃(
gγ)dg = 0, as desired.

By Remarks 6.7(1) and 6.7(4) of [6],Gx,sJγ; x, rK
(s) = Jγ; x, rK; and, by

Proposition 5.40 ofloc. cit.,G′
x,0+Gx,s = (G′, G)x,(0+,s); soG′

x,0+Jγ; x, rK =

(G′, G)x,(0+,s)Jγ; x, rK
(s). By Lemma 5.3.1, there is a measuredh onJγ; x, rK(s)

such that∫

G′
x,0+Jγ;x,rK

f(g)dg =

∫

Jγ;x,rK(s)

∫

(G′,G)x,(0+,s)

f(gh)dg dh

for all continuous functionsf onGx,0+ . By definition,measdg((G
′, G)x,(0+,s)) =

1, so

measdh(Jγ; x, rK
(s)) = measdg(G

′
x,0+Jγ; x, rK)

=
[
G′
x,0+Jγ; x, rK : (G′, G)x,(0+,s)

]

=
[
Jγ; x, rK(s) : Jγ; x, rK(s) ∩ (G′, G)x,(0+,s)

]
.

By Lemma 5.29 of [6],Jγ; x, rK(s)∩(G′, G)x,(0+,s) = Jγ; x, rK
(s)
G′C

(0+)
G (γ)x,s .

Thus

θσ(γ) =

∫

G′
x,0+Jγ;x,rK

θ̇ρ̃(
gγ)dg =

∫

Jγ;x,rK(s)

∫

(G′,G)x,(0+,s)

θ̇ρ̃(
ghγ)dg dh

=

∫

Jγ;x,rK(s)
θ̇ρ̃(

hγ)dh =
∑

g∈Jγ;x,rK
(s)

G′ C
(0+)
G (γ)x,s\Jγ;x,rK

(s)

θ̇ρ̃(
gγ). �

Proposition 5.3.3.

θσ(γ) =
[
Jγ<r; x, rK : Jγ<r; x, rKG′Gx,s

]1/2

×
[
Jγ<r; x, r+K : Jγ<r; x, r+KG′Gx,s+

]1/2

× G(φ, γ<r)ε(φ, γ<r)θτd−1
(γ),

whereG(φ, γ<r) is as in Proposition 5.2.13 andε(φ, γ<r) is as in Proposi-
tion 3.8.

Proof. By Lemma 2.5, applied toσ = σd and τd−1 (using the fact that
G′
x,rd−1

⊆ G′
x,rd−2+

), it suffices to verify the desired equality whenγ = γ<r.
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Then, by Proposition 5.3.2 and Lemma 2.5, we have

θσ(γ) =
∑

g∈Jγ;x,rK
(s)

G′ C
(0+)
G (γ)x,s\Jγ;x,rK

(s)

θ̇ρ̃(
gγ)

= θρ̃(γ)
∑

g∈Jγ;x,rK
(s)

G′ C
(0+)
G (γ)x,s\Jγ;x,rK

(s)

φ̂([γ−1, g]) = θρ̃(γ) |G̃|G

(whereG̃ = G̃(φ, γ) andG = G(φ, γ) are the quantities calculated in§5.2).
If γ ∈ stabG′ (x)Kd−1 — say,γ = gk, with g ∈ stabG′(x) andk ∈ Kd−1 —
then Lemma 2.4 and Proposition 3.8 show that

θρ̃(γ) = θρ̃(k) = θφ̃(k ⋉ 1)θτd−1
(k) = θφ̃(γ ⋉ 1)θτd−1

(γ)

= |(C(0+)
G′ (γ), C

(0+)
G (γ))x,(r,s):(r,s+)|1/2 ε(φ, γ)θτd−1

(γ).

As in the proof of Lemma 2.5, we see thatK ∩ stabG′(x) = Kd−1. Thus,
sinceJ ⊆ K, we havestabG′ (x)JK∩stabG′(x) = stabG′ (x)(K∩stabG′(x)) =
stabG′ (x)Kd−1. Sinceγ ∈ stabG′(x), we have that, ifγ 6∈ stabG′ (x)Kd−1 —
so thatθτd−1

(γ) = 0 — thenγ 6∈ stabG′ (x)JK — so that again

θρ̃(γ) = 0 = |(C(0+)
G′ (γ), C

(0+)
G (γ))x,(r,s):(r,s+)|1/2 ε(φ, γ)θτd−1

(γ).

To complete the proof, we note that, by Proposition 5.2.12,

|G̃| · |(C(0+)
G′ (γ), C

(0+)
G (γ))x,(r,s):(r,s+)|1/2

equals
[
Jγ; x, rK : Jγ; x, rKG′Gx,s

]1/2[
Jγ; x, r+K : Jγ; x, r+KG′Gx,s+

]1/2

. �

6. INDUCTION TOG

In this section, we compute the character of the representation τ = τd
of stabG(x) induced from the representation(σ,Kσ) whose character we
computed in§5. If G

′/Z(G) is F -anisotropic, then we also compute the
character of the representationπ = πd of G induced from(σ,Kσ). As in
§5, unless certain tameness and compactness hypotheses are satisfied, we
must place mild restrictions on the elements that we consider.

Namely, we fix throughout this section an elementγ ∈ G, and assume
that γ has a normalr-approximation; but, unless otherwise stated, we do
not assume thatγ ∈ G′ or x ∈ Br(γ). By Lemma 8.1 of [6], under suitable
assumptions onG, any bounded-modulo-Z(G) element ofG that belongs
to a tameF -torus will do. By [13] or [24],Θπ(γ) = 0 unlessγ is bounded
moduloZ(G), and the domain ofτ is already bounded moduloZ(G); so,
under these assumptions, we need only require thatγ be tame. (Remember
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that an element or subgroup ofG is said to be bounded moduloZ(G) if its
orbits inBred(G, F ) are bounded in the sense of metric spaces.)

Lemma 6.1. If M is a LeviF -subgroup ofG andδ ∈ Gss, then

M\
{
g ∈ G

∣∣ gδ ∈M
}
/CG(δ)◦

is finite.

Note thatM above need not be anF -Levi subgroup (i.e., a Levi compo-
nent of a parabolicF -subgroup).

Proof. PutH = CG(δ) andC =
{
g ∈ G

∣∣ gδ ∈M
}

. Since every(NG(M), H◦)-
double coset is a finite union of(M,H◦)-double cosets, it suffices to show
thatNG(M)\C/H◦ is finite.

Let S be a maximal torus inG containingδ. For g ∈ C, we have that
Z(Mg)◦ ⊆ S ⊆ H

◦, soM
g ∩ H

◦ = CH◦(Z(Mg)◦) is a Levi subgroup
(necessarily defined overF ) of H

◦. Consider theH-equivariant mapf
fromNG(M)\C to the set of LeviF -subgroups ofH◦ that sendsNG(M)g
to M

g ∩H
◦. We claim thatf is finite-to-one. Indeed, forg0 ∈ C, fix a torus

T
g0 that is maximal inMg0 ∩H

◦, hence inG. ThenNG(M)g 7→ M
g is an

injection from the fiber off overMg0 ∩ H
◦ into the set of Levi subgroups

of G containingTg0, which is finite.
Thus there is a finite-to-one map fromNG(M)\C/H◦ to the set ofH◦-

orbits of LeviF -subgroups ofH◦. Recall that there are only finitely many
H

◦(F sep)-orbits of Levi subgroups ofH◦. Thus it suffices to show that ev-
ery such orbit contains at most finitely manyH◦-orbits of LeviF -subgroups.

Accordingly, fix a Levi subgroupL ⊆ H
◦. Clearly, it suffices to consider

the case whereL isF -rational. Then the intersection of theH◦(F sep)-orbit
of L with the set of LeviF -subgroups ofH◦ is
{
L
h
∣∣ h ∈ H

◦(F sep) andhσ(h)−1 ∈ NH◦(L)(F sep) for σ ∈ Gal(F sep/F )
}
,

which is naturally inH◦-equivariant bijection with(NH◦(L)\H◦)(F ). Thus,
it suffices to show that(L\H◦)(F )/H◦ is finite. Standard Galois cohomol-
ogy arguments show that this latter set is in bijection with the kernel of
the natural mapH1(F sep/F,L(F sep)) −→ H1(F sep/F,H◦(F sep)). Un-
der the assumption thatF has characteristic0 and thatG is F un-split and
F -quasisplit, [22,§§2.2–2.3], describes a bijection ofH1(F un/F,L(F un))
with the set of torsion points in a certain finite quotient of the lattice of
cocharacters of a certain torus (see Corollary 2.3.3 ofloc. cit.). However, it
is observed there that the splitness and quasisplitness assumptions are un-
necessary (although we need to take the torusT of §2.3 of loc. cit. to be
the centralizer of a maximalF un-split torus containing a maximalF -split
torus); and it can be checked that the proof also does not require charF = 0.
Thus,H1(F un/F,L(F un)) is finite. SinceH1(F sep/F un,L(F sep)) = {0}
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(as observed in [6,§3.2]), we have by [58,§I.5.8(a)] thatH1(F sep/F,L(F sep)),
hencea fortiori the desired kernel, is also finite. �

For the remainder of this paper, we fix a normalr-approximation toγ
(hence to all of its conjugates and truncations), so thatγ<r is a well de-
fined element. For the remainder of this section, we putH = CG(γ<r).
(Note that Proposition 8.4 of [6] guarantees only thatH

◦, not necessarily
H itself, is determined byγ; but, since we have chosen a specific normal
r-approximation, there is no ambiguity.)

We need to prove a result analogous to Lemmata 10.0.5 and 10.0.6 of
[22]. First, we prove an analogue of Lemma 7.0.9 ofloc. cit.

Lemma 6.2.Suppose thatγ is regular semisimple inG. Thenγ≥r is regular
semisimple inH.

Proof. By Definition 6.8 and Lemma 6.13 of [6],γ ∈ C
(r)
G (γ) = H◦. Thus,

there is a torus containing bothγ andγ<r, hence alsoγ≥r. In particular,
γ≥r ∈ H◦ is semisimple, so it suffices to show thatCH(γ≥r)

◦ is contained
in a torus. We have thatCH(γ≥r) ⊆ CG(γ<rγ≥r) = CG(γ), soCH(γ≥r)

◦ ⊆
CG(γ)◦. By regularity ofγ, we have thatCG(γ)◦ is a torus. The proof is
complete. �

Lemma 6.3. Suppose thatG′/Z(G) is F -anisotropic andγ is regular
semisimple. IfKH is a compact open subgroup ofH◦, then

g 7→
∫

KH

θ̇σ(
gkγ)dk

is compactly supported onG/Z(G).

Proof. By Lemma 6.1 (withM = G
′), sinceKσ containsG′, the set of

(Kσ, H
◦)-double cosets inG containing an elementg with gγ<r ∈ G′ is

finite. By Corollary 4.5, the support of the function occurring in the state-
ment is contained in the union of such double cosets. Thus, itsuffices to
show that the restriction of the indicated function to any(Kσ, H

◦)-double
coset has compact support.

Fix a double cosetKσgH
◦ in G. Sinceθ̇σ is invariant under conjugation

by the compact-modulo-Z(G) groupKσ, it suffices to show that

h 7→
∫

KH

θ̇σ(
ghkγ)dk

is compactly supported onH◦, moduloZ(G). Suppose thath ∈ H◦ and
k ∈ KH ⊆ H◦. Thenghkγ = (gγ<r)(

ghkγ≥r). Therefore, by Corollary 4.6,

θ̇σ(
ghkγ) = [Gx,0+G′](gγ<r)θ̇σ(

gγ<r)·[B(H, F )]((ghk)−1x)

× [Gx,r](
ghkγ≥r)φ̂(ghkγ≥r).
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Sincehkγ≥r ∈ H◦, we have thatghkγ≥r ∈ Gx,r if and only if hkγ≥r ∈
H◦ ∩Gg−1x,r . Thus it suffices to show that

(∗) h 7→
∫

KH

[B(H, F )]((ghk)−1x) · [H◦ ∩Gg−1x,r](
hkγ≥r)φ̂

g(hkγ≥r)dk

is compactly supported onH◦, moduloZ(G), whenevergγ<r ∈ Gx,0+G′.
Since (∗) does not change if we replaceg by an element ofKσg, we need
only consider the case thatgγ<r ∈ G′.

If g−1x 6∈ B(H, F ), then the function (∗) vanishes. Suppose thatg−1x ∈
B(H, F ) (as well asgγ<r ∈ G′). Then, by Remark 6.10(2) of [6],gγ<r ∈
stabG(x). Let ΣH = (~H, ~φH , ~rH , xH , ρ

′
H,0) be a cuspidal datum (see Defi-

nition 2.1) such that

(1) ~H = (H0 ⊆ H
1), whereH0 = H

◦ ∩ g−1
G

′ andH
1 = H

◦;
(2) ~φH = (φH,0, 1), whereφH,0 = φg

∣∣
H0;

(3) ~rH = (r, r); and
(4) xH = g−1x.

(Note thatH0, φH,0 andxH all depend ong as well as onH.) As in§2, there
are associated to the datumΣH a compact-modulo-Z(H) open subgroup
KΣH

of H and a representationρ′ΣH
of KH such thatπΣH

= IndHKΣH
ρ′ΣH

is an irreducible supercuspidal representation ofH. PutKσH
= KΣH

Hx,0+

andσH = Ind
KσH

KΣH
ρ′ΣH

. Now we are in the situation of§5 (with (G, σ) there
replaced by(H◦, σH)).

By Corollary 4.6, forh ∈ H◦ andk ∈ KH , we have

θ̇σH
(hkγ≥r) = [B(H, F )]((hk)−1xH) · [HxH ,r](

hkγ≥r)φ̂H,0(
hkγ≥r)

= [B(H, F )]((ghk)−1x) · [Gx,r](
ghkγ≥r)φ̂

g(hkγ≥r).

Sinceθ̇σH
is a sum of matrix coefficients of the supercuspidal representation

πH , it is a cusp form (or ‘supercusp form’, in the language of [28, §I.3]) on
H◦. In particular, by Lemma 23 of [28] (the proof of which does not depend
on charF being0) and our Lemma 6.2, (∗) is compactly supported onH◦,
moduloZ(H◦). Sinceγ<r ∈ G′, we have thatZ(H◦) = Z(CG(γ<r)

◦) ⊆
G′ is compact moduloZ(G), so (∗) is also compactly supported onH◦,
moduloZ(G). �

The portion of the following result concerningΘπ is the analogue of
Lemma 10.0.4 of [22].

Theorem 6.4. If x ∈ Br(γ), then

(6.1) θτ (γ) = φd(γ)
∑

g

θσ(
gγ<r)µ̂

stabgH(x)
X∗ (e−1

x (gγ≥r)).
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If G
′/Z(G) isF -anisotropic andγ ∈ G is regular semisimple, then

(6.2) Θπ(γ) = φd(γ)
∑

g

θσ(
gγ<r)µ̂

gH
X∗(e−1

x (gγ≥r)).

The sums run over those double cosets instabG′(x)Gx,0+\ stabG(x)/ stabH(x)
or G′Gx,0+\G/H, respectively, containing an elementg such thatgγ<r ∈
G′ andx ∈ Br(gγ).

Here, µ̂stabgH(x)
X∗ is the function representing the distribution(6.4) be-

low, and both it and̂µ
gH
X∗ are defined with respect to the Haar measure on

gH/Z(G) normalized so thatmeas(Kσ ∩ gH/Z(G)) = 1.

If we used a suitable exponential map in place ofex (one that, among
other things, was conjugation invariant and defined on all the filtration lat-
ticesgy,r for y ∈ B(G, F )), then the sums in (6.1) and (6.2) could be ex-
tended over all double cosets containing an elementg such thatgγ<r ∈ G′,
since Lemma B.4 shows that the extra summands would vanish. However,
it is more convenient for our purposes to restrict the sum, sothat we do not
have to assume the existence of a suitable exponential map, and so that we
can apply Proposition 5.3.3 (which is subject to the assumptions in force
through all of§5, including thatγ≥r ∈ Gx,r).

Note that the orbital integrals appearing in (6.2) are takenover theF -
rational points of possiblydisconnectedgroupsgH. By Lemma B.2, it is
easy to describe them as sums of orbital integrals over the connected groups
gH◦ if necessary.

Proof. Recall thatKσ = stabG′(x)Gx,0+ , soKσ = G′Gx,0+ if G
′/Z(G) is

F -anisotropic.
First, we computeθτ (γ) (in casex ∈ Br(γ)). By the Frobenius formula,

we have thatθτ (γ) = φd(γ)
∑

g∈Kσ\ stabG(x) θ̇σ(
gγ), so

(6.3) θτ (γ) = φd(γ)
∑

g∈Kσ\ stabG(x)/ stabH(x)

∑

g′∈Kσ\Kσg stabH(x)

θ̇σ(
g′γ)

= φd(γ)
∑

g

∑

h′∈(stabgH(x)∩Kσ)\ stabgH(x)

θ̇σ(
h′gγ)

= φd(γ)
∑

g

θ̇σ(
gγ<r)

∑

h′

φ̂(h
′gγ≥r)

(where the equality on the last line follows from Lemma 2.5, and the fact
that(h

′gγ)<r = gγ<r for all g andh′ as above). An easy formal calculation,
using Hypothesis A.7(2) and the fact thatmeas(Kσ ∩ stabgH(x)/Z(G)) =
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meas(Kσ ∩ gH/Z(G)) = 1, shows that

(∗)
∑

h′∈(stabgH(x)∩Kσ)\ stabgH(x)

φ̂(h
′gγ≥r) =

∑

h′

Λ(X∗(h
′

e
−1
x (gγ≥r))

= µ̂
stabgH(x)
X∗ (e−1

x (gγ≥r)),

whereµ̂stabgH(x)
X∗ is the function representing the distribution

(6.4) f 7→
∫

stabgH(x)/Z(G)

f̂(Ad∗(h′)−1X∗)dḣ′

on gh∗. Now fix a double cosetKσg stabH(x) with g ∈ stabG(x). If there
is no elementg′ in the double coset such thatg′γ<r ∈ G′, then, by Corollary
4.4, we have thaṫθσ(gγ<r) = 0, so the summand corresponding tog on
the last line of (6.3) vanishes. Ifgγ<r ∈ G′, then, sincegγ<r ∈ stabG(x),
we havegγ<r ∈ stabG′(x). In particular,gγ<r is in the domain ofσ, so
θ̇σ(

gγ<r) = θσ(
gγ<r), and the summands in (6.1) and, by (∗), the last line

of (6.3) corresponding tog are the same. Note thatgx ∈ Br(gγ), so, since
x = gx, alsox ∈ Br(gγ).

Next, we computeΘπ(γ) (in caseG′/Z(G) isF -anisotropic). By Harish-
Chandra’s integral formula, for any compact open subgroupK of G,

(6.5) Θπ(γ) =
deg(π)

deg(σ)
φd(γ)

∫

G/Z(G)

∫

K

θ̇σ(
g′cγ)dc dġ′,

wheredġ′ is a Haar measure onG/Z(G), anddc is the Haar measure onK
normalized so thatmeas(K) = 1. (In characteristic0, this was proven for
supercuspidal representations — in particular, forπ — by Harish-Chandra
in [28]. In [51], Rader and Silberger demonstrated an analogue of this re-
sult for discrete series representations. In [4, Appendix B], Prasad provided
a characteristic-free proof of a submersion principle of Harish-Chandra.
Since the proof of the integral formula for characters (Theorem 12 of [28,
p. 60]) relies only on the submersion principle and Lemma 23 of [28, p. 59],
and since the proof of the latter does not depend oncharF being0, the cor-
rectness of the integral formula in any characteristic follows.)

For the remainder of the proof, we will assume thatG
′/Z(G) is F -

anisotropic. We claim that the inner integral in (6.5) may bereplaced by
an integral overKH := K ∩H◦. (This is the analogue of Lemma 10.0.7 of
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[22].) Indeed,

deg(σ)

deg(π)
φd(γ)

−1Θπ(γ) =

∫

G/Z(G)

∫

K

θ̇σ(
g′cγ)dc dġ′

=

∫

G/Z(G)

∫

KH

∫

K

θ̇σ(
g′ckγ)dc dk dġ′

=

∫

K

∫

G/Z(G)

∫

KH

θ̇σ(
g′ckγ)dk dġ′ dc

=

∫

G/Z(G)

∫

KH

θ̇σ(
g′kγ)dk dġ′,

wheredk is the Haar measure onKH normalized so thatmeas(KH) =
1. (The equalities on the second and fourth lines come from routine Haar
measure manipulations. The interchange of integrals on thethird line is
justified by Lemma 6.3.) Thus,

(6.6) Θπ(γ) = φd(γ)
∑

g∈Kσ\G/H

deg(π)

deg(σ)

∫

KσgH/Z(G)

∫

KH

θ̇σ(
g′kγ)dk dġ′.

Fix a double cosetKσgH in G. Sinceg′ 7→ θ̇σ(
g′kγ) is invariant under

left translation byKσ, we have that

(6.7)
∫

KσgH/Z(G)

∫

KH

θ̇σ(
g′kγ)dk dġ′

=

∫

Kσ(gH)/Z(G)

∫

gKH

θ̇σ(
yk′gγ)dk′ dẏ

=

∫

Kσ(gH)/gH

∫

gH/Z(G)

∫

gKH

θ̇σ(
yh′k′gγ)dk′ dḣ′

dy

dh

= meas(Kσ(
gH)/gH)

∫

gH/Z(G)

∫

gKH

θ̇σ(
h′k′gγ)dk dḣ′,

wheredẏ is the Haar measure onG/Z(G) used to computedeg(π), dḣ′ is
Haar measure ongH/Z(G) normalized as in the statement of the theorem,
dk′ is the Haar measure ongKH normalized so thatmeas(gKH) = 1, and
dy/dh is the Haar measure onG/H deduced fromdẏ anddḣ. If there is
no elementg′ in the double coset such thatg

′

γ<r ∈ G′ andx ∈ Br(g′γ),
then, by Corollary 4.5, the summand in (6.6) corresponding to g vanishes.
Otherwise, we may, and do, assume thatgγ<r ∈ G′ andx ∈ Br(gγ). Now,
by Corollary 4.6,

θ̇σ(
h′k′gγ) = θσ(

gγ<r) · [(gH)x,r](
h′k′gγ≥r)φ̂(h

′k′gγ≥r)
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for h′ ∈ gH andk′ ∈ gKH ; and

meas(Kσ(
gH)/gH) = meas(Kσ/Z(G)) meas(Kσ∩gH/Z(G))−1 =

deg(σ)

deg(π)
,

where the last equality follows from the normalizationmeas(Kσ∩gH/Z(G)) =
1 and the fact thatπ = IndGKσ

σ. Combining these two facts with Lemma
B.4 (with Z = Z(G)) and (6.7), we see that the summands in (6.2) and
(6.6) corresponding tog are the same. �

We would like a way of describing the sum in Theorem 6.4 as running
over a set of conjugates ofγ, not over a set of elements conjugatingγ. How-
ever, really we are interested only in conjugates ofγ<r, not ofγ. We define

below an equivalence relation
d−1∼ on the setT ((Gi, . . . ,Gd), (ri, . . . , rd))

that makes this precise, and then sum over equivalence classes for this re-
lation in Corollary 6.6. Since we will need them later, in fact we define a

family of equivalence relations
i∼.

Definition 6.5. For0 ≤ i < d, let
i∼ be the equivalence relation onT ((Gi, . . . ,Gd), (ri, . . . , rd))

such that, for two elementsδ and δ′ of that set,δ
i∼ δ′ if and only if

δ′<rj ∈ stab
Gj (x)δ<rj for all i ≤ j < d.

Corollary 6.6. If x ∈ Br(γ), then

(6.8) θτ (γ) = φd(γ)
∑

θσ(γ
′
<r)µ̂

stabH′(x)
X∗ (e−1

x (γ′≥r)).

If G
′/Z(G) isF -anisotropic andγ is regular semisimple, then

(6.9) Θπ(γ) = φd(γ)
∑

θσ(γ
′
<r)µ̂

H′

X∗(e−1
x (γ′≥r)).

Here, µ̂stabH′(x)
X∗ and µ̂H

′

X∗ are defined with respect to the Haar measure on
H ′/Z(G) normalized so thatmeas(Kσ ∩H ′/Z(G)) = 1, and the sums are

taken over
d−1∼ -equivalence classes of elementsγ′ ∈ stabG(x)γ∩T ((G′,G), (r, rd))

(respectively,γ′ ∈ Gγ ∩ T ((G′,G), (r, rd)) with x ∈ Br(γ′)).

The notationsT ((G′,G), (r, rd)) and
d−1∼ are as in Definitions 1.4.1 and

6.5, respectively. By abuse of notation, we have writtenH
′ in place of

CG(γ′<rd−1
), even though this group depends onγ′.

As observed after Theorem 6.4, by Lemma B.2, we may describe the
orbital integrals over the possibly disconnected groupsH ′ as sums of orbital
integrals overH ′◦.

Proof. Let G be a subgroup ofG containingstabG′(x)Gx,0+ , and putH =
H ∩ G andC =

{
g ∈ G

∣∣ gγ ∈ T ((G′,G), (r, rd)) andx ∈ Br(gγ)
}

.
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First, we claim that the natural mapf1 : stabG′(x)\G/H −→ stabG′(x)Gx,0+\G/H
furnishes a bijection ofstabG′(x)\C/H with the set of(stabG′(x)Gx,0+,H)-
double cosets containing an element ofC. The map is clearly surjective, so
it suffices to show that it is injective. Suppose thatg1, g2 ∈ C are such that

stabG′(x)Gx,0+g1H = stabG′(x)Gx,0+g2H.
SincestabG′(x)Gx,0+ = Gx,0+ stabG′(x), we have that

Gx,0+g1H ∩ stabG′(x)g2H 6= ∅
— saykg1H = g′g2H, with k ∈ Gx,0+ andg′ ∈ stabG′(x). Thenkg1γ<r =
g′g2γ<r ∈ G′. Sinceg1γ<r ∈ G′ andx ∈ Br(g1γ<r), we have by Lemma
9.10 and Corollary 6.14 of [6] thatk ∈ G′

x,0+(g1H)x,0+ . In particular,
kg1 ∈ stabG′(x)g1H. Since alsokg1 ∈ G, we have

kg1 ∈ stabG′(x)g1H ∩ G ⊆ stabG′(x)g1(H ∩ G) = stabG′(x)g1H.
Sinceg′g2 ∈ kg1H, we have thatg2 belongs to the same(stabG′(x),H)-
double coset asg1, as desired.

Second, notice that the mapf2 on stabG′(x)\C/H that sends a double
cosetstabG′(x)gH to thestabG′(x)-orbit of gγ<r is a well defined injection.

Third, consider the mapf3 fromS =
{
γ′ ∈ Gγ ∩ T ((G′,G), (r, rd))

∣∣ x ∈ Br(γ′)
}

to the set ofstabG′(x)-orbits in Gγ<r ∩ G′ that sends an elementγ′ ∈ S
to thestabG′(x)-orbit of γ′<r. By definition, two elementsγ′, γ′′ ∈ Gγ ∩
T ((G′,G), (r, rd)) have the same image if and only ifγ′

d−1∼ γ′′. Thus, the

induced map on
d−1∼ -equivalence classes inS is an injection. It is easy to

see that the images off2 andf3 are the same.
Now we consider the compositionf−1

3 ◦ f2 ◦ f−1
1 . This furnishes a bijec-

tion of the set of(stabG′(x)Gx,0+,H)-double cosets containing an element

of C into the set of
d−1∼ -equivalence classes inS. If G = stabG(x), then

H = stabH(x); the specified set of double cosets is the indexing set for
the sum in (6.1); and the set of equivalence classes is the indexing set for
the sum in (6.8). It is easy to check that the summands match term-by-
term, so (6.8) holds. Similarly, we demonstrate (6.9) by taking G = G (and
observing thatstabG′(x) = G′ whenG

′/Z(G) isF -anisotropic). �

We now prove a single-orbit result in the spirit of Murnaghan–Kirillov
theory (see [4, 19, 47–50]). WhenF has characteristic zero andp is large,
the second statement is a special case of Theorem 5.3.1 of [37].

Corollary 6.7. Suppose that there exists a bijectione :
⋃
y∈B(G,F ) gy,0+ −→⋃

y∈B(G,F )Gy,0+ such that, for ally ∈ B(G, F ), the restrictione
∣∣
gy,0+

has
image inGy,0+ and satisfies Hypothesis A.7 (for all tame maximalF -tori T
with y ∈ B(T, F )).
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Fix γ ∈ G such thatγ ∈ Gy,r for somey ∈ B(G, F ). If γ ∈ Gx,r (i.e., if
we may takey = x), then

θτ (γ) = φd(γ)[stabG(x) : Kσ]
−1 deg(τ)µ̂

stabG(x)
X∗ (e−1(γ)).

If G
′/Z(G) isF -anisotropic andγ is regular semisimple, then

Θπ(γ) = φd(γ) deg(π)µ̂GX∗(e−1(γ)).

Here, µ̂stabG(x)
X∗ and µ̂GX∗ are defined with respect to the Haar measure on

G/Z(G) normalized so thatmeas(Kσ/Z(G)) = 1.

Proof. Note thatγ trivially has a normalr-approximation, and thatγ<r = 1,
soH = G. Sinceγ = γ≥r, we have thatx ∈ Br(γ) if and only if γ ∈ Gx,r .

PutY = e
−1(γ). If Gγ ∩ Gx,r = ∅, then, by Hypothesis A.7(2),GY ∩

gx,r = ∅. Therefore, by Lemma B.4,̂µGX∗(Y ) = 0. If also G
′/Z(G) is

F -anisotropic, then, by Theorem 6.4, we have thatθ̇σ(
gγ) = 0 for g ∈ G,

hence (by the Frobenius formula) thatΘπ(γ) = 0.
Thus we may, and do, assume thatγ ∈ Gx,r . In particular, equation

(6.1) holds, and the sum on the right-hand side of that equation has a single
summand, so it becomes

(6.1′) θτ (γ) = φd(γ)θσ(1)µ̂
stabG(x)
X∗ (Y ) = φd(γ) deg(σ)µ̂

stabG(x)
X∗ (Y ).

Sinceτ = Ind
stabG(x)
Kσ

σ⊗φd, we have thatdeg(τ) = [stabG(x) : Kσ] deg(σ),
so

θτ (γ) = φd(γ)[stabG(x) : Kσ]
−1 deg(τ)µ̂

stabG(x)
X∗ (Y ).

The second equality follows similarly from (6.2) and the fact thatdeg(π) =
meas(Kσ/Z(G)) deg(σ) = deg(σ). �

7. THE FULL CHARACTER FORMULA

Here we unroll the inductive formulas from§§5 and 6, preserving the
hypotheses of§6. In particular,γ is an element ofG with a normalrd−1-
approximation, which we fixed for definiteness. Thus, the elementsγ<ri are
unambiguously defined for0 ≤ i < d. Choosing such an approximation
also fixes approximations to all truncations and conjugatesof γ.

Theorem 7.1. If x ∈ Br(γ), then
(7.1)

θτ (γ) = φd(γ)
∑

c(~φ, γ′<rd−1
)
(d−1∏

i=0

G(φi, γ
′
<ri

)ε(φi, γ
′
<ri

)
)

×
(d−1∏

i=0

φi(γ
′
<ri

)
)
θρ′0(γ

′
0)

d−1∏

i=0

µ̂
stab

Hi ′(x)

X∗
i

(e−1
x (γ′(i))).
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If G
′/Z(G) isF -anisotropic andγ ∈ G is regular semisimple, then

(7.2)

Θπ(γ) = φd(γ)
∑

c(~φ, γ′<rd−1
)
(d−1∏

i=0

G(φi, γ
′
<ri

)ε(φi, γ
′
<ri

)
)

×
(d−1∏

i=0

φi(γ
′
<ri

)
)
Θπ′

0
(γ′0)

d−1∏

i=0

µ̂H
i ′

X∗
i
(e−1
x (γ′(i))).

Here,

c(~φ, γ′<rd−1
) =

d−1∏

i=0

[
Jγ′<ri; x, riKGi+1 : Jγ′<ri; x, riKGiG

i+1
x,si

]1/2

×
[
Jγ′<ri; x, ri+K

Gi+1 : Jγ′<ri; x, ri+K
GiG

i+1
x,si+

]1/2

,

and

• µ̂
stab

Hi ′(x)

X∗
i

and µ̂H
i ′

X∗
i

are defined with respect to the Haar measure

onH i ′/Z(G) normalized so thatmeas(Kσi+1
∩H i ′/Z(G)) = 1,

• γ′(i) = (γ′<ri+1
)≥ri when0 ≤ i < d− 1, and

• γ′(d−1) = γ′≥rd−1
.

The sums are taken over
0∼-equivalence classes of elementsγ′ ∈ stabG(x)γ ∩

T (~G, ~r) (respectively,γ′ ∈ Gγ ∩ T (~G, ~r) such thatx ∈ Brd−1
(γ′)).

The notationsT (~G, ~r) and
0∼ are as in Definitions 1.4.1 and 6.5, respec-

tively. As in Corollary 6.6, we have writtenHi ′ in place ofCGi+1(γ′<ri) for
0 ≤ i < d.

Note that, in particular, ifG′/Z(G) is F -anisotropic, then the character
of π is supported on conjugacy classes intersectingT (~G, ~r). A similar
statement holds for the character ofτ .

Recall that the various roots of unityG were defined and computed in
§5.2.

As observed after Theorem 6.4, by Lemma B.2, we may describe the
orbital integrals over possibly disconnected groups in theabove formula as
sums of orbital integrals over connected groups.

Proof. In this proof only, we writerd for ∞. This conflicts with the notation
in the rest of the paper, but it makes the equations appearingbelow (for
example, (7.3)) simpler.

For 0 ≤ i < d, we may apply Proposition 5.3.3 and Corollary 6.6, with
(Gi,Gi+1) in place of(G′,G), to see that, for allδ ∈ stabGi+1(x) such that
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x ∈ Bri(δ),
(∗i)
θτi+1

(δ) = φi+1(δ)
∑[

Jδ<ri ; x, riKGi+1 : Jδ<ri ; x, riKGiG
i+1
x,si

]1/2

×
[
Jδ<ri ; x, ri+KGi+1 : Jδ<ri; x, ri+KGiG

i+1
x,si+

]1/2

× G(φi, δ
′
<ri

)ε(φi, δ
′
<ri

)

× θτi(δ
′
<ri

)µ̂
stab

Hi ′ (x)

X∗
i

(e−1
x (δ′≥ri)),

the sum taken over
i∼-equivalence classes of elementsδ′ ∈ stab

Gi+1 (x)δ ∩
T ((Gi,Gi+1), (ri, ri+1)). (The conditionx ∈ Bri(δ′) is automatically sat-

isfied here.) Note that the setBri(δ) and the equivalence relation
i∼ are both

constructed in the setting of some ambient group, which is suppressed from
the notation. However, it is easy to see that changing the ambient group
from G to G

i+1 corresponds simply to restricting the equivalence relation
i∼; and, sincex ∈ B(Gi+1, F ), Lemma 8.2 of [6] shows that we do not need
to worry about what is the ambient group for the constructionof Bri(δ).

Put γ(0) = γ. We apply (∗d−1) to describeθτ (γ) = θτd(γ) in terms of
the values ofθτd−1

at truncations of various conjugatesγ(1) of γ(0) = γ
(0)
<rd;

then (∗d−2) to describe eachθτd−1
(γ(1)) in terms of the values ofθτd−2

at

truncations of various conjugatesγ(2) of γ(1)
<rd−1

; and so forth to obtain
(7.3)

θτ (γ) = φd(γ)
∑(d−1∏

i=0

[
Jγ

(d−i)
<ri ; x, riKGi+1 : Jγ

(d−i)
<ri ; x, riKGiG

i+1
x,si

]1/2)

︸ ︷︷ ︸
I

×
(d−1∏

i=0

[
Jγ

(d−i)
<ri ; x, ri+KGi+1 : Jγ

(d−i)
<ri ; x, ri+KGiG

i+1
x,si+

]1/2)

︸ ︷︷ ︸
I′

×
(d−1∏

i=0

G(φi, γ
(d−i)
<ri )ε(φi, γ

(d−i)
<ri )

)

︸ ︷︷ ︸
II

×
(d−2∏

i=0

φi+1(γ
(d−i))

)
θτ0(γ

(d)
<r0)

︸ ︷︷ ︸
III

d−1∏

i=0

µ̂
stab

Hi ′ (x)

X∗
i

(e−1
x (γ

(d−i)
≥ri

))

︸ ︷︷ ︸
IV

,
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the sum taken over the collectionS of d-tuples
(
[γ(d−i)]i

)d−1

i=0
with γ(d−i) ∈

stab
Gi+1 (x)γ

(d−i−1)
<ri+1

∩ T ((Gi,Gi+1), (ri, ri+1)) for 0 ≤ i < d. (Here, [δ]i

denotes the
i∼-equivalence class of an elementδ for 0 ≤ i < d.)

If γ′ ∈ stabG(x)γ ∩ T (~G, ~r), thenS(γ′) :=
(
[γ′<ri+1

]i
)d−1

i=0
lies inS. It is

an easy consequence of the definitions that, forγ′′ ∈ stabG(x)γ ∩ T (~G, ~r),

we haveS(γ′) = S(γ′′) if and only if γ′
0∼ γ′′. On the other hand, sup-

pose that~γ ′ =
(
[γ(d−i)]i

)d−1

i=0
∈ S. Then, by definition, there are elements

gi ∈ stabGi+1(x) such thatγ(d−i) = giγ
(d−i−1)
<ri+1

for 0 ≤ i ≤ d. One checks

thatγ′ := g0···gd−1γ ∈ stabG(x)γ ∩T (~G, ~r), andS(γ′) = ~γ ′. Thus,S induces

a bijection from the set of
0∼-equivalence classes instabG(x)γ∩T (~G, ~r) onto

S, so that we may regard the sum in (7.3) as running over the former set.
Upon doing so, we notice that the product of terms (I) and (I′) becomes
c(~φ, γ′<rd−1

). We calculate the remaining terms appearing in (7.3) as fol-
lows.

(II) This matches with the corresponding term in (7.1).
(III) Since θτ0(γ

′
<r0

) = φ0(γ
′
<r0

)θρ′0(γ
′
<r0

) andθρ′0(γ
′
<r0

) = θρ′0(γ
′
0), this

becomes
(∏d−1

i=0 φi(γ
′
<ri

)
)
θρ′0(γ

′
0).

(IV) When we replaceγ(d−i) byγ′<ri+1
, the elementγ(d−i)

≥ri
becomes(γ′<ri+1

)≥ri =
γ′(i), even wheni = d−1 (because we have setrd = ∞ in this proof).
Thus, this matches up with the corresponding term in (7.1).

Since (7.3) holds, and can be matched term-by-term with (7.1), we also
have that (7.1) holds.

The argument carries over essentially unchanged to prove (7.2) holds.
We sketch the few minor differences. Instead of using (∗d−1), we apply
Proposition 5.3.3 and Corollary 6.6 to obtain
(∗∗d−1)

Θπ(γ) = φd(γ)
∑[

Jγ
(1)
<rd−1

; x, rd−1K : Jγ
(1)
<rd−1

; x, rd−1KGd−1G
d
x,sd−1

]1/2

×
[
Jγ

(1)
<rd−1

; x, rd−1+K : Jγ
(1)
<rd−1

; x, rd−1+K
Gd−1G

d
x,sd−1+

]1/2

× G(φd−1, γ
(1)
<rd−1

)ε(φ, γ
(1)
<rd−1

)

× θτd−1
(γ

(1)
<rd−1

)µ̂H
d−1 ′

X∗
d−1

(e−1
x (γ

(1)
≥rd−1

)),

the sum taken over
d−1∼ -equivalence classes of elementsγ(1) ∈ Gγ∩T ((G′,G), (r, rd))

such thatx ∈ Brd−1
(γ(1)). We then apply (∗d−2), . . . , (∗0) as before to ob-

tain a sum over a collection ofd-tuples
(
[γ(d−i)]i

)d−1

i=0
, but this time we re-

quire only thatγ(d−i) ∈ Gi+1
γ

(d−i−1)
<ri+1

∩ T ((Gi,Gi+1), (ri, ri+1)) andx ∈
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Bri(γ(d−i)) for 0 ≤ i < d (that is, we allowγ(d−i) to range over aGi+1-, not
just astabGi+1(x)-, orbit). The key point here is thatGi+1 = stabGi+1(x)
unlessi = d−1. Again, we use (a natural extension of) the mapS to identify

this collection ofd-tuples with the set of
0∼-equivalence classes of elements

γ′ ∈ Gγ ∩ T (~G, ~r) with x ∈ Br(γ′). Finally, we note thatρ′0 = π′
0. �

APPENDIX A. M OCK-EXPONENTIAL MAP

In this section,G is a reductive algebraicF -group (possibly discon-
nected) that splits over a tame extension ofF . We state below two useful
hypotheses (Hypotheses A.1 and A.7) regarding mock-exponential maps.
Proposition A.8 will show that the first always holds, and thesecond holds
whenG is connected. (Note that, with appropriate modifications inthe
statement of Hypothesis A.1(6), these hypotheses also makesense for groups
that are not tame. However, they are not always satisfied for such groups.)

Hypothesis A.1.There exists a family

(eEx,t:u : Lie(G)(E)x,t:u −→ G(E)x,t:u)E/F finite and tamely ramified
x∈B(G,E)

t,u∈eR>0
t≤u≤2t

of isomorphisms such that, given

• a finite, tamely ramified extensionE/F ,
• x ∈ B(G, E),
• t1, t2, u1 ∈ R̃>0 with t1 ≤ u1 ≤ 2t1,
• Xj ∈ Lie(G)(E)x,tj for j = 1, 2, and
• gj ∈ e

E
x,tj :tj+

(Xj) for j = 1, 2,

the following statements hold.

(1) If L is a field intermediate betweenE andF andx ∈ B(G, L),
then the restriction ofeEx,t1:u1

to Lie(G)(L)x,t1:u1 is e
L
x,t1:u1

.
(2) If E/F is Galois, theneEx,t1:u1

is Gal(E/F )-equivariant.

(3) If u2 ∈ R̃>0 andt1 ≤ t2 ≤ u2 ≤ u1 ≤ 2t1, thene
E
x,t1:u1

(X2) ⊆
e
E
x,t2:u2

(X2).
(4) (Ad(g1) − 1)X2 ∈ (eEx,(t1+t2):(t1+t2)+)−1[g1, g2].
(5) [X1, X2] ∈ (eEx,(t1+t2):(t1+t2)+)−1[g1, g2].
(6) If

• T is a tame maximalE-torus,
• x ∈ B(T, E),
• f is a Gal(F sep/E)-invariant concave function oñΦ(G,T),

and
• t1 ≤ f(α) ≤ u1 for all α ∈ Φ̃(G,T),
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thene
E
x,t1:u1

restricts to an isomorphism of the image inLie(G)(E)x,t1:u1

of T Lie(G)(E)x,f with the image inG(E)x,t1:u1 of TG(E)x,f .
(For convenience, we have regardede

E
x,t1:u1

also as a function onLie(G)(E)x,t1 .)

We will often suppress a superscriptF , writing ex,t:u instead ofeFx,t:u .

RemarkA.2. Note that, with the notation of Hypothesis A.1(4),Ad(h)X ≡
X (mod Lie(G)(E)x,t1+t2). Analogous statements forInt andad are proven
in Proposition 1.4.1 of [1].

RemarkA.3. Given Hypothesis A.1(1), it suffices to verify Hypotheses
A.1(2)–A.1(6) only forE “sufficiently large tame Galois”, in the sense that,
given a finite, tamely ramified field extensionE/F , there is a finite, tamely
ramified Galois superextensionM/F of E/F for which the hypotheses
hold. Indeed, it is a straightforward application of Hypothesis A.1(1) that,
if Hypotheses A.1(2)–A.1(5) hold for such anM , then they hold forE as
well.

Now letE, x, t1, andu1 be as usual, and letT andf be as in Hypothesis
A.1(6). LetM/F be a (finite, tame) Galois superextension ofE/F such
that Hypothesis A.1(6) is satisfied forM , x, t1, u1, T, andf . By further
enlargingM if necessary, we may, and do, assume thatG isM-split.

Let u1 be the constant function oñΦ(G,T) with valueu1. By assump-
tion,eMx,t1:u1

induces an isomorphism ofT Lie(G)(M)x,f :u1 with TG(M)x,f :u1 .
By Hypothesis A.1(2), the isomorphism isGal(M/F )-, hence certainly
Gal(M/E)-, equivariant; so we obtain an isomorphismT Lie(G)(M)

Gal(M/E)
x,f :u1

−→
TG(M)

Gal(M/E)
x,f :u1

. By Proposition 5.39 of [6], we haveH1(M/F,TG(M)x,u1) =

{0}, so that the codomain of the isomorphism isTG(M)
Gal(M/E)
x,f /TG(M)

Gal(M/E)
x,u1

.
By Lemma 5.33 ofloc. cit., this is justTG(E)x,f :u1 . A similar, but easier,
calculation shows that the domain of the isomorphism isT Lie(G)(E)x,f :u1 .
Thus, Hypothesis A.1(6) is satisfied forE, x, t1, u1, T, andf , as desired.

For the next three results, suppose that
• E/F is a finite, tamely ramified extension,
• T is a tame maximalE-torus inG,
• x ∈ B(T, E),
• t, u ∈ R̃>0 with t ≤ u ≤ 2t, and
• e

E
x,t:u is as in Hypothesis A.1.

Lemma A.4. Suppose thatH is a reductiveE-subgroup ofG containingT.
Thene

E
x,t:u restricts to an isomorphism ofLie(H)(E)x,t:u with H(E)x,t:u .

Proof. Apply Hypothesis A.1(6), withf the concave function oñΦ(G,T)

that takes the valuet on Φ̃(H,T) andu elsewhere. �
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Lemma A.5. If Y ∈ Lie(T)(E)t andh ∈ e
E
x,t:t+(Y ) ∩ T(E), thenα(h) −

1 ≡ dα(Y ) (mod Et+) for α ∈ Φ̃(G,T).

Proof. Fix α ∈ Φ̃(G,T) and choose a non-zero, positive-depth element
X ∈ Lie(G)(E)α. Putt′ = dx(X), and letg be an element ofeEx,t′:t′+(X).
Then, by Hypotheses A.1(4) and A.1(5), we have that

(α(h) − 1)X = (Ad(h) − 1)X

and

dα(Y )X = [Y,X]

lie in (eEx,(t+t′):(t+t′)+)−1[h, g], so(α(h)−1)X ≡ dα(Y )X (mod Lie(G)(E)x,(t+t′)+).
SinceX 6∈ Lie(G)(E)x,t′+, we haveα(h) − 1 ≡ dα(Y ) (mod Et+). �

Lemma A.6. Suppose thatT is E-split andα ∈ Φ̃(G,T). Thene
E
x,t:u

induces an isomorphism ofEu(α+t):(α+u) with EU(α+t):(α+u), where, forc ∈
R̃, α + c denotes the unique affine root with gradientα satisfying(α +
c)(x) = c.

Proof. Apply Hypothesis A.1(6) withf the concave function oñΦ(G,T)
that takes the valuet atα andu elsewhere. �

Hypothesis A.7.There exists a family

(eT,x : gx,0+ −→ Gx,0+)T a tame maximalF -torus inG

x∈B(T,F )

of bijections such that, given
• a tame maximalF -torusT in G,
• x ∈ B(T, F ),
• t ∈ R̃>0, and
• X ∈ gx,t ,

the following statements hold.

(1) If u ∈ R̃>0 with t ≤ u ≤ 2t, theneT,x(X) ∈ ex,t:u(X).
(2) Forg ∈ G, we havegX ∈ gx,t if and only if g(eT,x(X)) ∈ Gx,t ,
in which caseg(eT,x(X)) ∈ ex,t:t+(gX).

(3) If H is a reductiveF -subgroup ofG containingT, theneT,x(hx,0+) =
Hx,0+ .

Proposition A.8. Hypothesis A.1 holds. IfG is connected, then Hypothesis
A.7 also holds.

In fact, one can imitate the argument of Proposition 1.6.7 of[1] to show
that Hypothesis A.7 holds even ifG is not assumed to be connected; but we
do not need to do so here.
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Proof. The only difference between the hypotheses in question forG and
G

◦ is in Hypothesis A.7(2), so it suffices to assume throughout thatG is
connected.

See [1,§1.5] for a description of a family of bijections

(ϕT(E),x;t,u : Lie(G)(E)x,t:u −→ G(E)x,t:u)E/F finite and tamely ramified
T a tame maximalE-torus inG

x∈B(T,E)
t,u∈R

t≤u≤2t

(in fact, of isomorphisms, by Proposition 1.6.2(a) ofloc. cit.). By Corollary
1.6.6 ofloc. cit., givenE, x, t, andu, the mapϕT(E),x;t,u does not depend
on the choice of tame maximalE-torusT such thatx ∈ B(T, E); so we
may write e

E
x,t:u = ϕT(E),x;t,u for any such choice. These maps are the

Moy–Prasad isomorphisms. It is easy to extend the definition ofe
E
x,t:u to all

t, u ∈ R̃ (not justt, u ∈ R) satisfyingt ≤ u ≤ 2t.
By construction, the resulting family satisfies HypothesesA.1(1)–A.1(3).

Hypothesis A.1(5) is just Proposition 1.6.2(b) of [1]. Hypothesis A.1(4) is
Propositions 1.6.2(b) and 1.6.3 ofloc. cit. By Remark A.3, it suffices to
show Hypothesis A.1(6) in caseG is E-split, in which case it follows (as
in the proof of Proposition 1.9.2 of [1]) from Definition 5.13of [6] and the
construction ofeEx,t:u .

In [1, §1.5] one also finds a family of bijections

(ϕT,x : gx,0+ −→ Gx,0+)T a tame maximalF -torus inG

x∈B(T,F ).

For fixedT andx, the bijectionϕT,x is constructed (as in§1.3 of loc. cit.)
from the various bijectionsex,t:t+ after choosing representatives of thegx,t+-
cosets ingx,t and theGx,t+-cosets inGx,t for t ∈ R. Regardless of the
choice of representatives, the construction ensures that the mapseT,x :=
ϕT,x satisfy Hypothesis A.7(1); and it is observed in Remark 4.1.1 of [4]
that they satisfy Hypothesis A.7(2). However, we must make our choices
with some delicacy to ensure that Hypothesis A.7(3) is satisfied.

The choices are made as follows. Fixt ∈ R. Note that, if
{
H
j
∣∣ j ∈ J

}

is a family of (not necessarily connected) reductiveF -subgroups ofG con-
tainingT, then

⋂
j∈J Hj is also (not necessarily connected) reductive; and,

by Lemma 5.29 of [6],
⋂

j∈J

Hj
x,tGx,t+ =

⋂

j∈J

(Hj ◦, G)x,(t,t+) =
((⋂

j∈J

Hj
)◦
, G

)

x,(t,t+)
⊆

(⋂

j∈J

Hj
x,t

)
Gx,t+ .

Thus, if g ∈ Gx,t , then there exists an elementh ∈ gGx,t+ such thath ∈
H wheneverH is a reductiveF -subgroup ofG containingT such that
H ∩ gGx,t+ 6= ∅. We choose any such elementh as the representative
for the cosetgGx,t+ . Similarly, we choose, for everyX ∈ gx,t , a coset
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representativeY for X + gx,t+ such thatY ∈ h wheneverH is a reductive
F -subgroup ofG containingT such thath ∩X + gx,t+ 6= ∅.

By Lemma A.4, if t ∈ R, X ∈ gx,t , andg ∈ Gx,t , then the sets of
reductiveF -subgroupsH of G, containingT, such thath∩X + gx,t+ 6= ∅,
and such thatH ∩ gGx,t+ 6= ∅, are the same. Thus it follows from the
construction that Hypothesis A.7(3) is satisfied foreT,x. �

APPENDIX B. AN ORBITAL-INTEGRAL FORMULA

In this section, suppose that
• G is a reductive algebraicF -group (possibly disconnected), split

over a tame extension ofF , satisfying Hypotheses A.1 and A.7,
• (x, r) ∈ B(G, F ) × R>0,
• X∗ ∈ g∗

x,−r r g∗
(−r)+ satisfies conditionGE1 of [65, §8],

• φ is a linear character ofGx,r:r+ , and
• φ ◦ ex,r:r+ = Λ ◦X∗.

Note that, by Proposition A.8, the requirement thatG satisfy Hypothesis
A.1 is superfluous. PutG′ = CG(X∗)◦. We choose, arbitrarily, a tame
maximalF -torusT with x ∈ B(T, F ), and writeex = eT,x, whereeT,x is
as in Hypothesis A.7. (The resulting map will depend on our choice ofT,
but this dependence will not affect our proof.)

Lemma B.1. Suppose that

• d ∈ R>0 with d < r,
• h ∈ Gx,d , and
• [h, φ̂] is trivial onGx,r−d .

Thenh ∈ (G′, G)x,(d,d+).

Here,[h, φ̂] is the characterg 7→ φ̂([h−1, g]) of Gx,r−d .

Proof. Fix X ∈ gx,r−d , and letg be any element ofex,(r−d):(r−d)+(X). By
Hypothesis A.1(4),[h−1, g] belongs toex,r:r+

(
(Ad(h)−1 − 1)X

)
, so

1 = [h, φ̂](g) = φ̂([h−1, g])

= Λ
(
X∗

(
(Ad(h)−1 − 1)X

))
= Λ

(
(Ad∗(h) − 1)X∗(X)

)
.

SinceX ∈ gx,r−d was arbitrary, we have(Ad∗(h) − 1)X∗ ∈ g∗
x,(d−r)+ . By

Lemma 8.4 of [65] (the proof of which uses only conditionGE1, not the
full definition of genericity),h ∈ (G′, G)x,(d,d+). �

Since it is often easier to work with orbital integrals over connected
groups than over disconnected ones, we present a basic result describing
aG-orbital integral as a sum ofG◦-orbital integrals. Choose an invariant
measuredḣ onG/CG(X∗). Fix g ∈ G. Thendḣ affords a natural choice
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of invariant measure onG/gCG(X∗) = G/CG(gX∗). SinceG◦/CG◦(gX∗)
embeds naturally as an open subset ofG/CG(gX∗), it inherits this invariant
measure. For convenience, we will write againdḣ for the various measures
occurring in this way. We will take all orbital integrals with respect to these
measures. Notice that the induced measure on eachG/CG(gX∗)G◦ is just
counting measure.

Lemma B.2. We have that̂µGX∗ = [CG(X∗) : CG◦(X∗)]−1
∑

g∈G/G◦ µ̂G
◦

gX∗ .

The statement may be interpreted as an equality of distributions, or of
functions. We will prove the equality of distributions; that of functions
follows immediately.

Proof. Forf ∈ C∞
c (g), we have that

µ̂GX∗(f) =

∫

G/CG(X∗)

f̂(hX∗)dḣ

=
∑

g∈G/CG(X∗)G◦

∫

G◦/CG◦ (X∗)

f̂(ghX∗)dḣ

= [CG(X∗) : CG◦(X∗)]−1
∑

g∈G/G◦

∫

G◦/CG◦ (X∗)

f̂(ghX∗)dḣ.

For fixedg ∈ G, the inner integral is just
∫
G◦/CG◦ (gX∗)

f̂(hgX∗)dḣ = µ̂G
◦

gX∗(f).
The result follows. �

RemarkB.3. Our result as stated does not actually require thatX∗ satisfy
conditionGE1 of [65, §8], only that the relevant orbital integrals converge.
In particular, the result holds for any semisimpleX∗.

Compare the next result to Lemma 6.3.5 of [4].

Lemma B.4. Suppose that

• G
′/Z(G′) isF -anisotropic,

• Z is a cocompact subgroup ofZ(G◦) that is normal inG,
• K is a compact open subgroup ofG◦, and
• Y ∈ ⋃

y∈B(G,F ) gy,r is regular semisimple.

If Y ∈ gx,r andγ = ex(Y ), then

µ̂GX∗(Y ) =

∫

G/Z

∫

K

[Gx,r](
gkγ)φ̂(gkγ)dk dġ,

wheredġ is a Haar measure onG/Z and dk is the Haar measure onK,
normalized so thatmeasK = 1. If GY ∩ gx,r = ∅, then

µ̂X∗(Y ) = 0.
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WhenY ∈ gx,r, the notation of the lemma is meant to convey that the
integrand equalŝφ(gkγ) if gkγ ∈ Gx,r , and equals0 otherwise.

Proof. SinceGx,r = G◦
x,r, and since, forg ∈ G, replacingX∗ by gX∗ has

the effect of changingφ toφg, we see by Lemma B.2 that it suffices to prove
this result in caseG is connected.

The mapg 7→ min
{

dx(
k1gk2Y )

∣∣ k1 ∈ Gx,0+, k2 ∈ K
}

on G is locally
constant. Fort ∈ R ∪ {∞}, denote byG(t) the preimage oft under this
map, and put

I(t) =

∫

G(t)/Z

∫

K

Λ(X∗(gkY ))dk dġ

and

I ′(t) =

∫

G(t)/Z

∫

K

[gx,r](
gkY )Λ(X∗(gkY ))dk dġ.

We show thatI(t) = I ′(t) for t ∈ R ∪ {∞}.
Fix t ∈ R ∪ {∞}. If t ≥ r, then the desired equality is obvious, so we

may suppose thatt < r. Denote byt = t0 < t1 < · · · < tm the distinct
values ofdx in [t, r). Given a compact open subgroupK′ of G such that
k′G(t) = G(t) for all k′ ∈ K′ (for example, an open subgroup ofGx,0+),
we have

I(t) = [K′ : K′′]

∫

G(t)/Z

∫

K′′

∫

K

Λ(X∗(k
′gkY ))dk dk′ dġ

=

∫

G(t)/Z

∑

h∈K′′\K′

∫

K′′

∫

K

Λ(X∗(k
′hgkY ))dk dk′ dġ

=

∫

G(t)/Z

∫

K′

∫

K

Λ(X∗(k
′gkY ))dk dk′ dġ

=

∫

G(t)/Z

∫

K

∫

K′

Λ(X∗(k
′gkY ))dk′ dk dġ,

whereK′′ = K′ ∩Gx,(r−t)+ anddk′ is the Haar measure onK′, normalized
so thatmeas(K′) = 1. An easy generalization allows us to handle several
subgroupsK′

0, . . . ,K′
m as above, so we obtain

(∗∗)

I(t) =

∫

G(t)/Z

∫

K

∫

Gx,r−tm

· · ·
∫

Gx,r−t0

Λ(X∗(hm···h0gkY ))dh0 · · · dhm dk dġ,

where, forj = 0, . . . , m, dhj is the Haar measure onGx,r−tj normalized
so thatmeas(Gx,r−tj) = 1. Now fix g ∈ G(t) and k ∈ K, and put

Ỹ = gkY . Then either[gx,r](Ỹ ) = 1, or there is0 ≤ j ≤ m such that
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dx(Ỹ ) = tj (in particular,Ỹ 6∈ gx,tj+). In the latter case, fixhi ∈ Gx,r−ti

for 0 ≤ i ≤ m. By Remark A.2, we have thathj Ỹ − Ỹ ∈ gx,r and (since
hj−1 · · ·h0 ∈ Gx,r−tj−1

⊆ Gx,(r−tj)+) also thathj−1···h0 Ỹ − Ỹ ∈ gx,r+ ,

hence thathj(hj−1···h0 Ỹ − Ỹ ) ∈ gx,r+ . Thus, by another application of
Remark A.2,

hm···h0Ỹ − hm···hj+1 Ỹ

= hm···hj+1
(
hj (hj−1···h0Ỹ − Ỹ ) + hj Ỹ − Ỹ

)

∈ hj Ỹ − Ỹ + gx,r+ .

That is,

Λ(X∗(hm···h0 Ỹ )) = Λ(X∗(hm···hj+1Ỹ ))Λ(X∗(hj Ỹ − Ỹ )),

so the inner integrals in (∗∗) are a constant multiple of

(∗∗∗)
∫

Gx,r−tj

Λ(X∗(hj Ỹ − Ỹ ))dhj.

Now, forhj, h′j ∈ Gx,r−tj , we have by Remark A.2 thath
′
j Ỹ − Ỹ ∈ gx,r , so

hjh
′
j Ỹ − Ỹ = hj(h

′
j Ỹ − Ỹ ) + (hj Ỹ − Ỹ )

∈ (h
′
j Ỹ − Ỹ ) + (hj Ỹ − Ỹ ) + gx,r+ .

That is,ϕeY : hj 7→ Λ(X∗(hj Ỹ − Ỹ )) is a homomorphism onGx,r−tj ; so
(∗∗∗) equals0 unlessϕeY is trivial there.

Suppose that it is trivial. Choosẽγ ∈ ex,tj :tj+(Ỹ ). By Hypothesis A.1(4),

[hj, γ̃] ∈ ex,r:r+((Ad(hj) − 1)Ỹ ), so

[γ̃−1, φ̂](hj) = φ̂([hj , γ̃])
−1 = Λ(X∗((Ad(hj) − 1)Ỹ )−1 = 1,

for hj ∈ Gx,r−tj . That is,[γ̃−1, φ̂] is trivial onGx,r−tj ; so, by Lemma B.1,

γ̃ ∈ (G′, G)x,(tj ,tj+). Then Hypothesis A.1(6) gives̃Y ∈ (g′, g)x,(tj ,tj+). On

the other hand,̃Y ∈ gr ⊆ gtj+ . Therefore, by Corollary 3.7.8 of [2], we

have thatỸ ∈ g′
tj+

+ gx,tj+ . SinceG
′/Z(G′) is F -anisotropic, we have

thatg′
tj+

= g′
x,tj+

⊆ gx,tj+ , so in factỸ ∈ gx,tj+ , a contradiction.
We have shown that
∫

Gx,r−tm

· · ·
∫

Gx,r−t0

Λ(X∗(hm···h0 Ỹ ))dh0 · · · dhm

= (const)
∫

Gx,r−tj

Λ(X∗(hj Ỹ − Ỹ ))dhj = 0



72 ADLER AND SPICE

whenever̃Y 6∈ gx,r . ThusI(t) = I ′(t). By a theorem of Huntsinger (see [4,
Appendix A]), µ̂X∗(Y ) =

∑
t∈R∪{∞} I(t); so µ̂X∗(Y ) =

∑
t∈R∪{∞} I

′(t).
In particular, ifGY ∩ gx,r = ∅, thenµ̂X∗(Y ) = 0.

Now suppose thatY ∈ gx,r . By Hypothesis A.7(2),gkγ ∈ Gx,r if and
only if gkY ∈ gx,r , in which casegkγ belongs toex,r:r+(gkY ). Recall that
φ̂ ◦ ex,r:r+ = Λ ◦X∗ ongx,r:r+ . Thus

∫

G/Z

∫

K

[Gx,r](
gkγ)φ̂(gkγ)dk dġ

=

∫

G/Z

∫

K

[gx,r](
gkY )Λ(X∗(gkY ))dk dġ

=
∑

t∈R

I ′(t) = µ̂X∗(Y ). �
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INDEX OF NOTATION

R̃ p. 7
sgnF p. 7
ord p. 7
fF , f p. 7
p p. 7
F un p. 7
F sep p. 7
Λ p. 7
µ̂GX∗ p. 8

stabH(x) p. 9
Φ(G,T), Φ̃(G,T) p. 9
Lie(G)α, gggα p. 9
Uα, α a root p. 9
ψ+ p. 9
EUψ, Uψ, ψ an affine root p. 9
Euψ, uψ p. 9
dx p. 9
Fr:t, Uψ1:ψ2, Gx,r:t p. 9
ex,t:u, ex p. 9
TGx,f p. 10
T Lie(G)x,f p. 10
~Gx,~r p. 10
Lie( ~G)x,~r p. 10
Lie(TGx,f) p. 10
Lie( ~Gx,~r) p. 10

C
(r)
G

(γ), C
(r)
G (γ) p. 11

Z
(r)
G

(γ), Z
(r)
G (γ) p. 11

γ<r, γ≥r p. 11
Br(γ) p. 11
Jγ; x, rK p. 11
Jγ; x, rK(j) p. 11
Jγ; x, rKG′ , Jγ; x, rK

(j)
G′ p. 11

T (~G, ~r) p. 12

Θπ p. 15
θρ p. 16
θ̇ρ p. 16

dx(φ), φ a character p. 16
G
i p. 16

x p. 16
ri p. 16
φi p. 16
si p. 16
Ki p. 16
J i, J i+ p. 16
ρ′i p. 16
πi p. 16
φ̃i p. 17
X∗
i p. 17

φ̂i p. 17
Kσi

p. 17
σi p. 17
τi p. 17
G′ p. 18
K p. 18
J p. 18
J+ p. 18
ρ′ p. 18
σ p. 18
τ p. 18
r, s, φ p. 18
X∗, φ̂ p. 18
φ̃ p. 18
K, Kσ, J, J+ p. 18
ρ′, σ, τ, π p. 18
π′

0 p. 18
ρ̃ p. 18

ε(φ, γ) p. 24

j(g), j⊥(g) p. 29
i(g), t(g), i⊥(g), t⊥(g) p. 30

G̃(φ, γ), G(φ, γ) p. 34

i∼ p. 58

e
E
x,t:u p. 64

eT,x p. 66
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acters, Inst. HauteśEtudes Sci. Publ. Math. (1996), no. 83, 105–233. MR1423022
(98m:11129)

[13] William Casselman,Characters and Jacquet modules, Math. Ann.230(1977), no. 2,
101–105. MR 0492083 (58 #11237)

[14] Lawrence Corwin,Representations of division algebras over local fields, Advances
in Math.13 (1974), 259–267. MR 0347780 (50 #281)

[15] Lawrence Corwin and Roger E. Howe,Computing characters of tamely ramifiedp-
adic division algebras, Pacific J. Math.73 (1977), no. 2, 461–477. MR 0492084 (58
#11238)

[16] Lawrence Corwin, Allen Moy, and Paul J. Sally Jr.,Degrees and formal degrees for
division algebras andGLn over ap-adic field, Pacific J. Math.141 (1990), no. 1,
21–45. MR1028263 (90k:22025)

[17] , Supercuspidal character formulas forGLℓ, Representation theory and har-
monic analysis (Cincinnati, OH, 1994), 1995, pp. 1–11. MR1365530 (96m:22037)



SUPERCUSPIDAL CHARACTERS 75

[18] Clifton Cunningham,Characters of depth-zero, supercuspidal representationsof the
rank-2 symplectic group, Canad. J. Math.52 (2000), no. 2, 306–331. MR1755780
(2001f:22055)

[19] Stephen DeBacker,On supercuspidal characters ofGLℓ, ℓ a prime, Ph. D. Thesis,
The University of Chicago, 1997.

[20] Stephen DeBacker and Paul J. Sally Jr.,Germs, characters, and the Fourier trans-
forms of nilpotent orbits, The mathematical legacy of Harish-Chandra (Robert S.
Doran and V. S. Varadarajan, eds.), Proceedings of Symposiain Pure Mathematics,
vol. 68, American Mathematical Society, Providence, RI, 2000, pp. 191–221. MR
1767897 (2001i:22022)

[21] Stephen DeBacker,Homogeneity results for invariant distributions of a reductive p-
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Acad. Sci. Paris Sér. A-B283(1976), no. 4, Aii, A155–A157 (French, with English
summary). MR 0425033 (54 #12991)

[25] Paul Gérardin,Weil representations associated to finite fields, J. Algebra46 (1977),
no. 1, 54–101. MR 0460477 (57 #470)

[26] Jeffrey Hakim and Fiona Murnaghan,Tame supercuspidal representations ofGL(n)
distinguished by a unitary group, Compositio Math.133(2002), no. 2, 199–244. MR
1923582 (2003g:22019)

[27] Thomas C. Hales,Hyperelliptic curves and harmonic analysis (why harmonic anal-
ysis on reductivep-adic groups is not elementary), Representation theory and anal-
ysis on homogeneous spaces (Simon Gindikin, Frederick P. Greenleaf, and Paul J.
Sally Jr., eds.), Contemporary Mathematics, vol. 177, American Mathematical Soci-
ety, Providence, RI, 1994, pp. 137–169. MR1303604 (96d:22024)

[28] Harish-Chandra,Harmonic analysis on reductivep-adic groups, notes by G. van Dijk,
Springer–Verlag, Berlin, 1970. MR 0414797 (54 #2889)

[29] , A submersion principle and its applications, Geometry and analysis: Papers
dedicated to the memory of V. K. Patodi, Indian Academy of Sciences, Bangalore,
1980, pp. 95–102. MR592255 (82e:22032)

[30] , Admissible invariant distributions on reductivep-adic groups, with a pref-
ace and notes by Stephen DeBacker and Paul J. Sally, Jr., University Lecture Se-
ries, vol. 16, American Mathematical Society, Providence,RI, 1999. MR1702257
(2001b:22015)

[31] Guy Henniart,Correspondance de Jacquet-Langlands explicite. I. Le cas modéré de
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