A COMPUTATIONAL APPROACH TO AFFINE MODELS OF THE

TERM STRUCTURE
By
Barton Baker
Submitted to the
Faculty of the College of Arts and Sciences
of American University
in Partial Fulfillment of
the Requirements for the Degree

of Doctor of Philosophy

In

Economics

Chair: % /(W

Professor Robin L. Lumsdaine

G Z—

Professor Alan G. Isaac

ﬂ’) ({‘é’&/\ M : M“g\é«-—/

Professor Colleen M. Callahan

Dean of_the College

’SA\”LL\ AL

Date

2014
American University
Washington, D.C. 20016

© COPYRIGHT
by
Barton Baker
2014
ALL RIGHTS RESERVED

ii

A COMPUTATIONAL APPROACH TO AFFINE MODELS OF THE
TERM STRUCTURE

by
Barton Baker

ABSTRACT

This dissertation makes contributions to the term structure modeling literature by examining
the role of observed macroeconomic data in the pricing kernel and providing a single computational
framework for building and estimating a range of affine term structure models. Chapter 2 attempts
to replicate and extend the model of Bernanke et al. (2005), finding that proxies for uncertainty,
particularly for practitioner disagreement and stock volatility, lower the pricing error of models
estimated only with observed macroeconomic information. The term premia generated by models
including the proxies produce term premia that are higher during recessions, suggesting that these
proxies for uncertainty represent information that is of particular value to bond market agents during
crisis periods. Chapter 3 finds that a real-time data specified pricing kernel produces lower average
pricing errors compared to analogous models estimated using final release data. Comparisons
between final release and real-time data driven models are performed by estimating observed factor
models with two, three, and four factors. The real-time data driven models generate more volatile
term premia for shorter maturity yields, a result not found in final data driven models. This suggests
that the use of real-time over final release data has implications for model performance and term
premia estimation. Chapter 4 presents a unified computational framework written in the Python
programming language for estimating discrete-time affine term structure models, supporting the
major canonical approaches. The chapter also documents the use of the package, the solution
methods and approaches directly supported, and development issues encountered when writing C-
language extensions for Python packages. The package gives researchers a flexible interface that

admits a wide variety of affine term structure specifications.

iii

ACKNOWLEDGEMENTS

I would like to thank my dissertation committee chair, Professor Robin L. Lumsdaine, for
her invaluable guidance, comments, and encouragement in the completion of this dissertation. I
have learned an immense amount, not only about the field of affine term structure modeling, but
also about contributing to the field of economics in general from her. I would also like to thank
my other committee members, Professor Alan G. Isaac and Professor Colleen Callahan, for their
support and review at key times during this process.

I would also like to thank the American University Department of Economics for an education
that has proved immensely valuable in my formation as a researcher. Of particular value to me was
the opportunity to study many different fields within economics.

I would also like to thank the NumPy development community. When issues were encountered
in development of the package, they were extremely knowledgeable and helpful.

Most of all, I would like to give special thanks to my wife, Jenny, for all of her support during
the research and writing of this dissertation. The completion of this dissertation would not have

been possible without her constant encouragement.

iv

TABLE OF CONTENTS

ABSTRACT . . . o e ii
ACKNOWLEDGEMENTS e e e e iii
LIST OF TABLES e vi
LIST OF FIGURES e e viii
CHAPTER
1. INTRODUCTION e e s 1
1.1 Approach 3
1.2 Contributions and Structure o 0oL 4
2. AN EXTENSION AND REPLICATION OF BERNANKE ET AL. (2005) 6
21 Data 8
2.2 Replication 15
2.3 Extension into the Great Recession of 2007-2009 25
24 Conclusion e 38
3. REAL-TIME DATA AND INFORMING AFFINE MODELS OF THE TERM STRUC-
TURE . . e 40
3.1 Model 43
3.2 Data e 49
321 Yields. 54
3.3 Results e 56
3.4 Conclusion 69
4. AN INTRODUCTION TO AFFINE, A PYTHON SOLVER CLASS FOR AFFINE
MODELS OF THE TERM STRUCTURE 71
4.1 A Python Framework for Affine Models of the Term Structure 73

4.1.1 Why Python? e 7

4.1.2 Package Logic e 78

4.2 Assumptions of the Package 82
4.2.1 Data/Model Assumptions Lo 82
4.2.2 Solution Assumptions 84

4.3 APL . . e 86
4.3.1 Parameter Specification by Masked Arrays 88
4.3.2 Estimation e 92

4.4 Development 101
4.4.1 Testing e e 111
442 Issueso 114

4.5 Building Models 115
4.5.1 Method of Bernanke et al. (2005) 116
4.5.2 Method of Ang and Piazzesi (2003) 118
4.5.3 Method of Orphanides and Wei (2012) 122

4.6 Conclusion L 125
5. CONCLUSION . . . e e 127

APPENDIX

A. Data for Chapter 2 e 130
B. Data for Chapter 3 131
C. Additional figures and table for Chapter 2 133
D. Source Code for affine 136
E. Sample scripts for executing models and viewing results 184

REFERENCES e 202

vi

LIST OF TABLES

Table

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

2.11

3.1

3.2

3.3

3.4

3.5

3.6

Page
Descriptive Statistics of Difference in Percentage between Constant Maturity Gov-
ernment Bond Yields and Fama-Bliss Implied Zero-coupon Bond Yields for One,
Three, and Five year Maturities 1982-2012. 11
Page 47 from Bernanke et al. (2005) L L 19
Standard Deviation of Pricing Error in Basis Points. 21

Standard Deviation of Pricing Error by Parameter Difference Convergence Criterion. 23

Difference in Standard Deviation of Pricing Error between Model with and without

Eurodollar Factor. 24
Root Mean Squared Pricing Error in Basis Points 25
Model Classifications L 29
RMSE for Estimated Models. oo 30
Model Comparisons for T-Test. 30
RMSE for Model Using Fama-Bliss Zero-coupon Bonds. 32
Mean Five Year Term Premium by Date Range and Model. 38

Quarterly Releases of Real GDP Growth and Civilian Unemployment for Q3 1996 . 45

Descriptive Statistics for Output Growth and Inflation as Measured by the Median
Survey of Professional Forecasters within Quarter Statistic, the Greenbook Current

Quarter Statistic, and the Final Release Statistic. 52
Sample of Real-time Data Set for Macroeconomists Real GNP 53
Descriptive Statistics of Real-time and Final Data, Quarterly Data, 1969-2012. . . . 53
RMSE for Models using Final (F) and Real-time (RT) Data. 59

AR Models of Pricing Errors Taken from the Four Factor Models. 63

4.1

4.2

4.3

4.4

C.1

C.2

vii

Algebraic Model Parameters Mapped to Affine Class Instantiation Arguments . . 88
Profiling Output of Pure Python Solve Function. 107
Profiling Output of Hybrid Python/C Solve Function. 107

Affine Term Structure Modeling Papers Matched with Degree of Support from Pack-

AZE . o e e e e e 116
Maximum Five Year Term Premium by Date Range and Model. 133
Minimum Five Year Term Premium by Date Range and Model. 133

LIST OF FIGURES

Figure

2.1

2.2
2.3
2.4
2.5

2.6

2.7

2.8
2.9
2.10
3.1
3.2

3.3

3.4

3.5

3.6

One, Three, and Five-year Yield Plots of Constant Maturity Government Bonds vs.
Fama-Bliss Implied Zero-coupon Bonds

Blue Chip Financial Forecasts Next Year Output Growth Disagreement.
Distribution of Disagreement for Next Year by Month.
Distribution of Disagreement for Current Year by Month.
Page 46 from Bernanke et al. (2005) L Lo L

Author’s Estimation Results Showing Actual, Predicted, and Risk-neutral Percentage
Yields for 2-year Treasury Constant Maturity.

Author’s Estimation Results Showing Actual, Predicted, and Risk-neutral Percentage
Yields for 10-year Treasury Constant Maturity.

Blue Chip Disagreement and VIX, 1990-2012
Plots of Pricing Error for Five Year Yield for Select Models.
Plots of Time-varying Term Premium for Five Year Yield for Select Models.

SPF and Greenbook Output Growth Statistics.
SPF, Greenbook, and Final Output Growth Statistics.

Residuals of Univariate Regression of Final Output on Real-time Output. NBER
(2013) TECESSIONS. .« « o v v v v i e e

Time Series of F-statistics Used to Test for Structural Breaks in the Observed One,
Two, Three, Four, and Five Year Yields.

Time Series of F-statistics Used to Test for Structural Breaks in the Final Values of
Output Growth, Inflation, Residential Investment, and Unemployment.

Time Series of F-statistics Used to Test for Structural Breaks in the Real-time Values
of Output growth, Inflation, Residential Investment, and Unemployment.

viii

3.7

3.8

3.9

4.1

4.2

4.3

44

C.1

C.2

ix

Plots of Residuals for Final (4) and Real-time (4) Models by Maturity. 62

Plots of Implied Term Premium for Final (4) and Real-time (4) Models by Maturity
on Left and Right Hand Side, Respectively. 65

Autocorrelation Plots of Implied Time-varying Term Premium for Final (4) and
Real-time (4) Models by Maturity on the Left and Right Hand Side, Respectively. . 68

Package Logic e 80
Package Logic (continued) 81
Graphical Output Profiling Pure-Python Solve Function. 108
Graphical Output Profiling Hybrid Python/C Solve Function. 109
Plots of Difference between Yields on One, Three, and Five-year Constant Maturity

Government Bond Yields and Fama-Bliss Implied Zero Coupon Bond Yields. 134

Pricing Error Across Estimated Models for One and Five Year Maturity. 135

CHAPTER 1
INTRODUCTION

The relationship between macroeconomic fluctuations and the yields on government bonds
has long been a subject of study. Macroeconomic conditions such as output, inflation, and invest-
ment affect the market in at least two ways. First, the macroeconomic conditions will partially
determine the market environment under which a single bond-market agent is making decisions.
Second, the publication of macroeconomic indicators communicates to agents their own financial
position relative to the rest of the market and the conditions of the market as a whole. Recog-
nizing specifically how macroeconomic conditions influence government bond markets should be an
important component of any term structure modeling approach.

Monetary policy also affects the term structure of government bonds: at shorter maturities
through the federal funds rate and open market operations, and at longer maturities through large
scale asset purchases such as quantitative easing (Krishnamurthy and Vissing-Jorgensen, 2011) and
formal management of expectations of future federal funds rate targets and inflation (Bernanke
et al., 2005). The federal funds rate serves as a benchmark not only for bond markets but for many
other financial markets. Monetary policy measures are particularly valuable for term structure
modeling because the federal funds rate, the shortest maturity yield in the term structure, is the
primary instrument of the monetary authority.

In addition to the current macroeconomic condition and monetary policy environment, ex-
pectations of both over different horizons will inevitably have an impact on the perceived risk of
holding government bonds. With higher perceived macroeconomic risk over the maturity of the
bond, bond buying agents will require higher expected yields in order to be compensated for that
risk. Expectations of future monetary policy also may affect the term structure through the Ex-
pectation Hypothesis, where long term rates are the product of expectations of future short term

rates. Agents will also integrate the expectations of how the monetary authority could react to the

economic conditions at that time. In particular with longer maturity bonds, expectations of future
macroeconomic and monetary conditions may play a prominent role in bond pricing outcomes.

Government bond-market participants use information related to both current and expected
macroeconomic conditions and monetary policy to inform their market behavior. As a result, gov-
ernment bonds offer a link between macroeconomic policy and financial markets and decomposing
what specifically drives the yields on these bonds can help in determining how macroeconomic policy
may alter the yield curve. A term structure modeling framework should utilize macroeconomic and
monetary policy information in a data generating process that influences the yields on government
bonds.

Affine term structure models offer a framework through which the information driving gov-
ernment bond markets can be linked to government bond yields. These models are a convenient
tool for both modeling a process governing agents’ beliefs of future economic conditions and us-
ing this process to predict yields all along the yield curve. Macroeconomic conditions, the data
generating process for these conditions, and other factors are linked to a spread of yields through
the assumption that a single pricing kernel can be used to explain all of the yields'. It is assumed
that the macroeconomic variables and other factors included in the kernel encapsulate the primary
information driving bond market pricing decisions. It is often necessary to add unobserved latent
factors to the set of observed factors or replace the observed factors completely in order to capture
all relevant moments of yields over time. Models with multiple latent factors were introduced in
Duffie and Kan (1996). By defining the data generating process governing this pricing kernel, the
yields on bonds all along the yield curve can be decomposed into a predicted component and a
risky component. After the yields have been decomposed in this manner, a time-varying estimate
of the term premium is obtained, which is the additional yield required by agents who have tied up
liquidity in the bond over the maturity of the bond.

This term premium estimate can be used to demonstrate how perceived risk as reflected
in bond yields responds to specific historical events. Term premia have been shown to react to
macroeconomic expansions and recessions (Rudebusch et al., 2007), to specific monetary policy
announcements and policy changes (Kim and Wright, 2005), and to changes in expected and un-
expected inflation (Piazzesi and Schneider (2007) and Wright (2011)). In many of these cases,

latent factors are used in the pricing kernel to maximize the fit of the model and generate the

1The pricing kernel is defined in Equation 2.2.1.

time-varying term premia. In addition to examining responses to events, these models can also
be used to measure what information is useful for generating a high performing pricing kernel and
what information generates changes in the time-varying term premium.

Observed information added to the pricing kernel can change the performance of the model
(Bernanke et al., 2005) and lead to changes in the moments of the time-varying term premia. The
literature around how modifications and additions to the observed information included in the
pricing kernel is less well-developed. This dissertation contributes to the observed factor approach,
showing how specific observed factors included in the pricing kernel can alter the performance of

the model and can lead to different measures of the term premia.
1.1 Approach

The trend in the affine term structure model literature over the past fifteen years has been
to supplement or supplant observed information driving the bond markets with unobserved latent
factors. These latent factors are derived in the estimation process through assumptions about the
structure of bond markets and, depending on the calculation of the likelihood, are calculated by
assuming that certain yields are priced without error. Dai and Singleton (2002), Ang and Piazzesi
(2003), Kim and Orphanides (2005), and Orphanides and Wei (2012) each estimate models that
use a combination of observed and unobserved factors to inform bond pricing decisions. Kim and
Wright (2005), Diebold et al. (2006), and Rudebusch and Wu (2008) rely purely on unobserved
latent factors. The addition of even a single latent factor increases the performance of these models
at multiple maturities as measured by the pricing error (the difference between the actual and
predicted yield). Adding latent factors is a popular choice when the intent of developing the model
is to build a high-performing model and develop an estimate of the time-varying term premium.
Even though these latent factors can often be related back to moments of the yield curve, they
are not as useful when part of the research effort is to break down the information entering bond
market pricing decisions into what information is valuable to agents and how it is valuable. For
example, adding even a single latent factor could mask the individual subtleties of different types
of observed information included in the pricing kernel.

Rather than maximizing the fit of the model through the addition of latent factors, this
dissertation takes an approach of adding and modifying observed macroeconomic factors to the
yield curve to gain a better understanding of what drives bond market pricing behavior. These

macroeconomic factors can include output, inflation, investment, expected output, and practitioner

forecast disagreement. This is more in line with the approach of Bernanke et al. (2005) and Joslin
et al. (2011), where latent factors are avoided to gain a better understanding of what observed
information drives government bond markets. While the models estimated in this dissertation
do not fit the term structure as closely as models with latent factors, they do reveal important
information about how different types of observed information become valuable at different times
of the business cycle when pricing the term structure. The first two chapters both investigate the
impact that modifications and additions to this observed information set have on model performance
and the time-varying term premium, with a latent factor model included in the second chapter for

comparison and illustration of the value of the observed information.
1.2 Contributions and Structure

Chapter 2, An Extension and Replication of Bernanke et al. (2005), attempts to replicate the
original model of the referenced paper and extend it into the recent financial crisis. The chapter also
examines how an affine term structure model driven solely by the observed macroeconomic factors
used in Bernanke et al. (2005) could benefit from the addition of observed factors that attempt to
capture economic uncertainty, namely, practitioner forecast disagreement and stock market volatil-
ity. These additions become especially useful when recessions are included in the observation period
and lead to higher estimated term premia during recessions. By pricing uncertainty explicitly, better
fitting models with lower pricing error as measured by root-mean-square error are estimated.

Chapter 3, Real-time Data and Informing Affine Models of the Term Structure, focuses on
accurately reflecting the information used by the bond market to contemporaneously price the yield
curve. This refinement of the information set is accomplished through the use of a real-time data-
driven process governing agents’ beliefs about the macroeconomic information driving bond market
decisions. This chapter is inspired by the real-time modeling approach of Orphanides (2001) and
Orphanides and Wei (2012), but focuses entirely on the potential role of real-time data in affine
term structure models. A real-time process is compared to an affine process governed by final
release data to show the advantage of using real-time data through model performance measures
and the characteristics of the resulting term premia. A real-time data derived pricing kernel is
shown to both perform better and offer a wider variety of time-varying term premia time series
across the yield curve. These results suggest that term premia may also be driven by different

factors, or changes in weights of factors, at different ends of the yield curve. The potential role of

latent factors in smoothing differences between real-time and final data-driven models is also briefly
examined.

Construction and estimation of affine term structure models can be a time consuming process.
The transformation of the information entering pricing decisions into the yields of government
bonds spread across the yield curve involves the construction of a non-linear model. A closed-form
solution for the parameters of the model given a data generating process does not exist, so the model
parameters must be estimated using numerical approximation methods coupled with an objective
function. In the process of researching the affine term structure model literature, I discovered that
there was a dearth of software built explicitly for building and estimating these models. Chapter 4,
An Introduction to affine, a Python Solver Class for Affine Models of the Term Structure, presents
a package written by the author to begin to fill this void and a broad framework through which
affine term structure models can be understood. This package represents a unique addition to
the field, not only in its ability to solve a broad class of affine models of the term structure, but
by also providing a way of understanding different models as permutations of the same structure
modified by a selection of parameters. The chapter presents information on how the package can
be used, issues encountered during development of the package, and lessons learned on developing
computational C language extensions for Python. The package also provides a general approach
to building affine models of the term structure that allows models built for specific purposes in
other papers to be compared using a single framework, aligning their similarities and pinpointing
their differences. It is the intention of the author that this package will lower the costs involved
in developing affine models of the term structure and will lead to a wider variety of papers in the

field.

CHAPTER 2
AN EXTENSION AND REPLICATION OF
BERNANKE ET AL. (2005)

In a 2005 Brookings Paper, Bernanke et al. (2005) (BRS) investigate the effects of alternative
monetary policy at a binding zero-lower bound (ZLB) for the federal funds rate. One of the main
conclusions of their study is the importance of including policy expectations when pricing zero-
coupon yields through an affine model of the term structure!. Their model uses a collection of
observed macroeconomic variables or “factors” modeled using a vector autoregression (VAR) to
price zero-coupon bond yields along the term structure. While it is common practice in affine
term structure literature to use a combination of observed and unobserved factors to inform the
pricing kernel (see Ang and Piazzesi (2003) and Kim and Wright (2005)), BRS are able to price
a large amount of the variation in observed yields using information derived only from observed
macroeconomic factors. As a specific test of the importance of policy expectations, BRS add an
additional macroeconomic measure (year-ahead Eurodollar futures) to the information set entering
the model, and they adduce the resulting lowered pricing error as evidence of the importance of
policy expectations in bond markets.

BRS’s period of study, 1982 to 2004, lies almost entirely within the period commonly known
as the “Great Moderation” (see Stock and Watson (2003)). This period was characterized by low
inflation and consistent output growth, where expectations of future economic activity stabilized to a
degree not previously seen in American economic history. Because of this stability in both current
and expected economic activity, the inclusion of year-ahead Eurodollar futures as an additional

factor may have been appropriate, given how predictable the economic environment was during

1These models are “affine” through the transformation performed to relate the pricing kernel to the observed
yields. This transformation allows for mathematical tractability when relating the factors driving the pricing kernel
to the observed term structure yields.

this period. In contrast, the period following their observation period has been characterized by
economic instability and uncertainty, primarily because of the housing boom and bust and associated
stock market crash and the Great Recession. BRS emphasize the ability of their model to fit yields
across multiple maturities without the need for unobserved factors, but given the volatility following
their original observation period, stability in their chosen macroeconomic factors could have driven
lower pricing errors, and not necessarily the ability of those factors to price term structure volatility
in diverse circumstances.

This chapter considers BRS’s model in the context of the recent financial crisis. To do this,
this chapter will attempt to replicate BRS’s results, then extend BRS’s observation period into 2012,
past the “Great Moderation” into the Financial Crisis of 2007-2008 and into the Great Recession
and slow recovery of 2009-2012. If BRS’s choice of factors are suitable for all periods and not just
1982-2004, then the pricing error should not deteriorate with an observation extension into the
modern economic era.

This chapter will be divided into the following 3 sections:

1) Data

I start by addressing the bond yields and macroeconomic factors used in their model. This
section will also consider alternatives to their original data. The use of a different yield set will
be addressed. It will also address possible issues with using Blue Chip Financial Forecast data,
unadjusted, in a time series model.

2) Replication

In this section, I estimate the model using BRS’s original factors and yields and use their
exact observation period of 1982 to 2004. Time series plots of fitted and risk-neutral yields from this
estimation will be shown alongside with BRS’s original results. The pricing errors of the estimated
yields will also be displayed, with and without the Eurodollar factors, and will also be compared to
BRS’s original results. There is also a discussion of the importance of convergence criteria of the
numerical approximation methods used in estimating affine models.

3) Extension

The model will then be re-estimated using a shifted observation period of 1986-2012 in order to
maintain the same number of observations and introduce new factors. The fitted plot and average
pricing error of this model will be compared to the estimated model results from the original
observation period. Given the occurrence of the “Great Recession” during this period, the author’s

hypothesis is that the model will miss pricing kernel information beyond BRS’s original model

estimation end date in 2004. Macroeconomic uncertainty increased significantly during the lead-up
to and during the “Great Recession” and likely played a major role in influencing bond pricing
agents’ decision process. BRS’s five factor model without any measure of aggregate uncertainty
may not fully account for all major contributing factors to the pricing kernel when the observation
period includes a time of high uncertainty. This could lead to inaccurate forecasting and misleading
measures of the term premium. Measures of forecast disagreement from the Blue Chip Financial
Forecasts and contemporaneous stock market volatility (VIX) will be used to attempt to proxy for
economic uncertainty. In order to make the case for including these measures in an affine model,
this section will estimate additional models in order to show that factors that control for short- and
medium-term uncertainty are important to any affine model of the term structure where pricing
in both stable and unstable economic environments is important. The results suggest that, while
BRS’s original model with Eurodollar futures is able to price a large amount of the variation in
bond prices, adding these additional factors of disagreement and volatility improve the performance

of the model and lead to term premium measures that are more sensitive to recessions.
2.1 Data

This section presents the data used in the model estimation and discusses the potential
problems with using unadjusted Blue Chip Financial Forecast data. The yields to estimate the
model (the details of which are discussed in the next section) are Treasury Bill and Treasury
Constant Maturity yields from the Federal Reserve Bank of St. Louis (2013)2. Fama-Bliss zero-
coupon bonds were available at one, two, three, four, and five year maturities (CRSP, 2013). These
latter yields are the industry standard for term structure modeling, used in countless time series
studies, and are based on the implied zero-coupon yield estimation strategy from Fama and Bliss
(1987). Figures 2.1a, 2.1b, and 2.1c show time-series plots of the same maturity yields for both the
constant maturity government bond series available from Federal Reserve Economic Data (FRED)
(Federal Reserve Bank of St. Louis, 2013) and the Fama-Bliss implied zero-coupon series®. All
three plots show that there are only a few months where there is any noticeable difference between

the two time series. These months are all concentrated in the time during Paul Volker’s term as

2These yields were used as a replacement for the Fed internal zero-coupon yield set that BRS originally used
in their model. The 4 year maturity treasuries are also not included because of unavailability. Fama-Bliss were only
available as a subset of the maturities used in BRS.

3This plots of differences between the treasury constant maturity yields and the Fama-Bliss implied zero-
coupon yields are included in the appendix in Figures C.la, C.1b, and C.lc.

Fed chairman when there was a concentrated effort to stamp out the high inflation of the 1970’s.
It remains outside of the period of observation for both BRS’s original model and the extension
presented in a later section. Table 2.1 presents descriptive statistics for the difference between these
two measures for the five year maturity yields. While differences do exist, the two follow largely
the same pattern and are unlikely to drive significant differences in results when estimating models
based on either of these values. If we can assume that the implied zero-coupon yield derivation
method used for the internal Fed set produces similar results to the Fama-Bliss method, the results

using the constant maturity set should compare to BRS’s results.

10

Figure 2.1: One, Three, and Five-year Yield Plots of Constant Maturity Government Bonds vs.
Fama-Bliss Implied Zero-coupon Bonds
(a)

Constant Maturity (FRED), one year
Fama-Bliss Zero Coupon one year

16 {

1963 1973 1983 1993 2003

(b)

- - Constant Maturity (FRED), three year
18 — Fama-Bliss Zero Coupon three year

1963 1973 1983 1993 2003

(c)

- - Constant Maturity (FRED), five year
16 Fama-Bliss Zero Coupon five year

Yield (%)

1963 1973 1983 1993 2003

11

Table 2.1: Descriptive Statistics of Difference in Percentage between Constant Maturity Government
Bond Yields and Fama-Bliss Implied Zero-coupon Bond Yields for One, Three, and Five year
Maturities 1982-2012.

Statistic | One Year | Three Year | Five Year

mean 0.0549 0.0826 0.0630
std 0.1976 0.2157 0.2246
min -0.3863 -0.4289 -0.5788
25% -0.0569 -0.0517 -0.0700
50% 0.0323 0.0754 0.0573
5% 0.1515 0.1867 0.1703
max 0.9966 1.1632 1.1142

The information that BRS use to inform the term structure of yields is an employment
gap of total non-farm employment measured as the difference between observed employment and
Hodrick-Prescott filtered employment, inflation over the past year measured using the personal
consumption expenditures (PCE) price index excluding food and energy, mean expected inflation
over the subsequent year from the Blue Chip Financial Forecasts, the effective federal funds rate,
and the year-ahead Eurodollar futures rate. Their data are monthly, June 1982 to August 2004.
Total non-farm employment is from the Bureau of Labor Statistics (2012). PCE inflation and the
effective federal funds were both taken from the Federal Reserve Economic Data (2013), sponsored
by the St. Louis Federal Reserve Bank. Year-ahead Eurodollar futures were downloaded from
Bloomberg (2012).

Before moving on to the model estimation, it is important to note the peculiar structure of
Blue Chip Financial Forecasts (BCFF) and the possible issues with including them, unadjusted, in a
time series econometric model. The Blue Chip Financial Forecasts survey has been conducted every
month since 1976, polling at least 50 economists for their current-year and year-ahead forecasts
for a variety of macroeconomic measures, including GNP/GDP, inflation (as measured by the
GNP /GDP deflator), output from key industries, housing, etc. While percentiles of the predictions
are not included, means of the top and bottom 10 predictions are included. The survey periodically
revises what questions and statistics to include, but the major macroeconomic measures are always
included. The BCFF survey recipients are asked about their best guess for each indicator over
a given calendar year, no matter the current month of the survey. Beginning in 1980, BCFF
began consistently asking in January their forecast for the following year and the current year.

Specifically, in January of 1980, economists were asked for their forecast of real GNP growth and

12

inflation as measured by the GNP deflator for the entire year of 1980 and 1981, separately. The
survey is re-administered every month, but the years in question do not change until the following
January. Continuing our example, for February through December of 1980, the questions will refer
to forecasts for the entire years of 1980 and 1981, separately.

Given that the December year-ahead prediction is only one month away from the first month of
the year in question, while the January year-ahead prediction is 12 months away, one might expect
that the two are not comparable without adjustment. Specifically, there might be consistently
greater disagreement in predictions in earlier months in the year compared to later months, as
point predictions converge as practitioners have more information gathered for the same target.
This could result in a naturally converging prediction throughout the year towards a certain value,
with a jump in the predicted value once January returns. There would thus be a form of seasonality
that might be present in both the point-values and dispersion of the values.

Many practitioners, inside and outside the affine model literature, have taken this issue for
granted and corrected for it either in the modeling scheme or adjusting the data. Chun (2011)
and Grishchenko and Huang (2012) both adjust all forecasts after the first period by using linear
interpolation between the forecast for the next period and forecast for two periods ahead. For
monthly data, this results in eleven out of every 12 months in a year being the weighted average of
two data points. If 11 out of every 12 values are entirely based on a linear interpolation between
two values, a lot of potential variation between these values is lost and stability is imposed on
values that might otherwise be volatile. Batchelor and Dua (1992) follow the substitution method of
McCallum (1976) and Wickens (1982) and correct for this fixed horizon issue by explicitly modeling
the rational expectations corrections of the values throughout the year. This method allows the
uncertainty pattern to be modeled and adjusted values to be used in the model.

BRS do not explicitly address this issue, implicitly using the unadjusted year-ahead Blue Chip
forecasts. While there is a theoretical case for adjustment, let us examine whether the forecasts
empirically exhibit trends within the calendar year. As a simple test of whether these values
might require adjustment before their inclusion in the VAR determining the pricing kernel, we
show the movement of the disagreement over time. Figure 2.2 plots next year disagreement as
measured by the average of the top 10 GDP growth predictions minus the bottom 10 GDP growth
predictions over time. Each prediction refers to a single economist queried for the survey. The
graph reveals downward movements in disagreement over the course of a series of months, but it is

not clear whether they are associated with movement within a year. The dark areas are intended to

13

highlight periods of sustained consecutive downward movement in disagreement. From this cursory
view, disagreement seems to decline especially in cases where it is preceded by a previous decrease
in disagreement. While this pattern may partially result from a decrease in disagreement over the
period of a business cycle expansion, it could also be driven by the fixed horizon issue mentioned

above, where uncertainty decreases just by the nature of being a later month in the year.

3.5

3.0

N
w

Disagreement
M
o

=
w

1.0

0.5

1989 1994 1999 2004 2000

Figure 2.2: Blue Chip Financial Forecasts Next Year Output Growth Disagreement. Highlighted
areas could reveal autocorrelated year-ahead disagreement for GDP.

For further investigation, a box-and-whisker graph is presented in Figure 2.3 summarizing
the distribution of disagreement by month, across 324 months between 1985 and 2012. The top
and bottom wicks represent the maximum and minimum disagreement for that given month. The
top and bottom of the box represent the 75% and 25% percentile of the 27 months within that
calendar month, respectively. Given this more concise visual representation of disagreement, there

does not seem to be any downward pattern to disagreement over the year, as might be expected.

14

Even though there is more information about the next year in December compared to January, that
does not seem to consistently decrease the dispersion of forecasts as the ending of the calendar year

approaches.

35 T T T T

3.0} .

Ty

0.5

Disagreement

6 7 8 9 10 11 12
Month

wl

1 2 3 4

Figure 2.3: Distribution of Disagreement for Next Year by Month. Disagreement measured as
average of top 10 predictions minus average of bottom 10 predictions.

On the other hand, for the within year forecasts, there is a clear decline in disagreement over
the course of any given year, as shown in Figure 2.4. These are the disagreement in GDP growth
for year Y during the months within year Y. As the year passes for these within-year forecasts, the
span of possible final values decreases given that a higher fraction of the influencing observations
for that year have already been observed, leading to the convergence shown in the figure.

The year-ahead prediction values to do not show a within year bias that needs to be cor-
rected for. In the next section, disagreement is measured using the year-ahead prediction measures,
so unadjusted Blue Chip data should be appropriate for inclusion in a VAR process. All other

macroeconomic measures are included consistent with BRS’s original prescribed model.

15

3.0 T T T T T T T

2.5} 1

N
=)
T

.

0.5

Disagreement
= =
o (%))

0.0 . L L L L L L

Month

Figure 2.4: Distribution of Disagreement for Current Year by Month. Disagreement measured as
average of top 10 predictions minus average of bottom 10 predictions.

2.2 Replication

This section attempts to replicate the results of BRS’s estimated affine model of the term
structure using the data described in the above section. BRS compare two of these models, with and
without Eurodollar futures, to demonstrate the importance of policy expectations in government
bond pricing. We begin by addressing the general form of affine term structure models and continue
with the specifics outlined by BRS in their model structure and estimation.

The price of any n-period zero-coupon bond in period ¢ can be recursively defined as the
expected product of the pricing kernel in period ¢ + 1, k;11, and the price of the same security

matured one period in ¢ + 1:

Py = Eilkiapiy] (2.2.1)

The pricing kernel, k;, encapsulates all relevant information to bond pricing decisions and is
used to price along all relevant maturities. In affine term structure models, as in BRS, zero-coupon

bonds are used so that yields all along the yield curve are comparable. Differences in yields must be

16

solely determined by the perceived risk and expected changes in the pricing kernel. For simplicity,
it is assumed that the period-ahead pricing kernel is conditionally log-normal, a function only of

the current one-period risk-free rate, 7; and the prices of risk, A

. 1
kt+1 = exp (—’Lt — 5)\;)\75 — A;€t+1) (222)

where \; is ¢ X 1, with ¢ = f %[, where f is the number of factors and [is the number of lags.
¢ of shape ¢ x 1 is assumed N (0, 1) and are the shocks to the VAR process described below.

Without perfect foresight, agents price risk via a set of macroeconomic factors, X;. The pro-
cess governing the evolution of the five factors influencing the pricing kernel is assumed represented

as a VAR(1):

Xt =K + (I)Xt—l + E&'t (223)

where X; is an ¢ x 1 vector. BRS include five factors and three lags of these factors in X3,
with zeros in p below the f element and ones and zeros in ¢ picking out the appropriate values
as a result of lags [> 1. BRS’s chosen factors are mentioned in the above section. It is assumed
that this process fully identifies the time series of information entering bond pricing decisions. p
and ® are estimated using OLS. ¥ summarizes covariance across of the residuals and is assumed
an identity matrix.

Agents price risk attributed to each macro factor given a linear (affine) transformation of the

current state-space, X;:

A= o+ M X, (2.2.4)

where A\g is ¢ x 1 and A; is ¢ X q.
We can then define the price of any zero-coupon bond of maturity n in period ¢ as a function
of the pricing kernel, combining Eqs. 2.2.1-2.2.4, in Equation 2.2.5. This is the relationship that

makes these models “affine” and is consistent across the affine term structure model literature.

py = exp (A, + B, X;) (2.2.5)

where A,, and B,, are recursively defined as follows:

17

_ I 1. _
An1 = An + By (p—SXo) + 53222/32 —do

B;H_l =B/ (®—X)\) -6 (2.2.6)
where A; = §p and By = ¢; and &y and §; relate the macro factors to the one-period risk-free rate:

iy = exp (0g + 61 X4) (2.2.7)

In the same way, the yield can be expressed as:

yl = A, + B. X, (2.2.8)

where A,, = — A, /n and B, = —B, /n.

Equations (2.2.1)—(2.2.4) completely identify a system relating a data-generating process of
macroeconomic measures to a pricing kernel and that pricing kernel to assets of similar character-
istics along a single yield curve. Ag and A; are estimated using non-linear least squares to fit the
pricing error of selected yields along the yield curve, in this case: one, two, three, four, five, seven
and ten year maturity zero-coupon bonds. The model-predicted yields are generated by feeding
the VAR elements, X;, for each ¢ into Equation 2.2.8, using the estimated \g and A; in Equation
2.2.6. By setting the prices of risk to zero in Ag and Ap, the implied risk-neutral yields can be
generated. To reduce the parameter space, it is assumed that the prices of risk corresponding to
lagged elements of X; are zero, resulting in blocks of zeros below the f element of Ay and outside
of upper left f x f elements of A;.

Presented in Figure 2.5 are two graphs presented as they appear in Bernanke et al. (2005,
p. 46). Each graph shows three lines: the actual yield, the model-predicted yield, and the risk-
neutral yield. The model-predicted and risk-neutral yield are both generated from the estimated
parameters where the difference between the two is the implied term premium.

Table 2.2 is also taken from Bernanke et al. (2005, p. 47), presenting the standard deviation
of the pricing errors for all of the yields used in the estimation of the two models, with and without
Eurodollar futures included as a macro factor influencing the pricing kernel. At each maturity, the

pricing error is lower after the inclusion of Eudodollar futures, although the gain in fit is greater

Actual and Predicted Zero-Coupon Treasury Yields, 1982-2004"

Two-year
Percent a year

Predicted

4L Risk-neutral

Actual

Ten-year

1984 1986 1988 1990 1992 1994 1996 1998

Figure 2.5: Page 46 from Bernanke et al. (2005)

2000 2002

18

for the shorter maturity yields. BRS take this as evidence that policy expectations play a major

role in shaping government bond yields.

19

Table 2.2: Page 47 from Bernanke et al. (2005)

Prediction Errors for Treasury Yields in the Term Structure Model
Basis points

Standard deviation of predicted vield

VAR with VAR without
Maturity Eurodollar shocks Eurodollar shocks
6 months 33.0 62.1
1 year 50.3 78.9
2 years 73.3 974
3 years 81.2 100.7
4 years 825 98.3
5 years 81.5 95.0
7 years 83.3 933
10 years 80.8 87.8

Source: Authors’ calculations based on data from the Bureau of Labor Statistics, the Bureau of Economic Analysis, Blue Chip
Financial Forecasts, the Chicago Mercantile Exchange, and the Federal Reserve.

We now attempt to replicate the results presented in BRS using a custom-written solution
method in Python (see Chapter 4 for details) and using data available outside the Fed*. All factors
are as they appear in BRS. The two time series of yields, predicated, actual, and risk-neutral are
presented graphically in Figures 2.6 and 2.7, echoing their presentation in Figure 2.5 from BRS.

There are a few main results that align between both BRS’s original results and the results
of this chapter’s model runs. First, there is a positive term premium throughout the observation
period. In both Figures 2.6 and 2.7, the risk neutral predicted yield is below the actual and predicted
yield for the majority of the observation period. Second, for the ten-year yield, the term premium
declines throughout the observation period. This reinforces the qualitative observation that stable
inflation and growth decreased the perceived liquidity risk of longer maturity bonds over the course
of the Great Moderation, reducing the yield to hold these bonds above and beyond that predicted
by the modeled risk-neutral expectations.

Table 2.3 presents the standard deviation of the pricing error at each estimated maturity. The

pricing errors for the model with Eurodollar futures are similar to the original BRS estimation results

4The data was requested but was not available.

20

14 T
— Actual

20) - - Predicted ||
- Risk-neutral

1984 1989 1994 1999 2004

Figure 2.6: Author’s Estimation Results Showing Actual, Predicted, and Risk-neutral Percentage
Yields for 2-year Treasury Constant Maturity. The risk-neutral yield is calculated by settings the
prices of risk in the estimated model equal zero. Actual yield is included for comparison.

14 . T T]]
. — Actual
ey o .
2ln Y '\ Pr.'edlcted |
) \ --- Risk-neutral
1
1
10+ \ " 1
! 1
! i
|r NATS
st " 0]
N -~ f"L A
‘l ‘ ‘ﬁ ‘ ‘l’ !] M
6 ! Iy ¥ " y \\ 4
= \
N M ‘\m ! "
I
Woim ! |
ar 4_1_»“ Y
)
ok i
0
1984 1989 1994 1999 2004

Figure 2.7: Author’s Estimation Results Showing Actual, Predicted, and Risk-neutral Percentage
Yields for 10-year Treasury Constant Maturity. The risk-neutral yield is calculated by settings the
prices of risk in the estimated model equal zero. Actual yield is included for comparison.

shown in Table 2.2, while the pricing errors for the model without Eurodollar futures diverge more

substantially. The same convergence tolerance thresholds were used for both of the these models,

21

with the only difference between them the addition of Eurodollar futures. The improvement in
pricing error from the addition of Eurodollar futures is not as large as that presented in 2.2. In

fact, the only difference in pricing error of more than five basis points is at the six month maturity.

Table 2.3: Standard Deviation of Pricing Error in Basis Points.

Maturity | VAR with ED shocks | VAR without ED shocks
6 months 34.84 39.27
1 year 53.07 57.22
2 years 74.29 77.30
3 years 79.88 82.22
5 years 79.09 81.06
7 years 77.15 79.36
10 years 72.62 74.80

It is difficult to perceive exactly why the results of replication differ so significantly from BRS’s
model. While the model run with Eurodollar futures comes quite close to the original results, the
author’s estimation of the model without Eurodollar futures performs much better than the results
presented by BRS. This could be due to a number of factors.

First, BRS use internal Fed zero-coupon yield data while this author’s estimation uses a
separate set of treasuries as described above. Using the same set of factors as BRS in Eq. 2.2.3 but
a slightly different set of predicted yields in Eq. 2.2.8 would result in different results for pricing
errors along the yield curve. Given the similarity of the yields used as described above and shown
in Figures 2.1a-2.1c, it is unlikely that this large of a difference in model performance could be
completely accounted for by small differences in the input yields.

Second, BRS may have set the convergence criteria for both parameter and/or function eval-
uation differences differently between the models with and without Eurodollar futures. In order to
investigate this sensitivity, multiple estimations were performed using the same set of factors but a
wide range of convergence criterion for both the sum of squared pricing errors and the parameter
estimates. Convergence tolerance thresholds for the sum of squared pricing errors were set to range
from 0.1 to 1 x 10~° with 15 values between the two, with four values at each power of 10. Specifi-

cally, the values were 7.5 x 107", 5x 107", 2.5x 107", and 1 x10™", with n € {-2, -3, —4, —5} with

22

the addition of 0.1, making for 17 possible values. The same range was used for the convergence
tolerance thresholds for the parameter estimates, making for 17 x 17 = 289 estimations for each of
the models with and without Eurodollar futures. Convergence thresholds lower than 1 x 10~° for
either the sum of squared pricing errors or the parameter estimates did not make any noticeable
changes in the parameter estimates. After examining the results of these models, it seemed that
changes in parameter estimates and thus pricing errors were driven primarily by the parameter
convergence threshold rather than the sum of squared errors convergence threshold.

Varying the different convergence criterion for the parameter estimates errors results in very
different pricing errors. Sets of pricing errors for a few key values of parameter convergence criterion
are presented in Table 2.4 for the models without Eurodollar futures first followed by the models
with Eurodollar futures. The sum of squared error convergence criterion is 1 x 10~8 across these
models. As can be seen, convergence could be reached with even lower thresholds, resulting in
better model fit than BRS’s presented results across all maturities. BRS do not explicitly mention
the convergence criteria that they use. If we compare the pricing error along the same convergence
threshold for the models without Eurodollar futures and with Eurodollar futures in Table 2.4, we
find that comparing the two models depends very much on the convergence criteria used. Again,
BRS emphasize the gain in model performance, as measured by the pricing error, by adding a fifth
factor, Eurodollar futures to their model.

For a true comparison between models, it makes sense to compare the two models using
the exact same convergence criteria along all dimensions. The differences in pricing error of the
two models, with and without Eurodollar, ceteris paribus, are presented in Table 2.5. Using the
strictest convergence criteria presented (xtol=0.0001), we find that the model with Eurodollar
futures outperforms the model without Eurodollar futures comparing all seven key yields. Using
looser convergence criteria, we find that the improvement in pricing error occurs only at certain
maturities. At the 0.05 and 0.1 levels, the model without Eurodollar futures actually outperforms
the model with futures at most key yields. At the 0.01 level and below, the model with Eurodollar
futures consistently outperforms the model without Eurodollar futures. It is not until these lower
convergence tolerance thresholds are used that the parameter estimates and thus the pricing errors
settle down to reliable levels. The levels chosen (0.1, 0.05, 0.01, 0.001, 0.0001) seemed to be key
convergence tolerance thresholds to generating more precise parameter estimates. In the context

of this modeling exercise, these levels seemed to generate changes in the parameter estimates when

23

Table 2.4: Standard Deviation of Pricing Error by Parameter Difference Convergence Criterion.
Monthly data 1982-2004.

Model without Eurodollar factor

Maturity | xtol=0.1 | xtol=0.05 | xtol=0.01 | xtol=0.001 | xtol=0.0001
6 months 52.78 53.39 44.60 39.64 39.81
1 year 111.07 112.15 84.09 57.79 57.73
2 years 160.35 160.10 112.34 78.68 77.97
3 years 166.23 165.33 116.72 83.30 82.74
5 years 175.48 173.95 114.20 82.21 81.65
7 years 185.80 184.04 118.81 80.54 79.95
10 years 195.21 193.72 141.93 76.10 75.43

Model with Eurodollar factor

6 months 51.57 51.59 36.88 37.46 35.21
1 year 113.33 112.89 57.98 54.71 53.41
2 years 171.24 168.44 85.97 77.53 74.46
3 years 180.94 177.10 92.63 82.50 79.91
5 years 189.03 184.70 91.80 81.65 79.21
7 years 196.81 192.94 93.81 80.23 77.26
10 years 203.66 201.14 95.12 76.14 72.71

moving to the next lower threshold. For example, moving from 0.075 to 0.05 did not always generate
a change in the parameter estimates, but moving from 0.05 to 0.1 consistently produced a change
in the parameter estimates.

While these thresholds are characteristic of this specific model and not generally applicable
to all affine models, the author recommends that convergence criteria should be lowered until either
convergence can no longer be reached or a relevant machine epsilon is hit. This recommendation
is based on the observation that model performance comparisons based on pricing error are incon-
sistent when the convergence tolerance is too high (loose), as shown in Table 2.5. It should also be
noted that even if a software claims to support very low convergence tolerances (higher precision),
the precision of the datatype is of special consideration with the recursive calculations of A,, and
B,, in equation 2.2.8. With each calculation of A,, and B,, based on A,,_; and B,,_1, any numerical
precision difference will be expounded based on how high n goes up to. For example, for any C
based langauge using numbers based on the type double, precision below 2752 = 2.22 x 10716 is
not reliable for a single calculation and will be even higher once any kind of resursive calculations
are considered. Staying far above this machine epsilon for the convergence tolerance threshold is
recommended. In case of the C double, staying around 1 x 10~ should result in high precision
while still staying away from any datatype precision issues, if that level of precision can be attained.

These recommendations are especially important when pricing error results are compared across

24

models. Only when these levels are pushed low can comparable results be generated. This is pri-
marily a result of the fact that these models are non-linear and results can be highly sensitive to

the parameters of the numerical optimization method.

Table 2.5: Difference in Standard Deviation of Pricing Error between Model with and without
Eurodollar Factor. Function Difference is 1.49012e-8 for all columns. Monthly Data 1982-2004.

Maturity | xtol=0.1 | xtol=0.05 | xtol=0.01 | xtol=0.001 | xtol=0.0001
6 months -1.21 -1.80 -7.72 -2.18 -4.60
1 year 2.26 0.74 -26.11 -3.08 -4.32
2 years 10.89 8.34 -26.37 -1.15 -3.51
3 years 14.71 11.77 -24.09 -0.80 -2.83
5 years 13.55 10.75 -22.40 -0.56 -2.44
7 years 11.01 8.90 -25.00 -0.31 -2.69
10 years 8.45 7.42 -46.81 0.04 -2.72
Sum 59.66 46.12 -178.50 -8.04 -23.11

Another interesting direction to consider is the statistic that BRS use to judge whether
improved model fit takes place. While standard deviation of the errors may be important for higher
order convergence, root-mean-square error (RMSE) or mean absolute deviation (MAD) is a much
more commonly used statistic used to compare the fit of different models (See Ang and Piazzesi
(2003) and Kim and Orphanides (2005)). Given this choice of comparison, this section also presents
an analogous table to Table 2.3 using RMSE in Table 2.6. This table largely mirrors the values and
patterns in 2.3.

As evidence of the importance of policy expectations to the yield curve, BRS use the improve-
ment in pricing error gained by adding Eurodollar futures as the fifth factor to the VAR determining
the pricing kernel. The results of this section confirm the use of Eurodollar futures in improving the
performance of BRS’s four factor model by lowering the pricing error across all directly estimated
maturities, although the improvement in pricing error is not quite as large when lower convergence
criteria were used. Using these lower convergence criteria, the models with and without Eurodollar
futures both outperformed BRS’s original presented results. Overall, this section confirms that
Eurodollar futures offer meaningful explanatory value in a term structure model estimated during

the “Great Moderation”.

25

Table 2.6: Root Mean Squared Pricing Error in Basis Points

Maturity | VAR with ED shocks | VAR without ED shocks
6 months 34.84 37.82
1 year 53.07 56.95
2 years 74.29 76.39
3 years 79.88 81.52
5 years 79.09 81.25
7 years 77.15 80.07
10 years 72.62 74.80

2.3 Extension into the Great Recession of 2007-2009

BRS indicate that their five observed factor model estimated from 1982 to 2004 does “quite a
creditable job of explaining the behavior of the term structure over time” (Bernanke et al., 2005, p.
45). They also justify the use of Eurodollar futures as a fifth factor by noting the decrease in pricing
error when the factor is added. This section will consider the robustness of the model’s fit when the
observation period is extended to include the recent financial crisis. As noted above, BRS’s period
of study is firmly within the “Great Moderation”, a term introduced in Stock and Watson (2003),
to refer to the period from the early 1980’s to the mid 2000’s, when inflation was low and growth
was stable. Given the predictable economic conditions during this period, the choice of year-ahead
Eurodollar futures may have added explanatory value to the model through its correlation with
these stable economic conditions rather than via its value as an inter-temporally accurate proxy
of policy expectations. If this hypothesis is true, we may expect the explanatory value of the
model to deteriorate when estimated in a time period that includes the periods of higher economic
uncertainty and volatility not seen during the “Great Moderation”, particularly the recent financial
crisis.

In addition to testing the ability of BRS’s model outside of the original sample, this section
would also like to propose the addition of measures of economic uncertainty in order to further
extend the model and lead to more robust measures of the term premium. Following the housing
market collapse of 2007 and accompanying stock market crash and financial crisis, there was a
popular perception that aggregate economic uncertainty had increased. The potential of economic
uncertainty to affect the real economy has theoretical roots in Keynes (1936) and Minsky (1986),
who linked uncertainty to real economic activity through its effect on asset prices and investment.

While interest in this topic waned during the “Great Moderation”, the ability of economic uncer-

26

tainty to drive and exacerbate real economic outcomes received a revival of interest during and
following the recent financial crisis. Bloom (2009) found that increases in economic uncertainty
built up from firm level data lead to a decrease followed by a rebound in both aggregate output and
employment. Baker et al. (2013) also finds that increases in uncertainty as measured using indi-
cators including newspaper references to uncertainty, economist forecast dispersion, and scheduled
congressional tax-code expirations lead to decreases in investment and other measures of economic
activity when included in a VAR.

If uncertainty has an impact on real economic outcomes, and if real economic outcomes are
used to inform the pricing kernel, then economic uncertainty could have an independent effect on
pricing the yield curve. Given the potential impact of uncertainty on the yield curve and the in-
crease in uncertainty following the stock market crash of 2008-2009, this section will also propose
the addition of proxies for economic uncertainty to BRS’s five factor model. Given the limited
availability of monthly survey data that includes forecast uncertainty measures, this section will
propose the use of two proxies, one for disagreement and one for volatility, in an attempt to price the
movements in the term structure associated with short- and medium-term uncertainty. The proxy
for disagreement will be the difference between the average of the top 10 predictions and the average
of the bottom 10 predictions of the year-ahead output forecasts from the Blue Chip Economic Indi-
cators. More robust measures based on difference between percentiles or dispersion measures from
the Blue Chip Financial Forecasts were not available. Even though the difference between upper
and lower survey result percentiles has commonly been used as a proxy for uncertainty (Zarnowitz
and Lambros (1987), Giordani and Soderlind (2003)), a fairly recent groups of papers, Rich and
Tracy (2010) and Rich et al. (2012), show that the relationship between economists’ disagreement
and uncertainty is inconsistent, challenging the main conclusion of Bomberger (1996). Rich et al.
(2012) use a mix of moment-based and inter-quartile range-based (IQR) approaches to show that,
in the best cases, disagreement measures can only explain about 20% of the variation in uncertainty
measures. With this conclusion, the authors instead use a quarterly measure of prediction uncer-
tainty from the European Central Bank conducted Survey of Professional Forecasters. A similarly
detailed monthly survey of U.S economists’ predictions is not currently available, so while forecast
disagreement may capture some of economic uncertainty, it alone cannot be expected to capture
economic uncertainty in general. Even though forecast disagreement may not capture uncertainty
alone, it has been shown to independently have a relationship with real output and inflation. For

example, Mankiw et al. (2004) show that a New-Keynesian model with sticky information is able

27

to produce autocorrelated forecast errors seen in forecast disagreement data. Also, Dovern et al.
(2012) show that forecast disagreement is strongly correlated with business cycle movements.

The proxy for volatility will be a measure of stock market volatility, the Chicago Board
Options Exchange (CBOE) S&P 500 volatility index, commonly known as the VIX. Even though
the VIX has only been traded since March 26, 2004, it has been retrospectively calculated going
back to 1990. The value of the VIX is calculated to represent the expected 30-day volatility of the
S&P 500 and can be thought of as volatility expressed at an annual rate (CBOE, 2009). Volatility
can represent movement in any direction, so the measure is not a pure measure of uncertainty, but
does represent an indicator of expected movements in the stock market over a fairly short-period, at
least in the context of the monthly macroeconomic variables used as other factors in the model. The
use of stock market volatility in macroeconomic models and the result that stock market volatility
impacts other markets are both well-established. Fleming et al. (1998) specify a basic trading model
with transactions between stock, bond, and money markets, showing that the volatility linkages
between these markets are strong. It has also been established that volatility does have an impact
on macroeconomic growth, at least in some countries (Diebold and Yilmaz, 2008). Adrian et al.
(2010) include the VIX in a VAR estimating relationships between monetary, business cycle, and
financial markets.

As a partial response to Rich et al. (2012)’s critique, a third model will be estimated which
adds practitioner disagreement and stock market volatility together to the basic BRS model. Figure
2.8 plots both the disagreement measure and the VIX, revealing at least some visual correlation
between the two measures. While individually these measures may not reflect all economic uncer-
tainty, together in a single model they may come closer to summarizing short- to medium-term
uncertainty. These models will all be estimated using monthly data from May, 1990 to May, 2012.
During this period, the disagreement and volatility measures have a correlation coefficient of 0.4,
suggesting that, while the two are correlated, the correlation is far from perfect and they may
individually reveal different information about uncertainty.

For convenience, let us define the set of models by the macro factors that constitute them. The
model definitions are summarized in Table 2.7. Inclusion of the employment gap, inflation, expected
inflation, and the federal funds rate is defined as ‘baseline’ or ‘b’ since these are consistent across

’ indicates that Eurodollars

all of the models and constitute BRS’s original comparison model. ‘E
futures are included in the model. ‘D’ represents the disagreement proxy and ‘V’ represents the

volatility proxy. Originally, appending data onto the end of the original test period (1982-2004) was

28

- - Disagreement (norm)
0.8 ' ' ' — VIX (norm) M

0.6 - .

1992 1996 2000 2004 2008 2012

Figure 2.8: Blue Chip Disagreement and VIX, 1990-2012

considered, but this was rejected for two reasons. First, reliable measures of disagreement (D) did
not begin until 1986. Second, in order to make reliable comparisons with the BRS model estimated
with our yield data, the results of which were presented in Table 2.3, it was important to use an
observation period of the same length, namely, 22 years of monthly data. Comparing a model
with more observations could result in decreases in the pricing error gained from a better fitting
set of observations added to one end of the observation period. This could lead to the conclusion
that a model performed better, when performance in the original period of observation has not
improved. Restricting to the same number of observations allows any model improvements to be
a result of changes in the macroeconomic environment as reflected in the data compared to the
original observation period of 1986-2004 and/or changes in the choice of factors in X; of Equation

2.2.3 and not the result of the addition of more observations.

29

Table 2.7: Model Classifications

Name Macro Factors

b Empl gap, inflation, expected inflation,
fed funds = baseline

b+ E baseline, Eurodollar futures

b+ D baseline, Blue Chip expectations dis-
agreement

b+ V baseline, S&P 500 VIX

b+D+V baseline, Blue Chip expectations dis-
agreement, S&P 500 VIX

b+ E+ D baseline, Eurodollar futures, Blue Chip
expectations disagreement

b+E-+V baseline, Eurodollar futures, S&P 500
VIX

b 4+ E + D + V | baseline, Eurodollar futures, Blue Chip
expectations disagreement, S&P 500
VIX

Again, each one of the models was estimated using the assumptions concerning block zeros
in A\g and A; in Equation 2.2.3. The unknown parameters in Ay and \; were estimated using
nonlinear least squares, initializing the guesses of all unknown elements to 0. A parameter conver-
gence tolerance threshold of 0.00001 and sum of squared errors convergence tolerance threshold of
1.49012 x 10~® were used. These thresholds were set tighter than that implied by BRS’s original
model as a response to the questions raised about proper thresholds raised in the previous section.

Examining the results in Table 2.8 we see that there is a clear improvement in average pricing
error by adding any of the extra factors in models baseline + E, baseline + D, baseline + V,
and baseline + D + V over baseline. While baseline + D, baseline 4 V, and baseline + D +
V all have higher average pricing errors at all estimated maturities than baseline + E, each offers
additional explanatory value compared to the baseline model. This extension reinforces BRS’s
inclusion of Eurodollar futures as a proxy for expectations, and, when combined with the other
baseline variables, holds as a macroeconomic model summarizing a good deal of macroeconomic

movement and as a reasonable information set of the pricing kernel. While D, V, and D 4+ V do

30

not seem to replace or offer more explanatory value than E in this model, they do seem to offer
some explanatory value and may offer explanatory value that is entirely separate from expectations.

Given this hypothesis, three additional models are included: baseline + E 4 D, baseline
+ E + V, and baseline + E + D + V. These models are included to test whether measure-
ments of disagreement and volatility lower the pricing error of the model beyond adding Eurodollar
futures. Adding each of these measurements individually and together to baseline + E results in
lower pricing errors. This supports the hypothesis that disagreement and volatility both seem to
have information valuable to explaining movement in the term structure not contained in Eurodol-
lar futures. Eurodollar futures also may not fully capture higher moments of expectations that

disagreement and/or volatility do.

Table 2.8: RMSE for Estimated Models. Parameter difference is 0.00001 and function difference
is 1.49012 x 10~® for all columns. Monthly data May, 1990 to May, 2012. *=90%, **=95%, and
***—-99%, where these refer to confidence levels for a two-sided t-test for a difference in the mean
pricing error between the models shown in Table 2.9.

Maturity b b+E b-+D b+V b+D+V | b+E+4+D | b+E+V | b+E4D+V
6 months | 24.25 | 18.49*** | 23.01 23.19 22.89 16.64 15.86** 15.61
1 year 38.84 | 27.86*** | 32.86* 33.45* 32.57 20.93*** | 19.59%%* | 19.00
2 years 56.08 | 33.38%** | 45.10%%*F | 48.39*%* | 45.20 23.53%#* | 22.58%4% 1 2210
3 years 62.32 | 35.44%*F*F | 50.14%F*F | 54.50%* | 50.30 26.60*** | 26.40%** | 25.55
5 years 64.73 | 36.91%%*F | 54.76*%** | 59.38 54.92 31.92%** | 32.12%* 31.19
7 years 63.42 | 38.04%*%* | 54.67FF* | 59.55 54.71 33.20%** | 34.68 33.02
10 years 58.97 | 35.60%** | 52.59%* 56.39 52.76 34.13 35.41 33.95

Table 2.9: Model Comparisons for T-Test.

Model Comparison
b+ E b

b+ D b

b+V b
b+D+V b+ D
b+E+D b+ E
b+E+V b+ E
b+E+D+V|b+E+D

Table 2.9 matches models to the comparison model that was used for running a two sample,
two-sided t-test for difference between the RMSE. The associated confidence levels, 90% (*), 95%

(**), and 99% (***), from these t-tests are included in Table 2.8 to show whether differences

31

in pricing error are significant between each pair of models. The statistical significance of the
differences in pricing error reinforce the aforementioned conclusions that Eurodollar futures are
important to pricing the term structure and disagreement and volatility offer additional explanatory
value in helping to price higher moments of expectations. The decrease in pricing error from the
inclusion of Eurodollar futures is statistically significant at all maturity levels over the standard
baseline model. Importantly, the inclusion of Eurodollar futures results in a statistically significant
decline in pricing error, compared with the reference four factor model even in an observation period
that includes the financial crisis. Confidence levels for the b-+D and the b4+E+D models suggest
that the impact of adding disagreement is much greater at the longer maturity end of the yield
curve, with highest significance at the 2-7 year maturity levels in the b-+D model and 1-7 years
in the b+E+D model. Overall, volatility does not have as much of an impact on the pricing
error, but there does seem to be some evidence that, when it does have an impact, it is primarily
concentrated in the shorter maturity end of the yield curve. Adding volatility produces statistically
significant differences in pricing error only in the 1-3 year range for the b+V model and in the six-
month to five-year range for the b+E+V model. The impact of disagreement concentrated more
on the medium- to long-term portion of the yield curve and the impact of volatility concentrated
more on the short- to medium-term portion of the yield curve suggests that the two measures offer
complementary but unique information to the pricing kernel.

For completeness, models are also estimated using Fama-Bliss (CRSP, 2013) implied zero-
coupon bonds data that are often used in the affine term structure model literature. While these
yields are at different points along the yield curve than the data used in the original BRS model,
unlike the yields used in Table 2.8, Fama-Bliss yields are true zero-coupon bonds and are a better
match for the theory underlining affine models, unlike the constant maturity yields used for the

5. These results are provided as a validation of the model estimation procedure

previous analysis
used. Model results using Fama-Bliss yields are presented in Table 2.10. Results largely con-
firm the significance of disagreement, with even more added explanatory value in volatility in the
baseline+E+D+4V over baseline+E-+D. These results reinforce the main conclusions above,
primarily that: 1) Eurodollar futures contain information important to the pricing kernel inform-

ing the term structure of zero-coupon government bonds, 2) disagreement and volatility measures

provide information important to the pricing kernel above and beyond that of Eurodollar futures,

5In order for a single pricing kernel to price bonds all along the yield curve, the yields must be easily priced
and compared, making zero-coupon yields a good fit. This is addressed at the beginning of the replication section.

32

and 3) disagreement and volatility themselves provide separate information and together lower the

pricing error more than each individually, given how they lower pricing error at different maturities.
Table 2.10: RMSE for Model Using Fama-Bliss Zero-coupon Bonds. Parameter difference is 0.00001

and function difference is 1.49012 x 1078 for all columns. Monthly data May, 1990 to May, 2012.
*E—=99%, **=95%, and *=90%.

Maturity b b+E b+D b+V | b+D+V | b+E+D | b+E+V | b+E4+D+V
1 year 40.85 | 23.53*** | 35.24%* 36.05%* 35.69 14.03%F% | 15.44%** | 13.46

2 years 58.06 | 27.39%F* | 48.99%** | 49.92%* | 48.67 15.81FFF | 17.64%** | 11.99%**

3 years 65.90 | 30.87*** | 55.06%** | 56.55%* | 54.54 20.54%FF | 22.82%FF* | 16.94%**

4 years 68.03 | 32.95%*F* | 57.31%%*F | 59.37** | 56.64 25.47FFK | Q7 55T | 22.09%*

5 years 67.62 | 32.72%FF | 58 59%F*F | 60.88%* 58.01 28.27FFF 129 .68%* 25.26**

While the RMSE helps to establish the value of Eurodollar futures, disagreement, and volatil-
ity measures to informing pricing kernel, plots of the errors and term premia can help to build a
story as to why they may matter. Figure 2.9 plots the pricing errors of the five year yield for a
few select models from Table 2.85. Comparing the error plots, there is a clear change in the error
process moving from the baseline four factor b model (the first plot) to the model with Eurodol-
lar futures added b+E (the second plot). The error process becomes more concentrated around
zero and there seem to be fewer consecutive periods where the error is consecutively positive or
consecutively negative, revealing that more variance in the yield process is captured by informa-
tion explicitly included in the model. A few select periods, 1999-2000, 2001-2002, 2005-2007, and
2008-2009, are highlighted to show the change in the pattern of the pricing errors after adding
FEurodollar futures. These date ranges are linked to the tech stock boom of 1990-2000, the recession
of 2001, the housing market bubble of 2005-2007, and the Great Recession of of 2007-2009. This
desirable change in the error process along with the lower pricing error further reinforces BRS’s
original conclusion that Eurodollar futures offer important information in a pricing kernel. Adding
disagreement (the third plot) and volatility (the fourth plot) to the model do not seem to funda-
mentally change the error process to the degree that adding Eurodollar futures did, although there
does seem to be a further concentration of the pricing error around zero. The further concentration
around zero can also be seen in the highlighted periods. The error process taken alone seems to
indicate that the addition of Eurodollar futures leads to a more well-behaved error process and

lower pricing error, while the addition of disagreement and volatility lower the pricing error, but

6 A more complete set of plots for the pricing error on one and five year yields is included in the Appendix in
Figure C.2

33

do not generate a fundamental change in the error process in the same manner that the addition

of Eurodollar futures do.

34

‘[OPOW [eNPIATPUI TR

10 $809001d IOII9 9T} SMOT[S

101d yoer "SOPOIN 399]9S I0J PIOIA IROX OAL I0J IOIIY SULL] JO S10[d

16°C 9IS

800¢
T

#00Z 000Z 9661
T T T

A+d+3+d

a+3+d

3+4
#00C 000¢ 9661
T T T

2661

Jo4i2 Bupud [gpow Ajiniew jueisuod deak aaly

35

Examining the resulting time-varying term premia offers more information on what value
disagreement and volatility add to bond pricing agents’ decicision processes. Figure 2.10 shows the
time series of the implied five year bond term premium. This maturity was shown because it is
in the middle of the maturities, but other maturities reflected similar processes with larger term
premia at the longer end of the yield curve and smaller term premia at the shorter end of the yield
curve. Again, each plot is taken from a single estimated model. The addition of disagreement to
the pricing kernel in the third plot and volatility in the fourth plot do not reveal any noticable
changes for most of the observation period. The only exceptions are in the recession periods during
2001 and 2008-2009, highlighted in red.

In the 2001 recession, the change comes in the form of a double dip rather than a single dip
with the addition of disagreement. In both the 2001 and 2007-2009 recession, the term premium
is overall higher during the recession periods with the addition of the uncertainty proxies. This
observation is made more clear in Table 2.11, which shows the mean time-varying term premium
by date range, with a single estimated model per column’. The first row shows the entire sample
period, while each subsequent row shows the mean term premium during an expansion or recession
as defined by the Bureau of Labor Statistics. It is clear to see that there is not a large difference
in the time-varying term premium with the addition of disagreement or volatility in the entire
sample period or the expansion periods. A significant difference in the term premium only arises
with the addition of disagreement and volatility in the recession periods. With the addition of
these uncertainty proxies, the term premium is on average 34-36 basis points higher in the first
recession and 27-32 basis points higher in the second recession compared to the baseline model
with Eurodollar futures. In the context of this model, disagreement and volatility offer meaningful
information for bond pricing agents beyond that contained in Eurodollar futures, especially during
recessionary periods. This observation suggests that not only do bond pricing decisions respond to
these uncertainty proxies, but the response is aggravated during recessions. In the context of this
study, the impact of uncertainty on term premia in the yield curve is larger during recessionary
periods, but does not seem to generate meaningful differences during expansionary periods.

With this observation about the nature of the term premium, BRS’s original model could
underestimate the term premium during recessionary periods. This may also be true of any affine

model attempting to price the yield curve with observed factors with an observation period that

7 Analogous tables for the maximum and minimum term premium are included in the Appendix in Tables C.1
and C.2. These tables largely mirror the qualitative results presented in Table 2.11

36

includes a recession, although this study only investigates the impact of two recessions. This
inconsistency between recessions and expansions may reflect a general observation that the loadings
on macroeconomic factors informing the pricing kernel may be different during expansions and
recessions. During expansionary periods, government bond market agents may rely more heavily
on what they perceive to be stable economic indicators of real activity such as output and inflation.
While this information is not likely to be abandoned completely by these agents during recessions,
disagreement and volatility may crop up as particularly influential as most agents appetites for risk
go down during recessions. This leads to the increase in the term premia seen during recessions as

reflected in Table 2.11.

37

[enpIATpUI Ue 0] wnreld WLId)) SMOYS

jo1d yoeryy

"S[OPOIN 199[0G I0J POIA IedX OAL I0J WINIWIJ W9, SUIATRA-OWIT, JO

‘[opowt
$10[d :0T'¢ 931

Z210¢g

800¢
T

00Z 000z 9661

2661

A+ad+3+4

800¢
T

00Z 000z 9661

2661

a+3+d

00z 000Z 9661

2661

800¢
T

3+4

00Z 0002 9661

2661

winiwald wia) [2pow Ajldniew juelsuocd deak aAld

38

Table 2.11: Mean Five Year Term Premium by Date Range and Model. Each row represents a date
range within which the mean is calculated and each column represents an individually estimated
model.

BRS factor models | Uncertainty proxy models

b b+E b+E+D b+E+D+V
08/90 - 05/12 (Full Sample) | 1.70 1.84 1.85 1.84
03/91 - 03/01 (Expansion) 2.14 2.01 2.00 1.98
03/01 - 11/01 (Recession) 1.18 1.56 1.92 1.90
11/01 - 12/07 (Expansion) 1.46 1.67 1.61 1.60
12/07 - 06/09 (Recession) 0.73 1.52 1.79 1.84

Potentially, the most valuable contribution of this extension is drawing out the difference
between types of uncertainty embedded in the premia on government bonds. While the proxies for
disagreement and volatility should be able to price at least some of the short- and medium-term
risk, there seems to be a fundamental increase in other risks of holding long-term bonds during
the financial crisis that are not fully captured by BRS’s original five factor model. As shown in
Table 2.11, there is an increase in the mean time-varying term premium moving from the 2001-2007
expansion to the 2007-2009 recession that is not observed in either of BRS’s original models, but
is observed with the addition of the two uncertainty proxies. With disagreement and volatility
measures capturing some of the movement in short-term uncertainty, the remaining unexpected
risk embedded in the premium should primarily be driven by longer-term uncertainty. Moreover,
this long-term risk rose when moving into the 2007-2009 recession and was imbedded in the yields
on government bonds.

Accurately estimating the time-varying term premium has large implications for monetary
policy, especially when a zero lower-bound on the federal funds rate is binding. In order for central
bank decisions regarding large scale asset purchases and expectation management to be effective,
the term premium on longer-maturity bonds must be accurately measured. It is important to
understand the varied impact Federal Reserve Board decisions will have on different forms of risk

and whether individual forms of monetary policy have an impact on each form differently.
2.4 Conclusion

This chapter extended BRS’s five factor model into the financial crisis and illustrated the
value of explicitly including measures of uncertainty in the information set driving government
bond yields. Eurodollar futures offer important information for pricing government bonds in a

sample including the “Great Recession” of 2007-2009. Disagreement and volatility measures were

39

added to the model in an attempt to proxy for economic uncertainty. Adding these uncertainty
measures to the model further lowered the pricing error and produced an even higher performing
model beyond that produced by only including Eurodollar futures. Including uncertainty measures
also led to higher measures of the term premium on government bonds during both the 2001 and
2007-2009 recessions in comparing term premia to the four and five factor models proposed by BRS.
Higher estimated term premia may result from properly accounting for changes in the loadings on
observed factors in recessions, when uncertainty may play a larger role in bond market agents’
information set. Properly accounting for different types of uncertainty may also prove valuable
when evaluating the impact of monetary policy decisions, especially those targeting the yields on
longer maturity bonds.

For future research, this investigation could continue examining the value of measures of
disagreement and volatility as they inform the pricing kernel of affine models of the term structure.
This information may be priced in other affine models through the use of unobserved latent factors,
so correlating these observed uncertainty factors with estimated latent factor values could reveal
whether affine models are unnecessarily pricing these factors as unobserved. Explicitly pricing these
forms of risk could lead to higher performing models and easier interpretation of the information
set driving bond market decisions. Pricing yields using observed factors could also contribute to
better out of sample performance of these models.

It could also be interesting to investigate changes in the time series of the term premium after
adding measures to proxy for disagreement and volatility. Structural break tests as in Banerjee et al.
(1992) could reveal information as to how the data-generating process of the term premium changes
or shifts when adding these observed factors. This investigation could also reveal the significance
of certain events, such as Federal Reserve Board announcements, in contributing to short- versus

long-term risk.

40

CHAPTER 3

REAL-TIME DATA AND INFORMING
AFFINE MODELS OF THE TERM
STRUCTURE

Economic agents participating in government bond markets respond to both individual and
external information when participating in bond transactions. Macroeconomic indicators influence
the price an agent is willing to pay for a bond of a given maturity through the effect that these
conditions have on current and future bond markets. Even though any given bond buying agent may
not plan on holding onto the bond for the entire maturity, they will still form their own expectations
of where they think the market will be when they decide to sell the bond. This observation has led
to the formal use of macroeconomic measures to inform bond yields in affine term structure models.

Affine models of the term structure are an attempt to price government bonds all along the
yield curve over time. These models are estimated using assumptions about the process governing
both observed and unobserved information implicit in bond-market pricing behavior. After esti-
mating the parameters of the model, estimates of a time-varying term premium can be derived from
the difference between the predicted yield and the risk-neutral yield. This term premium is the
additional return required by agents to compensate for the risk of holding the bond for its maturity.
The fit of these models can be examined by measuring the difference between the predicted yield
and the actual yields, also known as the pricing error. In cases where macroeconomic information
such as output and inflation measures are used to inform bond-pricing agents in these models, final
published data is often used. Yet, macroeconomic data is often revised quarters after its original
publication, so while this information represents movements in core macroeconomic measures, these

final data are not the public information that were available to bond-pricing agents at the time they

41

made their bond buying decision. This may result in pricing errors that result from an information
set used to model the yields that was not available to the agents when the yields were determined.
Real-time data, the best guesses, and releases of current and recent macroeconomic measures at
the time of the market decision may more accurately reflect the information entering bond-pricing
decisions than final data. Through the use of the Survey of Professional Forecasters (2013) and the
Real-Time Data Set for Macroeconomists (2013b), made available through the Philadelphia Federal
Reserve Bank, real-time data can now easily be compiled to gain a more accurate picture of the
information driving yields. The use of real-time data to inform an affine model could thus result in
lower pricing errors.

This chapter will attempt to more fully address the role of real-time data in affine models
of the term structure than has been addressed in the literature so far. The importance of real-
time data in monetary macroeconomic models was seminally addressed in Orphanides (2001). In
this investigation, Orphanides demonstrates the inability of a Taylor (1993) rule to describe target
federal funds rate movement when using fully revised output and inflation rather than real-time
output and inflation measures. Orphanides also extends the importance of real-time data to other
macroeconomic relationships that depend on agents’ perceptions of past, present, and future eco-
nomic conditions. His main prescription for macroeconomic modeling is that real-time data is more
appropriate than final data when modeling any sort of economic behavior that depends on agents’
perceptions of economic conditions. Seminal papers in the affine term structure model literature,
such as Ang and Piazzesi (2003) and Kim and Wright (2005), use final data when fitting their
models to observed yield curves. The implicit assumption in these and most affine models using
final macroeconomic data to inform prices and yields is that either government bond market be-
havior is driven by economic fundamentals and not agents’ perceptions of economic fundamentals
or that agents’ perceptions of economic fundamentals mirror the true, revised final values. Because
yields by their nature are real-time, these models are relating real-time observations of yields to
movements in final data that were observed with error at the time the yields prevailed. The closest
attempt to document the value of using real-time data to inform the term structure of interest
rates was in a 2012 paper by Orphanides and Wei. In their paper, Orphanides and Wei attempt
to generate a better-fitting term structure model through three key adjustments: 1) using real-
time data, 2) modeling the pricing kernel using a VAR with rolling sample of 40 periods, and 3)
additionally informing the model using survey data, leading to a better-fitting model and better

out-of-sample prediction. These results are very interesting and suggest the value of real-time data

42

in affine models, but the result of adding real-time data alone is not explicitly addressed. This
chapter will focus more explicitly on the value of real-time data alone, rather than the combined
value of multiple adjustments to an affine term structure model.

By investigating the value of real-time data alone, this chapter falls into a line of papers
attempting to supplement an affine term structure model with as much observed information as
possible. A common practice in affine term structure modeling is to combine observed and unob-
served information to explain movements in the yield curve. Explaining term structure movements
with observed information has some important advantages over using unobserved factors. Observed
information follows more naturally from a conception of bond markets driven by rational agents
that absorb available information and base their market decisions on this information. While using
unobserved information can be attractive for better performing pricing models, this information
ends up serving as a catch-all for different types of information not explicitly included in the model,
the value of which is difficult to derive based on the model results alone. Identifying observed
information that drives bond markets allows practitioners to build a more convincing story around
what information is valuable to these agents, rather than relying on unobserved information to fill
in that information gap.

In order to gain a theoretical understanding of the value of unobserved factors, some prac-
titioners often relate them back to moments of the term structure known as the “level”, “slope”,
and “curvature” as in Diebold et al. (2006), and Rudebusch and Wu (2008). This approach, while
leading to high performing models, does not help to build an understanding of agents’ decisions,
but rather models the term structure using characteristics of the yield curve. Other practition-
ers correlate the unobserved information with observed macroeconomic information or information
generated by structural models, such as in Ang and Piazzesi (2003) and Doh (2011). Correlating
unobserved information with observed macroeconomic variables does help with understanding the
decision making process of agents, but leads one to question why this observed information was not
explicitly included in the information set to begin with.

In the case of Doh (2011), the author correlates the unobserved factors with the shocks
(unexplained movement) generated by a dynamic-stochastic general equilibrium model (DSGE).
Even though these shocks are related back to a structural model and can be linked to specific
economic relationships, such as a Taylor rule or preferences in a utility specification, the approach
is still relating vital term structure pricing information back to random, unexplained shocks from a

structural model. If one of the end goals of term structure modeling is to gain a better understanding

43

of bond pricing agents’ decision making process, using shocks to explain unobserved, estimated
information still leaves the driving force behind this unobserved information unexplained. While
unobserved factors will be introduced briefly later in this chapter, our focus will be on the value of
observed, real-time information in affine models of the term structure.

The structure of this chapter is as follows. Section 3.1 will introduce the model and detail how
information for a data generating process for real-time data is compiled. Section 3.2 will introduce
the data, considerations of real-time data specifically, and the yields priced. Section 3.3 will present
the results of estimating affine term structure models driven by both final data and real-time data
and compare the performance of these models as measured by root-mean-square error (RMSE)
along the relevant bond maturities used. The structure of the errors and implied term premia
generated by these models will also be presented using structural break and persistence tests. This
section will also make some observations about the nature of information entering bond pricing

decisions at different maturities. The last section will conclude.
3.1 Model

A starting point for any affine model of the term structure is defining a data generating process
to represent the macroeconomy and agents’ expectations of future macroeconomic conditions. In
the general case, we assume this data generating process is a vector autoregression (VAR) driven

by final data:

with p lags, where th ™ s the fully revised information for the variables in X after all major
revisions have been reflected in the data. In this case, these are the final release results for X; as
of the writing of this chapter (Q1 2014). u/™ is a vector of constants, ®/" is a coefficient matrix,
and X/ is a cross equation variance-covariance matrix, with &; assumed A(0,1). It is assumed
that agents solve forward for thl? with 4 > 1 using the vector of constants ;/*" and the coefficient
matrix /. The VAR form is a common choice for modeling the information set governing bond
markets because it is mathematically tractable and imposes few explicit restrictions. The vector
X and its movement summarized by the VAR is assumed the complete information set governing

the market decisions of bond buying agents through a pricing kernel.

44

This corresponds to the form that is commonly used in most affine models of the term structure
and, as mentioned above, summarizes the movement of fundamentals and not necessarily market
perceptions of fundamentals. The definition of Equation 3.1.1 is intended to serve as a comparison
for the following real-time models.

In the same way we can define a VAR(n) information process governed by real-time data as:

X{ =pf +PX] | + XPey (3.1.2)

For each ¢, X! is the market expectation for the value of X during period ¢. Each lag of X,

X0 XP

t—p» is the release of that information for that lag of X available at time ¢. While X!

corresponds to a within-period expectation, X! | --- ti_p each correspond to individual releases,
where the releases eventually become the final data, with the number of periods required to become
final depending on the statistic. For example, if ¢ is Q1 2000 and X* contains output growth and
inflation, then X! | is the first release of Q4 1999 output growth and inflation, available in Q1
2000. In the same way, X/ , is the second release of output growth and inflation for Q3 1999.

If we are modeling with n factors, we write X! as:

Market expectation — x

Market expectation —

Market expectation — Tl
1
Release 1 — Tpyq

Release 1 —

2
|

(3.1.3)
Release 1 — Ty g

Release 2 through (p —2) —
Release p — 1 — Th pi

Release p — 1 —

Release p — 1 — Ty pi1

with the appropriate elements labeled based on their source, r referring to the period in which the
values were observed and ¢ the period of their occurrence. The elements for the current period (r
and t) are based on expectations as the time period has yet to transpire and no releases of data are

available. All elements for previous periods (r and ¢t — 4, ¢ > 1) refer to the release of the statistic

45

available at r. For example, if the current observation is 2012 Q4 and z' is output growth, then
). is the market expectation for 2012 Q4 output growth in 2012 Q4 and z;, ; is the first release
of 2012 Q3 output growth. In the same way, we can write X/ ; as the stacked Release 1 through
Release p values.

An important assumption in the construction of the real-time process is that bond pricing
agents do not distinguish between adjustments to values because of information lag and adjustments
to values because of changes in calculation. In each reference period, r, they take the available
releases of estimates of previous period macroeconomic measures as the only information explicitly
driving bond market behavior, ignoring the values that they used in previous periods. While the
parameters of the data-generating process are estimated by using the entire real-time information
set together, the information set of observed economic information is completely updated at each
r. In other words, any fundamental changes to calculations of macroeconomic measures included in
the model immediately replace the information used on both sides of Equation 3.1.2 in the quarter
of the change. This is a major departure from a conventional VAR in that values are not repeated
across rows in the dataset. While the impact of changes to calculations versus data revisions may
have separate effects on bond markets, decomposing this effect is beyond the scope of this chapter.

The degree of departure that this real-time process has from a conventional final data driven
process will be mainly driven by the frequency of updates made to the statistics. For example, Table
3.1 shows the first, second, third, and final releases of real GDP growth and civilian unemployment
for Q3 1996. As can be seen, real GDP growth experiences significant revisions in every quarter
while unemployment does not receive any. While there are cases where there are revisions to
unemployment, they are much less common than revisions to GDP growth. This is important when
comparing final and real-time processes, because some macroeconomic variables may not experience
many revisions and are likely to generate very similar estimated processes as final release data. If
the role of real-time data is to be tested, it is important that the variables experience enough

revisions in both size and frequency to offer meaningfully different information.

Table 3.1: Quarterly Releases of Real GDP Growth and Civilian Unemployment for Q3 1996

Release Real GDP Growth (%) Unemployment (%)

1 2.1530 5.4
2 2.0776 5.4
3 2.0893 5.4

Final 1.0280 5.4

46

In addition to revisions resulting from the information gathering process, there are also en
masse revisions when the calculation of the select measure changes (i.e GNP, GDP). In the final
data case, there is a single calculation for each statistic and when the calculation changes, updates
are made to the entire series, so for any given extract one calculation is used. In the real-time case,
each statistic is observed using the calculation used in that period. This is the calculation that is
used when those releases were observed. Any adjustments to the calculation of that statistic are
applied to the releases available in that period, but not to any prior releases for the same statistic
referencing the same period’s value. This is important to keep in mind, because for every r that
the real-time VAR in Equation 3.1.2 is estimated, the calculation used at r is applied for every
release of the statistics observed in . Any change in the calculation of a statistic is only applied to
the values that are observed in the period of the change. As stated above, we assume that agents
do not distinguish between types of revisions, but simply take whatever release is available in the
period of observation.

In either the final (3.1.1) or real-time (3.1.2) driven process, i is an np x 1 vector of constants:

H1

M2

o= | tn (3.1.4)

nip—1)x1

where n is the number of factors and p the number of lags, with the first n elements py through pu,

estimated and all elements below the nth element set to 0. In the same way, we can write ® as:

47

D141 Pioi—1 o Pimi—1 Prig—2 0 Pipg—2 - él,l,tfp e q)l,n,tfp
Do14-1 Pooi—1 0 Popi—1 Do 0 Pop—o - @2,1.17;; e @Z,n,tfp
b =
(I)n,l,t—l q)n,Q,t—l e (I)n,n,t—l (I)n,l,t—2 o (bn,n,t—Q T ‘I)n,l,t—p e (I)n,n,t—p
I"*(l)—l)xn*(l)—l) On*(pfl)xn
(3.1.5)

where the top n X (np) array is estimated, the lower left n(p — 1) x n(p — 1) is an identity matrix,
and the lower right n(p—1) x n is a matrix of zeros. For each element in ®, the first subscript refers
to the dependent variable predicted in X, the second subscript refers to the independent variable in
Xi_1, and the third value is the relevant lag. These constructions of p and ® are consistent across
both the final (Equation 3.1.1) and real-time data (Equation 3.1.2), but the estimated components
in either are estimated using with the final or real-time data respectively. Even though the shape
and position of unknown elements in g and ® are the same across the final and real-time VAR, it
is important to note the implications of the differences in their construction.

Once the data generating process for the information driving bond buying decisions is deter-
mined, the rest of the affine model can be constructed. We continue by writing the price of any
zero-coupon bond of maturity m as the expected product of the pricing kernel in period ¢t +1, k11,

and the same security’s price one period ahead:

py" = Bk} (3.1.6)

It is assumed the pricing kernel, k;, summarizes all information entering the pricing decisions
of bonds all along the yield curve and is influenced only by the factors included in X; in Equation
3.1.1. We assume the inter-temporal movement of the pricing kernel is conditionally log-normal and
a function of the one-period risk-free rate, i;, the prices of risk, A; and shocks to the VAR process

int+1, eepqe

48

. 1
kt+1 = exp (—’Lt — *)\;)\t — /\28t+1) (317)

2

We define the prices of risk as a linear function of the macroeconomic factors:

)\t =)\0 +)\1Xt (318)

where g is np X 1 and A\ is np X np. Combining Equations 3.1.6, 3.1.7, and 3.1.8 with Equations
3.1.1 or 3.1.2 depending on the process, we can write the price of any zero-coupon bond of maturity
m as:

py" = exp (A + B, X}) (3.1.9)

where A, and B,, are recursively defined as follows:

1. _
Apy1 = Am + Bl (0 — ZXo) + 53%22’3;1 — 5

By = Bl (® = 2\1) - 6 (3.1.10)
where A; = §p and By = ¢; and &y and §; relate the macro factors to the one-period risk-free rate:

pi = exp (Jo + 01 X;) (3.1.11)

To derive the yield, we can rewrite Equation 3.1.9 in terms of the yield:

yi" = Ap + B, X; (3.1.12)
t m

where A,, = —A,,/m and B,, = —B,,/m.

Using a set of parameters passed in to generate A, and B,,, Equation 3.1.12 can be used to
calculate the predicted yields. The difference between the left and right-hand side of the equation
is the pricing error. With distinct Xy, p, ®, and ¥ taken from either the final process (Equation

3.1.1) or the real-time process (Equation 3.1.2) along with estimates of Ao, A1, dp and &y, separate

49

estimates of A and B in Equation 3.1.12 are used to generate the predicted term structure. The
difference between the predicted and actual term structure can be used to fit the unknown elements.
The estimation process will be addressed in more detail in Section 3.3. Before moving on to some
of the estimated model results of comparing a final data driven information set to a real-time data

driven information set, let us describe the data that we will use.
3.2 Data

This chapter only explicitly uses macroeconomic indicators to inform the term structure.
Across the models estimated, four different macroeconomic measures are used: output growth,
inflation, residential investment, and unemployment. All final data are quarterly and are obtained
from the Federal Reserve Bank of St. Louis (2013) website.! Output is measured as quarter over
quarter annualized GNP /GDP growth throughout the observation period. Growth is used rather
than the output level in order for there to be consistency in the measure between the final and real-
time data, as consistent level information was not available across the two real-time data sources.
Inflation is measured as the quarter over quarter percentage change in the GNP/GDP deflator. The
change from GNP to GDP takes place in 1992. Residential investment is measured as the quarter
over quarter annualized percentage change in private residential fixed investment. Unemployment
is civilian unemployment. All four indicators are seasonally adjusted in both final and real-time
data, as only seasonally adjusted was available consistently across both the final and real-time data.

Real-time data is taken from a combination of data from the Survey of Professional Forecast-
ers (SPF) (2013) and the Real-Time Data Set for Macroeconomists (RTDS) (2013b) compiled by
the Philadelphia Federal Reserve Bank. The American Statistical Association (ASA) started ad-
ministering the SPF in 1968, asking a panelist of forecasters to submit their predictions for current
quarter and up to 5 quarters in the future of key macroeconomic indicators, as well as predictions
for the current and next calendar year, all seasonally adjusted. This makes the survey data par-
ticularly attractive for use in forecasting models, as it does not suffer from the fixed horizon issues
that surveys such as the Blue Chip Financial Forecasts survey does.? The output and output price
indices are seasonally adjusted after collection by the ASA. The main drawback of the SPF is that
it is available only at a quarterly frequency, while other surveys, such as the Blue Chip survey, are

available at a monthly frequency. For each data point, the median, mean, cross-sectional dispersion,

Lhttp:/ /research.stlouisfed.org/fred2/

2For a discussion of these issues, see Chapter 2.

a0

and individual forecasts are available. The median expectation was chosen to represent the expec-
tation of the current quarter value, the ‘Market Expectation’ in Equation 3.1.3. The median was
chosen over the mean because, unlike the mean, it is robust to outliers. It was also chosen over the
cross-sectional dispersion or other quantiles that could be generated from the individual forecasts
because a single estimate was needed to make it comparable to the final-data driven models. As
published data for any macroeconomic measure is not available until after the completion of the
quarter, this within-quarter median forecast is taken as a reasonable approximation of the market’s
view of what that measure will be at the end of the period.

An alternative to SPF current quarter forecasts is the Federal Reserve internal “Greenbook”
data set (2013a), also supplied by the Philadelphia Federal Reserve Bank. Greenbook data are
the internal best-guess values for macroeconomic measure coincident with Federal Open Market
Committee (FOMC) meetings. These data were also considered as a replacement for the SPF data,
but were rejected for three reasons. First, the information is only available to those involved in
FOMC decision discussions and hence are not publicly available. Second, the Greenbook current
quarter forecasts for the measure is quite similar to the SPF within quarter forecasts and wouldn’t
likely alter the qualitative results of this study.

Figure 3.1 shows the time series of SPF and Greenbook within quarter output growth. Vi-
sually, the two series follow a similar pattern. When the final data is included in the plot shown
in Figure 3.2, it is clear to see that the difference between the real-time and final data is much
larger than the difference between the two real-time series. When the real-time data after-the-fact
differs from the final data, the two series both seem to differ in the same manner. Table 3.2 shows
that when comparing the mean, standard deviation, and median of the output growth and inflation
measures, the SPF and Greenbook statistics are very similar. When comparing either of these real-
time output growth measures to the final release measure, there is a larger difference between the
two. Combining these descriptive statistics with Figures 3.1 and 3.2 shows that the two real-time
statistics follow a similar process, especially when the final data is used as a point of comparison.
Third, Greenbook data is available only five years after the FOMC meeting in which they were
used. At the current chapter’s time of writing, this would exclude much of the financial crisis of
2007-2008 and all of the Great Recession of 2008-2009. Using the SPF data allows the financial
crisis and resulting downturn in growth to be included as part of the model. Because of these key
differences between Greenbook and SPF data, SPF current quarter forecasts are used in favor of

Greenbook current quarter forecasts in the estimation of the models.

ol

— SPF
! ! g g ‘ - - Greenbook []

10

Annual Growth (%)

=15

| S
""-l""-l"\"'e

1988_

1
&
<

9l L LT

L
N
2

Figure 3.1: SPF and Greenbook Output Growth Statistics. SPF and Greenbook are both for within
the quarter queried. Series switches from GNP to GDP in 1992.

-~ SPF
15 T : . . - - Greenbook [
' 1 1 ' — Final

Annual Growth (%)

-15

L |
oy ©
) o

< A

i i
) 1y
& o

< <

i
N
2

‘ j j
v [~
5 § g
~ ~ lav]

Figure 3.2: SPF, Greenbook, and Final Output Growth Statistics. SPF and Greenbook are both
for within the quarter queried. Series switches from GNP to GDP in 1992.

92

Table 3.2: Descriptive Statistics for Output Growth and Inflation as Measured by the Median Survey
of Professional Forecasters within Quarter Statistic, the Greenbook Current Quarter Statistic, and
the Final Release Statistic. Data are quarterly from 1969:Q1 to 2007:Q4 as Greenbook is only
available at a five year lag.

SPF Greenbook Final

Output Growth
mean 2.435 2.472 3.089
std 2.301 2.807 | 3.316
min -5.598 -10.500 | -8.400
25% 1.489 1.575 1.390
50% 2.585 2.600 3.200
5% 3.655 3.925 4.813
max 7.120 9.000 | 14.800
Inflation
mean 3.925 4.030 3.959
std 2.223 2.572 2.479
min 1.183 0.400 0.652
25% 2.233 2.100 2.186
50% 3.247 3.300 3.098
5% 4.718 5.200 5.266
max | 10.233 12.400 | 11.781

Previous quarter real-time information comes from the Real Time Data Set for Macroe-
conomists, provided by the Federal Reserve Bank of Philadelphia. This data set is compiled by
manual collection of releases of macroeconomic measurements from public sources available in any
given quarter. For every time period ¢, the releases for macroeconomic measures in t — 1, t — 2,
...available at time ¢ is recorded. This leads to a unique time series of values for 1 to t for every
t. For clarity, Table 3.3 shows an extract of real GNP. Each row signifies a statistic for a single
quarter. Each column is the period in which the information is observed. Along a single row moving
from left to right, another release arrives and the observation is revised. The release number is also
indicated in parenthesis next to the statistic. Each diagonal represents a single release, with the
first populated diagonal the first release, the diagonal above that the second release, and so on. The
details of the methodology of how this data set was compiled is addressed in Croushore and Stark
(2001). These data, along with the SPF median within-quarter forecast, fill out the other elements
in Equation 3.1.3.

When estimating the models, quarterly data from 1969 to 2012 will be considered. 2013 data
was available but the final data for 2013 had not yet passed through the major revisions and as a
result were excluded. There are a few important characteristics of the data over this period. Table

3.4 offers descriptive statistics for the output and inflation measures in the final and real-time data.

93

Table 3.3: Sample of Real-time Data Set for Macroeconomists Real GNP

Release (#)
Occurrence period | 1965:Q4 | 1966:Q1 | 1966:Q2 | 1966:Q3
1965:Q3 609.1 (1) | 613.0 (2) | 613.0 (3) | 618.2 (4)
1965:Q4 621.7 (1) | 624.4 (2) | 631.2 (3)
1966:Q1 633.8 (1) | 640.5 (2)
1966:Q2 644.2 (1)

Table 3.4: Descriptive Statistics of Real-time and Final Data, Quarterly Data, 1969-2012. Real-time
is measured here using the within quarter SPF median forecast.

Output Growth Inflation
statistic | Real-time | Final | Real-time | Final
mean 2.306 2.810 3.632 3.636
std 2.294 | 3.374 2.211 2.474
min -5.598 | -8.607 0.617 | -0.668
25% 1.482 1.200 2.011 1.947
50% 2.494 | 3.103 2.821 2.776
5% 3.473 4.539 4.358 4.680
max 7.120 | 14.800 10.232 | 11.781

The real-time within-quarter median forecasts have a lower time series standard deviation than the
comparison final data values for both output and inflation. Both are computed as the standard
deviation of the values over the entire observation period. If the median within quarter forecast
is thought of as the market’s perception, it seems as though, overall, the variation in forecasters’
expectation of within quarter output and inflation is lower than the variation in the ex-post final
release values.

If the results of modeling with real-time information are to be compared to the results of
modeling with final information, it is important that real-time data offers information that is
potentially different from that in final data. As a simple indication of the potential for this, Figure
3.3 shows a time series of the residuals of regressing real-time output on final output and a constant.

Specifically, the estimated relationship is:

ytfm = E[ytfmlft] + &t
(3.2.1)

= ytp,t + et
where E[y/"|I,] is the expectation of final output growth given the information set I, available
four quarters earlier, 4/ is the final annualized quarter over quarter output growth and ¢ is the

unexplained portion. We use the SPF median within quarter forecast for economic growth for

o4

yf ;- For the purpose of this exercise, € can also be thought of as the variation in y! orthogonal
to variation in E[y/™|I;]. As shown in Figure 3.3, there is a considerable amount of variation
in the final data that does not coincide with the real-time data measure. The thicker line shows
the 8 quarter lagged rolling mean of the residuals. On a basic level, the cyclical nature of the
residuals indicate there is a pattern in the real-time series not present in the final series (or vice-
versa). Recessions seem to coincide with either movements down or peaks in the rolling mean of
the residuals, with the exception of the July 1981 to November 1982 recession. The pattern of these

residuals are a simple indication that there is the potential for information in the real-time series

distinct from the final series.

— Residuals
8 . ’ : = Rolling Mean of Residuals [,
61 J
4| J
2
s 2 J
2
=
U]
©
=
c
=
<

[

I\II\Ii\
LA 2 = T =

5§ 4§ 8§ £ 4 8 3

HH"VHN(’?NN

1989 o

1 |
S
g2 3

Figure 3.3: Residuals of Univariate Regression of Final Output on Real-time Output. Bold line

represents 8 quarter lagged rolling average of the residuals. Highlighted areas indicate NBER (2013)
recessions.

3.2.1 Yields

Yields are used to fit the relationship defined in Equation 3.1.12. In order for a single pricing
kernel to recursively define yields all along a single yield curve, any differences in payouts resulting
from coupons should be eliminated. Yield data are the one, two, three, four, and five year implied

Fama Bliss zero-coupon yields. These yields are generated from the method described in Fama

%)

and Bliss (1987), where yields are selected from the observed term structure and transformed into
their zero-coupon form. Before presenting the modeling results, it is important to ensure that
the time series of yields can be modeled using a single set of parameters. Structural break tests
can help to inform this decision. If there are any structural breaks in the process governing the
yields that are not modeled in the macroeconomic information used to predict the yields, separate
models depending on the time period may be required. The sequential structural break approach
of Banerjee et al. (1992) is used to test for the presence of a single structural break in the data.

Each yield is modeled according to:

Yr = o + 1 Tie(k) + pot + aye—1 + B(L)Ay—1 + € (3.2.2)

where y; is the yield in period ¢, g is a constant, pq is the coefficient on the shift term, po is the
coefficient on the time trend, « is the coeflicient on the AR(1) term, and (L) is a lag polynomial.
The shift term can be either a mean-shift or a trend-shift. In the case of a trend-shift, we model

711 (k) as:

T1e(k) = (t = k) 1k (3.2.3)

where k is the breakpoint and 1) is 1 if the current time period ¢ is past k, otherwise 0. We
estimate Equation 3.2.2 for each k, with k ranging from 15% of T' to 85% of T', where T is the total
number of observations. We test with 4 lags in each process to allow for 4 quarters of persistence
and to be consistent with the number of lags used in the VAR models. Figure 3.4 shows the time
series of the F-statistics for a null hypothesis of no structural break p; = 0 in each of the yields. The
three horizontal lines represent the 10%, 5% and 2.5% critical values for the F-statistic of testing
whether a structural break exists. We use the continuous maximum function to determine the
timing of the single structural break. All five yields show a structural break in the early 1980s. The
one and two year yield break point is in Q3 1980 and the structural break in the three, four, and five
year yield is in Q1 1981. This coincides with Paul Volker’s time as Fed chairman when there was a
concentrated effort to raise interest rates in order to stamp out inflation. As shown in Figures 3.5
and 3.6, none of the macroeconomic factors, final or real-time, are associated with the structural
break in the yields. With a structural break appearing in the yields that does not appear in any of

the macroeconomic factors, a model with time constant parameters may not be appropriate. Given

96

this observation, the term structure models will be estimated with an observation period beginning

in 1982, after the structural break in the yields.

207 ! 1 — One year ! ! !
: T : Two year : : :
- Three year
Four year ; ; ;
Five year |-

F statistic

i i i i i i i i i
v ‘o <o v o <
5 5§ 5§ 5§ § 8§ § 8 8§
S 2 2 2 2 S 2 ~ N N

Figure 3.4: Time Series of F-statistics Used to Test for Structural Breaks in the Observed One,
Two, Three, Four, and Five Year Yields. The horizontal black lines correspond to the 10%, 5% and
2.5% significance levels from bottom to top for the F-statistics taken from Banerjee et al. (1992)

3.3 Results

In the set of models below, we solve a number of models, using an information set including
quarter over quarter real output growth, quarter over quarter inflation, residential investment, and
unemployment. These exact measures are defined in section 3.2. We compare models using two,
three, and four observed factors. The two factor model uses output growth and inflation alone, the
three factor model adds residential investment, and the four factor model adds unemployment, all in
that order. We use four lags in both the real-time and final data driven models in order to account
for all of the real-time information and make the models comparable in their structure. We also

include a three factor model with two observed factors and a single latent factor for completeness.

o7

20 T T T — Output Growth T T T
: : : -~ Inflation : : :
- - Res. Investment
: : — Unemployment : : :
15_5 R IR L T
9
w : : : : : : : : : :
E 10_ _
(] . H H
e |
B e
7\ /z -
ol S o
v Ny © o o
AN
o S S & S
~ ~ ~ ~ ~N

Figure 3.5: Time Series of F-statistics Used to Test for Structural Breaks in the Final Values of
Output Growth, Inflation, Residential Investment, and Unemployment. The horizontal black lines
correspond to the 10%, 5% and 2.5% significance levels from bottom to top for the F-statistics
taken from Banerjee et al. (1992)

We make some simplifying assumptions in order to lessen the parameter space in these models.
We assume that the prices of risk are non-zero only in response to the current values in X;. With
n factors, this results in block zeros below the nth element of Ay and outside the n x n upper
left-hand block in A; in Equation 3.1.8. In these models with only observed values, Equation 3.1.1
and Equation 3.1.2 can be estimated using OLS, leaving only the parameters in Equation 3.1.8
to be estimated using numerical approximation methods. Numerical approximation methods are
required because there is not a closed form solution for Ay and A; and their unknown values can
only be derived based on the implied pricing error from Equation 3.1.12. Non-linear least squares
is used to fit the unknown parameters in Equation 3.1.8 to minimize the sum of the square of the

pricing errors, defined as:

D> W = (Am + B X)) (3.3.1)

a8

20 : 5 1 — Output Growth 1 ! !
: ‘ | -~ Inflation 1 : :
| == Res. Investment

e e R

B0

F statistic

Figure 3.6: Time Series of F-statistics Used to Test for Structural Breaks in the Real-time Values of
Output growth, Inflation, Residential Investment, and Unemployment. The horizontal black lines
correspond to the 10%, 5% and 2.5% significance levels from bottom to top for the F-statistics
taken from Banerjee et al. (1992)

where m € [4,8,12,16, 20], the 5 maturities (in quarters) of zero-coupon bonds fitted in this exercise
and T is the number observations. A function and parameter difference convergence threshold of
1 x 1077 was used.

Table 3.5 presents the root-mean-square pricing error (RMSE) across multiple models, com-
paring models estimated with a final data process and a real-time data process. For each model,
the pricing error for the yields used to fit the model is shown. The results show that there is a clear
advantage, as measured by a decrease in RMSE, to modeling the information set using real-time
data over final data, despite the fact there is arguably more information in the final data. Each
column F(n) and RT(n) corresponds to the n-factor model as defined above. In the three models,
the 2, 3, and 4 factors cases, the real-time model outperforms the final model. The use of multiple
comparison models helps to show that it is in fact the real-time data alone that is improving the

performance of these models. P-values are calculated by testing for the equivalence of means (of the

99

pricing errors of the two models) using a t-test that allow for different variances. These p-values are
attached to the real-time columns in Table 3.5 with * for 10% and ** for 5%. As more factors are
added to each model, the models improve in performance, but the advantage of using real-time data
over final data increases. In the four factor models, the switch from a final process to a real-time
process shows that the biggest performance difference comes in the lower maturity yields, specifi-
cally in the one and two year yields. This indicates that a real-time data driven pricing kernel is
closer to the information set driving bond market decisions than a final data driven pricing kernel.
This also indicates that the information may have different explanatory value at distinct ends of
the yield curve. Specifically, real-time information may have more value at the shorter end of the

yield curve. This particular observation will be discussed more below.

Table 3.5: RMSE for Models using Final (F) and Real-time (RT) Data. The number in parenthesis
indicates the number of observed factors included and the [indicates that a single latent factor was
included. Observation period is 1982-2012. *=10%, **=5%, and ***=1%, where these refer to
p-values testing for the equivalence of means (of the pricing errors for the two models) using a
t-test that allows for different variances.

Maturity | F (2) | RT (2) | F(3) |[RT (3) | F (4) | RT (4) |F (2 +1) | RT (2 +)
1 year 108.71 | 187.24 | 194.07 | 176.75 | 182.43 | 156.84%% | 44.25 3821

2 years 197.35 | 186.51 | 195.67 | 177.25 | 182.84 | 162.33% | — -

3 years 104.26 | 182.40 | 194.63 | 174.41 | 181.28 | 162.49 | 24.97 25.33

4 years 101.92 | 178.98 | 191.35 | 169.92% | 178.49 | 162.45 | 43.91 40.02

5 years 189.18 | 175.85 | 186.05 | 166.06 | 173.82 | 159.83 | 57.25 55.34

For completeness an additional pair of models using final and real-time data are estimated
using the first two observed factors and a single latent factor in the VAR process. Only two observed
factors were included to ensure convergence of the estimated parameters. The latent factor is solved
for by assuming that the two year bond is solved without error. Selecting other yields as priced
without error was tried, but the two year was chosen because it struck a balance of small pricing
errors for both the one year and longer maturities. An iterative solution method is used as in Ang
and Piazzesi (2003), whereby initial guesses are generated for the unknown parameters holding
other parameters constant and each iteration is solved via maximum likelihood. The pricing error
of these models is shown in the last two columns of Table 3.5. The inclusion of the latent factor
vastly decreases the pricing errors in both models, as would be expected. Another result of adding
the latent factor is that the differences in the pricing error between the final and real-time models is

much smaller. This may indicate that latent factor(s) in final data driven affine models of the term

60

structure may be compensating for the fact that real-time data is more appropriate. While the
latent factor is clearly consuming much more of the pricing error than that priced by the advantage
of using real-time over final data alone, this result may indicate that some of the unpriced error
may be due to the inappropriate use of final data.

In order to focus on the value of final versus real-time data alone, the two four factor models
driven only by observed factors will be the focus of discussion moving forward. As each column
of Table 3.5 represents an individual model, there is a unique error process for each. Figure 3.7
plots the residuals of the two 4 factor models. The two processes appear very similar, confirming
the close relationship between the real-time and final data.? Upon further examination, there are
some important differences in the error processes. Estimating an AR process can help to reveal
differences in inter-temporal persistence in the error terms. In general, we would expect a more
robust pricing kernel to better model prices and generate normally distributed errors without any
inter-temporal persistence. Using BIC to determine the number of lags (AIC resulted in the same
number of lags), we find that the appropriate number of lags for the final model errors was two and
for the real-time models was one. An AR(2) process is also included for the real-time error in order
to have a point of comparison for the final model error AR(2). The results from the estimation of
these models are shown in Table 3.6. In order to get an indication of the degree of persistence in the
series, we can sum the AR coefficients in each model (Andrews and Chen, 1994). These sums are
provided in the last column of Table 3.6. When comparing the models using the BIC-determined
number of lags, the sums of the parameters indicate a higher degree of persistence in the pricing
errors generated by the final model compared to the real-time model at every one of the estimated
maturities. If we compare the real-time and final data error processes using the same number of
lags (2), lower persistence in the real-time model is observed in three of the five yields. The two
and three year yields show close to the same persistence, while the one, four, and five year pricing
errors show markedly lower persistence. While persistence is present in both the final and real-time
generated errors, less persistence may indicate that there are cyclical movements in each of the
yields that a real-time data informed kernel models more closely than a final-data informed kernel.

It is also interesting to note that while there is overall less persistence in the real-time data
model generated pricing errors compared to those generated by the final data model, the coefficient

on the first AR lag is higher with the real-time model. This may indicate that there are some

3The correlation between the four factor model final and real-time pricing error time series are 0.846, 0.891,
0.867, 0.864, and 0.850 for the one, two, three, four and five year yields, respectively.

61

persistent explanatory variables that are missing from the real-time data model. Because the
persistence in the first lag coefficient is lower in the final data model, this may indicate that a

complete model could benefit from including some final data and/or latent factors.

62

“JYSLI 91} TWO UMOYS OI® SHUSIDYJI0D TOTFR[DLIOD YT, ARy Aq SPPOJN () owry-[eay] pue (F) [PUL] I0J S[eNpISaY JO S10[J :)°¢ 9INSI

7980 =9
L9870 =10
1680 =10
9780 =1

(=]
Jeak anl4

R

(=]
Jesh Inoq

- e S

Jesh saiy

Jeak om|

Ieak auQ

awi)-jeay
eul

slolle Buold

63

£0R0 (8060°0) | (6060°0) | (£180°0) 6230 (02g00) | (L&80°0) €620 (7680°0) | (1880°0) | (8880°0)

2010 | 119270 L1200~ 9828°0 09€0°0- 692€°0 | 19950 9820°0- s1eak g
——_— (9160°0) | (S160°0) | (L£80°0) 0620 (7250°0) | (L¥80°0) 0120 (6280°0) | (g980°0) | (0260°0)

9900 | TL8L0 8LT0°0- L6280 1€€0°0- TLLE0 | €660 6220°0- sread
080 (L160°0) | (9160°0) | (0180°0) —_— (9050°0) | (8180°0) 0R°0 (€980°0) | (2680°0) | (810T°0)

26900 | ¥96L°0 6810°0- 01780 82£0°0- 196€°0 | LL97°0 2920°0- sreod ¢
1180 (#1600) | (2160°0) | (26L0°0) - (9670°0) | (€080°0) 2180 (2980°0) | (2980°0) | (¥660°0)

ISTT'0 | ¥65L°0 ¥810°0- 78T8°0 £0£0°0- 078€°0 | G6870 98200~ sreaf g
0020 (%060°0) | (€060°0) | (L080°0) — (8250°0) | (L280°0) 0060 (€980°0) | (7980°0) | (1880°0)

PPET0 | 092270 1600°0- ¥528°0 L¥20°0- 88.£°0 | 60290 STH0°0- Teak |

(sBe[g) owmy-Teay (DI6) (Se 1) owry-reoy (D14) (s8er g) reurg
wing [g Seq [1 Seq [juejsuoo [wing | 1 Seq | juejsuod | wing [g Seq [[Seq | quejsuoo | Ayumyen

‘SJUSTOJO0D Y Y} JO SWINS SMOYS UWN[0D }se oY], 'SIsoyjuared Ur Umoys
aIe SIOIIS pIepue)s IojoureleJ 'O Suisn pojos[es sSef Jo Iaquuny ‘S[PPOJN 1039€ INO;g oY) WOIJ UaxR], SIo1ly SumlId Jo S[PPOIN HV :9°¢ 9[qel,

64

In order to further investigate differences in the results of these two models, we can examine
the time series of the time-varying term premium. Using the results from each fully estimated model,
we can also calculate the implied term premium by taking the difference between the predicted
yield and the risk-neutral yield, which is equivalent to the difference between the P-measure and Q-
measure. The risk-neutral yield is the predicted yield calculated holding the prices of risk zero (Ag
and A; in Equation 3.1.8). The time-varying term premia plots are shown in Figure 3.8. While the
error plots were very similar, the plots of the implied term premia show some interesting differences,
specifically when comparing the shorter maturities. At the one year maturity, the time series of
the term premium seems to experience much more frequent fluctuations than that modeled with
the final data. There also seems to be less of a seasonal movement in the term premium. The
real-time models produce more erratic movements in the term premium at the shorter maturities,
with sustained seasonal movements only showing up in the longer maturities. In the final data,
all of the yields seem to experience sustained seasonal positive or negative movements in the term

premium.

65

‘AToA1)00dsey] ‘OpI§ pueH JYSTY pue 3Jor] U0 AJumiey Aq S[EPOIN () ewn-esy] pue () [eurq Ioj

WNIWAIJ W19, parjdw] Jo s30[J :8'¢ 9InSr

6002 5002 1002 1661 £66T 6861 86T . 6002 5002 1002 L66T £66T 6861 sget
s}
<
m
~
m
7
]

6002 5002 1002 1661 £661 6861 L1 6002 5002 1002 1661 €661 6861 seet
-
o
<
~
7]
]

6002 5002 1002 1661 £661 6861 L1 6002 5002 1002 1661 €661 6861 seet

=

4

p=a

0 3

7]

z s

o
F 17
, , , , , , , 9

6002 5002 1002 1661 £661 6861 110 S 6002 5002 1002 L66T €661 6861 sgel .~
g
o
~
o
)
5

9 9

6002 5002 1002 1661 £661 6861 110 S 6002 5002 1002 L66T €661 6861 sgel .~
o
3
m
~
]
]

L L 1y
9 9

Swi-esy

66

These patterns in the term premium can be more formally investigated in an autocorrelation
plot. Figure 3.9 presents autocorrelation plots of the time-varying implied term premium for the
final and real-time models. Across the five maturities in the final model, there is persistent au-
tocorrelation in the term premium. This pattern does not vary much according to the maturity.
The autocorrelation terms are significant at the 1% level eight to ten lags back, a period of two
years. The real-time model generated term premia on the other hand only develop persistence in
the longer maturities. Autocorrelation estimates for the one year and two year real-time model
generated term premia are not significantly different from zero at even the shortest of lags. This
suggests that the term premia on the shorter maturity yields are not driven by a persistent process.
For term premia associated with the three to five year maturities, the autocorrelation coefficients
have a greater similarity with those generated by the final data model term premia. As we move
further out the term structure to longer maturities, the term premia both become more persistent
and this persistence becomes closer to that generated by the final data drive models. In fact, the
five year maturity term premia for both the final and real-time models has significant autocorrela-
tion from the 1 to the 8 quarter lag, becoming insignificant at the 8 quarter lag, even though the
correlation coefficients are significantly different.

This comparison in the pattern of the term premium could indicate a difference in the pricing
behavior in the markets of bonds of different maturities. The real-time portion of Figure 3.9 seems
to indicate that shorter maturity bond markets respond to volatile, short-term perceived risk, while
the risk attached to longer maturity yields is more consistent across periods. This follows naturally
from the fact that if at least some of the agents purchasing one and two year bonds do not plan
to hold them to term, the price at which they will be able to sell them will be highly dependent
on the short-term economic outlook. This leads to within-period shocks to the macroeconomic
factors included to inform the pricing kernel having a large impact on the perceived risk of these
assets. From the results of the final and real-time models, it seems as though only real-time
information can appropriately capture this risk embodied in short-term economic predictions. The
model driven by final data, on the other hand, shows a very similar term premium process between
all five yields, but this results in a model that does not fit as well. Given a stable VAR process
governing the observed information, longer maturity premia unsurprisingly are less volatile and
have a more tempered response to macroeconomic shocks. The effects of within-period shocks to
the macroeconomic factors on the perceived risk of longer maturity bonds could be through the

maintenance of general uncertainty about the economic horizon years ahead. In other words, while

67

the riskiness of short-term bonds is transitory, the riskiness of longer term bonds is more persistent.
Furthermore, in these models this difference is only captured through the use of real-time data,
but could often be modeled in other contexts through the use of one or more latent factors. As
shown in the results in Table 3.5, a single latent factor can account for a large degree of variation
in the shorter maturity yields and also lessens the advantage of using real-time over final data.
Even though the use of a latent factor leads to a much tighter fitting model as measured by pricing
errors across all the maturities, it also clouds the advantage of using real-time data and the subtle

differences in the impact that real-time data has on shorter maturities.

‘(0 WOIJ I9Y[}Ie] SOUI[PIYSep o) oI S[RAIOUI
90UOPYUO0D 966 oY) PUR () SUIPUNOLINS A[9JRIPOTUWIT SOUI] PI[OS O} AQ UMOTS ST S[RAIO)UI 9OUSPYUOD U,GE OV, 'A[oA1oadsey] ‘oplg pueH ST
pue o] oY) uo Ajumiey £q S[PPOIN () swni-[esy] pue () [eurq Ioj wniwoeld WIo], Sutdres-owl], porjdu] Jo sj0[d UOIIR[OIION0INY :6°¢ oIn3I]

[5]=3] Be
0 ST [o]8 S 0 . 0Z ST 0ot S 0 .
T T T 00— T T T t'0—
\\ 20— H\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\HN.OI
00 00 4
o s s s e S A 20 Ermr oo oo oo oo e T T T T T oo oo T4 20 &
: . L . =
“ 0 0 m
H : 490 F 490
r 180 180
I 0T i l 0T
T v'o- T T t'0—
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ = E AN et SR Rt R S e [N
: 00 00 .
B =)
S R e B e e i i e e e FA oo o oo o o s e B St It B
I ; 1ot 1ro 3
i Q
I : 490 = 190
5 : 180 180
I 0T 1 . 0T
T v'o- T T t'0—
R R R R R R R Rl B R R BB R R RS e B e Rer R B Rer R e R R | DN R R R R S [N
00 00 M
S S A SO i = \\Lm\\\\\\\\\nmd R I I T s KA TTTTOT OISO o408
I : o r o m
I 490 = 190 =
5 : 180 180
I 0T 1 . 0T
T v'o- T T t'0—
R R R R R R R Rl B R R BB R R RS e B e Rer R B Rer R e R R | DN R R R R S [N
00 00 m.
S S S 0 O s S T 1 270 a1 ') O
L : 4 1o 5
: 0 0 §
I B 190 r 190
5 : 180 180
I 0T 1 . 0T
T v'o- T T t'0—
e et et Pt el Refetieteetietettti=ietis b 1f S ettt e ettt Eefee ettt Exfeserteti=tteteefi=tett= b, W
00 00 m
R R S S 420 Fro o s s T e S 0
: . L Jpn %
: 0 0 [
I : 490 = 190
5 : 180 180
I 0T 1 . 0T

awn-jeay

leud

69

The use of real-time data reveals a more robust structure to the differences in the risk premium
of yields of different maturities. When pricing at shorter maturities, agents seem to respond more
radically to changes in perceptions in macroeconomic factors and the term premium is more volatile.
These perceptions are accounted for more fully through the use of real-time data. Longer maturity
bond premia respond to macroeconomic factors, but through cyclical fluctuations implicit in the
VAR and not through the idiosyncrasies of period-to-period movements. These should be important
considerations when considering the impacts of monetary policy and attempts to manipulate the
yield curve. The use of final data in term structure modeling may result in an oversimplified pricing

kernel that is less robust to quick changes in perceptions of macroeconomic conditions.

3.4 Conclusion

While the use of real-time information has become very popular in most sectors of macroeco-
nomic research, it has yet to fully penetrate affine term structure modeling of US Treasuries. This
chapter shows that the use of real-time data in estimating these models reveals a fundamentally
different nature to the term premia on bonds of different maturities. Estimating affine models of
the term structure with real-time data resulted in lower pricing error. The real-time data driven
models generated a greater variation in term premia persistence, with little to no persistence at
shorter maturities and higher persistence at longer maturities. This variation was not generated by
the final data driven model. Understanding what drives these differences and the different types
of information contributing to the pricing decisions in bond markets of different maturities is im-
portant to predicting the impact of monetary policy intending to shape the yield curve. The use of
exclusively final data can result in models that oversimplify the information driving premia and in
term premia in shorter maturity bonds that are less volatile than real-time perceptions of economic
measures would indicate.

Given the advantage of real-time data noted in this chapter, another avenue that this investi-
gation could take would be to examine the ability of real-time versus final data driven affine models
to forecast out-of-sample yields. While generating forecasts of the pricing kernel using final data
simply involves solving forward using the VAR data generating process, this same approach is not
possible with the real-time VAR specified in this chapter. While the final data VAR reuses the
dependent variables as explanatory variables when forecasting future period values, the real-time
data VAR does not. This makes forecasting difficult because the entire set of explanatory variables

are out-of-date when the next period’s value needs to be forecast. In order to obtain ‘“real-time”

70

forecasts from the real-time VAR, patterns in how revisions are made to macroeconomic variables
would need be modeled first. This process would then be to used to generate the predictions for
the real-time variables and the real-time VAR, could be used to forecast out-of-sample yields.
Another area to consider for future research is whether the prominent role of latent factors
in the estimation of many affine models could be an artifact of the use of final as opposed to real-
time data. Results from this chapter suggest that adding even one latent factor compensates for
some of the differences in pricing error generated by a final versus a real-time data driven model.
Even though adding a latent factor greatly lessens the pricing error, the resulting error exhibits
persistence to a similar degree found in the final data driven models. Instead, the moments of
latent factors added to a final data driven model could be compared to the moments of principal
components derived from a real-time data driven pricing kernel. The principal components of the
real-time data driven pricing kernel may have similar properties to the latent factors estimated in
combination with final data. As latent factors are becoming increasingly common, demonstrating
how the information underlying latent factors relates to real-time data could lend more intuition to
the descriptions of latent factors. This chapter showed how real-time data improves the performance
of affine models without the use of latent factors and suggested that latent factors may compensate

for a lack of real-time data in final data driven models as measured by performance.

71

CHAPTER 4

AN INTRODUCTION TO AFFINE, A
PYTHON SOLVER CLASS FOR AFFINE
MODELS OF THE TERM STRUCTURE

This chapter is intended to introduce and contextualize a new affine term structure modeling
package, affine. This package consolidates a variety of approaches to estimating affine models
of the term structure into a single, computational framework. Affine term structure models offer
an approach for obtaining an estimate of the time-varying term premium on government bonds of
various maturities, making them very attractive to those wishing to price bond risk. They also
offer a method of determining what information influences government bond market agents in their
pricing decisions. With the non-linear nature of these complex models, estimation is challenging,
often resulting in highly customized code that is useful for estimating a specific model but not
generally usable for estimating other similar models. The affine package is intended to provide a
useful abstraction layer between the specific structure of a given affine term structure model and
the components of the model that are common to all affine term structure models.

Overall, the package is designed to accomplish three main goals:

1) Lessen the cost of building and solving affine term structure models. Researchers in the
affine term structure modeling literature build highly specialized collections of computer code that
are difficult to maintain and cannot easily be adapted for use in related but separate affine models.
This leads to a much smaller group of researchers to the literature than might be possible if the

barrier to entry were lower.

72

2) Provide a meaningful computational abstraction layer for building a variety of affine term
structure models. Affine term structure models come in many forms, possibly involving observed
factors, unobserved latent factors, different assumptions about correlations across relationships, and
different solution methodologies. This package aims to consolidate a large group of these models
under a simple application programming interface (API) that will be useful to those building affine
term structure models. While the theory behind affine models of the term structure has been
documented across many papers in the literature, this package represents the first comprehensive
computational approach for building these models in practice. This abstraction layer to affine
term structure models in general is itself a new contribution to the field. The chapter will detail
how models with different combinations of observed and unobserved factors in the pricing kernel,
different solution methods, different numerical approximation algorithms, and different assumptions
about the model structure can all be setup and built using this package.

3) Provide a single context in which many different affine models can be understood. Affine
term structure models often appear self-contained, with different transformations of the same func-
tional forms creating unnecessary differentiation in papers grounded in a single theoretical frame-
work. This package was constructed with the intent of identifying and implementing steps to solving
a model so that each can be customized by the end-user if necessary, but would continue to work
seamlessly with the other parts. The unified framework allows connections between separate mod-
els to be more easily understood and compared. The framework essentially provides the building
blocks for understanding and estimating an affine term structure model and the implications of
certain assumptions about the functional form.

The package is written in a combination of Python and C. The application programming
interface (API) is accessed entirely in Python and select components of the package are written
in C for speed. The package has been tested and is currently supported on Unix-based operating
systems such as Linux® and Macintosh® OS X® and also the Microsoft® Windows® operating
system. It can be accessed entirely from a Python console or can be included in Python script.
The package has hard dependencies on other Python libraries including numpy, scipy, pandas,
and statsmodels. The package is currently distributed as a personal repository of the author at
https://github.com/bartbkr/affine and is distributed under the BSD license. A proposal will
be made in the future to include affine in statsmodels.

This chapter is divided into the following sections. The first section will discuss the standard

affine term structure model framework and why Python was chosen as the API layer for the package.

73

The second section will briefly introduce the assumptions of the package about the data and the
meaning of the arguments passed to the model construction and estimation objects. This can
be used as a quick reference for building models. The third section describes the API in more
detail, with some examples of the yield curve and factor data that are used to inform the model.
This section also presents the theory behind the different estimation methods. The fourth section
presents the approach behind the development, including performance issues, some profiling results,
and challenges in development. The fifth section presents some scripts for executing affine term
structure models in other papers in the literature, including those found in Bernanke et al. (2005)
and Ang and Piazzesi (2003). Concise scripts are shown, with the full scripts included in the

Appendix. The final section concludes.
4.1 A Python Framework for Affine Models of the Term Structure

Affine term structure models are a methodological tool for deriving a span of yields on secu-
rities of different maturities in terms of the information used to price those bonds. The history of
affine models of the term structure begin with the assumptions laid out in Vasicek (1977). These
assumptions are that: 1) the short-rate is governed by a diffusion process, specifically a Weiner
process, 2) a discount bond’s price is solely determined by the spot rate over its maturity, and 3)
markets for the assets clear. Through these assumptions, a single factor or state variable can be
derived that governs all prices of assets along the term structure. Cox et al. (1985) took the ap-
proach of Vasicek (1977) and expanded it to the case where multiple factors could be used to price
the term structure. This innovation introduced by Cox et al. (1985) led to a series of papers that
derived and estimated these continuous time models of the term structure. Specifically, Litterman
and Scheinkman (1991), and Pearson and Sun (1994) both derive and estimated term structure
models that are functions of at least two state variables, but these variables were characterized in
terms of moments of the yield curve and were difficult to relate back to observed outcomes. Affine
term structure models are introduced in Duffie and Kan (1996) as a subset of these models by
specifying the prices of risk as an affine function of the factors.

The specification of the prices of risk as an affine transformation of the factors allows for
the process governing the factors to be derived separately from the model. With the flexibility
introduced by this affine specification, observed factors can be easily included. In practice, these
models are estimated in discrete time and it has become common practice to explicitly include only

the discrete-time specification of the models in the literature. Ang and Piazzesi (2003) introduced

74

a discrete-time affine term structure model, where both observed and unobserved information are
included in the information governing bond markets and the process governing this information is
in the form of a vector autoregression (VAR). Other important models have come in a variety of
forms, including those determined solely by observed factors (Bernanke et al. 2005, Cochrane and
Piazzesi 2008), solely by unobserved factors (Dai and Singleton 2002, Kim and Wright 2005), or
by a combination of observed and unobserved factors (Kim and Orphanides 2005, Orphanides and
Wei 2012).

In addition to the assumptions of Vasicek (1977) and the specification of an affine transforma-
tion relating the factors to the prices of risk, discrete time affine models of the term structure also
assume that the pricing kernel follows a log-normal process, conditional on the prices of risk and the
shocks to the process governing the factors. This assumption is made in order to make the model
tractable and the pricing kernel a discrete function of the observed and unobserved components of
the model.

The class of affine term structure model defined above and further specified below are that
supported by the package. Modifications to the core functionality of the package to support other
model types are discussed in Section 4.5.

We write the price of the security at time ¢ maturing in n periods as the expectation at time
t of the product of the pricing kernel in the next period, k;;1, and the price of the same security

matured one period, p{ﬂr_ll:

P} = Ey[kepap)] (4.1.1)

This pricing kernel is defined as all information used by participants in the market to price
the security beyond that defined by the maturity of the security. The pricing kernel can also be
thought of as the stochastic discount factor.

In the literature, it is assumed that the pricing kernel is conditionally log-normal, a function
of the one-period risk-free rate, i;, the prices of risk, A\;, and the unexpected innovations to the

process governing the factors influencing the pricing kernel, €;41:

1
*)\2}\75 -)\;Et+1) (412)

ki1 = exp (—is — B

(6]

with Ay j x 1 where j is the number of factors used to price the term structure. Each factor is
assigned an implied price of risk and these are collected in the vector \;. The prices of risk are
estimated based on the variables included in the pricing kernel and the process specified to govern
the inter-temporal movement of these variables.

In the simple case, the process governing the movement of the factors is written as a VAR(1):

Xt =M + (I)Xt,]_ + ZEt (413)

where g is a 5 X 1 vector of constants, ® is a j X j matrix containing the parameters on the
different components of X;_1, and ¥ is a j X j matrix included to allow for correlations across the
relationships of the individual elements of X;. In most cases, the VAR(1) is the restructuring of
a VAR(!) process with f factors, making j = [x f. The package allows for some flexibility in the
process governing the factors, but is optimally used when the process can be simplified as a VAR(1).
A VAR is commonly used in the literature to summarize the process governing the factors included
in the pricing kernel for two reasons. The first reason is that a VAR is able to generate dynamics
between variables without requiring the specification of a structural model. The second is that the
process allows for the predicted values of the factors to be easily solved forward, where the agents
are forecasting the future values of the factors and their implied contribution to the pricing kernel
using the functional form specified in Equation 4.1.3. The ability to generate implied future values
of the pricing kernel is essential to solving for maturities of yields all along the yield curve. X; can
be any combination of observed and unobserved (latent) factors. Observed factors are fed into the
model and latent factors are recursively calculated depending on the solution method.

It is assumed that the prices of risk in time ¢ are a linear function of the factors in time ¢.
This assumption is what makes affine term structure models “affine”, as the prices of risk, \;, are

an affine transformation of the factors:

>\t =)\0 + AlXt (414)

where Ag is a j X 1 vector of constants and A\; j X j is a parameter matrix that transforms the
factors included in X; into the risk associated with each of those factors.
In order to solve for the implied price of bonds all along the yield curve, we first define the

relationship between the one period risk-free rate i; and the factors influencing the pricing kernel:

76

i = 8o + 0} X, (4.1.5)

where dg is 1 x 1 and d7 is a j x 1 vector relating the macro factors to the one-period risk-free rate.
In order to write the price of the bond as a function of the factors and parameters of the
data-generating process governing the factors, we can combine Equations 4.1.1-4.1.5! to write the

price of any maturity zero-coupon bond as:

p} = exp (A, + B, X}) (4.1.6)

where A,, (1 x 1) and B,, (j x 1) are recursively defined as follows:

_ _ _ 1._ _
A1 = Ap + By — o) + QB;LEE/B; —do
By = B (® —3\) -4 (4.1.7)
and the recursion starts with Ay = §p and By = ¢y,

We can take the log of the price of a bond and divide it by the maturity of the bond to derive

the continuously compounded yield, ¢}, of a bond at any maturity:

n_ log(p})
n =
n (4.1.8)
= A, + B;Xt(+€?)
where A, = —A,,/n and B,, = —B,,/n and € is the pricing error for a bond of maturity n at time

t.

This general model setup defines most discrete time affine term structure models, including
the models of Chen and Scott (1993), Duffie and Kan (1996), Ang and Piazzesi (2003), Kim and
Wright (2005), and Rudebusch and Wu (2008). The parameters for any given model consist of A,

A1, 09, 01, i, @, and 3. There is not a closed form solution for the unknown parameters in the model

1For details on how these relationships are derived, see Ang and Piazzesi (2003).

7

given the recursive definition of A and B in Equation 4.1.8, so the unknown elements cannot be
directly calculated using transformations of the set of yields, y, and factors, X. Solution methods
involve a penalty function defined in terms of the pricing error, e. A numerical approximation
algorithm must also be chosen to determine the parameters that optimize the objective function.
In addition to the assumptions made in common with the canonical affine term structure

model outlined above, the package also makes a few other theoretical assumptions:

e The data generating process for factors influencing the pricing kernel (X) can be written as a

VAR(1) as in 4.1.3.

o All latent factors (if used) are ordered after observed factors in the construction of the VAR

(4.1.3) governing the pricing kernel.

e In the case of Direct Maximum Likelihood, there is one yield priced without error for each latent

factor.

e In the case of Kalman Maximum Likelihood, the observed factors are orthogonal to the latent

factors in both the data generating process for the factors (4.1.3) and the prices of risk (4.1.4).

The first two of these assumptions are made in order to simplify the development process and
could be loosened in future versions of the package. Approaches to building models where these
assumptions are not appropriate are included in Section 4.5. The third and fourth assumptions
refer to the specifics of two of the solution methods and are explained in more detail in Section

4.3.2.

4.1.1 Why Python?

The choice of Python as the user API layer was driven by a number of factors. First, Python is
a high-level programming language that can be scripted similar to many popular linear algebra and
statistical languages such as MATLAB® (2013), R (R Core Team, 2012), and Stata® (StataCorp,
2013). A large reason for this easy transition from other statistical languages is the existence of
modules such as numpy (Oliphant et al., 2005-2014), scipy (Jones et al., 2001-2014), pandas
(McKinney, 2005-2014), and statsmodels (Perktold et al., 2006-2014). These modules are all
open-source and offer robust functionality for performing mathematical and statistical analysis in
Python.

numpy offers a high performance linear algebra and array manipulation API very similar to

MATLAB. Multi-dimensional arrays created using numpy can be manipulated by their indices and

78

combined with other arrays using standard linear algebra functions. scipy, dependent on numpy,
ports many open-source tools for numerical integration and optimization through an easy to use
API. Much of the core functionality in scipy comes from the ATLAS (Whaley and Petitet, 2005)
and LAPACK (Anderson et al., 1999) libraries, which offer high performance numerical approxi-
mation algorithms written in C and Fortran. pandas, a more recently developed Python module,
builds in high performance DataFrame manipulation, inspired by the data-frame concept in R,
allowing for access to elements of two-dimensional arrays by row and column labels. statsmodels
offers basic statistical and econometric tools such as linear regression, time series methods, likeli-
hood based approaches, sampling methods, and other tools. These modules allow for a transition
to Python in the context of statistical and mathematical modeling.

Second, Python is free and open source and has a similar license in practice to the Berkeley
Software Distribution (BSD), allowing it to be used in both open and closed source applications.
In practice, this also makes Python free of cost, requiring only computer hardware and a modern
operating system to use. It is largely platform agnostic, running on Linux, UNIX®, OS X, and
Windows. Building this package in a proprietary statistical or mathematical language such as
SAS® Stata, oo MATLAB would require a financial burden on the users of the package that
would negate one of the intended purposes of this package: making affine term structure modeling
accessible to a wider group of users.

Third, Python is a general purpose object-orientated programming language, a feature not
shared by most statistical programming languages. This allows the package to be easily extended
and modified to the need of the user. The extensibility of the package will be demonstrated in
a later section of this chapter. The package can also be included in other large scope projects
built in Python that may have non-statistical components such as web applications, graphical user
interfaces, or distributed computing systems. These characteristics of Python make it very suitable

for building package that are usable for a beginner but also extendible to one’s own needs.
4.1.2 Package Logic

Before defining the API that is used to build a model, it may be useful to visualize the
process that dually defines the steps through which an affine term structure model is built and
estimated and the logic of the package used to initialize and solve these models. Figures 4.1 and
4.2 map the logic of this process. Figure 4.1 shows the essential arguments that must be passed

to initialize a unique affine model, or in the language of the package, a unique Affine model

79

instance. These arguments include the set of yields, the factors influencing the pricing kernel, the
number of latent factors, descriptors of the VAR process in Equation 4.1.3, and the structure of
the parameter matrices.? These components define a single model and are fed into a single Affine
object. Once the model object is built, the model can be solved. The solution method and numerical
approximation algorithm are passed into the solve function. Other options related to these solution
approaches are also specified here. The definition of these different solution methods and numerical
approximation algorithms are specified later in the chapter. Moving on to Figure 4.2, the numerical
method is selected, determining the criteria that are applied as to whether or not convergence
has been achieved. Once the solution method and numerical approximation algorithm are chosen
(when the solve method is called), the parameter set optimizing the objective function is iteratively
determined. The loop in the lower half of the figure summarizes the process through which the
objective function is internally calculated by the package and is included for illustrative purposes
but is not modified by the end user. First, the parameter matrices, Ag, A1, dg, 91, i, ¢, and ¥ are
calculated using the values supplied by the numerical approximation algorithm. Then the A and
B arrays are recursively calculated based on these parameter matrices. (This recursive calculation
is performed either by a C or Python function depending on whether a C compiler is available.
More detail on these two different approaches to calculating the same information are included in
Section 4.4.) If convergence is achieved, then the parameter matrices are returned, otherwise the
loop continues. There is also an implied internal dialogue that takes place to determine whether the
numerical approximation algorithm generates invalid results, such as division by zero or a singular
matrix. In some cases, numbers outside of the valid parameter space are passed and the process is
exited.

This level of abstraction provides a comprehensive approach to building a variety of affine
models of the term structure. Many of the seemingly separate approaches of affine models using
different combinations of observed and unobserved factors and solution methodologies can be se-
lected by simply passing arguments either instantiating the Affine object or when executing the
solve method. Different solution methodologies can be used simply by changing these arguments
rather than rewriting the entire code base, an advantage over an approach of coding every step of

the estimation process.

2]t is important to note that while we refer to these as matrices here, they are in fact numpy arrays, which
support matrix operations.

Figure 4.1: Package Logic

Yield data Observed
yc_data, factors
mats var_data

80

Parameter masked arrays
lam_0_e, lam_1_e,
delta_0_e, delta_1_e,

mu_e, phi_e, sigma_e

Solution

method?

Non-linear

Least Squares

(pricing error)

Number of Define VAR
latent factors process,
latent lags, neqs
Initialize Affine model
Call solve
method
Number of
Yes

latent

factors > 0

Solution

method?

Direct ML

Kalman fil-

ter ML

Numerical

method

Figure 4.2: Package Logic (continued)

81

Numerical
method?

Levenberg-

Newton- Nelder- Conjugate-
Marquardt BFGS Powell’s

Raphson Mead gradient
(nls only)

Prepare
guess
parameters
Generate parameter
arrays from guesses
C
Yes No
Compiler
l available? Generate
Generate
predicted Invalid result? (division
predicted
yields in by zero, singular result)
yields in C
Python
Yes No

Convergence?

Adjust

/ Return solution arrays /

guesses

82

4.2 Assumptions of the Package

Before moving on into the details of how the package is used to build and estimate an affine
term structure model, let us define the assumptions made by the package about how the data is

constructed and the meaning of the arguments passed at different stages of the estimation process.
4.2.1 Data/Model Assumptions

There are two pandas DataFrames used to estimate the model: the yields (y in Equation
4.1.8) and the observed factors (X in Equation 4.1.3). The frequency of the observations in the
observed factors and the yields must be equivalent. The DataFrame of yields is passed in through

the yc_data argument and must have the following characteristics:

e One row per time period (month if monthly, quarter if quarterly).

Moving forward in history from top to bottom.

One column per yield.

e Yields are arranged in order of increasing maturity from left to right.

All cells in the DataFrame are populated and of a numeric type.

The observed factor DataFrame is passed in through the var_data argument and must be

organized with the following characteristics:

e One row per time period (month if monthly, quarter if quarterly).
e Moving forward in history from top to bottom.
e One column per observed factor.

e All cells in the DataFrame are populated and of a numeric type.

Both of these DataFrames are passed into the Affine class object. The other arguments to

the Affine and whether they are required are:

e lags (required)

— Type: integer
— The number of lags for the VAR process specified in Equation 4.1.3.

e negs (required)

— Type: integer

— The number of observed factors. In most cases this will be the number of columns in
var_data.

e mats (required)

83

— Type: list of integers

— The maturities of the yields contained in yc_data. Each element of the list indicates the
maturity of the yield in terms of the periodicity of var_data and yc_data.

e lam_0_e (required)

— Type: numpy masked array

— Specifies \g parameter with known values filled and elements to be estimated masked.
e lam_1_e (required)

— Type: numpy masked array

— Specifies Ay parameter with known values filled and elements to be estimated masked.
e delta_0_e (required)

— Type: numpy masked array

— Specifies dg parameter with known values filled and elements to be estimated masked.
e delta_1_e (required)

— Type: numpy masked array

— Specifies §; parameter with known values filled and elements to be estimated masked.
e mu_e (required)

— Type: numpy masked array

— Specifies u parameter with known values filled and elements to be estimated masked.
e phi_e (required)

— Type: numpy masked array

— Specifies ® parameter with known values filled and elements to be estimated masked.
e sigma_e (required)

— Type: numpy masked array

— Specifies ¥ parameter with known values filled and elements to be estimated masked.
e latent

— Type: int

— Default: 0

— Specifies the number of latent factors to be included in the pricing kernel.

e adjusted

— Type: boolean
— Default: False

— Specifies whether each row of var_data has already been transformed into an X for a
VAR(1)

More detail on the implications and specification of each these arguments can be found in

Section 4.3.

84

4.2.2 Solution Assumptions

The model is estimated by calling the solve method of the Affine model object. The first
argument of the solve method, guess_params, must be a list the length of the masked elements
across the parameter arguments lam_0_e, lam_1 e, delta_0_e, delta_1_ e, mu_e, phi_e, and
sigma_e. This list contains the guesses for values of the elements in these parameter arrays to
begin numerical maximization of the objective function. The other parameters for the solve method
define the solution method, numerical approximation algorithm, and other options applied to these
methods. The solution methods where these arguments are applied are indicated by “Used In” and

are ignored otherwise:

e method (required)

— Type: string

— Values: nls (non-linear least squares), ml (direct maximum likelihood), kalman (Kalman
filter maximum likelihood)

— Indicates solution method and objective function used to estimate model.
e alg

— Type: string

— Values: newton (Newton-Raphson method), nm (Nelder-Mead method), bfgs (Broyden-
Fletcher-Goldfarb-Shanno algorithm), powell (modified Powell’s method), cg (non-linear con-
jugate gradient method), ncg (Newton CG method)

— Default: newton
— Used in: ml, kalman

— Indicates numerical approximation algorithm used to optimize objective function.
e no_err

— Type: list of integers

— Used in: ml when latent # False

— Specifies column indices of yields priced without error.

— Zero-indexing so first column yield priced without error would be indicated with a zero.
e maxfev

— Type: integer
— Used in: nls, ml, kalman

— Maximum number of function evaluations for algorithm.
e maxiter

— Type: integer
— Used in: nls, ml, kalman

— Maximum number of iterations for algorithm.

ftol

— Type: float
— Used in: nls, ml, kalman

— Function value convergence criteria.
xtol

— Type: float
— Used in: nls, ml, kalman

— Parameter value convergence criteria.
x1il0
— Type: list of floats

— Used in: kalman

— Starting value for Kalman latent variables.

Length should be number of latent factors.
ntrain

— Type: integer

— Used in: kalman

— Number of training periods for Kalman filter likelihood.
penalty

— Type: float
— Used in: kalman

— Penalty for hitting upper or lower bounds in Kalman filter likelihood
upperbounds, lowerbounds

— Type: list of floats
— Used in: kalman

— Upper and lower bounds on unknown parameters

85

These are the primary arguments passed into the solve method. Additional arguments

can be found in Section 4.3.2.

Shttp://statsmodels.sourceforge.net/devel /index.html#

not specified here can be passed into the method and are passed directly to the statsmodels
LikelihoodModel object. For more information on these other arguments, please see the docu-

mentation for this method provided by statsmodels®. More detail on these methods and arguments

86

4.3 API

Let us now discuss the details of how a model would be built and estimated. For each model, a
unique Affine class object must be instantiated. Each model is comprised of a unique set of yields,
a unique set of factors used to inform these yields, a unique parameter space to be estimated, and
conditions regarding whether unobserved latent factors will be estimated. The method for preparing
a model is first defining the arguments required for initializing an Affine object. These arguments
were listed in Section 4.2, but will be examined here in more detail.

yc_data is a pandas DataFrame? of the yields, with each column signifying a single maturity.
The columns of yc_data must be ordered by increasing maturity from left to right. Listing 4.1
shows the first rows of Fama-Bliss zero-coupon bond yields for the one, two, three, four, and five
year maturities properly collected in yc_data. Notice how the columns are ordered from left to
right in order of increasing maturity. The data must also be ordered moving forward in time from

the top to the bottom of the DataFrame.

Listing 4.1: Yields DataFrame

1 In [2]: yc_data.head()
2 0ut[2]:
3 one_yr two_yr three_yr four_yr five_yr
4 DATE
5 1952-07-01 1.923628 2.027498 2.090729 1.999381 2.139048
6 1952-10-01 1.912545 2.060032 2.148343 2.102396 2.167263
7 1953-01-01 1.973496 2.144469 2.131533 2.132738 2.267305
8 1953-04-01 2.364201 2.483449 2.194755 2.421391 2.690273
9 1953-07-01 2.291936 2.336414 2.278795 2.420576 2.715765
10

11 [5 rows x 5 columns]

var_data is also a DataFrame, containing the observed factors included in the VAR pro-
cess specified in Equation 4.1.3 that informs the pricing kernel. In the general case, var_data
has one column for each factor. Listing 4.2 shows how var_data would be structured with four
observed factors: output, the price of output (price output), residential investment (resinv), and

unemployment (unemp).

4For more information on pandas DataFrames, see the pandas documentation at http://pandas.pydata.
org/pandas-docs/stable/

87

Listing 4.2: Yields DataFrame

1 In [3]: var_data.head()
2 0ut[3]:
3 output price_output resinv unemp
4 DATE
5 1948-04-01 1.62508 0.88112 7.2 3.7
6 1948-07-01 0.55943 1.85048 -0.6 3.8
7 1948-10-01 0.10339 0.31250 -6.7 3.8
8 1949-01-01 -1.36232 -0.52887 -6.6 4.7
9 1949-04-01 -0.33905 -0.99782 -2.1 5.9
10

11 [5 rows x 4 columns]

The number of lags is specified in the lags argument. In this case, the number of observations
in yc_data should be equal to the number of observations in var_data minus the number of lags
required in the VAR. In situations where the information governing the pricing kernel does not follow
a standard VAR, as in the case of a real-time estimated VAR (see Chapter 3 for the construction
of a model like this), each row of var_data can contain current values and lagged values of each
factor. In this case, the columns should be ordered in groups of lags, with each factor in the same

order. Specifically, the columns should be in order:

1,2 foo1 f 1 f
. N . R T il PO A (4.3.1)

where f is the number of observed factors and [is the number of lags. The columns are ordered
from left to right going back in time. When the data are structured this way with f % [columns,
the adjusted argument should be set to True. In the standard VAR case, var_data only contains
x} through x,{ resulting in f columns (as shown in Listing 4.2) and adjusted is set to False. Of
course, a standard VAR could also be passed with all current and lag columns included, so the
adjusted flag is added for convenience. In either case, neqs should be set to the number of unique
factors, f, used to inform the securities and lags should be set to the number of lags, [.

mats is a list of integers defining the maturities of each of the columns in yc_data, in a
manner compatible with the frequency of the data (i.e, monthly, quarterly, annually). For example,
if the model is constructed at a quarterly frequency and the columns of yc_data correspond to the

1, 2, 3, 4, and 5 year maturities, then mats would appear as in Listing 4.3.

88

Listing 4.3: Maturity argument

1 mats = [4, 8, 12, 16, 20]

The arguments lam_0_e, lam_1_e, delta_0_e, delta_1 e, mu_e, phi_e, and sigma_e are
numpy masked arrays that are able to serve as known values of parameters defining the affine system,
restrictions to the estimation process, and the location of parameters to be estimated in the arrays.
These arrays can be thought of functioning like matrices in linear algebra, but they can also be
one, two, or more dimensions. The name “array” primarily stems from the fact that the data within
these structures are stored in C arrays, a basic C data type that allows for the storing of related

data of a single type and accessed through an index.
4.3.1 Parameter Specification by Masked Arrays

As mentioned earlier, in the class of discrete-time affine term structure models addressed in
this chapter, the parameters consist of \g, A1, dg, 01, g, ®, and ¥. These parameters map to

function arguments of the initialization function, __init__ as:

Table 4.1: Algebraic Model Parameters Mapped to Affine Class Instantiation Arguments

Algebraic name | Argument Name | Dimensions | Meaning

Ao lam_0_e jx1 Constant vector for prices of risk

A1 lam_1_e jixjg Coefficients for prices of risk

do delta_0_e 1x1 Constant relating factors to risk free rate
01 delta_l_e jx1 Coefficients relating factors risk-free rate
m mu_e jx1 Constant vector for VAR governing factors
0} phi_e Jx3 Coeflicients for VAR

% sigma_e jixXjg Covariance for VAR

where the shapes of these arrays are defined with j = f %[, f the number of factors and [the
number of lags in the VAR governing the factors informing the pricing kernel. This defines cases
where X; contains only observed factors.

The parameters are spread across these arrays. There are few cases where all of the elements
of these sets of parameters are estimated, as the parameter space grows very quickly when factors
are added to X; to inform the pricing kernel. The package supports the ability, through numpy
masked arrays, to allow only a subset of the elements in these arrays to be estimated, while others
are held constant. For example, it is a common practice to restrict the prices of risk to respond
to only the elements in X; from Equation 4.1.4 that correspond to elements that actually occur in

period t. For example, with X; of shape j x 1, then we might restrict the elements of A; in Equation

89

4.1.4 below the f element to zero. In this case, we would declare Ag and A; in the script shown in

Listing 4.4.

Listing 4.4: Masked array assignment

import numpy.ma as ma
f=5

1=4

j=fxl

lam_0_e = ma.zeros((j, 1))

lam_1_e = ma.zeros((j, j))

lam_0O_e[:f, 1] = ma.masked

o N O Ot e W NN =

lam_1_e[:f, :f] = ma.masked

If we display the contents of Llam_0_e, we see that the first f elements are “masked”, with the

rest of the elements unmasked with a value of 0, as shown in Listing 4.5.°

Listing 4.5: Masked array access

1 In [1]: lambda_0
2 Out[1]:
3 masked_array(data =

400r--1

5 [--]

6 [--1

7T oI--1

8 [--1

9 [0.0]

10 [e.0]

11 [0.0]
12
13 [e.e]],
14 mask =
15 [[Truel
16 [Truel
17 [True]
18 [Truel
19 [True]

5All variables and element examinations will be shown as they appear in IPython (Pérez and Granger, 2007).
IPython is an extended Python console with many features including tab completion, in-line graphics, and many
other features beyond that of the standard Python console.

90

20 [False]

21 [Falsel

22 [False]

23

24 [Falsel],

25 fill_value = le+20)

For every masked array examined in the console, the first array shown is the values and
the second is the masks. When the affine package interprets each of the seven masked arrays, it
takes the masked elements as elements that need to be estimated. To be clear, elements that are
masked appear as empty in the data array and True in the mask. This allows smaller parameter
sets to be defined using assumptions about orthogonality between elements and other simplifying
assumptions. Each of the parameter matrices must be passed in as a numpy masked arrays, even
if all of the parameters in the array are set prior to the estimation process or, in the language
of the package, unmasked. Guesses for starting the estimation process of the unknown values are
addressed later.

The remaining undiscussed argument to the Affine object is latent, which is needed in
the case of unobserved latent variables used to inform the pricing kernel. It is common practice
as demonstrated in papers such as Ang and Piazzesi (2003), Kim and Wright (2005), and Kim
and Orphanides (2005) to allow for the recursive definition of unobserved, latent factors in Xj.
These factors are defined as statistical components of the pricing error that are drawn out through
recursive definition of their implied effect on the resulting pricing error. These factors and their
interpretation is discussed in more detail in Chapter 3. The latent argument dually identifies
the inclusion of latent factors and the number of latent factors. If latent is False or 0, then no
unobserved latent factors will be estimated and X; is solely comprised of the observed information
passed in as var_data. In the case where latent > 0, then latent factors will be estimated,
according to the integer specified. It is assumed that these latent factors are ordered after any
observed information in X;. In the case of latent factors, the number of rows in Ag and A; from
Equation 4.1.4 and p, ®, and ¥ from Equation 4.1.3 need to be increased according to the number
of latent factors. If we let v be the number of unobserved latent factors included in the model and

j defined as before, we can define the shape of each of the parameters as:

91

X (j+oux1)

A (o) x (G +0)

(5()11)(1
01:(j+v)x1 (4.3.2)
pe(j+v)x1

®:(j+v)x([G+v)
S5+ x (G +)
In the case of latent factors, var_data is still submitted with only the observed information.
The package automatically appends additional columns to var_data during the solution process
discussed in a later section.

In both cases (with and without latent factors), after the data is imported and parameter

masked arrays are defined, the Affine class object is created in Listing 4.6:

Listing 4.6: Affine model object instantiation

1 In [2]: model = Affine(yc_data=yc_data, var_data=var_data, lags=lags,

2 negs=neqs, mats=mats, lam_0_e=lam_0_e, lam_1l_e=lam_1_e,
3 delta_0_e=delta_0_e, delta_l_e=delta_l_e, mu_e=mu_e,
4 phi_e=phi_e, sigma_e=sigma_u, latent=latent)

Upon attempted initialization, a number of checks are applied to ensure that shapes of all
of the input data and parameter masked arrays are of the appropriate size. Error messages are
returned to the user if any of these consistency checks are failed and creation of the object also
fails. Upon successful initialization, this method returns a class instance to which various methods
and parameters are attached. In Listing 4.6, this object is defined as model. Any one of the input
arguments can be accessed on the object after it is created. For example, if the mats argument
defining the maturities of the yields needed to be accessed after the object has been been allocated

in the console, it could be done as shown in Listing 4.7.

Listing 4.7: Model attribute access

1 In [3]: model.mats
2 Out[3]: [4, 8, 12, 16, 20]

92

For completeness, the source for the initialization function is shown in Listing 4.8. This source
code is not directly accessed by the user, but is a convenient method to reviewing what the optional
and required arguments are. Required arguments appear first, do not have a default value assigned,
and the order in which they are supplied matters. The requirement arguments are followed by the

optional arguments that have default values which are applied when the user does not supply them.

Listing 4.8: Affine object instantiation function

1 class Affine(LikelihoodModel, StateSpaceModel):

2 wan

3 Provides affine model of the term structure

4

5 def __init__(self, yc_data, var_data, lags, neqgs, mats, lam_0_e, lam_1l_e,
6 delta_0_e, delta_l_e, mu_e, phi_e, sigma_e, latent=0,

7 no_err=None, adjusted=False, use_C_extension=True):

4.3.2 Estimation

Once the model object is successfully instantiated, the unknown parameters can be estimated
using the solve function of the object. The function with its arguments and documentation as
they appear in the package is shown in Listing 4.9. Again, this code is included for completeness,
but it is not directly accessed by the end user. For an overview of the arguments and each of
their meaning and format, see Sections 4.2 and 4.3. This method takes both required and optional
arguments and returns the fully estimated arrays, along with other information that defines the
solution. These arguments define the method and restrictions for arriving at a unique parameter
set, if possible. The starting values for the unknown elements of the parameter space are passed in
as a list of values through the guess_params argument. The values specified in this list replace
the unknown elements of each of the masked arrays defined in Table 4.1, in the order that they

appear, and within each array in row-major order.5

Listing 4.9: Affine object estimation function

1 full_output=False, xxkwargs):
2 nnn
3 Returns tuple of arrays

6Row-major refers to the order in which the elements of the arrays are internally stored, but is used here to
indicate the elements are filled moving from left to right until the end of the row is reach and then the next row is
jumped to.

© 0 N o Ut A

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

93

Attempt to solve affine model based on instantiated object.

Parameters
guess_params : list
List of starting values for parameters to be estimated

In row-order and ordered as masked arrays

method : string
solution method
nls = nonlinear least squares
ml = direct maximum likelihood
kalman = kalman filter derived maximum likelihood
alg : str {'newton’,’'nm’,'bfgs’, 'powell’,’cg’, or 'ncg’}
algorithm used for numerical approximation

’

Method can be ’'newton’ for Newton-Raphson, 'nm’ for Nelder-Mead,
"bfgs’ for Broyden-Fletcher-Goldfarb-Shanno, ’'powell’ for modified
Powell’s method, ’'cg’ for conjugate gradient, or ’'ncg’ for Newton-
conjugate gradient. ‘method‘ determines which solver from
scipy.optimize is used. The explicit arguments in ‘fit‘ are passed
to the solver. Each solver has several optional arguments that are
not the same across solvers. See the notes section below (or
scipy.optimize) for the available arguments.

attempts : int

Number of attempts to retry solving if singular matrix Exception

raised by Numpy

scipy.optimize params
maxfev : int

maximum number of calls to the function for solution alg
maxiter : int

maximum number of iterations to perform
ftol : float

relative error desired in sum of squares
xtol : float

relative error desired in the approximate solution
full_output : bool

non_zero to return all optional outputs

Returns

44

16
A7
48
49
50

63
64
65
66
67
68
69
70

Returns tuple contains each of the parameter arrays with the optimized
values filled in:

lam_0 : numpy array

lam_1 : numpy array

delta_0 : numpy array

delta_1l : numpy array

mu : numpy array

phi : numpy array

sigma : numpy array

The final A, B, and parameter set arrays used to construct the yields
a_solve : numpy array
b_solve : numpy array

solve_params : list

Other results are also attached, depending on the solution method
if 'nls’:
solv_cov : numpy array
Contains the implied covariance matrix of solve_params
if 'ml’ and 'latent’ > 0:
var_data_wunob : numpy
The modified factor array with the unobserved factors attached

k_ar = self.k_ar

neqs = self.neqgs

mats = self.mats

94

The method argument takes as a string the solution method defining the information used

to determine which of a set of parameter values is closer to the true values. The options currently

supported are: non-linear least squares, nls; direct maximum likelihood (ML), ml; and Kalman

filter maximum likelihood, kalman.

In cases where latent factors are added to the model, ml

or kalman must be used. These two methods of calculating the likelihood also involve different

assumptions about how latent factors are calculated. Specific assumptions are required to calculate

the latent factors because both the parameters applied to the latent factors and the latent factors

themselves are unobserved prior to estimation. The methods for calculating the unobserved factors

will be discussed below in each of the method descriptions.

95

Non-linear Least Squares

Non-linear least squares minimizes the sum of squared pricing errors across the yields used
in the estimation process and is not used in the case of latent factors. This function is formally

defined as:

T

SN - (4 + By X)) (4.3.3)

n t=1
with A, and B, defined as in Equation 4.1.8, n choosing the maturities of yields that are used to
fit the model, and T is the number of observations. This method is used in Bernanke et al. (2005)

and Cochrane and Piazzesi (2008).
Unobserved factor approaches

In the case where unobserved factors are included in the pricing kernel, assumptions must
be made about how these factors are calculated. Several approaches have been introduced regard-
ing what assumptions are made to calculate the factors and two of these approaches are directly
supported in the package: direct maximum likelihood and Kalman filter maximum likelihood.

The direct maximum likelihood follows directly from the term structure modeling tradition
of Cox et al. (1985) and Duffie and Kan (1996), whereby only unobserved factors were used to
price the term structure and by definition, these unobserved factors priced the yield curve without
any error. Ang and Piazzesi (2003) extended this method to a pricing kernel composed of both
observed and unobserved factors. The advantages of this method lie in the fact that a high level
of precision can be achieved and that no assumptions are required concerning the starting values
of the unobserved values. The disadvantages are that the parameter estimates are often highly
dependent on the choice of yields priced without error. If this method is chosen, robustness tests
should be performed in order to ensure that the results are not completely dependent on the yields
chosen. Difficulty can also arise in direct maximum likelihood estimation because the latent factors
are simultaneously estimated with the parameters applied to these latent factors. In some cases
this could lead to explosive results depending on the numerical approximation algorithm used.

Maximum likelihood estimation via the Kalman filter is another method for calculating the
likelihood when latent factors are included in the pricing kernel. Instead of requiring assumptions
about which yields are priced without error, a Kalman state space system builds in unobserved

components as part of its definition. Starting values for the latent factors combined with the

96

parameters values are combined to begin the recursion to solve for all values of the latent factors
after the initial period. Because this method does not involve simultaneous calculation of the latent
factors and the parameters applied to them, reaching a solution through numerical approximation
is often times faster than in the direct maximum likelihood case. It can also be useful if the number
of estimated parameters is high. Because the values of the latent factors are dependent on the
starting values chosen, this can result in a loss of precision in the confidence intervals (Duffee and
Stanton, 2012). If the results in the direct maximum likelihood case are very sensitive to the yields
chosen to be priced without error, calculating the likelihood under the Kalman filter may result in
more stable parameter estimates.

These two methods are those directly supported by the package and are discussed in greater
detail below. When choosing the appropriate method, the number of free parameters, the number
of latent factors, and the sensitivity of the parameter estimates to the assumptions of the likelihood

should all be considered when choosing a solution method.
Direct Maximum Likelihood

In the case of direct maximum likelihood, ml, the log-likelihood is maximized. If any latent
factors are included, they must each be matched to a yield measured without error. The number
of yields used to fit the model must be greater than or equal to the number of latent factors in this
case. The column indices of the yields measured without error in the yc_data argument must be
specified in the no_err argument. The length of no_err must be equal to the number of latent
variables specified during model initialization in the latent argument. In each of these cases, if
the condition is not met, an exception is raised.

The latent factors are solved by taking both the parameters and yields estimated without
error and calculating the factors that would have generated those yields given the set of parameters.
Any remaining yields included in the estimation process are assumed estimated with error. This
corresponds to the method prescribed in Chen and Scott (1993) and Ang and Piazzesi (2003). In

the case of the yields estimated without error, we can rewrite Equation 4.1.8 as:

y = Ar + By Xy (4.3.4)

where u signifies a yield maturity observed without error. Once A; and B; are calculated for each
of the y}* observed without error, this becomes a system of linear equations through which the

unknown, latent elements of X; can be directly solved for. Let us define E as the set of yields

97

priced with error. After the latent factors in X; are implicitly defined for each t, X; can be used to

determine the pricing error for the other yields used to estimate the model:

e = Ay + BIX, + € (4.3.5)

where ¢ signifies a yield maturity observed with error with e € E and ¢; is the pricing error at
time ¢.

The likelihood is specified according to Ang and Piazzesi (2003):

log(L(6)) = — (T — 1)log | det(J)| — (T — 1)% log(det(35))

— % ;(Xt —H— ¢Xt—1)/(22/)_1(xt KT (I)Xt_l) (4'3'6)
_ Tgllog(ZUg)_%ZZ%

e€E t=2ecE €
where e € I picks out the yields measured with error, €, . corresponds to the resulting pricing
error in Equation 4.3.5 in time ¢ for each yield measured with error indexed by e, and o is the
variance of the measurement error associated with the eth yield measured with error. By definition,
the number of yields measured with error is the total number of yields minus the number of yields
measured without error or the length of mats minus the length of no_err.

The Jacobian of the pricing error relationships is defined as:

I 0 0
J= (4.3.7)

B° B* I
where B° is comprised of the stacked coefficient vectors for each B,, corresponding to the observed

factors and B* is comprised of the stacked coefficient vectors in B,, corresponding to the unobserved

factors price without error. With ~y yields priced, B is v x j and B" is v X v.

98

Specifically:

B BY

Y1 Y1
B, B

<Bo Bu)_ v Ju (4.3.8)
By, By,

where each By is comprised of the first j elements in By, corresponding to the observed factors
and each By is comprised of the remaining v elements in By, corresponding to the unobserved
factors, with each y1, yo, ... referring to the maturity of one of the « yields priced. Each By is 1 x j
and each B} is 1 x v. For a specific example, if we are using quarterly data and the one, two, three,

four, and five year yields are priced, then B° and B" would appear as:

By Bf
Bg By
(Bo Bu) = o, BY (4.3.9)
Bis Bis
B3y By
By
Bs
= | Bis (4.3.10)
B
By

where each of By, Bs, Bi2, Big, and Bsg are taken from the corresponding yield relationships in

Equation 4.1.8.
Kalman Filter Maximum Likelihood

In addition to direct ML, Kalman filter derived likelihood is also available when unobserved
factors are estimated. Redefining the affine system in terms of a standard state space system is
relatively straightforward. After constructing the numpy masked arrays in Table 4.1, an observation
equation is generated for each yield column in yc_data. We can re-use the nomenclature defined

above by expanding B° and B" to include all yields, since the Kalman filter likelihood does not

99

require that any of the yields be observed without error, defining the observation equation as:

Yl =An+ B2 Xy o+ BY X, +e€ (4.3.11)

where B? (j x 1) and B! (v x 1) are the components of B,, corresponding to the observed and
unobserved components, respectively, and e is the pricing error. As noted in Section 4.2, the package
assumes that the unobserved components are ordered after the observed components in the VAR
system and the unobserved factors are orthogonal to the observed factors, so the state equation is

written as the lower right corner (v x v) portion of ®, ®,:

Xf,—‘rl,u = ¢1¢Xt7u + W41 (4312)

where:

Yu fort =1
E(ws,w,) = (4.3.13)

0 otherwise

and ¥, is the lower right corner v x v portion of ¥. Values for the earliest ¢ are initialized to begin
the recursion that leads to the values for the latent factors X;,,, after the initial period where
r is the number of training periods. The package currently does not support estimation through
the Kalman filter derived likelihood with non-zero covariance between the observed and unobserved
factors.” The log-likelihood for each maturity is calculated as indicated in Hamilton (1994, p. 385)
and then summed over all maturities to get the total log-likelihood.

The numerical approximation algorithm for the non-linear least squares method is the Levenberg-
Marquardt algorithm and is not influenced by changes to the alg argument, while a number of
different numerical approximation algorithms can be used for both the direct and Kalman ML
cases. These correspond to the different methods documented in the scipy optimize module and
include, but are not limited to, Newton-Raphson, Nelder-Mead, Bryoden, Fletcher, Goldfarb, and
Shanno, and Powell methods. Most of these methods are accessed through the LikelihoodModel
statsmodels class. The numerical approximation algorithm is chosen by the alg argument to the

solve function.

"This is currently not possible given how the Kalman Filter likelihood is calculated. The observed factor
dynamics are not included in the state space equation.

100

In addition to the solution method and numerical approximation algorithm, other function
arguments can also be passed to the solve function, depending on the prior choices of solution
method and numerical approximation algorithm. In the case of direct ML, the no_err argument is
required, a list of indices of columns of yc_data assumed estimated without error. Zero-indexing
is used to indicate the columns in no_err, with a 0 indicating that the first column be estimated
without error, a 1 indicating the second column be estimated without error, etc. Zero-indexing is
consistent with the rest of the Python language and any C-based language for that matter. For
example, if the columns in yc_data are the one, two, three, four, and five year yields and the two

and four year yields are estimated without error, then no_err can be defined as in Listing 4.10:

Listing 4.10: Assignment of columns maturities priced without error

1 no_err = [1, 3]

This would result in the two and four year yields being estimated without error and the one, three,
and five year yields estimated with error. The no_err argument does not apply in the case of
Kalman ML and even if it is passed to the solve function, it will be ignored.

The xi10, ntrain, and penalty arguments only apply to the Kalman ML method and are
ignored otherwise even if they are passed. xi10 defines the starting vector of values in the first
period estimated in the state equation defined in Equation 4.3.12. This argument should be a list
the length of the number of latent factors, equal to v and the latent argument in creation of the
model object. ntrain is the number of training periods for the state space system, defining how
many periods of recursion must be performed before the observations enter the calculation of the
likelihood.® penalty is a floating point number that, if supplied, determines the numerical penalty
that is subtracted from the likelihood if the upperbounds or lowerbounds are hit. upperbounds
and lowerbounds are both lists of floating point numbers whose length must be equal to the
number of individual elements to be estimated across all of the parameter matrices. They define
the upper bounds and lower bounds, respectively for when the penalty is hit for each of the

parameters to be estimated.

8Given that the Kalman Filter recursion begins with an assumption regarding the initial value of unobserved
state, a few periods simulating the system may be desired to lessen the effect of the initial state on the likelihood
calculation.

101

Additional keyword arguments can be passed to these methods that are passed to the numer-
ical optimization method. More detail can also be found in the scipy optimize documentation

(Jones et al., 2001-2014).°
4.4 Development

Development of affine began with the intention of being an open-source project written in
Python alone, supported by the Python modules mentioned above, namely, numpy (Oliphant et al.,
2005-2014), scipy (Jones et al., 2001-2014), pandas (McKinney, 2005-2014), and statsmodels
(Perktold et al., 2006-2014). Even with the many solution methods presented in the above section,
performance (or lack thereof) would be a key factor to adoption in the field. As even those affine
term structure models that are driven solely by observed information are still non-linear and require
numerical approximation methods to solve, any steps that slow down the calculation of the objective
function will inhibit performance. Details on how performance is affected and how solving that
problem was approached is documented later in this section.

The general approach of optimizing every line of code will end up taking more time that it
is worth. In some cases, code can be rewritten (refactored) in more efficient Python code and a
desirable level of performance can be reached. In other cases, the performance issues may be a result
of the high-level language nature of Python. As Python does not have static data types and performs
frequent behind-the-scenes checks of implied data types, looping operations can sometimes consume
more computational time than desired. In these situations, Python has a convenient feature of being
able to pass objects to and from compiled C code. C is a low-level statically typed language requiring
explicit memory management, but it allows for greater performance. The potential for performance
increases of C over Python arise for a number of reasons.

First, static typing prevents many of the continual data type checks that Python performs
behind the scenes. Static data typing forces the developer to set the data type of a single variable or
an array by the time its value is assigned, defining the amount of space that a variable will take up.
This prevents variables from being resized and frees up the language from needing to consistently
re-evaluate the required space in memory to hold the information attached to a variable. Static
typing is not available in Python unless the core language is extended with an outside package,

namely, Cython (Behnel et al., 2004).

9The scipy optimize documentation can be found at http://docs.scipy.org/doc/scipy/reference/
optimize.html#

102

Second, without going into too much detail, memory allocation in C allows for greater control
over how information is stored. For data structures like arrays in C, there are no checks that
the data entered into an array is within the bounds of that array. In contrast, a list can be
dynamically built in Python without any bounds put on its size initially. In C, the size of an array
must be initialized before any of its elements are assigned values, but element values can be set
beyond the bounds of the array resulting in other addresses in random-access memory (RAM)
being overwritten! C also allows explicit access to two structures in RAM, the stack and the heap.
Variables allocated on the stack are quickly removed and are automatically deallocated once the
scope of the variable is escaped. Variables allocated on the heap are allocated at a slightly slower
pace than the stack and are not deallocated unless explicitly deleted. If variables allocated on the
heap are not deallocated, the package could suffer from memory leaks. Allocation on the heap is
necessary for any objects passed from C back to Python. These two RAM structures allow for any
intermediate steps in our calculations to be performed using stack variables, with heap variables
only used when information needs to be passed from C to Python.

Finally, pointer arithmetic in C allows for extremely high performance when iterating over
arrays. If a C array can be assumed to be contiguous in memory, that is, occupying an uninter-
rupted section of memory, then this assumption can be used for a performance advantage. As an
example, suppose that we wanted to create an array of integers that is the sum of the elements of
two other arrays of the same length. We could write the operation in (at least) two ways. First,
we could assign values to the summed array by iterating through the indices, as shown in Listing

4.11:

Listing 4.11: Explicit array iteration in C

1 int first_array[1000], second_array[1000], summed_array[1000];
2 /= Assign values to first_array and second_array */

3 /x ... x/
4

/* Assign sum of two to summed_array */

ot

for (int i = 0;i < 1000;i++) {

summed_array[i] = first_array[i] + second_array[i];

~N O
-

We could also perform the same operation using pointer arithmetic in Listing 4.12:

Listing 4.12: Pointer arithmetic iteration in C

103

1 int first_array[1000], second_array[1000], summed_array[1000];
2 /% Assign values to first_array and second_array x*/

3 /x .. */

1 /+ Assign sum of two to summed_array */

5 int farray_pt = first_array;

6 int sarray_pt = second_array;

7 int sumarray_pt = summed_array;

8 for (int i = 0;i < 1000;i++) {

9 xsumarray_pt = xfarray_pt + *sarray_pt;

10 sumarray_pt++;
11 farray_pt++;
12 sarray_pt++;
13 3}

While the second option may seem more complex at first glance, it is actually more efficient.
Every time that the element at a specific index is accessed, a memory address lookup operation
takes place, asin first_array[i]. The second version of the code simply iterates over the pointers
to the elements held in each of the arrays, thus allowing for quicker access. An array in C is simply
a pointer to the memory address of the first element, leading to lines 5 through 7 in Listing 4.12.
With each iteration, the elements in first_array, second_array, and summed_array are accessed
through the memory address of their elements and the pointers to those addresses are incremented
by the number of bytes used by the respective data type, in this case int. This makes full use
of the fact that these arrays are allocated contiguously on the stack. This optimization becomes
extremely useful when the implicit number of dimensions in an array is greater than one. This
ability to perform pointer arithmetic in C is fully utilized in many of the C operations below in the
package.

Determining what components of the package can benefit from being written in C involved
some investigation. Writing in C is more difficult than Python and components should be extended
into C only if there is the potential for a material performance gain. This is where code profiling tools
are of great use. Code profiling tools allow developers to determine where their code is spending
the most time. Given that the primary distribution of Python is written in C, the primary code
profiling tool is a C extension, cProfile. This extension can be called when any Python script

is executed and it will produce binary output that summarizes the amount of CPU time spent on

104

every operation performed in the code. This binary output requires other tools in order to interpret
it.10

Table 4.2 is the consolidated output of profiling the solve function based on a model esti-
mation process using only observed factors. Each row of the table shows a function called in the
estimation process paired with the total computational time spent in that function. Only the func-
tions with the highest total time are shown. This time reflects the amount of time spent within the
function, excluding time spent in sub-functions. It is easy to see that the function that takes the
most computational time is gen_pred_coef, which is emphasized in italics. A high computational
time can be the result of a single execution of a function taking a long time, a single function being
called many times, or a combination of both. A function that is called many times may not benefit
from refactoring in C because it is taking up computational time through the fact that it is used
so frequently, not because a single call is slow. In order to get a sense of which of these, the output
shown in Table 4.2 can be combined with output that shows the percentage of time consumed by
each call. Figure 4.3 shows the percentage of time spent on each function called by _affine_pred.
_affine_pred calculates the implied yields given a set of parameters and comprises 99% of the
computational time of a call to solve!l. In the figure, gen_pred_coef has a thicker outline and is
shown to comprise 19.05% of each call to _affine_pred. The majority of the time in the function
is spent on the {numpy.core._dotblas.dot} operation.

This information was used to determine what parts of the code could benefit from being
written in C rather than Python. While the {numpy.core._dotblas.dot} function seems like a
good candidate because of the amount of time spent in this function, it has already been optimized
in C and thus does not qualify. The params_to_array function, shown in Figure 4.3, is a pure
Python function, so could be a candidate. This function takes a set of parameters and generates the
appropriate two dimensional arrays required to calculate the predicted yields. This function relies
heavily on numpy masked arrays and functions providing abstract functionality in Python. Because
of this dependence on abstract numpy functionality, it was not a good candidate for rewriting in
C, as rewriting would likely involve recreating much of the core functionality already provided by

numpy.

10RunSnakeRun (Fletcher, 2001-2013) is a popular choice for interpretting C profiling output and is easy to
set up for use with Python but offers few options for displaying the output. KCacheGrind (Weidendorfer, 2002,2003)
offers all of the features of RunSnakeRun and more options for output display, but involves more setup and requires
the use of another tool, pyprof2calltree (Waller, 2013), in order to generate the appropriate output from a Python
script cProfile.

" These graphs were created using KCacheGrind (Weidendorfer, 2002,2003)

105

On the other hand, gen_pred_coef is a good candidate for passing into a C function. It
requires extensive, recursive looping and only involves linear algebra operations. The code for
this function is shown in Listing 4.13. This function takes the parameter arrays generated by
params_to_arrays and generates the A, and B, parameters that enter into the relationship
defined in Equation 4.1.8. Each of these two arrays is constructed recursively based on the set of
equations specified in Equation 4.1.7. Written in pure Python, this function involves iteration and
looping over multiple arrays, a series of intermediate calculations performed on multidimensional
arrays, and dynamic creation of two multidimensional arrays, A,, and B,,. No matter which solution
method or numerical approximation algorithm is chosen, there will be repeated instances of sets of
parameters being passed into this function.

As can be seen, the for loop beginning in line 36 of the function iterates until the maximum
maturity specified in the mats argument is reached. For each of these iterations, a_pre, a_solve
b_pre, and b_solve are calculated for the specific maturity, corresponding to A,,, A,, B,, and B,,
respectively, from Equations 4.1.7 and 4.1.8. A number of array dot products and index access
operations need to be performed in each iteration. The nature of these operations and recursive
form of the calculation prompted a C version of the code to be written, which is included in the

Appendix in Listing D.1.

Listing 4.13: Native Python Function for generating A and B

1 mu : numpy array

2 phi : numpy array

3 sigma : numpy array

4

5 Returns

6 0 eeeeee-

7 a_solve : numpy array

8 Array of constants relating factors to yields
9 b_solve : numpy array
10 Array of coeffiencts relating factors to yields
11
12 max_mat = self.max_mat
13 b_width = self.k_ar * self.neqs + self.lat
14 half = float(1l)/2
15 # generate predictions

16 a_pre = np.zeros((max_mat, 1))

106

17 a_pre[0] = -delta_0

18 b_pre = np.zeros((max_mat, b_width))

19 b_pre[0] = -delta_1[:,0]

20

21 n_inv = float(l) / np.add(range(max_mat), 1).reshape((max_mat, 1))
22 a_solve = -a_pre.copy()

23 b_solve = -b_pre.copy()

24

25 for mat in range(max_mat-1):

26 a_pre[mat + 1] = (a_pre[mat] + np.dot(b_pre[mat].T, \

27 (mu - np.dot(sigma, lam_0))) + \

28 (half)=*np.dot(np.dot(np.dot(b_pre[mat].T, sigma),
29 sigma.T), b_pre[mat]) - delta_0)[0][0]

30 a_solve[mat + 1] = -a_pre[mat + 1] * n_inv[mat + 1]

31 b_pre[mat + 1] = np.dot((phi - np.dot(sigma, lam_1)).T, \

32 b_pre[mat]) - delta_1[:, 0]

33 b_solve[mat + 1] = -b_pre[mat + 1] * n_inv[mat + 1]

34

35 return a_solve, b_solve

36

37 def opt_gen_pred_coef(self, lam_0, lam_1, delta_0, delta_1, mu, phi,
38 sigma):

39 e

40 Returns tuple of arrays

41 Generates prediction coefficient vectors A and B in fast C function
42

43 Parameters

44 e

45 lam_0 : numpy array

46 lam_1 : numpy array

The change in profiling output after rewriting the gen_pred_coef is shown in Table 4.2
and Figure 4.4. The C extension version of gen_pred_coef is italicized for reference. Comparing
these tables shows that the computational time spent in the function drops from 8.817 to 1.365
seconds. The function highest on the list in terms of computational time is now a core Python
function get_token rather than a function written specifically for the package. Because it is highly

unlikely that any core components of package would need to be written, the fact that the most

107

computationally expensive function now appears eighth on the list rather than first is a good sign
that code refactoring has been effective. Figure 4.4 reinforces the conclusion that handing this
function over to C was effective. Again, the function has again been given a thicker border. Instead
of taking up 19.05% of each _affine_pred call, the function now only takes up 2.54% of each call.
Because this function is called each time a new set of predicted yields need to be generated, the
relative advantage of using the C based method over the original pure Python method increases as

the number of iterations required for A and B goes up.

Table 4.2: Profiling Output of Pure Python Solve Function.

filename:lineno(function) Total time
affine.py:424(gen_pred_ coef) 8.817
{numpy.core. _dotblas.dot} 6.336
{isinstance} 4.626
parser.py:59(get_ token) 4.510
locale.py:363(normalize) 4.303
StringlO.py:119(read) 3.940
_ strptime.py:295(_strptime) 3.196
{len} 3.165
tools.py:372(parse_time _string) 2.512
__init__ .py:49(normalize encoding) 2.433

Table 4.3: Profiling Output of Hybrid Python/C Solve Function.

| filename:lineno(function) | Total time
parser.py:59(get _token) 2.841
StringIO.py:119(read) 2.270
core.py:2763(_update from) 2.114
locale.py:363(normalize) 1.958
{getattr} 1.753
_strptime.py:295(_strptime) 1.446
parser.py:356(_parse) 1.387
{affine.model. C _extensions.gen_pred_ coef} 1.365
{isinstance} 1.296
{len} 1.296
{numpy.core. dotblas.dot} 1.177
tools.py:372(parse _time _string) 1.132
__init__ .py:49(normalize encoding) 1.101
locale.py:347(_replace encoding) 1.044
index.py:1273(get_loc) 1.036
parser.py:156(__init) 0.993
{setattr} 0.958
core.py:3040(__setitem) 0.882
{method ’get’ of ’dict’ objects} 0.812
parser.py:149(split) 0.788

108

‘uorpun 9AJ0§ uoILg-eang surgord jndinQ eorgders) :¢§ oI

109

‘uonoung 9A[0§ O /uoiLd priqiy Suryord jndinQ reormderr) :§§ onSig

110

In order for the C code to efficiently construct the A and B arrays, various dot product
functions were built that relied on pointer arithmetic. These functions are included at the top of
the C code presented in Listing D.1 in the Appendix. The A and B arrays are both constructed as
one dimensional arrays on the heap for two reasons. First, two-dimensional arrays are possible in
C, but they are not nearly as high performing as one-dimensional arrays. A two-dimensional array
in C is an array of pointers to pointers, with each row index referring to a separate, non-contiguous
address in RAM. This means that if an element of the array is referred to by both indices, i.e.
array|i][j], this involves two lookups of the RAM location of these elements. These operations are
much more efficient if the arrays are stored as one-dimensional arrays and the implicit indexing
is handled by any of the operations involving these arrays. Care must be taken to ensure that
an allocation of these arrays as one-dimensional is successful.'? Second, constructing numpy arrays
from one-dimensional arrays is much simpler than constructing them from multi-dimensional arrays,
especially with the C-API provided with numpy. Once a single-dimensional C array is allocated on
the heap, it only needs to be wrapped in a numpy array constructor, as seen in a simple example

in Listing 4.14.

Listing 4.14: C array to numpy array

1 int rows 3;

2 int cols 5;

3 npy_intp dims[2] = {rows, cols};

4 /% allocate contiguous one dimensional */

5 double *myarray = (double *) malloc(rows * cols * sizeof(double));
6 /+ fill in elements in myarray */

T /% o/

8 /* Allocate numpy array in C %/

9 PyArrayObject xmyNParray;

10 myNParray = (PyArrayObject) PyArray_SimpleNewFromData(2, dims, double,
11 myarray) ;
12 PyArray_FLAGS(myNParray) |= NPY_OWNDATA;

13 Py_DECREF(myNParray);

The array in C is assumed to be contiguous in RAM but the dimensions are passed in as a

length two array of type npy_intp, a type provided by the numpy library. In line 5 the C array,

12Checking to make sure that the arrays are successfully allocated is accomplished in C by testing if the array
is equal to NULL. Examples of this can be seen in the C code in the Appendix.

111

myarray is allocated on the heap. After filling in the values, the Python object to be returned
from C to Python is initialized in line 9. In lines 10 and 11, the Python object is defined as a
wrapper around the original C array, without needing to allocate new data for the array. It is
then ensured that the Python object controls the deallocation responsibility of the object in line
12 using the PyArray_FLAGS function and the array flag NPY_OWNDATA. In order for there to be
appropriate deallocation of the numpy array once in Python, the correct number of references must
be set using the Py_DECREF function. The function PyArray_SimpleNewFromData is the preferred

way of creating a numpy array based on data already allocated in C (Oliphant et al., 2014).
4.4.1 Testing

Testing of the package was performed with the empirical applications presented in Chapter 2
and Chapter 3. These two chapters both involved the estimation of affine term structure models,
some of which were compared to other published results and others which were unique models
estimated by the author. Both of these chapters depended completely on affine to build and
estimate the models. The estimated results of the package for the models in Baker (2014a) were
compared to the published results in Bernanke et al. (2005) and they generated similar pricing errors
and term premium dynamics. Discrepancies between the results are minimal and are addressed in
Baker (2014a). In Baker (2014b), the estimation process using affine generated well-fitting term
structure dynamics in line with much of the literature. A test of the logic programmed to generate
the prediction matrices A and B in Equation 4.1.8 was that the Python and C versions of the
function were programmed based on the theory, not on each other. When it was assured that both
were functioning properly independently, their results were compared and the results were identical
down to the machine epsilon of the C data type double.

When the Affine object is allocated, many assertions are performed on the shape of the
observed factor and yield data, the shape of each of the parameter arrays listed in Table 4.1, and
the combinations of the other arguments to the objects. These other assertions include ensuring
that appropriate non-error yield columns are supplied if Direct Maximum Likelihood is used as the
solution method. If any of these assertions fail, creation of the Affine object fails and the user is
notified of what caused the failure. This allows the user to modify the script and retry instantiation
of the Affine object.

Unit tests were written in order to stabilize the core functionality of the package throughout

development and across environments. As contributions are made to the package by other develop-

112

ers, unit tests validate that the core components of the package are functioning as expected through
iterations of source code changes. These tests are included in the Appendix in Listing D.3. These
tests ensure that all of the individual functions used in the package to build and solve the model
are operating correctly. In some cases, the tests validate that no errors are thrown by the package
when correctly formated arguments are used. In other cases, the tests confirm that when incorrectly
formatted arguments are passed to the package, an error message is raised that indicates to the
user that there is an issue with the argument. Other tests run model estimation processes that are
known to converge and confirm that they do in fact converge.

The unit tests are organized as functions in classes, where all of the unit test functions
within a class share the same setup. In the case of the unit tests written for Affine, each
class defines a collection of valid arguments that successfully create an Affine object. There
are currently three classes of unit tests: TestInitiatilize, TestEstimationSupportMethods,
and TestEstimationMethods. These classes are intended to separate unit tests with different pur-
poses. Each test in TestInitiatilize begins by initializing valid arguments to an observed factor
model and contains tests related to proper initial creation of an Affine object. The first unit test
function, test_create_correct, passes these valid arguments to the Affine class and confirms
that the instance of the class exists. There are then five test functions that each increment the
dimensions of one of the parameter array arguments by one so that its shape is no longer valid and
then verifies that an error is raised indicating that the parameter array is of incorrect shape. There
are then two tests, test_var_data_nulls and test_yc_data_nulls, that replace just one of the
values in the observed factor and the yield data respectively with a null value and confirm that an
appropriate error is raised. The final test in this class, test_no_estimated_values, modifies the
two parameter arrays that have masked values, unmasks them, and confirms that an error is raised
indicating that there are no elements in the parameter arrays to estimate.

The TestEstimationSupportMethods class contains tests confirming that calculations the
package relies on are functioning properly. These are all in the form of positive tests, where the unit
test only fails if an error is raised in the operation. The setup for the tests in this class is that of a
more complex affine model with latent factors so that all of the possible calculations necessary to
solve an affine model are possible. The first four tests, test_loglike, test_score, test_hessian,
and test_std_errs, each confirm that with a correct model setup the likelihood, numerical score,
numerical Hessian, and numerical standard errors respectively can be calculated. The next test,

test_params_to_array, confirms that when passing values for the unknown elements in the

113

parameter arrays into the params_to_array function, the parameter arrays are returned, both
when masked and standard numpy arrays are needed. test_params_to_array_zeromask per-
forms similar testing on a function that returns arrays with unmasked elements set to zero cor-
responding to guess values equal to zero. The next two unit tests, test_gen_pred_coef and
test_opt_gen_pred_coef, each test whether the generation of the A and B coefficients in Equa-
tion 4.1.8 for all maturities is successful, using a pure Python function or a C function respectively.
The next unit test, test_py_C_gen_pred_coef_equal, confirms that given the model setup for
this class, the Python and C functions generate the same result. The final three unit tests for this
class, test__solve_unobs, test__affine_pred, and test__gen_mat_list, each confirm that
private functions used internally by the package are operating correctly. test__solve_unobs con-
firms that the function that generates the latent factors returns valid results. test__affine_pred
validates that the internal function used to stack the predicted yields into a one-dimensional array
generates a result of the expected size. test__gen_mat_list tests whether or not the internal
function used to determine the yields priced with and without error correctly generates these yields
with the specific model setup in this class.

The final class, TestEstimationMethods, contains tests for running the estimation processes.
For the setup, models with and without latent factors are created. The first test, test_solve_nls,
attempts to estimate a model without latent factors. The second test, test_solve_ml, attempts
to estimate a model with a latent factor. As in the previous unit test class, these are both positive
tests, meaning that they merely test for whether convergence is possible given the current setup. If
there were any issues with the outside numerical approximation libraries, these issues would cause
the unit tests to fail.

After the user has installed affine, the entire suite of unit tests can be run using nose, a
Python package that aids in the organization and writing of unit tests. This is accomplished by
running the nosetests command in the top directory of the source code. Each unit test can also
be run individually using a nosetests command specifying a path to the test in the source code'3.
For example, in order to initiate the test that verifies that an incorrectly shaped lam_0_e will raise

an error, the following command should be run in the top level of the source code:

Listing 4.15: Running a specific unit test

1 nosetests affine.tests.test_model:TestInitiatilize.test_wrong_lam@_size

13For more information about nose, see https://nose.readthedocs.org/en/latest/.

114

In this example, the path to the Python file containing the wunit tests is
affine/tests/test_model.py, the name of the class that contains the specific test we want
to run is TestInitiatilize, and the name of the test function is test_wrong_lam0_size. In
cases where users want to validate the installation of the package, running all of the unit tests using
the nosetests command is sufficient.

It is important to note that, while these unit tests do provide a reasonable amount of coverage
for the basic functionality of the package, they are not an exhaustive list of all possible unit tests,
nor do they cover all possible use cases. As development continues on affine, more unit tests will
continue to be developed. It should also be noted that modifications made to the package may

require changes to the unit tests in order for them to pass.
4.4.2 Issues

A few issues were encountered during development, specifically in development of the C
extension. The first major issue pertained to proper allocation and reference counting of objects
passed from C to Python. First, an attempt was made to create numpy arrays from C multi-
dimensional arrays based on several online examples, but discovering a way to properly transfer
ownership of these arrays to Python proved difficult. The arrays would often be returned to Python,
but would be over-written in RAM before it was appropriate to do so, meaning that the reference
counts to the Python array had been incorrectly set in C prior to the objects being returned to
Python. After battling with this and getting inconsistent results on 32- and 64-bit architectures,
single-dimensional arrays were used instead of two-dimensional arrays.

The use of one-dimensional arrays ended up leading to a significant performance improvement
because pointer arithmetic could be used. This led to the writing of four bare-bones functions in
C that perform the dot-product of two one-dimensional arrays (implied two-dimensional). The
four functions are derived from the possibilities of transposing the first array, or the second array,
neither, or both. In order for these functions to work correctly with the numpy arrays supplied to
the C function, it must be ensured that the data referenced by the arrays is held contiguously in
C. These arrays passed into the C function are initialized in Python, and there is not a guarantee
that numpy arrays initialized in this way are held contiguously. Contiguous ordering of the data can
be ensured using the np.ascontiguousarray, which is applied to the arrays prior to being passed

into the function when the optimized C extension is successfully installed.

115

Another push in the way of single-dimensional arrays came with the fact that arrays of
indeterminate length at compile time cannot be passed into C functions. Because the package
is developed for the general case, the sizes of all of the arrays used to compute A and B are of
indeterminate length at compile time. The dimensions of the array along with the pointers can be
passed to the functions. When the arrays are one-dimensional and contiguous, the pointer to the
first element of the array along with the number of rows and columns is enough information to
be able to perform any kind of operation on a pair of arrays. Many of the tutorials on the use of
the numpy C-API use multi-dimensional C arrays, but this may be based on the fact that many of
the users are coming from a Python background. Single-dimensional, contiguous arrays are much
better for performance and fit more naturally into C-based code development.

Another issue that was encountered in development was acceptable levels of differences be-
tween Python and C based results. One of the benefits of writing the Python and C methods for
the same operations was using one to test the results of the other. Testing strict equality (==) in
Python versus C proved problematic. After calculating the A and B arrays in both Python and
C, some of the entries in arrays would be equal, while others would differ by an amount no greater
than le-12. The first way that I approached the issue was ensuring that the numpy float64 data
type used in numpy arrays was equivalent to the NPY_DOUBLE C data type used in the C extension.
This involved going into the lower layers of numpy source code, eventually confirming that they were
both equivalent to C double types. After confirming each line of code in both versions, further
research led to the conclusion that these differences were driven by machine epsilon floating point
comparisons. Machine epsilon refers to potential differences in the results of equivalent mathemat-
ical operations driven by floating point rounding. These specific machine epsilon differences likely
resulted from differences in 1ibc and built-in numpy functions. These differences are important to
keep in mind when attempting to set convergence criteria too tightly in the numerical approxima-
tion algorithms. These are not likely to reliably hold below le-12, given the recursive nature of the
construction of A and B. The default convergence criteria for parameter and function differences in
the package is therefore le-7, as this is well above the machine epsilon but low enough to generate

reliable results in most modeling exercises.
4.5 Building Models

In order to flesh out the context for this package, it may be useful to describe how the

approaches of some of the important works in affine term structure modeling could be achieved

116

using the package. This section will focus on models that would not involve any adjustments to the
core package in order to obtain the same approach, but will also present an example of a modeling
approach that would involve modifications to select function in the original package. Before moving
on to specific examples, it may be useful to summarize the current coverage of the package. Table

4.4 documents the papers and respective models that can be estimated using this package.

Table 4.4: Affine Term Structure Modeling Papers Matched with Degree of Support from Package

Paper Solution method Latent factors | Modifications required
Chen and Scott (1993) Direct ML Yes No
Dai and Singleton (2000) Simulated Method of Moments | Yes Yes
Dai and Singleton (2002) Direct ML Yes No
Ang and Piazzesi (2003) Direct ML Yes No
Bernanke et al. (2005) Non-linear least squares No No
Kim and Orphanides (2005) Kalman filter ML Yes No
Kim and Wright (2005) Kalman filter ML Yes No
Diebold et al. (2006) Kalman filter ML Yes No
Cochrane and Piazzesi (2008) | Non-linear least squares No No
Orphanides and Wei (2012) Direct ML Yes Yes

As is shown, most of the approaches of the seminal papers are directly supported by the
package. The methods of Dai and Singleton (2000) and Orphanides and Wei (2012) would both
require modification to the core Affine class. Even in these cases, the level of abstraction provided
by the package allows individual components to be modified while leaving the rest of the package
intact.

A few of the approaches of these papers will be discussed in subsections below, specifically
in how they would be performed using affine. In each of these sections, the outline of the code
is shown with only the key steps invoked using the package. For complete scripts for each of these

methods, please see Section E of the Appendix.
4.5.1 Method of Bernanke et al. (2005)

The affine term structure model of Bernanke et al. (2005) uses a pricing kernel driven solely
by observed information. The authors assume that the process governing the observed information
is a VAR(4) with five macroeconomic variables using monthly data. They fit a yield curve of zero-
coupon bonds using the yields on the six month, one, two, three, four, five, seven, and ten year
yields. With only the use of observed factors informing the pricing kernel, the authors estimate the
parameters in Equations 4.1.3 and 4.1.5 using OLS prior to estimation of the prices of risk. This

vastly decreases the number of parameters to be estimated compared to models using latent factors

117

and leaves only the parameters in A\g and A; to be estimated. They also assume that the prices of
risk in Equation 4.1.4 are zero for all but the elements in \; corresponding to the contemporaneous
elements in X;.

Assuming that the data has already been imported and the other parameter arrays have been

setup, the model can be initialized and estimated as shown in Listing 4.16:

Listing 4.16: Bernanke et al. (2005) model setup

import numpy.ma as ma

from affine.model.affine import Affine

w N =

W~

number of observed factors

5 n_vars =5

number of lags in VAR process
lags = 4

maturities of yields in months

mats = [6, 12, 24, 36, 48, 60, 84, 120]

11 #import yield curve data into yc_data and macroeconomic data into var_data
12 #...

13 #fill in values of delta_0O_e, delta_l_e, mu_e, phi_e, and sigma_e from OLS
14 #...

15 #initialize the lambda_0 and lambda_1l arrays

16 lam_0_e = ma.zeros([n_vars * lags, 11)

17 lam_1_e = ma.zeros([n_vars * lags, n_vars * lags])

18 #mask only contemporaneous elements (elements to be estimated)

19 lam_0_e[:n_vars, 0] = ma.masked

20 lam_1_e[:n_vars, :nvars] = ma.masked

22 #instantiate model

23 model = Affine(yc_data=yc_data, var_data=var_data, mat=mats, lags=lags,

24 lam_0_e=lam_06_e, lam_1l_e=lam_1_e, delta_0_e=delta_O_e,

25 delta_1 e=delta_1 e, mu_e=mu_e, phi_e=phi_e, sigma_e=sigma_e)
26 #construct guess_params

27 guess_params = [0] * model.guess_length()

28 #solve model

29 solved_model = model.solve(guess_params, method='nls’)

118

Lines 15-20 ensure that the prices of risk are restricted to zero for all but the contemporaneous
values of X;. The model object is created in lines 23-25. The solve function is called in line 29
with the nls options signifying non-linear least squares, which is appropriate given that no latent
factors are estimated in this model. Because the parameter space tends to be smaller in models
with no latent factors, these models tend to solve in a shorter amount of time than those with latent
factors. For example, at the precision levels indicated in Chapter 2, each model took around three
minutes to solve. The starting values for each of the unknown parameters across A\g and \; are set
to zero and the number of unknown parameters across the parameters arrays can be generated from
the object using the guess_length() function. The solved_model Python tuple contains each
of the parameter arrays passed into the Affine class object with any masked elements solved for.
In this example, the different parameter arrays are accessed in the tuple of objects returned. The
estimated parameter arrays could also be accessed as attributes of the solution object along with
the standard errors. The standard errors are calculated by numerically approximating the Hessian
of the parameters. A future release of the package will include more user friendly presentations
of the results in formatted tables. When a likelihood based approach is used, formatted tables
of many of the parameter estimates and their standard errors are provided by the statsmodels
LikelihoodModel class that Affine inherits from. Documentation for this formatted output is

provided in statsmodels.
4.5.2 Method of Ang and Piazzesi (2003)

Another model setup that can easily be implemented using affine is that first used in Chen
and Scott (1993) but more recently used in Ang and Piazzesi (2003). In this chapter, a five factor
model is estimated with two observed factors summarizing movements in output and inflation,
respectively, and three unobserved factors. Their method for estimating the models involves a
four-step iterative process where unknown elements in individual parameter arrays are estimated
in different steps. This approach is outlined in Listing 4.17. In this method, the components of u,
®, and ¥ in Equation 4.1.3 pertaining to the observed factors are estimated with the assumption
that the two observed factors are orthogonal to the unobserved factors'®. The components of the
short-rate relationship, Equation 4.1.5, pertaining to the observed factors are also estimated via

OLS. This takes place in lines 19-211%. Beginning in Step 1 on line 30, the unknown parameters in

1 This assumption is made by Ang and Piazzesi (2003) to decrease the number of estimated parameters

15For complete detail of a setup script for this method, see Listing E.2 in the Appendix.

119

01 and & are estimated and a model solved object is retained in lines 38-39. In this example listing,
the model solution method is indicated as direct maximum likelihood, the numerical approximation
method is BFGS, and the one month, one year, and five year yields are measured without error.
Using the estimated Hessian matrix from Step 1, the standard error of each parameter is estimated
and, as specified in Ang and Piazzesi (2003), the insignificant parameters are set to zero in a
new parameter list in lines 44-65. This parameter list is used to generate the masked arrays and
parameter guesses for Step 2 and the final estimation step. In Step 2, beginning in line 69, the
unknown parameters in A; are estimated, holding Ag at 0 and d; and ® at their estimated values
after Step 1. The model again is re-estimated and the insignificant parameters in A; are set to
zero, with the estimated value of A\; retained for use in Step 3 and the final estimation step. In
Step 3, beginning in line 86, an analogous estimated is performed where the estimated 41, ®, and
A1 from Step 1 and 2 are used to estimate only the unknown parameters in Ag. The insignificant
parameters in Ao are set to zero, with the estimated values in A is held for the final estimation
step. In the final estimation step beginning in line 93, the significant parameters across 1, ®, Ao,
and A; are all re-estimated, with the insignificant parameters in these arrays held at 0, and using
the estimated values from Steps 1-3 as initial estimates. This last estimation step produces the
final estimation results. This entire process took less than ten minutes to solve on a laptop with

1.8GHz CPU speed.

Listing 4.17: Ang and Piazzesi (2003) model setup

1 import numpy as np

2 import numpy.ma as ma

3 import scipy.linalg as la
4

from affine.model.affine import Affine

6 # number of observed factors

7 n_vars = 2

8 # number of lags in VAR process

9 lags = 12

10 # number of latent variables to estimate

11 latent = 3

12 #maturities of yields

13 mats = [1, 3, 12, 36, 60]

14 #indices of maturities to be estimated without error

15 no_err = [0, 2, 4]

16
17
18
19
20
21

45

120

#import yield curve data into yc_data and macroeconomic data into var_data
#...

#fill in values of delta_0_e, delta_l_e, mu_e, phi_e, and sigma_e from OLS
#pertaining to observed factors

#...

#initialize the lambda_0 and lambda_1 arrays

phi_e[-latent:, -latent:] = ma.masked

delta_1_e[-latent:, 0] = ma.masked

> #initialize lambda arrays to all zeros, but not masked

lam_0_e = ma.zeros([n_vars * lags, 1])

lam_1_e = ma.zeros([n_vars * lags, n_vars * lags])

##Step 1

modell = Affine(yc_data=yc_data, var_data=var_data, mats=mats, lags=lags,
lam_0_e=lam_0_e, lam_1l_e=lam_1_e, delta_0_e=delta_0_e,
delta_1_e=delta_l e, mu_e=mu_e, phi_e=phi_e, sigma_e=sigma_e,

latent=1latent)

#initialize guess_params

#...

solved_modell = modell.solve(guess_params=guess_params, no_err=no_err,
method="ml", alg='bfgs’)

parametersl = solved_modell.solve_params

#calculate numerical hessian of solved_params

std_err = modell.std_errs(parametersl)

#create list of parameters in parametersl that are significant based on std_err
#and put in sigparametersl, otherwise replace with zero
tval = parametersl / std_err
sigparametersl = []
for tix, val in enumerate(tval):

if abs(val) > 1.960:

sigparametersl.append(parametersl[tix])
else:

sigparametersl.append(0)

#retrieve new arrays with these values replaced, used for estimation in later

5 #steps

62
63
64

66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84

86
87
88
89
90
91
92
93
94

121

parameters_for_step_2 = solved_modell.params_to_array(sigparametersl,
return_mask=True)
delta_1l = parameters_for_step_2[3]

phi = parameters_for_step_2[5]

#retrieve arrays for final step 4 estimation with only values masked that were
#significant

parameters_for_final = solved_modell.params_to_array_zeromask(sigparametersl)
delta_1.g = parameters_for_final[3]

phi_g = parameters_for_final[5]

##End of Step 1

#Step 2

#Estimate only unknown parameters in lam_1_e, results in model solve object
#solved_model2, use arrays delta_1l and phi from above

lam_1_e[-latent, -latent] = ma.masked

lam_1_e[:n_vars, :n_vars] ma.masked

#...

#set insignificant parameters equal to zero in sigparameters2
parameters_for_step_3 = solved_model2.params_to_array(sigparameters2,
return_mask=True)

lambda_1 = parameters_for_step_3[1]

parameters_for_final = solved_model2.params_to_array_zeromask(sigparameters2,
return_mask=True)
lambda_0_g = parameters_for_final[1l]

#End of Step 2

#Step 3
#Estimate unknown parameters in lam_0_e, with all pre-estimated values held at

#estimated values using delta_1, phi, (from Step 1) and lambda_1 (from Step 2)

#collect lambda_0_g and lambda_0 similar to Step 2
#Step 3

#Step 4
#Estimate model using guesses and assumptions about insignificant arrays set

#equal to zero

122

96 model4 = Affine(yc_data=yc_data, var_data=var_data, mats=mats, lags=lags,

97 lam_0_e=lambda_0_g, lam_1_e=lambda_1_g, delta_0_e=delta_o,
98 delta_1_e=delta_1_g, mu_e=mu_e, phi_e=phi_g, sigma_e=sigma_u,
99 latent=1latent)

100
101 #construct guess_params from final estimated values in Steps 1-3
102 solved_model4 = model.solve(guess_params=guess_params, ho_err=no_err,

103 method= , alg=)

These two demonstrations show that much of the model building steps are abstracted by the
use of the Affine class object. Each script easily enables one to generate plots of the respective
pricing errors and time-varying term premia. The Kalman filter ML method is also supported by
the package and the approach would not be much different from that presented in Listing 4.17. The
only modifications required would be the method argument would need to be changed to kalman and
the appropriate additional arguments specified in Section 4.2 would need to be supplied. Kalman
filter ML results could be used to replicate the approaches used in Kim and Wright (2005) and
Diebold et al. (2006). To make a change in the likelihood calculation approach, the method simply

needs to be changed when calling the solve method.
4.5.3 Method of Orphanides and Wei (2012)

There are some approaches that have yet to be directly implemented in the package such
as the Iterative ML approach used in Duffee and Stanton (2012) and Orphanides and Wei (2012).
This approach could be included in future versions of the package, but could also be executed by
the user by inheriting from the Affine class and altering the log-likelihood definition.

As an example of an approach that would require modifications to the package, let us examine
the model estimated in Orphanides and Wei (2012). In this paper, the authors estimated an affine
term structure model using a rolling VAR rather than a fixed parameter VAR. Because of this, the
likelihood calculation needs to be changed because the package assumes that the estimated param-
eters in the process governing the factors (Equation 4.1.3) are constant throughout the estimation
period. The suggested way of making these modifications is through inheriting from the Affine
class'® and making modifications only to the necessary components. An outline of this approach

appears in Listing 4.18. A new class, RollingVARAffine is created on line 34, inheriting from

16The construction of the Affine model object as a Python class allows the user to create a custom class
that replicates the functionality of the original class, unless over-written. For more information on object-oriented
programming in Python, see https://docs.python.org/2/tutorial/classes.html

123

the Affine class. In line 35-39, the loglike function, which return the likelihood, over-writes
the original method for this class of the same name. This likelihood would be replaced with the
likelihood as it is calculated in Orphanides and Wei (2012), given a set of values for the unknown
parameters. The actual likelihood for this method is not shown.

Once the object is modified to fit the specific affine model formulation, the setup and estima-
tion can continue just as in the other examples. The model object is created in lines 41-44. Only p,
®, and X are estimated in the estimation step, performed in lines 49-50. The unknown parameters
are passed into the newly defined likelihood just as before and the rest of the components of the
estimation process are unchanged. These estimated arrays are used in the second estimation step,

when \g and A; are estimated in Step 2 in lines 57-72.

Listing 4.18: Orphanides and Wei (2012) model setup

import numpy as np
import numpy.ma as ma
import scipy.linalg as la

from affine.model.affine import Affine

1
2
3
4
)
6 # number of observed factors

7 n_vars = 2

8 # number of lags in VAR process

9 lags = 2

10 # number of latent factors

11 latent =1

12 # maturities of yields

13 mats = [4, 8, 20, 28, 40]

14 # index of yield estimated without error

15 no_err = [3]

16

17 #import yield curve data into yc_data and macroeconomic data into var_data
18 #...

19 #fill in values of delta_0_e, delta_l_e, mu_e, phi_e, and sigma_e from OLS
20 #mu_e, phi_e, and sigma_e are constructed with an extra dimension as they
21 #differ every time period

22 #initialize the lambda_0 and lambda_1 arrays

23 mu_e[-latent:, 0, :] = ma.masked

24 phi_e[-latent:, -latent:, :] = ma.masked

25 sigma_e[-latent:, -latent:, :] = ma.masked

43
44
45

124

#initialize lambda arrays to all zeros, but not masked
lam_0_e = ma.zeros([n_vars * lags, 1])

lam_1_e = ma.zeros([n_vars * lags, n_vars * lagsl])

#create a new class that inherits from Affine
#inheriting from Affine means that all methods are the same except for those
#redefined
class RollingVARAffine(Affine):
def loglike(self, params):
#here write the likelihood in terms of rolling VAR rather than fixed

#parameter VAR

#Instantiate RollingVARAffine class

modell = RollingVARAffine(yc_data=yc_data, var_data=var_data, mats=mats,
lags=lags, lam_0_e=lam_0_e, lam_1_e=lam_1_e,
delta_0_e=delta_0_e, delta_l_e=delta_l_e, mu_e=mu_e,

phi_e=phi_e, sigma_e=sigma_e, latent=latent)

#initialize guess_params

#...

#attempt to solve model

solved_modell = modell.solve(guess_params=guess_params, no_err=no_err,

method="ml’, alg='bfgs")

#retrieve new arrays with these values replaced, used for estimation in step 2
mu = solve_modell[4]
phi = solve_modell[5]

sigma = solve_modell[6]

#Step 2

#Estimate lambda_0 and lambda_1

#solved_model2, use arrays mu, phi, and phi from above
lam_0_e[:nvars, 0] = ma.masked

lam_0_e[-latent, 0] = ma.masked

lam_1_e[-latent, -latent] = ma.masked

lam_1_e[:n_vars, :n_vars] ma.masked

final_model = RollingVARAffine(yc_data=yc_data, var_data=var_data, mats=mats,

125

66 lags=lags, lam_0_e=lam_0_g, lam_1_e=1lam,

67 delta_0_e=delta_0, delta_l_e=delta_1l, mu_e=mu,
68 phi_e=phi, sigma_e=sigma, latent=latent)

69

70 #construct guess_params from final estimated values in Steps 1-3

71 fsolved_model = final_model.solve(guess_params=guess_params, no_err=no_err,

72 method= , alg=)

Listing 4.18 shows how the approach to modifying the core Affine class in order to estimate
models outside of the original supported models. This approach to extending the core package

could lead to more supported models and greater coverage of the affine term structure literature.

4.6 Conclusion

This chapter discussed how a variety of affine term structure models can be understood
as choices among a series of permutations within a single modeling framework, including model
structure, number of latent factors, solution method, and numerical approximation algorithm. This
single framework was presented within the context of a new package, affine, that contributes to
the term structure literature via its ability to simplify the process of building and solving affine
models of the term structure. This technical framework within which affine term structure models
can be built and understood is itself a new contribution to the literature and opens the doors for
new theoretical connections to be established between previously disparate model construction and
estimation approaches. This chapter demonstrated how many models could be built and estimated
by only supplying data and arguments, with even more able to be built and solved with minor
extensions of the package. The structure of the package lends itself naturally to extension and
select parts of the solution of the process can be modified while leaving the rest of the package
intact. With the theoretical background explicitly linked to the package, building models using this
package should be much more simple, lowering the cost of contributing to the affine term structure
model literature. The package has also been optimized for computational speed, making it easier
to run a larger number of models faster.

In addition to this computational framework on its own, this chapter also detailed the de-
velopment of the package and the advantages and challenges of developing computational package
in Python and C. Given the current popularity of Python in mathematical modeling circles and C

as a low-level computationally efficient language, the approaches to development outlined in this

126

chapter could serve as a useful reference for those attempting to develop computationally efficient
packages in Python.

In the near future, I would like to expand the basic functionality of the package to include
basic plotting of the results through the matplotlib library. Plotting is already supported through
the core functionality used from other libraries, but specific methods could be written that would
generate popular charts such as time series of the pricing error, the latent factors, and the time-
varying term premium. I would also like to make the data type checks more robust and provide more
feedback to the user regarding errors with the setup of their data or parameter arrays. This would
include writing some robust Python exception handling classes specific to this package. Another
feature I would like to include is more robust handling of errors encountered in the numerical
approximation algorithms. There are times when the numerical approximation algorithms pass in
invalid guesses as values, so I would like to offer the user more of a buffer from these errors, which
can sometimes be cryptic. I would also like to add more well-formatted output of the estimated

parameters and their standard errors.

127

CHAPTER 5
CONCLUSION

This dissertation has contributed to the affine term structure model literature by making sug-
gestions for additions and modifications to the pricing kernel in the first two chapters and providing
a computational modeling framework within which a wide variety of discrete-time affine models can
be estimated in the third chapter. Chapter 2 demonstrated how measures of uncertainty can con-
tribute valuable information to a pricing kernel driven by observed factors. Adding uncertainty
information to the pricing kernel produced a better fitting model and generated higher term premia
during recessions. This change in the term premia from the addition of uncertainty proxies to the
pricing kernel suggested that, not only do different horizons of uncertainty enter the term premia,
but explicitly pricing certain horizons leads to changes in the estimates of the term premia. Chap-
ter 3 showed how real-time data used in place of final-release data produced a better performing
model when measured using root-mean-square pricing error. This chapter also demonstrated that
a real-time data driven affine term structure model produces an erratic term premium for shorter
maturity bonds but a more inter-temporally persistent term premium for longer maturity bonds.
This distinction was not generated by the equivalent model driven by final data and could be lost in
a broader class of models exclusively using final-release data. This chapter also showed that some
of the advantage of using real-time over final data to price the yield curve is lost with the addition
of unobserved, latent factors to the pricing kernel. With the increasingly common use of latent fac-
tors in affine term structure to increase model performance, the implications of using these factors
should be considered when determining how observed information enters bond markets. Together,
the first two chapters showed how modeling with observed factors can reveal important information
about what drives bond market decisions.

Chapter 4 provided a general framework within which affine term structure models can be

built and solved and is the essential backdrop to the first two chapters. The models in Chapters

128

2 and 3 were both built and solved using the algorithms and approach presented in this chapter.
The ease with which factors and model structure could be changed and tested within the first
two chapters was a result of design choices in the package and could potentially be very useful for
others building affine term structure models. Consistent term structure modeling algorithms are
not in widespread use and the package presented in Chapter 4 intends to begin to fill this void.
The chapter also documented the approach taken by the author to developing a package that can
efficiently estimate these non-linear models and provide meaningful abstraction to those building
these models. Assumptions built into the package and issues in development are both documented.
The chapter provides a framework within which models based on both observed and unobserved
factors can be built and understood. This framework in itself represents a unique contribution to
the field that could be used by many practitioners moving forward.

This dissertation offers context to the role that observed factors may play in decomposing
how the bond market behaves as a whole. With the increased use of latent factors in the affine term
structure model literature, investigating how latent factors relate to and interact with these observed
components could lead to a deeper understanding of the full information set that drives bond market
decisions. An avenue of future research would be to continue examining both how the inclusion
of specific observed factors impact estimates of latent factors and how the statistical moments of
the observed factors relate to latent factors estimated within a single model. Results from Chapter
3 suggested that latent factors can somewhat compensate for information misspecification in the
pricing kernel, but it is still unclear what other observed information latent factors may be pricing.
Further research is required in this area to help pin down what observed information latent factors
represent.

Given the observations of Chapter 2 regarding the changing role of uncertainty in recessions
compared to expansions, I would also like to further research how the weights on different factors
change at different points in the business cycle. The current canonical affine term structure modeling
framework assumes that the prices of risk are a constant, affine transformation of the factors
throughout the observation period. Loosening this restriction by allowing the prices of risk to be
temporally dependent could allow for a more robust specification of factors in different parts of the
business cycle. Early evidence suggesting changes in the weights on the factors could come in the
form of structural break tests as suggested by Bai et al. (1998), testing changes governing the prices
of risk alone. This investigation would not need to be limited to observed factor models alone and

could be expanded into models integrating unobserved latent factors.

129

This dissertation has served as a starting point for further investigations into the roles that
observed factors play in affecting the performance and attributes of affine term structure models.
Specifically, this dissertation has shown that, not only does the choice of observed factors impact
performance, but which observed factors are included impact the time series of the term premia.
Differences in results generated by observed factor models could be obscured by the inclusion of
latent factors. The flexibility to estimate many different affine term structure models introduced
with the package presented in the Chapter 4 will allow for simpler testing of how observed and
latent factors influence pricing decisions. The package also allows for greater flexibility in changing
assumptions about the characteristics of the models and provides a single framework for under-

standing how a single model relates to the broader class of term structure models.

130

APPENDIX A
DATA FOR CHAPTER 2

All data used for Chapter 2 are at a monthly frequency.

Monthly Treasury Bill and Treasury Constant Maturities are taken from the Federal Reserve
Bank of St. Louis (FRED), including 6 month, and one, two, three, five, seven, and ten year
maturities.

http://research.stlouisfed.org/fred2/categories/115

Fama-Bliss zero-coupon yields were downloaded from Wharton Research Data Services, which
is only available by subscription:

http://wrds-web.wharton.upenn.edu/wrds/

Total non-farm employment is taken from the BLS website:

http://data.bls.gov/pdq/SurveyOutputServliet?request_action=wh\&graph_name=
CE_cesbrefl

The PCE price index and federal funds rate data are taken from the FRED site:

http://research.stlouisfed.org/fred2/categories/9

http://research.stlouisfed.org/fred2/series/FEDFUNDS

Blue Chip Financial Forecast data were obtained from the individual publications available
at the American University Library. The link is provided here:

http://198.91.33.107:8080/cgi-bin/Pwebrecon.cgi?BBID=11859965

Eurodollar futures were obtained from a Bloomberg (2012) terminal.

VIX data was obtained from the Chicago Board Options Exchange (CBOE) VIX page, as
this is the authority which calculates and trades this statistic:

http://www.cboe.com/micro/vix/historical.aspx

131

APPENDIX B
DATA FOR CHAPTER 3

All data used in this chapter are at a quarterly frequency.

Final release output growth is the annualized GNP quarter over quarter growth prior to
1992 and the annualized GDP quarter over quarter from 1992 and after. Final release inflation
is measured as the quarter over quarter percentage in the GNP/GDP deflator with the transition
taking place in 1992 also. Residential investment is also measured as an annualized quarter over
quarter percentage change. Unemployment is the civilian unemployment rate. Each of the these
statistics were downloaded from the FRED site:

http://research.stlouisfed.org/fred2/series/GNP/18

http://research.stlouisfed.org/fred2/series/GDP

http://research.stlouisfed.org/fred2/series/GNPDEF

http://research.stlouisfed.org/fred2/series/GDPDEF/

http://research.stlouisfed.org/fred2/series/PRFIC96/

http://research.stlouisfed.org/fred2/series/UNRATE/

The market expectations for the current quarter are taken from the Survey of Professional
Forecasters which is made available by the Federal Reserve Bank of Philadelphia:

http://www.phil.frb.org/research-and-data/real-time-center/survey-of-professional-
forecasters/

The previous quarter releases are taken from the Real-time Data Set for Macroeconomists
and are available for download from the Federal Reserve Bank of Philadelphia site:

http://www.philadelphiafed.org/research-and-data/real-time-center/real-time-

data/

132

As in Chapter 2, the Fama-Bliss zero-coupon yield data was downloaded from the Wharton
Research Data Services:

http://wrds-web.wharton.upenn.edu/wrds/

133

APPENDIX C
ADDITIONAL FIGURES AND TABLE
FOR CHAPTER 2

Table C.1: Maximum Five Year Term Premium by Date Range and Model. Each row represents
a date range within which the maximum is calculated and each column represents an individually
estimated model.

BSR factor models | Uncertainty proxy models

b b+E b+E+D b-+E+D+V
08,/90 - 05/12 (Full Sample) | 3.50 2.97 3.45 3.43
03/91 - 03/01 (Expansion) | 2.91 2.72 2.74 2.72
03/01 - 11/01 (Recession) 1.37 1.83 2.09 2.08
11/01 - 12/07 (Expansion) 1.96 2.02 2.05 2.02
12/07 - 06/09 (Recession) 1.26 2.20 2.64 2.62

Table C.2: Minimum Five Year Term Premium by Date Range and Model. Each row represents
a date range within which the minimum is calculated and each column represents an individually
estimated model.

BSR factor models | Uncertainty proxy models
b b+E b+E+D b+E+D+V
08/90 - 05/12 (Full Sample) | 0.20 0.66 0.75 0.84
03/91 - 03/01 (Expansion) | 1.43 1.25 1.35 1.33
03/01 - 11/01 (Recession) 0.86 1.40 1.69 1.69
(
(

11/01 - 12/07 (Expansion) | 0.87 1.25 1.11 1.11
12/07 - 06/09 (Recession) 0.20 0.66 0.75 0.84

134

Figure C.1: Plots of Difference between Yields on One, Three, and Five-year Constant Maturity

Government Bond Yields and Fama-Bliss Implied Zero Coupon Bond Yields.

(a)

‘ - - Difference,one year
3.0
|
|
25 j
|
2.0 1
{
f 1
15 "Hl‘
. H ’])
-_ d
8 il
o 10 ‘: \‘:“:H
[|‘:‘ ‘:#L‘": '
|
= s M: H:‘-‘:ﬂ,. N o \
TR A
0.0 "\':"’Mﬂ “"l |"‘|\Ii Vt""\'ﬂ lli: ‘v”‘nrlﬂvu \. '” M“m‘ ln'”“’“\” | ‘H‘[‘ i
O I“‘.!. “{ }f ”" "l'l'\”l y‘\ ”\ | "4 "V ““y,ﬂﬁﬂ‘f (!‘“ \lr”‘ ' i Mm\ f
o 1\& e .
05 b
i
I
-1.0 L L L L L L L L L
1079 1083 1087 1091 1995 1099 2003 2007 2011
(b)
‘ - - Difference,three year
2.0 : : : : : : : : :
1
L
15 it
)
e
10 iy
- H h“ |
3 -
= iH M\‘? !‘ I
A
g ol il Wbl 10)
= ' uH |1 i, , a '
> A ,‘f'c:: M‘,: ‘w,H\n Hh Eu!l v,m, \I“‘M-‘\JH N Hivw u‘l,,} . i i 'u M L
00 ‘;*‘ " #:‘l‘ 3, :‘ W,'-',\'n b ‘5“?'& AL et “‘*"'“’ v # '”"a e
|:\:v‘5 Rt ,u\- “ v ”, v
[) ”
-0.5 1
-1.0
1979 1983 1987 1991 1995 1999 2003 2007 2011
(c)
‘ - - Difference,five year
2.0 T T T T T T T T T
i
S
[}I
Wb
1.0 Wl
':I\‘\”\Huv
2 .
< RN R
OO g ok | ,
£ | gt TR T , :
T R iy i ’m‘w u'h»u.}f.v ’.w ,,i‘ " \‘ ! m \ M
0.0 ‘}}“ ; | I'LI‘L‘ i ‘J‘u,lll._v i Yutf] Iw n“,ﬂ, Vlw,‘, lm“ \' "‘wy i 'u‘” 2'\" W
| | AR "I"'\' i \l‘ Y, i
W W " '| ! N l‘ g
P W '
U ‘ |
-0.5 H i
-1.0

1979 1983 1987 1991 1995 1999 2003 2007 2011

135

‘[epowr anbrun e ST MOI Yory "AJLINJRIN TBIX OAI,] pUe aU() I0] S[OPOJN PIRMIIISH SSOIDY IoLly Sumlld :g') 2ImSq

My 3
I. AN

(a) potk ek onyy

A+Q+3+q

A+3+q

a+3itq

a+q

i+q

&
[
N

T

] 0?0'?

b
o o 4 N O @
T T

~~
©
©
)]
T

by
$
£y

T

Am..,_
N
T

(e) u._m_.f..m% aup

136

APPENDIX D
SOURCE CODE FOR AFFINE

Listing D.1: C Code for generating A and B

1 #include "Python.h"

2 #include "arrayobject.h"
3 #include "C extensions.h"
4 #include <math.h>

5 #include <stdio.h>

6

7 struct module_state {
8 PyObject *error;
9

Y
10
11 /* === Constants used in rest of program === x/
12 const double half = (double)l / (double)2;
13
14
15 /+ ==== Set up the methods table */

16 static PyMethodDef _C_extensions_methods[] = {

17 {"gen_pred coef", gen_pred_coef, METH_VARARGS, NULL},
18 {NULL, NULL}

19 %

20

21 #if PY_MAJOR_VERSION >= 3

22 #define GETSTATE(m) ((struct module_statex)PyModule_GetState(m))
23 #else

24 #define GETSTATE(m) (& state)

25 static struct module_state _state;

26 #endif

29
30
31
32
33

43
44
46

65
66
67

// A1l of this is specific code for Python 3
#1if PY_MAJOR_VERSION >= 3

static int _C_extensions_traverse(PyObject *m, visitproc visit, void xarg) {

Py_VISIT(GETSTATE(m)->error);

return 0;

static int _C_extensions_clear(PyObject *m) {
Py_CLEAR(GETSTATE(m) ->error);

return 0;

static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"_C_extensions",
NULL,
sizeof(struct module_state),
_C_extensions_methods,
NULL,
_C_extensions_traverse,
_C_extensions_clear,

NULL

/* ==== Initialize the _C_extensions functions

// Module name must be _C_extensions in compile and linked

#define INITERROR return NULL

PyObject *

PyInit__C_extensions(void)

#else

#define INITERROR return

void
init_C_extensions(void)

#endif

*/

137

138

68 {

69 #if PY_MAJOR_VERSION >= 3

70 PyObject *module = PyModule_Create(&moduledef);

71 #else

72 PyObject *module = Py_InitModule(" C extensions", _C_extensions_methods);
73 #endif

74 import_array();

75 #if PY_MAJOR_VERSION >= 3

76 return module;
77 #endif

78 }

79

80 /+ Array helper functions */
81 /% ==== Matrix sum function ===== x/

82 void mat_sum(int rows, int cols, double x*arrl, double *arr2,

83 double x*result) {

84 int mat_size, inc;

85 mat_size = rows * cols;

86 for (inc=0;inc < mat_size;inc++) {
87 xresult = *arrl + *arr2;

88 arrl++;

89 arr2++;

90 result++;

91 }

92 }

93

94 /* ==== Matrix subtraction function ===== x/

95 void mat_subtract(int rows, int cols, double *arrl, double xarr2,

96 double x*result) {

97 int mat_size, inc;

98 mat_size = rows * cols;

99 for (inc=0;inc < mat_size;inc++) {
100 xresult = *xarrl - xarr2;
101 arrl++;

102 arr2++;
103 result++;
104 }

105 }

106

107 /+x ==== Matrix product functions ===== %/

108
109
110
111

135
136
137
138
139
140
141
142
143
144
145
146
147

void mat_prodct(int rowl, int coll, double x*arrl,
int col2, double xarr2,

double *result) {

int diml_row, dim2_col, diml_col, coll_mod, row2_mod;

double sum, *arrlpt, =*arr2pt;

coll_mod = 0;
for (diml_row = 0; diml_row < rowl; diml_row++) {
row2_mod = 0;
for (dim2_col = 0; dim2_col < col2; dim2_col++) {
arrlpt = &arrl[coll_mod];
arr2pt = &arr2[row2_mod];
sum = 0;
for (diml_col = 0; diml_col < coll; diml_col++) {
sum += (*xarrlpt) * (*xarr2pt);
arrlpt++;

arr2pt+=col2;

}
xresult = sum;
result++;
row2_mod++;
}
coll_mod += coll;
}
}
/* ==== Matrix product functions tpose first argument ===== x

void mat_prodct_tposel(int rowl, int coll, double x*arrl,
int col2, double *arr2,

double xresult) {

int diml_row, diml_col, dim2_col, rowl_mod, row2_mod;

double sum, xarrlpt, *arr2pt;

rowl_mod = 0;

for (diml_col = 0;diml_col < coll;diml_col++) {
row2_mod = 0;
for (dim2_col = 0;dim2_col < col2;dim2_col++) {

arrlpt = &arrl[rowl_mod];

139

157
158
159
160
161
162
163
164
165
166
167
168
169
170

arr2pt = &arr2[row2_mod];

sum = 0;

for (diml_row = 0;diml_row < rowl;diml_row++) {
sum += (*xarrlpt) * (*xarr2pt);
arrlpt+=coll;

arr2pt+=col2;

}
xresult = sum;
result++;
row2_mod++;
}
rowl_mod++;
}
}
/* ==== Matrix product functions tpose second argument ===== x/

void mat_prodct_tpose2(int rowl, int coll, double x*arrl,
int row2, double *arr2,

double x*result) {

int diml_row, dim2_row, diml_col, coll_mod, col2_mod;

double sum, x*arrlpt, *arr2pt;

coll_mod = 0;
for (diml_row = 0; diml_row < rowl; diml_row++) {
col2_mod = 0;
for (dim2_row = 0; dim2_row < row2; dim2_row++) {
arrlpt = &arrl[coll_mod];
arr2pt = &arr2[col2_mod];
sum = 0;
for (diml_col = 0; diml_col < coll; diml_col++) {
sum += (*xarrlpt) * (*xarr2pt);
arrlpt++;
arr2pt++;
}
xresult = sum;
result++;
col2_mod += coll;
}

coll _mod += coll;

140

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

212

static PyObject xgen_pred_coef(PyObject *self, PyObject *args) {
PyArrayObject *lam_0, *lam_1, *delta_0, *delta_1l, *mu, *phi, *sigma,

xa_fin_array, *b_fin_array;

int lam_0_cols, lam_1_cols, mu_rows, mu_cols, phi_rows, phi_cols,

sigma_rows, sigma_cols, mat, bp_offset, bp_noffset, next_mat, i;

const int max_mat;

double *lam_0_c, *lam_1_c, *delta_0_c, *delta_1l_.c, *mu_c, *phi_c,

*sigma_c, divisor;

// Parse input arguments to function

if (!PyArg_ParseTuple(args, "0!0!0!0!0!0'O!1i",
&PyArray_Type, &lam_0, &PyArray_Type, &lam_1, &PyArray_Type, &delta_o,
&PyArray_Type, &delta_1l, &PyArray_Type, &mu, &PyArray_Type, &phi,
&PyArray_Type, &sigma, &max_mat))
return NULL;

if (NULL == lam_0 || NULL == lam_1 || NULL == delta_0 || NULL == delta_1 ||

NULL == mu || NULL == phi || NULL == sigma) return NULL;

// Get dimesions of all input arrays
lam_0O_cols=lam_0->dimensions[1];
lam_1_cols=lam_1->dimensions[1];

const int delta_l_rows=delta_l->dimensions[0];
mu_rows=mu->dimensions[0];
mu_cols=mu->dimensions[1];
phi_rows=phi->dimensions[0];
phi_cols=phi->dimensions[1];
sigma_rows=sigma->dimensions[0];

sigma_cols=sigma->dimensions[1];

// Create C arrays

lam_0_c = pymatrix_to_Carrayptrs(lam_0);
lam_1_c = pymatrix_to_Carrayptrs(lam_1);
delta_0_c = pymatrix_to_Carrayptrs(delta_0);

delta_1_c = pymatrix_to_Carrayptrs(delta_1);

141

142

228 mu_c = pymatrix_to_Carrayptrs(mu);

229 phi_c = pymatrix_to_Carrayptrs(phi);

230 sigma_c = pymatrix_to_Carrayptrs(sigma);

231

232 // Initialize collector arrays

233 npy_intp a_dims[2] = {max_mat, 1};

234 npy_intp b_dims[2] = {max_mat, delta_1l rows};

235 int b_pre_rows = delta_l_rows;

236

237 double a_pre[max_mat];

238 double b_pre[max_mat * delta_l_rows];

239 double *a_fin = (doublex) malloc(max_mat*sizeof(double));
240 double *b_fin = (doublex) malloc(max_mat * delta_l_rows x sizeof(double));
241

242 if (a_fin==NULL) {

243 printf("Failed to allocate memory for a_fin\n");
244 }

245 if (b_fin==NULL) {

246 printf("Failed to allocate memory for b_fin\n");
247 }

248

249 // Initialize intermediate arrays

250 // Elements for a_pre calculation

251 double dot_sig_lam_0_c[sigma_rows * lam_0_cols];

252 double diff_mu_sigl_c[mu_rows];

253 double dot_bpre_mu_sigl c[1];

254

255 double dot_b_pre_sig_c[sigma_cols];

256 double dot_b_sigt c[sigma_rows];

257 double dot_b_sst_bt_c[1];

258

259 // Elements for b_pre calculation

260 double dot_sig_lam_1_c[sigma_rows * lam_1_cols];

261 double diff_phi_sig_c[phi_rows * phi_cols];

262 double dot_phisig_b_c[phi_cols];

263

264 // Perform operations

265 a_pre[0] = -delta_0_c[0];

266 a_fin[0] = -a_pre[0];

267 for (1 = 0;1 < delta_l_rows;i++) {

b_pre[i] = -delta_1l_c[i];

b_fin[i] = -b_pre[il;

double b_pre_mat_c[b_pre_rows];

// Calculate unchanging elements
mat_prodct(sigma_rows, sigma_cols, sigma_c,
lam_0_cols, lam_0O_c,

dot_sig_lam_0_c);

mat_subtract(mu_rows, mu_cols, mu_c, dot_sig lam_0_c, diff_mu_sigl_c);

for (mat = 0; mat < (max_mat - 1); mat++) {

next_mat = mat + 1;

// Setup indexes
bp_offset = mat * delta_l_rows;

bp_noffset = next_mat * delta_1l_rows;

// Need this b_pre_mat for proper array reading
for (i =0; i < b_pre_rows; i++) {

b_pre_mat_c[i] = b_pre[bp_offset + i];

mat_prodct_tposel(b_pre_rows, 1, b_pre_mat_c,
1, diff_mu_sigl_c,

dot_bpre_mu_sigl_c);

mat_prodct_tposel(b_pre_rows, 1, b_pre_mat_c,
sigma_cols, sigma_c,
dot_b_pre_sig_c);

mat_prodct_tpose2(1l, sigma_cols, dot_b_pre_sig_c,
sigma_rows, sigma_c,
dot_b_sigt_c);

mat_prodct(1l, sigma_rows, dot_b_sigt_c,

1, b_pre_mat_c,

dot_b_sst_bt_c);

// Divisor to prepare for b_fin calculation

143

308
309
310

314

divisor = (double)l / ((double)next_mat + (double)l);

a_pre[next_mat] = a_pre[mat] + dot_bpre_mu_sigl c[0] +
(half % dot_b_sst_bt_c[0]) - delta_0_c[0];

a_fin[next_mat] = -a_pre[next_mat] * divisor;

// Calculate next b elements
mat_prodct(sigma_rows, sigma_cols, sigma_c,

lam_1_cols, lam_1_c,

dot_sig_lam_1 c);
mat_subtract(phi_rows, phi_cols, phi_c, dot_sig_lam_1_c,

diff_phi_sig_c);
mat_prodct_tposel(phi_rows, phi_cols, diff_phi_sig c,
1, b_pre_mat_c,

dot_phisig_b_c);

for (i = 0; i < delta_l_rows; i++) {
b_pre[bp_noffset + i] = dot_phisig b_c[i] - delta_1l_c[i];

b_fin[bp_noffset + i] = -b_pre[bp_noffset + i] * divisor;

// Free core arrays
free(lam_0_c);
free(lam_1_c);
free(delta_0_c);
free(delta_1l_c);
free(mu_c);
free(phi_c);

free(sigma_c);

a_fin_array = (PyArrayObject *) PyArray_SimpleNewFromData(2, a_dims,
NPY_DOUBLE,
a_fin);

PyArray_FLAGS (a_fin_array) |= NPY_OWNDATA;

b_fin_array = (PyArrayObject *) PyArray_SimpleNewFromData(2, b_dims,
NPY_DOUBLE,
b_fin);

PyArray_FLAGS (b_fin_array) |= NPY_OWNDATA;

144

348
349
350
351

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

PyObject *Result = Py_BuildValue("00", a_fin_array,
// Set proper reference counts for numpy arrays
Py_DECREF(a_fin_array);

Py_DECREF(b_fin_array);

return Result;

b_fin_array);

/* ==== Create Carray from PyArray
Assumes PyArray is contiguous in memory.
Memory is allocated!

double xpymatrix_to_Carrayptrs(PyArrayObject *arrayin) {
double *c, *a, *inc;

int i, mat_size, n, m;

n

arrayin->dimensions[0];
m = arrayin->dimensions[1];

mat_size = n *x m;

c = malloc(n * m * sizeof(x*c));
a = (double *) arrayin->data;
inc = c;

for (i=0;i < mat_size;i++) {

*C = *a;
C++;
a++;
}
return inc;
}
/* ==== Free a double xvector (vec of pointers)

*/

void free_Carrayptrs(double **xv, int rows) {
int i;
for (i = 0; 1 < rows; i++) {
free(x(v + 1));
}

free(v);

*/

145

146

388 void free_CarrayfPy(double *xv) {
389 free((charx) v);
390 3}

147

Listing D.2: Affine package

1
2 The class provides Affine, intended to solve affine models of the
3 term structure

4 This class inherits from the statsmodels LikelihoodModel class

5 non

6

7 import numpy as np

8 import statsmodels.api as sm

9 import pandas as pa

10 import scipy.linalg as la

11 import re

12

13 from numpy import linalg as nla

14 from numpy import ma

15 from scipy.optimize import fmin_1_bfgs_b

16 from statsmodels.tsa.api import VAR

17 from statsmodels.base.model import LikelihoodModel

18 from statsmodels.regression.linear_model import OLS

19 from statsmodels.tools.numdiff import approx_hess, approx_fprime
20 from statsmodels.tsa.kalmanf.kalmanfilter import StateSpaceModel, kalmanfilter
21 from operator import itemgetter
22 from scipy import optimize

23 from util import retry

24

25 try:

26 from . import _C_extensions

27 avail_fast_gen_pred = True

28 except:

29 avail_fast_gen_pred = False

30

R
32 # Create affine class system #
R s e e
34

35 class Affine(LikelihoodModel, StateSpaceModel):
36 e

37 Provides affine model of the term structure

38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78

def __init__(self, yc_data, var_data, lags, negs, mats, lam_0_e, lam_1l_e,

delta_0_e, delta_l_ e, mu_e, phi_e, sigma_e, latent=0,

no_err=None, adjusted=False, use_C_extension=True):

Attempts to instantiate an affine model object
yc_data : DataFrame

yield curve data
var_data : DataFrame

data for var model
lags : int

number of lags for VAR system

Only respected when adjusted=False
neqs : int

Number of equations

Only respected when adjusted=True
mats : list of int

Maturities in periods of yields included in yc_data
latent: int

Number of latent variables to estimate

no_err : list of ints

list of the column indexes of yields to be measured without error

ex: [0, 3, 4]

(1st, 4th, and 5th columns in yc_data to be estimated without

error)

For all estimate parameter arrays:

rar

elements marked with "E’ or ’'e’ are estimated

n = number of variables in fully-specified VAR(1l) at t

lam_0_e : Numpy masked array, n x 1
constant vector of risk pricing equation
lam_1_e : Numpy masked array, n x n
parameter array of risk pricing equation
delta_0_e : Numpy masked array, 1 x 1
constant in short-rate equation
delta_1_e : Numpy masked array, n x 1
parameter vector in short-rate equation
mu_e : Numpy masked array, n x 1
constant vector for VAR process

phi_e : Numpy masked array, n x n

148

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

parameter a
sigma_e : Numpy

covariance
self.yc_data =
self.var_data =
self.yc_names =
self.num_yields
self.yobs = len
self.names = na
k_ar = self.k a
if negs:

self.neqs =
else:

neqs = self

self.latent = 1

self.lam_0_e =
self.lam_1l e =
self.delta_0_e

self.delta_1l_e

self.mu_e = mu_
self.phi_e = ph

self.sigma_e =

generates mats: list of mats in yield curve data

self.mats = mat

self.max_mat =

if latent:
self.lat =
else:

self.lat

self.no_err = n

if no_err:

parameters for identification of yields measured without error

self.err = list(set(range(len(mats))).difference(no_err))

rray for VAR process
masked array, n x n

array for VAR process

yc_data

var_data
yc_data.columns

= len(yc_data.columns)
(yc_data)
mes = var_data.columns

r = lags

neqs

.neqs = len(names)

atent

lam_0_e

lam_1_e

= delta_0_e

= delta_1l_e

e

ie

sigma_e

S

max (mats)

latent

o_err

149

150

self.no_err_mat, self.err_mat = self._gen_mat_list()
gen position list for processing list input to solver

self.noerr_cols, self.err_cols = self._gen_col_names()

whether to use C extension

if avail_fast_gen_pred and use_C_extension:
self.fast_gen_pred = True

else:

False

self.fast_gen_pred

if adjusted:
assert len(yc_data.dropna(axis=0)) ==
len(var_data.dropna(axis=0)), \
"Number of non-null values unequal in VAR and yield curve data"
var_data_vert = self.var_data_vert = var_data[\
var_data.columns[:-neqs]]
var_data_vertml = self.var_data_vertml = var_data[\

var_data.columns[neqs:]]

else:
assert len(yc_data.dropna(axis=0)) == len(var_data.dropna(axis=0)) \
- kear, \

"Number of non-null values unequal in VAR and yield curve data"

Get VAR input data ready
x_t_na = var_data.copy()
for lag in range(1l, k_.ar + 1):
for var in var_data.columns:
x_t_na[str(var) + " m’ + str(lag)] =\
pa.Series(var_data[var].values[:-(lag)],

index=var_data.index[lag:])

var_data_vert = self.var_data_vert = x_t_na.dropna(\
axis=0)[x_t_na.columns[:-neqs]]
var_data_vertml = self.var_data_vertml = x_t_na.dropna(\

axis=0)[x_t_na.columns[neqs:]]

self.var_data_vertc = self.var_data_vert.copy()
self.var_data_vertc.insert (0, "constant",

np.ones((len(var_data_vert), 1)))

def

151

self.periods = len(self.var_data_vert)
self.guess_length = self._gen_guess_length()

assert self.guess_length > 0, "guess length must be at least 1"

final size checks

self._size checks()

super(Affine, self).__init__(var_data_vert)

solve(self, guess_params, method, alg="newton", attempts=5,
maxfev=10000, maxiter=10000, ftol=le-8, xtol=le-8, xil0e=[0],
ntrain=1, penalty=False, upperbounds=None, lowerbounds=None,
full_output=False, *xkwargs):

Returns tuple of arrays

Attempt to solve affine model based on instantiated object.

Parameters
guess_params : list
List of starting values for parameters to be estimated

In row-order and ordered as masked arrays

method : string
solution method
nls = nonlinear least squares
ml = direct maximum likelihood
kalman = kalman filter derived maximum likelihood
alg : str {’newton’,’'nm’,'bfgs’, 'powell’,’'cg’, or 'ncg’}
algorithm used for numerical approximation

’

Method can be ’'newton’ for Newton-Raphson, 'nm’ for Nelder-Mead,
"bfgs’ for Broyden-Fletcher-Goldfarb-Shanno, ’'powell’ for modified
Powell’s method, 'cg’ for conjugate gradient, or ’'ncg’ for Newton-
conjugate gradient. ‘method‘ determines which solver from
scipy.optimize is used. The explicit arguments in ‘fit‘’ are passed
to the solver. Each solver has several optional arguments that are
not the same across solvers. See the notes section below (or

scipy.optimize) for the available arguments.

attempts : int

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

152

Number of attempts to retry solving if singular matrix Exception

raised by Numpy

scipy.optimize params
maxfev : int

maximum number of calls to the function for solution alg
maxiter : int

maximum number of iterations to perform
ftol : float

relative error desired in sum of squares
xtol : float

relative error desired in the approximate solution
full_output : bool

non_zero to return all optional outputs

Returns

Returns tuple contains each of the parameter arrays with the optimized
values filled in:

lam_0 : numpy array

lam_1 : numpy array

delta_0 : numpy array

delta_1l : numpy array

mu : numpy array

phi : numpy array

sigma : numpy array

The final A, B, and parameter set arrays used to construct the yields
a_solve : numpy array
b_solve : numpy array

solve_params : list

Other results are also attached, depending on the solution method
if 'nls’:
solv_cov : numpy array
Contains the implied covariance matrix of solve_params
if 'ml’ and 'latent’ > 0:
var_data_wunob : numpy

The modified factor array with the unobserved factors attached

k_ar = self.k_ar

neqs = self.negs

mats = self.mats
latent = self.latent
yc_data = self.yc_data

var_data_vert = self.var_data_vert

if method == "kalman" and not self.latent:
raise NotImplementedError(\

"Kalman filter not supported with no latent factors")

elif method == "nls":

func = self._affine_pred

var_data_vert_tpose = var_data_vert.T

need to stack for scipy nls

yield_stack = np.array(yc_data).reshape(-1, order="F").tolist()

run optimization

solver = retry(optimize.curve_fit, attempts)

reslt = solver(func, var_data_vert_tpose, yield_stack, pO=guess_params,
maxfev=maxfev, xtol=xtol, ftol=ftol,
full_output=True, *xkwargs)

solve_params = reslt[0]

solv_cov = reslt[1]

elif method == "ml":
assert len(self.no_err) == self.lat, \
"Number of columns estimated without error must match " + \

"number of latent variables"

if method == "bfgs-b":
func = self.nloglike
bounds = self._gen_bounds(lowerbounds, upperbounds)
reslt = fmin_1_bfgs_b(x0=guess_params, approx_grad=True,
bounds=bounds, m=1e7, maxfun=maxfev,
maxiter=maxiter, x*xkwargs)
solve_params = reslt[0]

score = self.score(solve_params)

else:

reslt = self.fit(start_params=guess_params, method=alg,

153

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

154

maxiter=maxiter, maxfun=maxfev, xtol=xtol,
ftol=ftol, *xkwargs)

solve_params = reslt.params

score = self.score(solve_params)

self.estimation_mlresult = reslt

elif method == "kalman":
self.fit_kalman(start_params=guess_params, method=alg, xil0=xilO0,
ntrain=ntrain, penalty=penalty,
upperbounds=upperbounds, lowerbounds=lowerbounds,
**xkwargs)
solve_params = self.params

score = self.score(solve_params)

lam_0, lam_1, delta_0, delta_1l, mu, phi, sigma = \

self.params_to_array(solve_params)

a_solve, b_solve = self.gen_pred_coef(lam_0, lam_1, delta_0, delta_1,

mu, phi, sigma)

if latent:
lat_ser, jacob, yield_errs = self._solve_unobs(a_in=a_solve,
b_in=b_solve)

var_data_wunob = var_data_vert.join(lat_ser)

attach solved parameter arrays as attributes of object
self.lam_O_solve = lam_0

self.lam_1_solve = lam_1

self.delta_0_solve = delta_0

self.delta_1l_solve = delta_1

self.mu_solve = mu

self.phi_solve = phi

self.sigma_solve = sigma

self.solve_params = solve_params
if latent:
return lam_0, lam_1, delta_0, delta_1, mu, phi, sigma, a_solve, \

b_solve, solve_params, var_data_wunob

elif method == "nls":

155

319 return lam_0, lam_1, delta_0, delta_l, mu, phi, sigma, a_solve, \
320 b_solve, solv_cov

321

322 elif method == "ml":

323 return lam_0, lam_1, delta_0, delta_l, mu, phi, sigma, \
324 a_solve, b_solve, solve_params
325

326 def score(self, params):

327 e

328 Return the gradient of the loglike at params
329

330 Parameters

331 e

332 params : list

333

334 Notes

335 -

336 Return numerical gradient

337 e

338 loglike = self.loglike

339 return approx_fprime(params, loglike, epsilon=1le-8)
340

341 def hessian(self, params):

342 e

343 Returns numerical hessian.

344 e

345 loglike = self.loglike

346 return approx_hess(params, loglike)

347

348 def std_errs(self, params):

349 B

350 Return standard errors

351 e

352 hessian = self.hessian(params)

353 std_err = np.sqrt(-np.diag(la.inv(hessian)))
354 return std_err

355

356 def loglike(self, params):

357 e

358 Returns float

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Loglikelihood used in latent factor models

Parameters

params : list

Values of parameters to pass into mask

Returns

loglikelihood : float

lat self.lat

per = self.periods
var_data_vert = self.var_data_vert

var_data_vertml = self.var_data_vertml

lam_0, lam_1, delta_0, delta_1, mu, phi, \

sigma = self.params_to_array(params)

if self.fast_gen_pred:

solve_a, solve_b = self.opt_gen_pred_c

else:

solve_a, solve_b = self.gen_pred_coef(

first solve for unknown part of informat

lat_ser, jacob, yield_errs = self._solve_

here is the likelihood that needs to be
use two matrices to take the difference
var_data_use = var_data_vert.join(lat_ser)

var_data_useml = var_data_vertml.join(lat_

errors = var_data_use.values.T - mu - np.d

sign, j_logdt = nla.slogdet(jacob)

ed elements of array

oef(lam_0, lam_1, delta_0,

delta_1, mu, phi, sigma)

lam_0, lam_1, delta_o0,

delta_1l, mu, phi, sigma)

ion vector

unobs(a_in=solve_a,

b_in=solve_b)

used

[1:]
ser.shift())[1:]

ot(phi,

var_data_useml.values.T)

156

def

def

157

j_slogdt = sign * j_logdt

sign, sigma_logdt = nla.slogdet(np.dot(sigma, sigma.T))

sigma_slogdt = sign * sigma_logdt

var_yields_errs = np.var(yield_errs, axis=1)

like = -(per - 1) * j_slogdt - (per - 1) * 1.0 / 2 x sigma_slogdt - \
1.0 / 2 * np.sum(np.dot(np.dot(errors.T, \
la.inv(np.dot(sigma, sigma.T))), errors)) - (per - 1) / 2.0 x \
np.log(np.sum(var_yields_errs)) - 1.0 / 2 x \

np.sum(yield_errs*x2/var_yields_errs[None].T)

return like

nloglike(self, params):

Return negative loglikelihood

Negative Loglikelihood used in latent factor models
like = self.loglike(params)

return -like

gen_pred_coef(self, lam_0, lam_1, delta_0, delta_1l, mu, phi, sigma):
Returns tuple of arrays

Generates prediction coefficient vectors A and B

Parameters

lam_0 : numpy array
lam_1 : numpy array
delta_0 : numpy array
delta_1l : numpy array
mu : numpy array

phi : numpy array

sigma : numpy array

Returns

439
440
441
449
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
ATT
AT8

def

a_solve : numpy array
Array of constants relating factors to yields
b_solve : numpy array
Array of coeffiencts relating factors to yields
max_mat = self.max_mat
b_width = self.k_ar * self.neqs + self.lat
half = float(1l)/2
generate predictions
a_pre = np.zeros((max_mat, 1))
a_pre[0] = -delta_0
b_pre = np.zeros((max_mat, b_width))

b_pre[0] = -delta_1[:,0]

n_inv = float(l) / np.add(range(max_mat), 1).reshape((max_mat, 1))
a_solve = -a_pre.copy()

b_solve = -b_pre.copy()

for mat in range(max_mat-1):

a_pre[mat + 1] = (a_pre[mat] + np.dot(b_pre[mat].T, \
(mu - np.dot(sigma, lam_0))) + \
(half)*np.dot(np.dot(np.dot(b_pre[mat].T, sigma),
sigma.T), b_pre[mat]) - delta_0)[0][0]

a_solve[mat + 1] = -a_pre[mat + 1] * n_inv[mat + 1]

b_pre[mat + 1] = np.dot((phi - np.dot(sigma, lam_1)).T, \

b_pre[mat]) - delta_1[:, 0]

b_solve[mat + 1] = -b_pre[mat + 1] * n_inv[mat + 1]

return a_solve, b_solve

opt_gen_pred_coef(self, lam_0, lam_1, delta_0, delta_1l, mu, phi,
sigma):
Returns tuple of arrays

Generates prediction coefficient vectors A and B in fast C function

Parameters

lam_0 : numpy array

lam_1 : numpy array

158

def

delta_0 : numpy array
delta_1l : numpy array
mu : numpy array
phi : numpy array

sigma : numpy array

Returns

a_solve : numpy array

Array of constants relating factors to yields

b_solve : numpy array

Array of coeffiencts relating factors to yields

max_mat = self.max_mat

return _C_extensions.gen_pred_coef(lam_0, lam_1, delta_0, delta_1, mu,

params_to_array(self, params,

Returns tuple of arrays

Process params input into appropriate arrays

Parameters

params : list

list of values to fill in masked values

return_mask : boolean

Returns

lam_0 : numpy array
lam_1 : numpy array
delta_0 : numpy array
delta_1 : numpy array
mu : numpy array

phi : numpy array

sigma : numpy array

phi, sigma, max_mat)

return_mask=False):

159

519

533
534
535

537
538
539

def

160

lam_0_e = self.lam_0_e.copy()
lam_1_e = self.lam_1_e.copy()
delta_0_e = self.delta_0_e.copy()
delta_1l e = self.delta_1l_e.copy()
mu_e = self.mu_e.copy()

phi_e = self.phi_e.copy()

sigma_e = self.sigma_e.copy()

all_arrays = [lam_0_e, lam_1_e, delta_0_e, delta_l_e, mu_e, phi_e,

sigma_e]

arg_sep = self._gen_arg_sep([ma.count_masked(struct) for struct in \

all_arrays])

for pos, struct in enumerate(all_arrays):
struct[ma.getmask(struct)] = params[arg_sep[pos]:arg_sep[pos + 1]]
if not return_mask:
all_arrays[pos] = np.ascontiguousarray(struct,

dtype=np.float64)

return tuple(all_arrays)

params_to_array_zeromask(self, params):

Returns tuple of arrays + list

Process params input into appropriate arrays by setting them to zero if
param in params in zero and removing them from params, otherwise they

stay in params and value remains masked

Parameters
params : list

list of values to fill in masked values

Returns

lam_0 : numpy array
lam_1 : numpy array
delta_0 : numpy array

delta_1l : numpy array

161

559 mu : numpy array

560 phi : numpy array

561 sigma : numpy array

562 guesses : list

563 List of remaining params after filtering and filling those that
564 were zero

565 e

566 paramcopy = params|[:]

567 lam_0_e = self.lam_0_e.copy()

568 lam_1_e = self.lam_1_e.copy()

569 delta_0_e = self.delta_0_e.copy()

570 delta_l_e = self.delta_1l_e.copy()

571 mu_e = self.mu_e.copy()

572 phi_e = self.phi_e.copy()

573 sigma_e = self.sigma_e.copy()

574

575 all_arrays = [lam_0O_e, lam_1l_e, delta_0_e, delta_l e, mu_e, phi_e,
576 sigma_e]

bTT

578 arg_sep = self._gen_arg_sep([ma.count_masked(struct) for struct in \
579 all_arrays])

580

581 guesses = []

582 # check if each element is masked or not

583 for struct in all_arrays:

584 it = np.nditer(struct.mask, flags=['multi index’])

585 while not it.finished:

586 if it[0]:

587 val = paramcopy.pop(0)

588 if val ==

589 struct[it.multi_index] = 0

590 else:

591 guesses.append(val)

592 it.iternext()

593

594 return tuple(all_arrays + [guesses])

595

596 def _updateloglike(self, params, xil®, ntrain, penalty, upperbounds,
597 lowerbounds, F, A, H, Q, R, history):

598 e

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638

Returns combined loglikelihood for kalman filter

Ignores F,A,H,Q,R,

paramsorig = params

if penalty:
params = np.min((np.max((lowerbounds, params), axis=0),upperbounds),
axis=0)

mats = self.mats

per = self.periods

lat self.lat

yc_data = self.yc_data

X = self.var_data_vertc

obsdim = self.neqs * self.k_ar

dim = obsdim + lat

lam_0, lam_1, delta_0, delta_1l, mu, phi, sigma = \

self.params_to_array(params=params)

solve_a, solve_b = self.opt_gen_pred_coef(lam_0, lam_1, delta_o,

delta_1l, mu, phi, sigma)

F = phi[-lat:, -lat:]

o
1]

sigma[-lat:, -lat:]

pel
]

np.zeros((1, 1))

initialize kalman to zero

loglike = 0

calculate likelihood for each maturity estimated
for mix, mat in enumerate(self.mats):
obsparams = np.concatenate((solve_a[mat-1],
solve_b[mat-1][:-lat]))
A = obsparams
H = solve_b[mat-1][-lat:]
y = yc_data.values[:, mix]

loglike += kalmanfilter(F, A, H, Q, R, y, X, xil0, ntrain, history)

162

163

if penalty:

loglike += penalty * np.sum((paramsorig-params)**2)

return loglike

def _solve_unobs(self, a_in, b_in):

Solves for unknown factors

Parameters
a_in : list of floats (periods)

List of elements for A constant in factors -> yields relationship
b_in : array (periods, neqs * k_ar + lat)

Array of elements for B coefficients in factors -> yields

relationship

Returns

var_data_c : DataFrame
VAR data including unobserved factors

jacob : array (neqs * k_ar + num_yields)x**2
Jacobian used in likelihood

yield_errs : array (num_yields - lat, periods)
The errors for the yields estimated with error

yc_data = self.yc_data

var_data_vert = self.var_data_vert

yc_names = self.yc_names

num_yields = self.num_yields

names = self.names

k_ar = self.k_ar

neqs = self.neqgs

lat = self.lat

no_err = self.no_err

err = self.err

no_err_mat = self.no_err_mat

err_mat = self.err_mat

noerr_cols = self.noerr_cols

err_cols = self.err_cols

679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

164

yc_data_names = yc_names.tolist()
no_err_num = len(noerr_cols)

err_num = len(err_cols)

need to combine the two matrices

these matrices will collect the final values
a_all = np.zeros([num_yields, 1])

b_all_obs = np.zeros([num_yields, neqs * k_ar])

b_all_unobs = np.zeros([num_yields, lat])

a_sel = np.zeros([no_err_num, 1])
b_sel_obs = np.zeros([no_err_num, neqs * k_ar])
b_sel_unobs = np.zeros([no_err_num, lat])
for ix, y_pos in enumerate(no_err):
a_sel[ix, 0] = a_in[no_err_mat[ix] - 1]
b_sel_obs[ix, :] = b_in[no_err_mat[ix] - 1, :neqs * k_ar]

b_sel_unobs[ix, :] = b_in[no_err_mat[ix] - 1, neqgs * k_ar:]

a_all[y_pos, 0] = a_in[no_err_mat[ix] - 1]
b_all_obs[y_pos, :] = b_in[no_err_mat[ix] - 1][:neqs * k_ar]

b_all_unobs[y_pos, :]1 = b_in[no_err_mat[ix] - 1][neqgs * k_ar:]

now solve for unknown factors using long arrays
unobs = np.dot(la.inv(b_sel_unobs),
yc_data.filter(items=noerr_cols).values.T - a_sel - \

np.dot(b_sel_obs, var_data_vert.T))

re-initialize a_sel, b_sel_obs, and b_sel_obs

a_sel = np.zeros([err_num, 1])

b_sel_obs = np.zeros([err_num, neqs * k_ar])

b_sel_unobs = np.zeros([err_num, lat])

for ix, y_pos in enumerate(err):
a_all[y_pos, 0] = a_sell[ix, 0] = a_in[err_mat[ix] - 1]
b_all_obs[y_pos, :] = b_sel_obs[ix, :] =\

b_in[err_mat[ix] - 1][:neqgs * k_ar]

b_all_unobs[y_pos, :]1 = b_sel_unobs[ix, :] =\

b_in[err_mat[ix] - 1]l[neqs * k_ar:]

yield_errs = yc_data.filter(items=err_cols).values.T - a_sel - \

def

165

np.dot(b_sel_obs, var_data_vert.T) - \

np.dot(b_sel_unobs, unobs)

lat_ser = pa.DataFrame(index=var_data_vert.index)
for factor in range(lat):
lat_ser["latent " + str(factor)] = unobs[factor, :]

meas_mat = np.zeros((num_yields, err_num))

for col_index, col in enumerate(err_cols):
row_index = yc_data_names.index(col)

meas_mat[row_index, col_index] = 1

jacob = self._construct_J(b_obs=b_all_obs, b_unobs=b_all_unobs,

meas_mat=meas_mat)

return lat_ser, jacob, yield_errs

_affine_pred(self, data, *params):
Function based on lambda and data that generates predicted yields
data : DataFrame
params : tuple of floats
parameter guess
mats = self.mats

yc_data = self.yc_data

lam_0, lam_1, delta_0, delta_1, mu, phi, sigma \

= self.params_to_array(params)

if self.fast_gen_pred:
solve_a, solve_b = self.opt_gen_pred_coef(lam_0, lam_1, delta_o,

delta_1, mu, phi, sigma)
else:
solve_a, solve_b = self.gen_pred_coef(lam_0, lam_1, delta_o,

delta_1, mu, phi, sigma)

pred = []

for i in mats:

pred.extend((solve_a[i-1] + np.dot(solve_b[i-1], data)).tolist())

return pred

def _gen_arg_sep(self, arg_lengths):

Generates list of positions

arg_sep = [0]

pos = 0

for length in arg_lengths:
arg_sep.append(length + pos)
pos += length

return arg_sep

def _gen_col_names(self):

Generate column names for err and noerr

yc_names = self.yc_names

no_err = self.no_err

err = self.err

noerr_cols = []

err_cols = []

for index in no_err:
noerr_cols.append(yc_names[index])

for index in err:
err_cols.append(yc_names[index])

return noerr_cols, err_cols

def _gen_mat_list(self):

Generate list of mats measured with and wihout error
yc_names = self.yc_names

no_err = self.no_err

mats = self.mats

err = self.err

no_err_mat = []

166

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838

err_mat = []

for index in no_err:
no_err_mat.append(mats[index])
for index in err:

err_mat.append(mats[index])

return no_err_mat, err_mat

def _construct_J(self, b_obs, b_unobs, meas_mat):

Consruct jacobian matrix
meas_mat : array
k_ar = self.k_ar

neqs

self.neqs
lat = self.lat
num_yields = self.num_yields

num_obsrv = neqs * k_ar

msize = neqs * k_ar + num_yields
jacob = np.zeros([msize, msize])

jacob[:num_obsrv, :num_obsrv] = np.identity(neqs*k_ar)
jacob[num_obsrv:, :num_obsrv] = b_obs
jacob[num_obsrv:, num_obsrv:num_obsrv + lat] = b_unobs

jacob[num_obsrv:, num_obsrv + lat:] = meas_mat

return jacob

def _gen_guess_length(self):

lam_0_e = self.lam_0O_e
lam_1_e = self.lam_1l_e
delta_0_e = self.delta_0_e
delta_l_e = self.delta_l_e
mu_e = self.mu_e

phi_e = self.phi_e

sigma_e = self.sigma_e

all_arrays = [lam_0_e, lam_1_e, delta_0_e, delta_l_e, mu_e, phi_e,

167

839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878

count

sigma_e]

=0

for struct in all_arrays:

count += ma.count_masked(struct)

return count

def _size_

checks(self):

Run size checks on parameter arrays

dim = self.neqs * self.k_ar + self.lat
assert np.shape(self.lam_0_e) == (dim, 1), "Shape of lam 0 e incorrect”
assert np.shape(self.lam_1_e) == (dim, dim), \

"Shape of lam_1l_e incorrect"

assert np.shape(self.delta_1l_e) == (dim, 1), "Shape of delta 1 e" \

"incorrect"

assert np.shape(self.mu_e) == (dim, 1), "Shape of mu incorrect”

assert np.shape(self.phi_e) == (dim, dim), \

"Shape of phi_e incorrect"

assert np.shape(self.sigma_e) == (dim, dim), \

"Shape of sig_e incorrect"

def _gen_bounds(self, lowerbounds, upperbounds):

if lowerbounds or upperbounds:

bounds = []

for bix in range(max(len(lowerbounds), len(upperbounds))):

else:

tbound = []
if lowerbounds:
tbound.append(lowerbounds[bix])
else:
tbound.append(-np.inf)
if upperbounds:
tbound.append (upperbounds[bix])
else:
tbound.append(np.inf)
bounds.append(tuple(tbound))

168

169

879 return None

170

Listing D.3: Unit tests

Affine unit tests

For the following in the docs:

number of lags in VAR process governing pricing kernel

0

number of observed factors in VAR process governing pricing kernel

u

number of unobserved, latent factors in VAR process governing

pricing kernel

1

2

3

4

5 L
6

7

8

g nun
10 from unittest import TestCase

11

12 import unittest

13 import numpy as np

14 import numpy.ma as ma

15 import pandas as pa

16

17 from affine.constructors.helper import make_nomask
18 from affine.model.affine import Affine

19

20 # parameters for running tests

21 test_size = 100

22 lags = 4

23 negs = 5

24 nyields = 5

25 latent =1

26

27 class TestInitialize(TestCase):

28 e

29 Tests for methods related to instantiation of a new Affine object
30 e

31 def setUp(self):

32

33 np.random.seed(100)

34

35 # initialize yield curve and VAR observed factors

36 yc_data_test = pa.DataFrame(np.random.random((test_size - lags,
37 nyields)))

38 var_data_test = pa.DataFrame(np.random.random((test_size, neqs)))

39
40
41
5
43
44
46

171

mats = list(range(1l, nyields + 1))

initialize masked arrays
self.dim = dim = lags * neqs
lam_0 = make_nomask([dim, 1])
lam_1 = make_nomask([dim, dim])
delta_0 = make_nomask([1, 1])
delta_1l = make_nomask([dim, 1])
mu = make_nomask([dim, 1])

phi = make_nomask([dim, dim])

sigma = make_nomask([dim, dim])

Setup some of the elements as non-zero

This sets up a fake model where only lambda_0 and lambda_1 are
estimated

lam_0[:neqs] = ma.masked

lam_1[:neqs, :neqs] = ma.masked

delta_0[:, :] = np.random.random(1)

delta_1[:neqs] = np.random.random((neqs, 1))

mu[:neqs] = np.random.random((neqs, 1))

phi[:neqs, :]1 = np.random.random((neqs, dim))

sigma[:, :] = np.identity(dim)

self.mod_kwargs = {
"yc_data’: yc_data_test,
‘var_data’: var_data_test,
"lags’: lags,
"negs’: neqgs,
"'mats’: mats,
"lam_0_e’: lam_0,
"lam_ 1. e’: lam_1,
"delta 0 e’: delta_o,
"delta 1 e’: delta_1,
‘mu_e’: mu,
"phi e’: phi,

"sigma e’: sigma

def test_create_correct(self):

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

def

def

def

Tests whether __init successfully initializes an Affine model object.
If the Affine object does not successfully instantiate, then this test
fails, otherwise it passes.

model = Affine(x*xself.mod_kwargs)

self.assertIsInstance(model, Affine)

test_wrong_lamO@_size(self):

Tests whether size check asserts for lam_0_e is implemented
correctly. If the lam_0_e parameter is not of the correct size,
which is (L * 0 + U) by 1, then an assertion error should be raised,
resulting in a passed test. If lam_0_e is of the incorrect size and
no assertion error is raised, this test fails.

mod_kwargs = self.mod_kwargs

lam_0_e of incorrect size

mod_kwargs['lam 0 e’] = make_nomask([self.dim - 1, 1])

self.assertRaises(AssertionError, Affine, *xmod_kwargs)

test_wrong_laml_size(self):

Tests whether size check asserts for lam_1_e is implemented correctly.
If the lam_1_e parameter is not of the correct size, which is (L

* 0+ U) by (L *x 0+ U), then an assertion error should be raised,
resulting in a passed test. If lam_1l_e is of the incorrect size and no
assertion error is raised, this test fails.

mod_kwargs = self.mod_kwargs

lam_1_e of incorrect size

mod_kwargs['lam 1 e’] = make_nomask([self.dim - 1, self.dim + 1])

self.assertRaises(AssertionError, Affine, xxmod_kwargs)

test_wrong_delta_1_size(self):

Tests whether size check asserts for delta_l_e is implemented
correctly. If the delta_l_e parameter is not of the correct size, which
is (L * 0 + U) by 1, then an assertion error should be raised,
resulting in a passed test. If delta_l_e is of the incorrect size and

no assertion error is raised, this test fails.

172

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

def

def

def

173

mod_kwargs = self.mod_kwargs
delta_1l_e of incorrect size
mod_kwargs[’'delta 1 e’] = make_nomask([self.dim + 1, 1])

self.assertRaises(AssertionError, Affine, **mod_kwargs)

test_wrong_mu_e_size(self):

Tests whether size check asserts for mu_e is implemented correctly. If
the mu_e parameter is not of the correct size, which is (L * 0 + U) by
1, then an assertion error should be raised, resulting in a passed
test. If mu_e is of the incorrect size and no assertion error is
raised, this test fails.

mod_kwargs = self.mod_kwargs

mu_e of incorrect size

mod_kwargs['mu e’] = make_nomask([self.dim + 2, 1])

self.assertRaises(AssertionError, Affine, *xmod_kwargs)

test_wrong_phi_e_size(self):

Tests whether size check asserts for phi_e is implemented correctly.

If the phi_e parameter is not of the correct size, which is (L * 0 + U)
by (L * 0 + U), then an assertion error should be raised, resulting in

a passed test. If phi_e is of the incorrect size and no assertion error
is raised, this test fails.

mod_kwargs = self.mod_kwargs

phi_e of incorrect size

mod_kwargs[’'phi_e’] = make_nomask([self.dim + 2, self.dim - 1])

self.assertRaises(AssertionError, Affine, *xmod_kwargs)

test_wrong_sigma_e_size(self):

Tests whether size check asserts for sigma_e is implemented correctly.
If the sigma_e parameter is not of the correct size, which is (L

* 0+ U) by (L *x 0+ U), then an assertion error should be raised,
resulting in a passed test. If sigma_e is of the incorrect size and no

assertion error is raised, this test fails.

def

def

def

174

mod_kwargs = self.mod_kwargs
sigma_e of incorrect size
mod_kwargs['sigma e’] = make_nomask([self.dim - 2, self.dim])

self.assertRaises(AssertionError, Affine, **mod_kwargs)

test_var_data_nulls(self):

Tests if nulls appear in var_data whether an AssertionError is raised.
If any nulls appear in var_data and an AssertionError is raised, the
test passes. Otherwise if nulls are passed in and an AssertionError is
not raised, the test fails.

mod_kwargs = self.mod_kwargs

replace a value in var_data with null

mod_kwargs['var_data’][1, 1] = np.nan

self.assertRaises(AssertionError, Affine, **mod_kwargs)

test_yc_data_nulls(self):

Tests if nulls appear in yc_data whether AssertionError is raised. If
any nulls appear in yc_data and an AssertionError is raised, the test
passes. Otherwise if nulls are passed in and an AssertionError is not
raised, the test fails.

mod_kwargs = self.mod_kwargs

replace a value in var_data with null

mod_kwargs[’'yc data’][1, 1] = np.nan

self.assertRaises(AssertionError, Affine, **mod_kwargs)

test_no_estimated_values(self):

Tests if AssertionError is raised if there are no masked values in
the estimation arrays, implying no parameters to be estimated. If
the object passed in has no estimated values and an AssertionError
is raised, the test passes. Otherwise if no estimated values are
passed in and an AssertionError is not raised, the test fails.
mod_kwargs = self.mod_kwargs

replace a value in var_data with null

mod_kwargs['lam 0 e’] = make_nomask([self.dim, 1])

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

mod_kwargs[’lam 1 e’] = make_nomask([self.dim, self.dim])

self.assertRaises(AssertionError, Affine, *xmod_kwargs)

class TestEstimationSupportMethods(TestCase):

Tests for support methods related to estimating models

def setUp(self):

np.random.seed(1600)

initialize yield curve and VAR observed factors

yc_data_test = pa.DataFrame(np.random.random((test_size - lags,
nyields)))

var_data_test = pa.DataFrame(np.random.random((test_size, neqs)))

mats = list(range(1l, nyields + 1))

initialize masked arrays

self.dim = dim = lags * neqs + latent
lam_0 = make_nomask([dim, 1])

lam_1 = make_nomask([dim, dim])
delta_0 = make_nomask([1, 1])

delta_1 = make_nomask([dim, 1])

mu = make_nomask([dim, 1])

phi = make_nomask([dim, dim])

sigma = make_nomask([dim, dim])

Setup some of the elements as non-zero

This sets up a fake model where only lambda_0 and lambda_1 are
estimated

lam_0O[:neqs] = ma.masked

lam_0O[-latent:] = ma.masked

lam_1[:neqgs, :neqgs] = ma.masked
lam_1[-latent:, -latent:] = ma.masked
delta_0[:, :] = np.random.random(1)
delta_1[:neqs] = np.random.random((neqs, 1))
mu[:neqs] = np.random.random((neqs, 1))
phi[:neqs, :1 = np.random.random((neqs, dim))

sigmal[:, :] = np.identity(dim)

175

239
240
241
242
243
244
245
246
247
248
249
250
251

def

def

def

self.mod_kwargs = {
"yc data’: yc_data_test,
‘var_data’: var_data_test,
"lags’: lags,
"negs’: neqgs,
"'mats’: mats,
"lam_0_e’: lam_0,
"lam_1_e’: lam_1,
"delta 0 e’: delta_o,

‘delta 1 e’: delta_1,

’ ’

mu_e’: mu,

"phi e’: phi,
"sigma e’: sigma,
"latent’: latent,

"no_err’: [1]

self.guess_params = np.random.random((neqs**2 + neqs + (2 * latent),)

).tolist()

self.affine_obj = Affine(*xself.mod_kwargs)

test_loglike(self):

Tests if loglikelihood is calculated. If the loglikelihood is

calculated given a set of parameters, then this test passes.

Otherwise, it fails.

self.affine_obj.loglike(self.guess_params)

test_score(self):

Tests if score of the likelihood is calculated. If the score

calculation succeeds without error, then the test passes. Otherwise,

the test fails.

self.affine_obj.score(self.guess_params)

test_hessian(self):

Tests if hessian of the likelihood is calculated.

If the hessian

176

def

def

def

177

calculation succeeds without error, then the test passes. Otherwise,
the test fails.

self.affine_obj.hessian(self.guess_params)

test_std_errs(self):

Tests if standard errors are calculated. If the standard error
calculation succeeds, then the test passes. Otherwise, the test
fails.

self.affine_obj.std_errs(self.guess_params)

test_params_to_array(self):
Tests if the params_to_array function works correctly, with and without
returning masked arrays. In order to pass, the params_to_array function
must return masked arrays with the masked elements filled in when the
return_mask argument is set to True and contiguous standard numpy
arrays when the return_mask argument is False. Otherwise, the test
fails.
arrays_no_mask = self.affine_obj.params_to_array(self.guess_params)
for arr in arrays_no_mask:
self.assertIsInstance(arr, np.ndarray)
self.assertNotIsInstance(arr, np.ma.core.MaskedArray)
arrays_w_mask = self.affine_obj.params_to_array(self.guess_params,
return_mask=True)
for arr in arrays_w_mask:

self.assertIsInstance(arr, np.ma.core.MaskedArray)

test_params_to_array_zeromask(self):

Tests if params_to_array_zeromask function works correctly. In order to
pass, params_to_array_zeromask must return masked arrays with the
guess_params elements that are zero unmasked and set to zero in the
appropriate arrays. The new guess_params array is also returned with
those that were 0 removed. If both of these are not returned correctly,

the test fails.

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

358

def

def

def

178

guess_params_arr = np.array(self.guess_params)

neqs = self.affine_obj.neqs

guess_params_arr[:neqs] = 0

guess_params = guess_params_arr.tolist()

guess_length = self.affine_obj._gen_guess_length()

params_guesses = self.affine_obj.params_to_array_zeromask(guess_params)
updated_guesses = params_guesses[-1]

self.assertEqual(len(updated_guesses), len(guess_params) - neqs)

ensure that number of masked has correctly been set
count_masked_new = ma.count_masked(params_guesses[0])
count_masked_orig = ma.count_masked(self.affine_obj.lam_0_e)

self.assertEqual(count_masked_new, count_masked_orig - neqs)

test_gen_pred_coef(self):

Tests if Python-driven gen_pred_coef function runs. If a set of
parameter arrays are passed into the gen_pred_coef function and the

A and B arrays are returned, then the test passes. Otherwise, the test
fails.

params = self.affine_obj.params_to_array(self.guess_params)

self.affine_obj.gen_pred_coef (xparams)

test_opt_gen_pred_coef(self):

Tests if C-driven gen_pred_coef function runs. If a set of parameter
arrays are passed into the opt_gen_pred_coef function and the A and
B arrays are return, then the test passes. Otherwise, the test fails.
params = self.affine_obj.params_to_array(self.guess_params)

self.affine_obj.opt_gen_pred_coef(*xparams)

test_py_C_gen_pred_coef_equal(self):

Tests if the Python-driven and C-driven gen_pred_coef functions produce
the same result, up to a precision of le-14. If the gen_pred_coef and
opt_gen_pred_coef functions produce the same result, then the test

passes. Otherwise, the test fails.

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

def

def

def

179

params = self.affine_obj.params_to_array(self.guess_params)
py_gpc = self.affine_obj.gen_pred_coef(xparams)

c_gpc = self.affine_obj.opt_gen_pred_coef(xparams)

for aix, array in enumerate(py_gpc):

np.testing.assert_allclose(array, c_gpcl[aix], rtol=le-14)

test__solve_unobs(self):

Tests if the _solve_unobs function runs. If the _solve_unobs function
runs and the latent series, likelihood jacobian, and yield errors are
returned, then the test passes. Otherwise the test fails.
guess_params = self.guess_params

param_arrays = self.affine_obj.params_to_array(guess_params)

a_in, b_in = self.affine_obj.gen_pred_coef(xparam_arrays)

result = self.affine_obj._solve_unobs(a_in=a_in, b_in=b_in)

test__affine_pred(self):

Tests if the _affine_pred function runs. If the affine_pred function
produces a list of the yields stacked in order of increasing maturity
and is of the expected shape, the test passes. Otherwise, the test
fails.

lat = self.affine_obj.lat

yobs = self.affine_obj.yobs

mats = self.affine_obj.mats

var_data_vert_tpose = self.affine_obj.var_data_vert.T

guess_params = self.guess_params

latent_rows = np.random.random((lat, yobs))

data np.append(var_data_vert_tpose, latent_rows, axis=0)
pred = self.affine_obj._affine_pred(data, *guess_params)

self.assertEqual(len(pred), len(mats) * yobs)

test__gen_mat_list(self):
Tests if _gen_mat_list generates a length 2 tuple with a list of the
maturities estimated without error followed by those estimated with

error. If _gen_mat_list produces a tuple of lists of those yields

399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

estimates without error and then those with error, this test passes.

Otherwise, the test fails.
no_err_mat, err_mat = self.affine_obj._gen_mat_list()
self.assertEqual(no_err_mat, [2])

self.assertEqual(err_mat, [1,3,4,5])

class TestEstimationMethods(TestCase):

Tests for solution methods

def setUp(self):

Non-linear least squares

np.random.seed(100)

initialize yield curve and VAR observed factors

yc_data_test = pa.DataFrame(np.random.random((test_size - lags,
nyields)))

var_data_test = pa.DataFrame(np.random.random((test_size, neqs)))

mats = list(range(l, nyields + 1))

initialize masked arrays
self.dim_nolat = dim = lags * neqgs
lam_0 = make_nomask([dim, 1])
lam_1 = make_nomask([dim, dim])
delta_0 = make_nomask([1l, 11)
delta_1 = make_nomask([dim, 1])

mu = make_nomask([dim, 1])

phi = make_nomask([dim, dim])

sigma = make_nomask([dim, dim])

Setup some of the elements as non-zero

This sets up a fake model where only lambda_0 and lambda_1 are

estimated

lam_0[:neqs] = ma.masked

lam_1[:neqgs, :negs] = ma.masked

delta_0[:, :] = np.random.random(1)
delta_1[:neqs] = np.random.random((neqs, 1))

mu[:neqs] = np.random.random((neqs, 1))

180

439
440
441
449
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
AT5
476
477
478

phi[:neqs, :1 = np.random.random((neqs, dim))

sigmal[:, :] = np.identity(dim)

self.mod_kwargs_nolat = {
"yc data’: yc_data_test,
"var data’: var_data_test,
"lags’: lags,
"negs’: negs,
'mats’: mats,
"lam_0_e’: lam_0,
"lam_1 e’: lam_1,
"delta 0 e’: delta_0,

"delta 1 e’: delta_1,

’ ’.,

mu_e’: mu,
"phi e’: phi,

"sigma_e’: sigma

self.guess_params_nolat = np.random.random((neqs**2 + neqs)).tolist()

self.affine_obj_nolat = Affine(**self.mod_kwargs_nolat)

Maximum likelihood build

initialize masked arrays

self.dim_lat = dim = lags * negs + latent
lam_0 = make_nomask([dim, 1])

lam_1 = make_nomask([dim, dim])

delta_0 = make_nomask([1l, 1)

delta_1 = make_nomask([dim, 1])

mu = make_nomask([dim, 1])

phi = make_nomask([dim, dim])

sigma = make_nomask([dim, dim])

Setup some of the elements as non-zero

This sets up a fake model where only lambda_0 and lambda_1 are
estimated

lam_0[:neqs] = ma.masked

lam_0O[-latent:] = ma.masked

lam_1[:neqs, :neqgs] = ma.masked

lam_1[-latent:, -latent:] = ma.masked

181

def

def

delta_0[:, :] = np.random.random(1)
delta_1[:neqs] = np.random.random((neqs, 1))
mu[:neqs] = np.random.random((neqs, 1))
phi[:neqs, :1 = np.random.random((neqs, dim))

sigmal[:, :] = np.identity(dim)

self.mod_kwargs = {
"yc data’: yc_data_test,
"var_data’: var_data_test,
"lags’: lags,
‘neqs’: neqs,
"mats’: mats,
"lam_0_e’: lam_0,
"lam 1 e’: lam_1,
"delta 0 e’: delta_o,

"delta_ 1 e’: delta_1l,

’ ’

mu_e’: mu,

"phi e’: phi,
"sigma e’: sigma,
"latent’: latent,

‘no_err’: [1]

self.guess_params_lat = np.random.random((neqs**2 + neqs +
(2 * latent),)).tolist()

self.affine_obj_lat = Affine(*xself.mod_kwargs)

test_solve_nls(self):

Tests whether or not basic estimation is performed for non-linear least
squares case without any latent factors. If the numerical approximation
method converges, this test passes. Otherwise, the test fails.

guess_params = self.guess_params_nolat

method = 'nls

solved

self.affine_obj_nolat.solve(guess_params, method=method,

alg="newton”)

test_solve_ml(self):

182

183

519 e

520 Tests whether or not model estimation converges is performed for direct
521 maximum likelihood with a single latent factor. If the numerical

522 approximation method converges, this test passes. Otherwise, the test
523 fails.

524 e

525 guess_params = self.guess_params_lat

526 method = 'ml’

527 self.affine_obj_lat.solve(guess_params, method=method, alg='bfgs’,
528 xtol=0.1, ftol=0.1)

529

530 ##Need test related to Kalman filter method

531

532 if __name__ == ' main_’':

533 unittest.main()

184

APPENDIX E
SAMPLE SCRIPTS FOR EXECUTING
MODELS AND VIEWING RESULTS

Listing E.1: Example script executing Bernanke et al. (2005) approach

1w
2 This script estimates a model with final data
g www
4 import numpy as np
5 import numpy.ma as ma

import scipy.linalg as la

6

7 import pandas as pa

8 import datetime as dt
9

import matplotlib.pyplot as plt
11 from statsmodels.api import OLS
12 from statsmodels.tsa.api import VAR
13 from pandas.tseries.offsets import *
14 from affine.model.affine import Affine

16 import ipdb

18 HHHHH

19 # Create function for unmask all elements np array #

21 def unmask_zarray(dims):
22 array = ma.zeros(dims)
23 array[:, :]1 = ma.masked

24 array[:, :]1 = ma.nomask

return array

latent = [False,

i

Prepare macro data for VAR

macro_data = pa.read_csv("./data/macro_data final/macro_data quarterly.csv",

index_col = 0, parse_dates=True, sep=";")
macro_data.rename(columns={'GDP’: 'output’, 'Prices’: ’'price output’,
"Resinv’: 'resinv’}, inplace=True)
macro_data = macro_data[['output’, 'price output’, ’'resinv’, "unemp’]]
#macro_data = macro_data[['output’, ’'price_output’]] * 4
macro_vars = macro_data.columns.tolist()

neqs = len(macro_vars)
lags = 4

lat = 0

dim = neqgs * lags + lat

Grab yield curve data

quarters = [4, 8, 12, 16, 20]
#set 36 mth as estimated with no error

no_err = [3]

ycdata = pa.read_csv("./data/fama-bliss/fama-bliss formatted.csv",

index_col=0, parse_dates=True)

yc_cols = [’'TMYTM_1’, 'TMYTM_2’, 'TMYTM_3’, 'TMYTM_4’, 'TMYTM_5"]
mod_yc_data = ycdatalyc_cols]

mod_yc_data[’'year’] = mod_yc_data.index.year

mod_yc_data['month’] = mod_yc_data.index.month

mod_yc_data[’'day’] =1

185

mod_yc_data = mod_yc_data[mod_yc_data['month’].isin([1, 4, 7, 10])]
mod_yc_data['index’] = mod_yc_data.apply(
lambda row: dt.datetime(int(row[’'year’]),
int(row['month’1),
int(row[’'day’])), axis=1)

mod_yc_data = mod_yc_data.set_index(’index’)[yc_cols]

var_dates = pa.date_range("1/1/1982", "10/1/2012",
freq="0S").to_pydatetime()

yc_dates = var_dates[lags:]

use_macro_data = macro_data.ix[var_dates]

#demean and standadize the data

use_macro_data = (use_macro_data - use_macro_data[lags:].mean()) / \
use_macro_data[lags:].std()

use_yc_data = mod_yc_data.ix[yc_dates]

mu_e = unmask_zarray((dim, 1))
phi_e = unmask_zarray((dim, dim))

sigma_u = unmask_zarray((dim, dim))

86 ##h

100
101
102
103
104

[# Create mu_e, phi_e and sigma masked arrays #

WA RIS R
var_fit = VAR(use_macro_data, freg="0").fit(maxlags=1lags)
coefs = var_fit.params.values
mu_e[:neqs] = coefs[0®, Nonel.T
if lat:
phi_e[:negs,:-lat] = coefs[1:].T
else:

phi_e[:neqs] = coefs[1:].T

phi_e[negs:dim - lat, :(lags - 1) * neqgs] = np.identity((lags - 1) * neqs)

sigma_u[:neqs, :neqs] = np.linalg.cholesky(var_fit.sigma_u)

if lat:
sigma_u[neqgs:-lat, neqgs:-lat] = np.identity((lags - 1) * neqs)
sigma_u[-lat:,-lat:] = np.identity(lat)

else:

sigma_u[neqs:, neqgs:] = np.identity((lags - 1) * neqs)

186

B R R e

) # Create lambda masked arrays #

lambda_0_e = unmask_zarray((dim, 1))

lambda_1_e = unmask_zarray((dim, dim))

Create delta masked arrays

WA

final_data = pa.read_csv("./data/macro data final/macro data.csv", sep=";",
index_col=0, parse_dates=True, na_values="M")

rf_rate = final_data["fed funds"].ix[yc_dates]

delta_ind = use_macro_data.ix[yc_dates]
delta_ind["constant"] =1

delta_model = OLS(rf_rate, delta_ind).fit()
delta_0 = unmask_zarray((1l, 1))

delta_1_ e = unmask_zarray((dim, 1))
delta_0[0, 0] = delta_model.params[-1]

delta_1_e[:neqs, 0] = delta_model.params[:-1]

df_tp = ['one yr tp final’
"two_yr_tp_final’,
"three_yr_tp_final’,
'four_yr_tp_final’,
"five_yr_tp_final’]
df_errs = ['one yr errs final’,
"two_yr_errs_final’,
"three_yr_errs_final’,
"four_yr_errs_final’,

"five_yr_errs_final’]

one_yr_tp_final = pa.DataFrame(index=yc_dates)
two_yr_tp_final = pa.DataFrame(index=yc_dates)
three_yr_tp_final = pa.DataFrame(index=yc_dates)
four_yr_tp_final = pa.DataFrame(index=yc_dates)

five_yr_tp_final = pa.DataFrame(index=yc_dates)

one_yr_errs_final = pa.DataFrame(index=yc_dates)

two_yr_errs_final = pa.DataFrame(index=yc_dates)

187

5 three_yr_errs_final = pa.DataFrame(index=yc_dates)

four_yr_errs_final = pa.DataFrame(index=yc_dates)

five_yr_errs_final = pa.DataFrame(index=yc_dates)

xtol

0.00001

ftol = 0.00001

Setup model

np.random.seed(101)

print "xtol " + str(xtol)
print "“ftol " + str(ftol)
print "Begin " + str(yc_dates[0])
print "End " + str(yc_dates[-1])

print "latent = " + str(lat)

rerun = False

HH#H RS

Final iteration

lambda_0_e[:neqs, 0] = ma.masked

lambda_1_e[:neqs, :neqs] = ma.masked

model = Affine(yc_data=use_yc_data, var_data=use_macro_data,
lam_0_e=lambda_0_e, lam_l_e=lambda_1_e, delta_0_e=delta_o0,
delta_1l e=delta_l_e, mu_e=mu_e, phi_e=phi_e,

sigma_e=sigma_u, mats=quarters)

5 if rerun:

guess_length = model.guess_length

guess_params = [0.0000001] * guess_length

out_bsr = model.solve(guess_params=guess_params, method='nls’, ftol=ftol,
xtol=xtol, maxfev=10000000, maxiter=1000000,
full_output=False, alg="nm’")

lam_0, lam_1, delta_0, delta_1, mu, phi, sigma, a_s, b_s, \

solve_params = out_bsr
#maybe make function later to do this

pa.DataFrame(lam_0).to_csv("./results/final/lam 0.csv", index=False)

188

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

202 #

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

pa.DataFrame(lam_1).to_csv("./results/final/lam 1.csv", index=False)

pa.DataFrame(delta_0).to_csv("./results/final/delta 0.csv", index=False)

pa.DataFrame(delta_1).to_csv("./results/final/delta 1.csv", index=False)

pa.DataFrame(mu).to_csv("./results/final/mu.csv", index=False)

pa.DataFrame(phi).to_csv("./results/final/phi.csv", index=False)

pa.DataFrame(sigma).to_csv("./results/final/sigma.csv", index=False)
else:

#read from csv

lam_0 = pa.read_csv("./results/final/lam 0.csv").values

lam_1 = pa.read_csv("./results/final/lam 1.csv").values

delta_0 = pa.read_csv("./results/final/delta 0.csv").values

delta_1l = pa.read_csv("./results/final/delta 1.csv").values

mu = pa.read_csv("./results/final/mu.csv").values

phi = pa.read_csv("./results/final/phi.csv").values

sigma = pa.read_csv("./results/final/sigma.csv").values

Collect results

e e
a_rsk, b_rsk = model.gen_pred_coef(lam_0=lam_0, lam_l=lam_1, delta_0=delta_o0,
delta_l=delta_1l, mu=mu, phi=phi,

sigma=sigma)

#generate no risk results

lam_0_nr np.zeros([dim, 1])

lam_1_nr

np.zeros([dim, dim])
sigma_zeros = np.zeros_like(sigma)
a_nrsk, b_nrsk = model.gen_pred_coef(lam_0=1lam_0_nr, lam_l=lam_1_nr,
delta_0=delta_0, delta_l=delta_1, mu=mu,
phi=phi, sigma=sigma_zeros)
X_t = model.var_data_vert
per = model.yc_data.index
act_pred = pa.DataFrame(index=per)
for i in quarters:
act_pred[str(i) + ' act’'] = model.yc_data[' TMYTM " + str(i / 4)]
act_pred[str(i) + ' pred’] = a_rsk[i-1] + np.dot(b_rsk[i-1], X_t.T)
act_pred[str(i) + ' nrsk’] = a_nrsk[i-1] + np.dot(b_nrsk[i-1].T, X_t.T)

act_pred[str(i) + ' err’] = (act_pred[str(i) + " act’] - \

189

190

225 act_pred[str(i) + ' pred’])
226 act_pred[str(i) + ' sger’] = (act_pred[str(i) + " act’] - \
227 act_pred[str(i) + '_pred’])=**2
228 act_pred[str(i) + '_tp’] = act_pred[str(i) + '_pred’] - \

229 act_pred[str(i) + ' nrsk’]

230 one_yr = act_pred.reindex(columns = filter(lambda x: '4’ in x, act_pred))
231 two_yr = act_pred.reindex(columns = filter(lambda x: '8’ in x, act_pred))
232 three_yr = act_pred.reindex(columns = filter(lambda x: '12’ in x, act_pred))
233 four_yr = act_pred.reindex(columns = filter(lambda x: '16’ in x, act_pred))

234 five_yr = act_pred.reindex(columns = filter(lambda x: '20’ in x, act_pred))

236 #generate st dev of residuals
237 yields = ['one_yr’, "two_yr’, 'three_yr’, ’'four_yr’, ’'five_yr’]

238 for yld in yields:

239 print yld + " & " + str(np.sqrt(np.mean(eval(yld).filter(
240 regex= '.*sqger$’).values)) * 100)
241 tp = yld + '_tp final’

242 err = yld + '_errs_final’

243 eval(tp)[yld] = eval(yld).filter(regex='.*tp3s")

244 eval(err)[yld] = eval(yld).filter(regex=".xerrs")

245

246 # if xix == len(xtols) - 1 and fix == len(ftols) - 1:

247 # for df in df_tp:

248 # eval(df).to_csv(’'./results/final/’ + df + '.csv’
249 # float_format='%.8f")

250 # for df in df_errs:

251 # eval(df).to_csv(’./results/final/’ + df + '.csv’
252 # float_format='%.8f")

253

254

255 #out of sample forecasting

256 solve_forward = 10

257 yc_data = model.yc_data.copy()

258 yc_data_cols = yc_data.columns.tolist()

259 for per in range(10):

260 row = mu + np.dot(phi, X_t[-1:]1.T)

261 date = X_t[-1:].index.to_pydatetime()[0] + MonthBegin() + \
262 MonthBegin() + MonthBegin()

263 X_t.loc[date, :] = row.T

264 for gix, quart in enumerate(quarters):

191

col = yc_data_cols[qix]

yc_data.loc[date, col] = a_rsk[quart-1] + np.dot(b_rsk[quart-1], row)

192

Listing E.2: Example script executing Ang and Piazzesi (2003) approach

This script estimates a model with final data

import numpy as np

1

2

3

4

5 import numpy.ma as ma
6 import scipy.linalg as la
7 import pandas as pa

& import datetime as dt

9

import matplotlib.pyplot as plt
11 from statsmodels.api import OLS
12 from statsmodels.tsa.api import VAR

13 from affine.model.affine import Affine

15 import ipdb

18 # Create function for unmask all elements np array #
IR B s e

20 def unmask_zarray(dims):

21 array = ma.zeros(dims)
22 array[:, :] = ma.masked
23 array[:, :]1 = ma.nomask
24 return array

25

26 latent = [False,

27 1,

28 2,

29 3]

30

31 4

32 # Prepare macro data for VAR #
33 HHHBHHBRHRH IR

34 macro_data = pa.read_csv("./data/macro data final/macro data quarterly.csv",

35 index_col = 0, parse_dates=True, sep=";")
36
37 macro_data.rename(columns={'GDP’: ’'output’, 'Prices’: ’'price output’,

38 "Resinv’: 'resinv’}, inplace=True)

39
40
41
42
43
44
46

macro_data = macro_data[['output’, 'price output’]]
macro_vars = macro_data.columns.tolist()

neqs = len(macro_vars)

lags = 4

lat = 1

dim = neqs * lags + lat

Grab yield curve data
HHARHHBH AR HARHH BB H
quarters = [4, 8, 12, 16, 20]

#set 36 mth as estimated with no error

ycdata = pa.read_csv("./data/fama-bliss/fama-bliss formatted.csv",

index_col=0, parse_dates=True)

yc_cols = ['TMYTM_1", 'TMYTM_2', 'TMYTM_3', 'TMYTM_4’', 'TMYTM_5']
mod_yc_data = ycdatal[yc_cols]
mod_yc_data[’'year’] = mod_yc_data.index.year
mod_yc_data[‘'month’] = mod_yc_data.index.month
mod_yc_data[’'day’] =1
mod_yc_data = mod_yc_data[mod_yc_data[month’].isin([1, 4, 7, 10])]
mod_yc_data[’'index’] = mod_yc_data.apply(
lambda row: dt.datetime(int(row[’'year’l),
int(row['month’]),
int(row[’day’])), axis=1)

mod_yc_data = mod_yc_data.set_index(’index’)[yc_cols]

var_dates = pa.date_range("1/1/1982", "10/1/2012",
freq="0S").to_pydatetime()

yc_dates = var_dates[lags:]

use_macro_data = macro_data.ix[var_dates]

#demean and standadize the data

use_macro_data = (use_macro_data - use_macro_data[lags:].mean()) / \

use_macro_data[lags:].std()

use_yc_data = mod_yc_data.ix[yc_dates]

193

79
80
81
82
83
84

mu_e = unmask_zarray((dim, 1))
phi_e = unmask_zarray((dim, dim))

sigma_u = unmask_zarray((dim, dim))

B R g i e

Create mu_e, phi_e and sigma masked arrays

85 #it###

86
87
88
89
90
91
92
93
94

96
97
98
99
100
101
102
103

var_fit = VAR(use_macro_data, freg="Q").fit(maxlags=1lags)
coefs = var_fit.params.values
mu_e[:neqs] = coefs[0, None].T
if lat:
phi_e[:neqgs,:-lat] = coefs[1:].T
else:

phi_e[:neqs] = coefs[1:].T

phi_e[neqgs:dim - lat, :(lags - 1) * neqs] = np.identity((lags - 1) * neqs)
sigma_u[:neqs, :neqs] = np.linalg.cholesky(var_fit.sigma_u)
if lat:
sigma_u[negs:-lat, neqgs:-lat] = np.identity((lags - 1) * neqs)
sigma_u[-lat:,-lat:] = np.identity(lat)
else:

sigma_ul[neqgs:, negs:] = np.identity((lags - 1) * neqs)

B R R R e

Create lambda masked arrays

104 ###t#H###H

105
106
107

lambda_0_e = unmask_zarray((dim, 1))

lambda_1_e = unmask_zarray((dim, dim))

108 ###t####

109
110
111
112
113
114
115
116
117
118

Create delta masked arrays

WA

final_data = pa.read_csv("./data/macro data final/macro data.csv", sep=";",
index_col=0, parse_dates=True, na_values="M")

rf_rate = final_data["fed funds"].ix[yc_dates]

delta_ind = use_macro_data.ix[yc_dates]
delta_ind["constant"] =1
delta_model = OLS(rf_rate, delta_ind).fit()

delta_0 = unmask_zarray((1l, 1))

194

195

delta_1l_e = unmask_zarray((dim, 1))
delta_0[0, 0] = delta_model.params[-1]

delta_1_e[:neqs, 0] = delta_model.params[:-1]

df_tp = [one_yr_tp_final’,
"two_yr_tp_final’,
"three_yr_tp_final’,
"four_yr_tp_final’,
'five_yr_tp_final’]
df_errs = ['one yr errs final’,
"two_yr_errs_final’,
"three_yr_errs_final’,
"four_yr_errs_final’,

"five_yr_errs_final’]

one_yr_tp_final = pa.DataFrame(index=yc_dates)
two_yr_tp_final = pa.DataFrame(index=yc_dates)
three_yr_tp_final = pa.DataFrame(index=yc_dates)
four_yr_tp_final = pa.DataFrame(index=yc_dates)

five_yr_tp_final = pa.DataFrame(index=yc_dates)

one_yr_errs_final = pa.DataFrame(index=yc_dates)
two_yr_errs_final = pa.DataFrame(index=yc_dates)
three_yr_errs_final = pa.DataFrame(index=yc_dates)
four_yr_errs_final = pa.DataFrame(index=yc_dates)

five_yr_errs_final = pa.DataFrame(index=yc_dates)

xtol = le-5
ftol = le-5

max = 50

min = 0.0000001

no_err = [1]
Setup model

np.random.seed(101)

print "xtol " + str(xtol)

print "ftol " + str(ftol)

159
160
161
162
163
164

print "Begin " + str(yc_dates[0])
print "End " + str(yc_dates[-1])
print "latent = " + str(lat)
print "noerr = " + str(no_err)

#only need iterative process if latent variables are estimated

165 ##t####

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

First iteration, estimate phi and others, hold lambdas const
pidibisedib it b b S S S S S S S S I S S S S B S i S S i
phi_e[-lat,-lat] = ma.masked

delta_1 e[-lat, 0] = ma.masked

print "First estimation"

model = Affine(yc_data=use_yc_data, var_data=use_macro_data,
lam_0_e=lambda_0_e, lam_l_e=lambda_1l_e,
delta_0O_e=delta_0, delta_l_e=delta_l_e, mu_e=mu_e,
phi_e=phi_e, sigma_e=sigma_u, mats=quarters,

latent=1)

guess_length = model.guess_length

guess_params = np.linspace(0.5, 1.5, guess_length)

#try random stuff for all params

#guess_params = (np.random.random((guess_length,)) * (1.0 / 10000)).tolist()

out_bsr = model.solve(guess_params=guess_params, method='ml",
ftol=ftol, xtol=xtol, maxfev=10000000,
maxiter=1000000, full_output=False, alg='nm’,
no_err=no_err)

a, b, c, d, e, f, g, a_s, b_s, solve_params, var_data_wunob = out_bsr

hessian = model.hessian(solve_params)

std_err = np.sqrt(-np.diag(la.inv(hessian)))

print std_err

tval = solve_params / std_err
rep_vals = []
for tix, val in enumerate(tval):

if abs(val) > 1.960:

196

199
200
201
202
203
204
205
206
207
208

rep_vals.append(solve_params[tix])
else:

rep_vals.append(0)

#fill in relevant values of phi_e and delta_l

a, b, c, delta_1, d, phi, e = model.params_to_array(rep_vals,
return_mask=True)

a, b, c, delta_l_g, d, phi_g, e, dlphi_guesses = \

model.params_to_array_zeromask(rep_vals)

209 ###H

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

Second iteration, estimate lambda_1, hold lambda_0 at zero
B L L B L T L T L B B T T Rt i T
print "Second estimation"

lambda_1_e[-lat, -lat] = ma.masked

lambda_1_e[:neqs, :neqs] = ma.masked

model = Affine(yc_data=use_yc_data, var_data=use_macro_data,
lam_0_e=1lambda_0_e, lam_1l_e=lambda_1l_e,
delta_0_e=delta_0, delta_l_e=delta_1l, mu_e=mu_e,
phi_e=phi, sigma_e=sigma_u, mats=quarters,

latent=True)

guess_length = model.guess_length

guess_params = np.linspace(0.5, 1.5, guess_length)

out_bsr = model.solve(guess_params=guess_params, method="ml’,
ftol=ftol, xtol=xtol, maxfev=10000000,
maxiter=1000000, full_output=False, alg='nm’,
no_err=no_err)

a, b, c, d, e, f, g, a_s, b_s, solve_params, var_data_wunob = out_bsr

hessian = model.hessian(solve_params)

std_err = np.sqrt(-np.diag(la.inv(hessian)))

print std_err

tval = solve_params / std_err

rep_vals = []

for tix, val in enumerate(tval):

197

239
240
241
242
243
244
245
246
247
248
249
250
251

202 #i#tHt

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

198

if abs(val) > 1.960:
rep_vals.append(solve_params[tix])
else:

rep_vals.append(0)

#fill in relevant values of lambda_1

a, lambda_1, b, c, d, e, f = model.params_to_array(rep_vals,
return_mask=True)

a, lambda_1.g, b, c, d, e, f, 11_guesses =\

model.params_to_array_zeromask(rep_vals)

WA A AR AR AR A

Third iteration, esimate lambda_0, holding lambda_1 at prior values

print "Third estimation"
lambda_0_e[:neqs, 0] = ma.masked

lambda_0_e[-lat:, 0] = ma.masked

model = Affine(yc_data=use_yc_data, var_data=use_macro_data,
lam_0_e=1lambda_0_e, lam_1l_e=lambda_1l, delta_0_e=delta_0,
delta_1 e=delta_1l, mu_e=mu_e, phi_e=phi, sigma_e=sigma_u,

mats=quarters, latent=True)

guess_length = model.guess_length

guess_params = np.linspace(0.5, 1.5, guess_length)

out_bsr = model.solve(guess_params=guess_params, method="ml’,
ftol=ftol, xtol=xtol, maxfev=10000000,
maxiter=1000000, full_output=False, alg='nm’,
no_err=no_err)

a, b, c,d, e, f, g, as, b_s, solve_params, var_data_wunob = out_bsr

hessian = model.hessian(solve_params)

std_err = np.sqrt(-np.diag(la.inv(hessian)))

print std_err

tval = solve_params / std_err

rep_vals = []

for tix, val in enumerate(tval):

279
280

289
290
291

if abs(val) > 1.960:

rep_vals.append(solve_params[tix])

else:

rep_vals.append(0)

#fill in relevant values of lambda_1

lambda_0, a, b, ¢, d, e, f =

model.params_to_array(rep_vals,

return_mask=True)

lambda_60_g, a, b, ¢, d, e, f, 10_guesses = \

model.params_to_array_zeromask(rep_vals)

WA

Final iteration

292 ###

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

print "Fourth estimation"

model = Affine(yc_data=use_yc_data, var_data=use_macro_data,

lam_0_e=lambda_0_g, lam_1_e=lambda_1_g,

delta_0_e=delta_0, delta_l_e=delta_1_g, mu_e=mu_e,

phi_e=phi_g,

latent=True)

sigma_e=sigma_u, mats=quarters,

guess_params = 10_guesses + 11 _guesses + dlphi_guesses

out_bsr

lam_0, lam_1, delta_0, delta_1l, mu, phi, sigma, a_s, b_s, solve_params, \

model.solve(guess_params=guess_params, method='ml’,

ftol=

ftol, xtol=xtol, maxfev=100000,

maxiter=100000, full_output=False, alg='nm’,

no_err=no_err)

var_data_wunob = out_bsr

WA

Collect results

a_rsk, b_rsk = model.gen_pred_coef(lam_0=1am_0, lam_l=lam_1, delta_0=delta_0,

#generate no risk results

lam_0_nr

np.zeros([dim, 1])

delta_l=delta_1, mu=mu, phi=phi,

sigma=sigma)

199

354
355
356
357
358

200

lam_1_nr = np.zeros([dim, dim])

sigma_zeros = np.zeros_like(sigma)

a_nrsk, b_nrsk = model.gen_pred_coef(lam_0=lam_0_nr, lam_l=lam_1_nr,
delta_0=delta_0, delta_l=delta_1, mu=mu,

phi=phi, sigma=sigma_zeros)

X_t = var_data_wunob

X_t = model.var_data_vert

per = model.yc_data.index

act_pred = pa.DataFrame(index=per)

for i in quarters:
act_pred[str(i) + '~act’] = model.yc_data[' TMYTM " + str(i / 4)]
act_pred[str(i) + ' pred’] = a_rsk[i-1] + np.dot(b_rsk[i-1], X_t.T)
act_pred[str(i) + ' nrsk’] = a_nrsk[i-1] + np.dot(b_nrsk[i-1].T, X_t.T)

’

act_pred[str(i) + err’] = (act_pred[str(i) + " act’] - \

’

act_pred[str(i) + pred’])

act_pred[str(i) + ' sger’] = (act_pred[str(i) + ' act’] - \

’

act_pred[str(i) + ' pred’])*x2

act_pred[str(i) + ' tp’'] = act_pred[str(i) + ' pred’] - \

’

act_pred[str(i) + nrsk’]

one_yr = act_pred.reindex(columns = filter(lambda x: "4’ in x, act_pred))
two_yr = act_pred.reindex(columns = filter(lambda x: '8’ in x, act_pred))
three_yr = act_pred.reindex(columns = filter(lambda x: '12’ in x, act_pred))

four_yr = act_pred.reindex(columns = filter(lambda x: 16" in x, act_pred))

five_yr = act_pred.reindex(columns = filter(lambda x: 20" in x, act_pred))

#generate st dev of residuals

[yields = ['one yr’, "two yr’, "three yr’, 'four_yr’, "five yr’]

for yld in yields:
print yld + " & " + str(np.sqrt(np.mean(eval(yld).filter(
regex= '.*sger$’).values)) * 100)
tp = yld + ' tp final’
err = yld + ' errs final’
eval(tp)[yld] = eval(yld).filter(regex=".+tp$")
eval(err)[yld] = eval(yld).filter(regex=".*xerr$")

#plot five year pricing errors
five_yr_errs_final[five_yr’].plot(subplots=True)

#plot one year pricing errors

360
361
362

one_yr_errs_final[' five yr’'].plot(subplots=True)
#plot one year time-varying term premium
one_yr_tp_final[' five yr’'].plot(subplots=True)
#plot five year time-varying term premium

five_yr_tp_final[’five yr’'].plot(subplots=True)

201

202

REFERENCES

Adrian, Tobias, Arturo Estrella, and Hyun Song Shin (2010). “Monetary cycles, financial cycles,
and the business cycle.” Technical report, Staff Report, Federal Reserve Bank of New York.

Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen (1999). LAPACK Users’ Guide (Third ed.).
Philadelphia, PA: Society for Industrial and Applied Mathematics.

Andrews, Donald WK and Hong-Yuan Chen (1994). “Approximately median-unbiased estimation
of autoregressive models.” Journal of Business & Economic Statistics 12(2), 187-204.

Ang, Andrew and Monika Piazzesi (2003). “A no-arbitrage vector autoregression of term structure
dynamics with macroeconomic and latent variables.” Journal of Monetary Economics 50(4),
745-787.

Bai, Jushan, Robin L Lumsdaine, and James H Stock (1998). “Testing for and dating common
breaks in multivariate time series.” The Review of Economic Studies 65(3), 395-432.

Baker, Barton (2014a). An Extension and Replication of Bernanke, Reinhart, and Sack(2005).
Ph.D. thesis, American University.

Baker, Barton (2014b). Real-time data and informing affine models of the term structure. Ph.D.
thesis, American University.

Baker, Scott, Nicholas Bloom, and Steven Davis (2013). “Measuring economic policy uncertainty.”
Chicago Booth Research Paper (13-02).

Banerjee, Anindya, Robin L Lumsdaine, and James H Stock (1992). “Recursive and sequential tests
of the unit-root and trend-break hypotheses: theory and international evidence.” Journal of
Business € Economic Statistics 10(3), 271-287.

Batchelor, Roy and Pami Dua (1992). “Conservatism and consensus-seeking among economic fore-
casters.” Journal of Forecasting 11(2), 169-181.

Behnel, S.; R. Bradshaw, L. Dalcin, M. Florisson, V. Makarov, and D. Seljebotn (2004). “Cython:
C-extensions for python.” http://cython.org/.

Bernanke, Ben S, Vincent R Reinhart, and Brian P Sack (2005). “Monetary policy alternatives at
the zero bound: An empirical assessment.” Brookings Papers on Economic Activity 2004(2),
1-100.

Bloom, Nicholas (2009). “The impact of uncertainty shocks.” Econometrica 77(3), 623-685.

Bloomberg (2012). “Commodity quote: Eurodollar rate.” January 1980 - December 2012, via
Bloomberg, LP, accessed December 2012.

BLS (2012, 12). “Bureau of labor statistics.” http://www.bls.gov/.

Bomberger, William A (1996). “Disagreement as a measure of uncertainty.” Journal of Money,
Credit and Banking 28(3), 381-392.

203

CBOE (2009). “The CBOE volatility index - VIX.” Technical report, Chicago Board Options
Exchange, Incorporated.

Chen, Ren-Raw and Louis Scott (1993). “Maximum likelihood estimation for a multifactor equilib-
rium model of the term structure of interest rates.” Journal of Fized Income 3, 14-31.

Chun, Albert Lee (2011). “Expectations, bond yields, and monetary policy.” Review of Financial
Studies 24(1), 208-247.

Cochrane, J.H. and M. Piazzesi (2008). “Decomposing the yield curve.” Graduate School of Business,
University of Chicago, Working Paper.

Cox, John C, Jr Ingersoll, Jonathan E, and Stephen A Ross (1985, March). “A theory of the term
structure of interest rates.” Econometrica 53(2), 385-407.

Croushore, Dean and Tom Stark (2001). “A real-time data set for macroeconomists.” Journal of
Econometrics 105(1), 111-130.

CRSP, Center for Research in Security Prices. Graduate School of Business, The University
of Chicago (2013). “Fama-Bliss discount bonds - monthly only.” Used with permission. All
rights reserved. http://www.vrplumber.com/programming/runsnakerun/.

Dai, Qiang and Kenneth J. Singleton (2000, October). “Specification analysis of affine term structure
models.” Journal of Finance 55(5), 1943-1978.

Dai, Qiang and Kenneth J Singleton (2002). “Expectation puzzles, time-varying risk premia, and
affine models of the term structure.” Journal of Financial Economics 63(3), 415-441.

Diebold, Francis X., Glenn D. Rudebusch, and S. Boragan Aruoba (2006). “The macroeconomy
and the yield curve: a dynamic latent factor approach.” Journal of Econometrics 131(1-2),
309-338.

Diebold, Francis X and Kamil Yilmaz (2008). “Macroeconomic volatility and stock market volatility,
worldwide.” Technical report, National Bureau of Economic Research.

Doh, Taeyoung (2011). “Yield curve in an estimated nonlinear macro model.” Journal of Economic
Dynamics and Control 35(8), 1229-1244.

Dovern, Jonas, Ulrich Fritsche, and Jiri Slacalek (2012). “Disagreement among forecasters in g7
countries.” Review of Economics and Statistics 94(4), 1081-1096.

Duffee, Gregory R and Richard H Stanton (2012). “Estimation of dynamic term structure models.”
The Quarterly Journal of Finance 2(02), 1-51.

Dulffie, Darrell and Rui Kan (1996). “A yield-factor model of interest rates.” Mathematical Fi-
nance 6(4), 379-406.

Fama, Eugene F and Robert R Bliss (1987). “The information in long-maturity forward rates.” The
American Economic Review, 680-692.

Federal Reserve Bank of Philadelphia (2013a, 12). “Greenbook data sets.” http://www.phil. frb.
org/research-and-data/real-time-center/greenbook-data/.

Federal Reserve Bank of Philadelphia (2013b, 12). “Real-time data set for macroeconomists.”
http://www.phil.frb.org/research-and-data/real-time-center/real-time-data/.

Federal Reserve Bank of Philadelphia (2013, 12). “Survey of professional forecast-

ers. http://www.phil.frb.org/research-and-data/real-time-center/survey-of-
professional-forecasters/.

204

Federal Reserve Bank of St. Louis (2013, 12). “Federal reserve economic data.” http://research.
stlouisfed.org/fred2/.

Fleming, Jeff, Chris Kirby, and Barbara Ostdiek (1998). “Information and volatility linkages in the
stock, bond, and money markets.” Journal of Financial Economics 49(1), 111-137.

Fletcher, Mike (2001-2013). “RunSnakeRun: Gui viewer for python profiling runs.” http://www.
vrplumber.com/programming/runsnakerun/.

”

Giordani, Paolo and Paul Soderlind (2003). “Inflation forecast uncertainty.” Furopean Economic

Review 47(6), 1037-1059.

Grishchenko, Olesya and Jing-zhi Jay Huang (2012). “The inflation risk premium: Evidence from the
TIPS market.” SSRN 1108401, http://papers.ssrn.com/sol3/papers.cfm?abstract_
1d=1108401.

Hamilton, James Douglas (1994). Time Series Analysis. Princeton, New Jersey: Princeton Univer-
sity Press.

Jones, Eric, Travis Oliphant, Pearu Peterson, et al. (2001-2014). “SciPy: Open source scientific
tools for Python.” http://www.scipy.org/.

Joslin, Scott, Kenneth J Singleton, and Haoxiang Zhu (2011). “A new perspective on gaussian
dynamic term structure models.” Review of Financial Studies 24(3), 926-970.

Keynes, John M (1936). The General Theory of Employment, Interest and Money. London: The
Magcmillan Press.

Kim, Don H. and Athanasios Orphanides (2005, November). “Term structure estimation with survey
data on interest rate forecasts.” CEPR Discussion Papers 5341, C.E.P.R. Discussion Papers.

Kim, Don H. and Jonathan H. Wright (2005). “An arbitrage-free three-factor term structure model
and the recent behavior of long-term yields and distant-horizon forward rates.” Finance and
Economics Discussion Series 2005-33, Board of Governors of the Federal Reserve System (U.S.).

Krishnamurthy, Arvind and Annette Vissing-Jorgensen (2011). “The effects of quantitative easing
on interest rates: channels and implications for policy.” Technical report, National Bureau of
Economic Research.

Litterman, Robert and José Scheinkman (1991). “Common factors affecting bond returns.” The
Journal of Fized Income 1(1), 54-61.

Mankiw, N Gregory, Ricardo Reis, and Justin Wolfers (2004). “Disagreement about inflation expec-
tations.” In NBER Macroeconomics Annual 2003, Volume 18, pp. 209-270. The MIT Press.

McCallum, Bennett T (1976). “Rational expectations and the estimation of econometric models:
An alternative procedure.” International Economic Review 17(2), 484-490.

McKinney, Wes (2005-2014). “Python data analysis library.” http://pandas.pydata.org/.
Minsky, Hyman P (1986). Stabilizing an unstable economy. New Haven: Yale University Press.
NBER (2013, 12). “National bureau of economic research.” http://www.nber.org/.

Oliphant, Travis et al. (2005-2014). “Numpy: Open source scientific tools for Python.” http:
//wWww.numpy.org/.

Oliphant, Travis et al. (2014). “How to extend numpy.” http://docs.scipy.org/doc/numpy/
user/c-info.how-to-extend.html.

205

Orphanides, Athanasios (2001). “Monetary policy rules based on real-time data.” American Eco-
nomic Review 91(4), 964-985.

Orphanides, Athanasios and Min Wei (2012). “Evolving macroeconomic perceptions and the term
structure of interest rates.” Journal of Economic Dynamics and Control 36(2), 239-254.

Pearson, Neil D and Tong-Sheng Sun (1994). “Exploiting the conditional density in estimating
the term structure: An application to the Cox, Ingersoll, and Ross model.” The Journal of
Finance 49(4), 1279-1304.

Pérez, Fernando and Brian E. Granger (2007, May). “IPython: a system for interactive scientific
computing.” Computing in Science and Engineering 9(3), 21-29.

Perktold, J., S. Seabold, and W. Mckinney (2006-2014). “statsmodels: Statistics in Python.”
http://statsmodels.sourceforge.net/.

Piazzesi, Monika and Martin Schneider (2007, June). “Equilibrium yield curves.” In NBER Macroe-
conomics Annual 2006, Volume 21, NBER Chapters, pp. 389-472. National Bureau of Eco-
nomic Research, Inc.

R Core Team (2012). R: A Language and Environment for Statistical Computing. Vienna, Austria:
R Foundation for Statistical Computing. ISBN 3-900051-07-0, http://www.R-project.org/.

Rich, Robert, Joseph Song, and Joseph Tracy (2012). “The measurement and behavior of un-
certainty: Evidence from the ECB survey of professional forecasters.” SSRN 2192510,
http://papers.ssrn.com/sol3/papers.cfm?abstract_1id=2192510.

Rich, Robert and Joseph Tracy (2010). “The relationships among expected inflation, disagreement,
and uncertainty: evidence from matched point and density forecasts.” The Review of Economics
and Statistics 92(1), 200-207.

Rudebusch, Glenn D, Brian P Sack, and Eric T Swanson (2007). “Macroeconomic implications of
changes in the term premium.” Review-Federal Reserve Bank of Saint Louis 89(4), 241.

Rudebusch, Glenn D and Tao Wu (2008). “A macro-finance model of the term structure, monetary
policy and the economy.” The Economic Journal 118(530), 906-926.

StataCorp (2013). Stata Statistical Software: Release 13. College Station, Texas. http://www.
stata.com/.

Stock, James H and Mark W Watson (2003). “Has the business cycle changed and why?” In NBER
Macroeconomics Annual 2002, Volume 17, pp. 159-230. MIT press.

Taylor, John B (1993). “Discretion versus policy rules in practice.” In Carnegie-Rochester conference
series on public policy, Volume 39, pp. 195-214. Elsevier.

The MathWorks Inc. (2013). MATLAB, Version 8.1 (R2013a). Natick, Massachusetts.

Vasicek, Oldrich (1977, November). “An equilibrium characterization of the term structure.” Journal
of Financial Economics 5(2), 177-188.

Waller, Peter (2013). “pyprof2calltree.” https://pypi.python.org/pypi/pyprof2calltree.

Weidendorfer, Josef (2002,2003). “Kcachegrind; call graph viewer.” http://kcachegrind.
sourceforge.net/html/Home.html.

Whaley, R. Clint and Antoine Petitet (2005, February). “Minimizing development and maintenance
costs in supporting persistently optimized BLAS.” Software: Practice and Ezperience 35(2),
101-121. http://www.cs.utsa.edu/~whaley/papers/spercw04.ps.

206

Wickens, Michael R (1982). “The efficient estimation of econometric models with rational expecta-
tions.” The Review of Economic Studies 49(1), 55-67.

Wright, Jonathan H (2011). “Term premia and inflation uncertainty: Empirical evidence from an
international panel dataset.” The American Economic Review 101(4), 1514-1534.

Zarnowitz, Victor and Louis A Lambros (1987). “Consensus and uncertainty in economic predic-
tion.” National Bureau of Economic Research, http://www.nber.org/papers/wll71.

