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ABSTRACT

This dissertation makes contributions to the term structure modeling literature by examining

the role of observed macroeconomic data in the pricing kernel and providing a single computational

framework for building and estimating a range of affine term structure models. Chapter 2 attempts

to replicate and extend the model of Bernanke et al. (2005), finding that proxies for uncertainty,

particularly for practitioner disagreement and stock volatility, lower the pricing error of models

estimated only with observed macroeconomic information. The term premia generated by models

including the proxies produce term premia that are higher during recessions, suggesting that these

proxies for uncertainty represent information that is of particular value to bond market agents during

crisis periods. Chapter 3 finds that a real-time data specified pricing kernel produces lower average

pricing errors compared to analogous models estimated using final release data. Comparisons

between final release and real-time data driven models are performed by estimating observed factor

models with two, three, and four factors. The real-time data driven models generate more volatile

term premia for shorter maturity yields, a result not found in final data driven models. This suggests

that the use of real-time over final release data has implications for model performance and term

premia estimation. Chapter 4 presents a unified computational framework written in the Python

programming language for estimating discrete-time affine term structure models, supporting the

major canonical approaches. The chapter also documents the use of the package, the solution

methods and approaches directly supported, and development issues encountered when writing C-

language extensions for Python packages. The package gives researchers a flexible interface that

admits a wide variety of affine term structure specifications.
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CHAPTER 1

INTRODUCTION

The relationship between macroeconomic fluctuations and the yields on government bonds

has long been a subject of study. Macroeconomic conditions such as output, inflation, and invest-

ment affect the market in at least two ways. First, the macroeconomic conditions will partially

determine the market environment under which a single bond-market agent is making decisions.

Second, the publication of macroeconomic indicators communicates to agents their own financial

position relative to the rest of the market and the conditions of the market as a whole. Recog-

nizing specifically how macroeconomic conditions influence government bond markets should be an

important component of any term structure modeling approach.

Monetary policy also affects the term structure of government bonds: at shorter maturities

through the federal funds rate and open market operations, and at longer maturities through large

scale asset purchases such as quantitative easing (Krishnamurthy and Vissing-Jorgensen, 2011) and

formal management of expectations of future federal funds rate targets and inflation (Bernanke

et al., 2005). The federal funds rate serves as a benchmark not only for bond markets but for many

other financial markets. Monetary policy measures are particularly valuable for term structure

modeling because the federal funds rate, the shortest maturity yield in the term structure, is the

primary instrument of the monetary authority.

In addition to the current macroeconomic condition and monetary policy environment, ex-

pectations of both over different horizons will inevitably have an impact on the perceived risk of

holding government bonds. With higher perceived macroeconomic risk over the maturity of the

bond, bond buying agents will require higher expected yields in order to be compensated for that

risk. Expectations of future monetary policy also may affect the term structure through the Ex-

pectation Hypothesis, where long term rates are the product of expectations of future short term

rates. Agents will also integrate the expectations of how the monetary authority could react to the
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economic conditions at that time. In particular with longer maturity bonds, expectations of future

macroeconomic and monetary conditions may play a prominent role in bond pricing outcomes.

Government bond-market participants use information related to both current and expected

macroeconomic conditions and monetary policy to inform their market behavior. As a result, gov-

ernment bonds offer a link between macroeconomic policy and financial markets and decomposing

what specifically drives the yields on these bonds can help in determining how macroeconomic policy

may alter the yield curve. A term structure modeling framework should utilize macroeconomic and

monetary policy information in a data generating process that influences the yields on government

bonds.

Affine term structure models offer a framework through which the information driving gov-

ernment bond markets can be linked to government bond yields. These models are a convenient

tool for both modeling a process governing agents’ beliefs of future economic conditions and us-

ing this process to predict yields all along the yield curve. Macroeconomic conditions, the data

generating process for these conditions, and other factors are linked to a spread of yields through

the assumption that a single pricing kernel can be used to explain all of the yields1. It is assumed

that the macroeconomic variables and other factors included in the kernel encapsulate the primary

information driving bond market pricing decisions. It is often necessary to add unobserved latent

factors to the set of observed factors or replace the observed factors completely in order to capture

all relevant moments of yields over time. Models with multiple latent factors were introduced in

Duffie and Kan (1996). By defining the data generating process governing this pricing kernel, the

yields on bonds all along the yield curve can be decomposed into a predicted component and a

risky component. After the yields have been decomposed in this manner, a time-varying estimate

of the term premium is obtained, which is the additional yield required by agents who have tied up

liquidity in the bond over the maturity of the bond.

This term premium estimate can be used to demonstrate how perceived risk as reflected

in bond yields responds to specific historical events. Term premia have been shown to react to

macroeconomic expansions and recessions (Rudebusch et al., 2007), to specific monetary policy

announcements and policy changes (Kim and Wright, 2005), and to changes in expected and un-

expected inflation (Piazzesi and Schneider (2007) and Wright (2011)). In many of these cases,

latent factors are used in the pricing kernel to maximize the fit of the model and generate the

1The pricing kernel is defined in Equation 2.2.1.
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time-varying term premia. In addition to examining responses to events, these models can also

be used to measure what information is useful for generating a high performing pricing kernel and

what information generates changes in the time-varying term premium.

Observed information added to the pricing kernel can change the performance of the model

(Bernanke et al., 2005) and lead to changes in the moments of the time-varying term premia. The

literature around how modifications and additions to the observed information included in the

pricing kernel is less well-developed. This dissertation contributes to the observed factor approach,

showing how specific observed factors included in the pricing kernel can alter the performance of

the model and can lead to different measures of the term premia.

1.1 Approach

The trend in the affine term structure model literature over the past fifteen years has been

to supplement or supplant observed information driving the bond markets with unobserved latent

factors. These latent factors are derived in the estimation process through assumptions about the

structure of bond markets and, depending on the calculation of the likelihood, are calculated by

assuming that certain yields are priced without error. Dai and Singleton (2002), Ang and Piazzesi

(2003), Kim and Orphanides (2005), and Orphanides and Wei (2012) each estimate models that

use a combination of observed and unobserved factors to inform bond pricing decisions. Kim and

Wright (2005), Diebold et al. (2006), and Rudebusch and Wu (2008) rely purely on unobserved

latent factors. The addition of even a single latent factor increases the performance of these models

at multiple maturities as measured by the pricing error (the difference between the actual and

predicted yield). Adding latent factors is a popular choice when the intent of developing the model

is to build a high-performing model and develop an estimate of the time-varying term premium.

Even though these latent factors can often be related back to moments of the yield curve, they

are not as useful when part of the research effort is to break down the information entering bond

market pricing decisions into what information is valuable to agents and how it is valuable. For

example, adding even a single latent factor could mask the individual subtleties of different types

of observed information included in the pricing kernel.

Rather than maximizing the fit of the model through the addition of latent factors, this

dissertation takes an approach of adding and modifying observed macroeconomic factors to the

yield curve to gain a better understanding of what drives bond market pricing behavior. These

macroeconomic factors can include output, inflation, investment, expected output, and practitioner
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forecast disagreement. This is more in line with the approach of Bernanke et al. (2005) and Joslin

et al. (2011), where latent factors are avoided to gain a better understanding of what observed

information drives government bond markets. While the models estimated in this dissertation

do not fit the term structure as closely as models with latent factors, they do reveal important

information about how different types of observed information become valuable at different times

of the business cycle when pricing the term structure. The first two chapters both investigate the

impact that modifications and additions to this observed information set have on model performance

and the time-varying term premium, with a latent factor model included in the second chapter for

comparison and illustration of the value of the observed information.

1.2 Contributions and Structure

Chapter 2, An Extension and Replication of Bernanke et al. (2005), attempts to replicate the

original model of the referenced paper and extend it into the recent financial crisis. The chapter also

examines how an affine term structure model driven solely by the observed macroeconomic factors

used in Bernanke et al. (2005) could benefit from the addition of observed factors that attempt to

capture economic uncertainty, namely, practitioner forecast disagreement and stock market volatil-

ity. These additions become especially useful when recessions are included in the observation period

and lead to higher estimated term premia during recessions. By pricing uncertainty explicitly, better

fitting models with lower pricing error as measured by root-mean-square error are estimated.

Chapter 3, Real-time Data and Informing Affine Models of the Term Structure, focuses on

accurately reflecting the information used by the bond market to contemporaneously price the yield

curve. This refinement of the information set is accomplished through the use of a real-time data-

driven process governing agents’ beliefs about the macroeconomic information driving bond market

decisions. This chapter is inspired by the real-time modeling approach of Orphanides (2001) and

Orphanides and Wei (2012), but focuses entirely on the potential role of real-time data in affine

term structure models. A real-time process is compared to an affine process governed by final

release data to show the advantage of using real-time data through model performance measures

and the characteristics of the resulting term premia. A real-time data derived pricing kernel is

shown to both perform better and offer a wider variety of time-varying term premia time series

across the yield curve. These results suggest that term premia may also be driven by different

factors, or changes in weights of factors, at different ends of the yield curve. The potential role of
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latent factors in smoothing differences between real-time and final data-driven models is also briefly

examined.

Construction and estimation of affine term structure models can be a time consuming process.

The transformation of the information entering pricing decisions into the yields of government

bonds spread across the yield curve involves the construction of a non-linear model. A closed-form

solution for the parameters of the model given a data generating process does not exist, so the model

parameters must be estimated using numerical approximation methods coupled with an objective

function. In the process of researching the affine term structure model literature, I discovered that

there was a dearth of software built explicitly for building and estimating these models. Chapter 4,

An Introduction to affine, a Python Solver Class for Affine Models of the Term Structure, presents

a package written by the author to begin to fill this void and a broad framework through which

affine term structure models can be understood. This package represents a unique addition to

the field, not only in its ability to solve a broad class of affine models of the term structure, but

by also providing a way of understanding different models as permutations of the same structure

modified by a selection of parameters. The chapter presents information on how the package can

be used, issues encountered during development of the package, and lessons learned on developing

computational C language extensions for Python. The package also provides a general approach

to building affine models of the term structure that allows models built for specific purposes in

other papers to be compared using a single framework, aligning their similarities and pinpointing

their differences. It is the intention of the author that this package will lower the costs involved

in developing affine models of the term structure and will lead to a wider variety of papers in the

field.
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CHAPTER 2

AN EXTENSION AND REPLICATION OF

BERNANKE ET AL. (2005)

In a 2005 Brookings Paper, Bernanke et al. (2005) (BRS) investigate the effects of alternative

monetary policy at a binding zero-lower bound (ZLB) for the federal funds rate. One of the main

conclusions of their study is the importance of including policy expectations when pricing zero-

coupon yields through an affine model of the term structure1. Their model uses a collection of

observed macroeconomic variables or “factors” modeled using a vector autoregression (VAR) to

price zero-coupon bond yields along the term structure. While it is common practice in affine

term structure literature to use a combination of observed and unobserved factors to inform the

pricing kernel (see Ang and Piazzesi (2003) and Kim and Wright (2005)), BRS are able to price

a large amount of the variation in observed yields using information derived only from observed

macroeconomic factors. As a specific test of the importance of policy expectations, BRS add an

additional macroeconomic measure (year-ahead Eurodollar futures) to the information set entering

the model, and they adduce the resulting lowered pricing error as evidence of the importance of

policy expectations in bond markets.

BRS’s period of study, 1982 to 2004, lies almost entirely within the period commonly known

as the “Great Moderation” (see Stock and Watson (2003)). This period was characterized by low

inflation and consistent output growth, where expectations of future economic activity stabilized to a

degree not previously seen in American economic history. Because of this stability in both current

and expected economic activity, the inclusion of year-ahead Eurodollar futures as an additional

factor may have been appropriate, given how predictable the economic environment was during

1These models are “affine” through the transformation performed to relate the pricing kernel to the observed
yields. This transformation allows for mathematical tractability when relating the factors driving the pricing kernel
to the observed term structure yields.
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this period. In contrast, the period following their observation period has been characterized by

economic instability and uncertainty, primarily because of the housing boom and bust and associated

stock market crash and the Great Recession. BRS emphasize the ability of their model to fit yields

across multiple maturities without the need for unobserved factors, but given the volatility following

their original observation period, stability in their chosen macroeconomic factors could have driven

lower pricing errors, and not necessarily the ability of those factors to price term structure volatility

in diverse circumstances.

This chapter considers BRS’s model in the context of the recent financial crisis. To do this,

this chapter will attempt to replicate BRS’s results, then extend BRS’s observation period into 2012,

past the “Great Moderation” into the Financial Crisis of 2007-2008 and into the Great Recession

and slow recovery of 2009-2012. If BRS’s choice of factors are suitable for all periods and not just

1982-2004, then the pricing error should not deteriorate with an observation extension into the

modern economic era.

This chapter will be divided into the following 3 sections:

1) Data

I start by addressing the bond yields and macroeconomic factors used in their model. This

section will also consider alternatives to their original data. The use of a different yield set will

be addressed. It will also address possible issues with using Blue Chip Financial Forecast data,

unadjusted, in a time series model.

2) Replication

In this section, I estimate the model using BRS’s original factors and yields and use their

exact observation period of 1982 to 2004. Time series plots of fitted and risk-neutral yields from this

estimation will be shown alongside with BRS’s original results. The pricing errors of the estimated

yields will also be displayed, with and without the Eurodollar factors, and will also be compared to

BRS’s original results. There is also a discussion of the importance of convergence criteria of the

numerical approximation methods used in estimating affine models.

3) Extension

The model will then be re-estimated using a shifted observation period of 1986-2012 in order to

maintain the same number of observations and introduce new factors. The fitted plot and average

pricing error of this model will be compared to the estimated model results from the original

observation period. Given the occurrence of the “Great Recession” during this period, the author’s

hypothesis is that the model will miss pricing kernel information beyond BRS’s original model
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estimation end date in 2004. Macroeconomic uncertainty increased significantly during the lead-up

to and during the “Great Recession” and likely played a major role in influencing bond pricing

agents’ decision process. BRS’s five factor model without any measure of aggregate uncertainty

may not fully account for all major contributing factors to the pricing kernel when the observation

period includes a time of high uncertainty. This could lead to inaccurate forecasting and misleading

measures of the term premium. Measures of forecast disagreement from the Blue Chip Financial

Forecasts and contemporaneous stock market volatility (VIX) will be used to attempt to proxy for

economic uncertainty. In order to make the case for including these measures in an affine model,

this section will estimate additional models in order to show that factors that control for short- and

medium-term uncertainty are important to any affine model of the term structure where pricing

in both stable and unstable economic environments is important. The results suggest that, while

BRS’s original model with Eurodollar futures is able to price a large amount of the variation in

bond prices, adding these additional factors of disagreement and volatility improve the performance

of the model and lead to term premium measures that are more sensitive to recessions.

2.1 Data

This section presents the data used in the model estimation and discusses the potential

problems with using unadjusted Blue Chip Financial Forecast data. The yields to estimate the

model (the details of which are discussed in the next section) are Treasury Bill and Treasury

Constant Maturity yields from the Federal Reserve Bank of St. Louis (2013)2. Fama-Bliss zero-

coupon bonds were available at one, two, three, four, and five year maturities (CRSP, 2013). These

latter yields are the industry standard for term structure modeling, used in countless time series

studies, and are based on the implied zero-coupon yield estimation strategy from Fama and Bliss

(1987). Figures 2.1a, 2.1b, and 2.1c show time-series plots of the same maturity yields for both the

constant maturity government bond series available from Federal Reserve Economic Data (FRED)

(Federal Reserve Bank of St. Louis, 2013) and the Fama-Bliss implied zero-coupon series3. All

three plots show that there are only a few months where there is any noticeable difference between

the two time series. These months are all concentrated in the time during Paul Volker’s term as

2These yields were used as a replacement for the Fed internal zero-coupon yield set that BRS originally used
in their model. The 4 year maturity treasuries are also not included because of unavailability. Fama-Bliss were only
available as a subset of the maturities used in BRS.

3This plots of differences between the treasury constant maturity yields and the Fama-Bliss implied zero-
coupon yields are included in the appendix in Figures C.1a, C.1b, and C.1c.
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Fed chairman when there was a concentrated effort to stamp out the high inflation of the 1970’s.

It remains outside of the period of observation for both BRS’s original model and the extension

presented in a later section. Table 2.1 presents descriptive statistics for the difference between these

two measures for the five year maturity yields. While differences do exist, the two follow largely

the same pattern and are unlikely to drive significant differences in results when estimating models

based on either of these values. If we can assume that the implied zero-coupon yield derivation

method used for the internal Fed set produces similar results to the Fama-Bliss method, the results

using the constant maturity set should compare to BRS’s results.
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Figure 2.1: One, Three, and Five-year Yield Plots of Constant Maturity Government Bonds vs.
Fama-Bliss Implied Zero-coupon Bonds

(a)

(b)

(c)
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Table 2.1: Descriptive Statistics of Difference in Percentage between Constant Maturity Government
Bond Yields and Fama-Bliss Implied Zero-coupon Bond Yields for One, Three, and Five year
Maturities 1982-2012.

Statistic One Year Three Year Five Year
mean 0.0549 0.0826 0.0630
std 0.1976 0.2157 0.2246
min -0.3863 -0.4289 -0.5788
25% -0.0569 -0.0517 -0.0700
50% 0.0323 0.0754 0.0573
75% 0.1515 0.1867 0.1703
max 0.9966 1.1632 1.1142

The information that BRS use to inform the term structure of yields is an employment

gap of total non-farm employment measured as the difference between observed employment and

Hodrick-Prescott filtered employment, inflation over the past year measured using the personal

consumption expenditures (PCE) price index excluding food and energy, mean expected inflation

over the subsequent year from the Blue Chip Financial Forecasts, the effective federal funds rate,

and the year-ahead Eurodollar futures rate. Their data are monthly, June 1982 to August 2004.

Total non-farm employment is from the Bureau of Labor Statistics (2012). PCE inflation and the

effective federal funds were both taken from the Federal Reserve Economic Data (2013), sponsored

by the St. Louis Federal Reserve Bank. Year-ahead Eurodollar futures were downloaded from

Bloomberg (2012).

Before moving on to the model estimation, it is important to note the peculiar structure of

Blue Chip Financial Forecasts (BCFF) and the possible issues with including them, unadjusted, in a

time series econometric model. The Blue Chip Financial Forecasts survey has been conducted every

month since 1976, polling at least 50 economists for their current-year and year-ahead forecasts

for a variety of macroeconomic measures, including GNP/GDP, inflation (as measured by the

GNP/GDP deflator), output from key industries, housing, etc. While percentiles of the predictions

are not included, means of the top and bottom 10 predictions are included. The survey periodically

revises what questions and statistics to include, but the major macroeconomic measures are always

included. The BCFF survey recipients are asked about their best guess for each indicator over

a given calendar year, no matter the current month of the survey. Beginning in 1980, BCFF

began consistently asking in January their forecast for the following year and the current year.

Specifically, in January of 1980, economists were asked for their forecast of real GNP growth and
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inflation as measured by the GNP deflator for the entire year of 1980 and 1981, separately. The

survey is re-administered every month, but the years in question do not change until the following

January. Continuing our example, for February through December of 1980, the questions will refer

to forecasts for the entire years of 1980 and 1981, separately.

Given that the December year-ahead prediction is only one month away from the first month of

the year in question, while the January year-ahead prediction is 12 months away, one might expect

that the two are not comparable without adjustment. Specifically, there might be consistently

greater disagreement in predictions in earlier months in the year compared to later months, as

point predictions converge as practitioners have more information gathered for the same target.

This could result in a naturally converging prediction throughout the year towards a certain value,

with a jump in the predicted value once January returns. There would thus be a form of seasonality

that might be present in both the point-values and dispersion of the values.

Many practitioners, inside and outside the affine model literature, have taken this issue for

granted and corrected for it either in the modeling scheme or adjusting the data. Chun (2011)

and Grishchenko and Huang (2012) both adjust all forecasts after the first period by using linear

interpolation between the forecast for the next period and forecast for two periods ahead. For

monthly data, this results in eleven out of every 12 months in a year being the weighted average of

two data points. If 11 out of every 12 values are entirely based on a linear interpolation between

two values, a lot of potential variation between these values is lost and stability is imposed on

values that might otherwise be volatile. Batchelor and Dua (1992) follow the substitution method of

McCallum (1976) and Wickens (1982) and correct for this fixed horizon issue by explicitly modeling

the rational expectations corrections of the values throughout the year. This method allows the

uncertainty pattern to be modeled and adjusted values to be used in the model.

BRS do not explicitly address this issue, implicitly using the unadjusted year-ahead Blue Chip

forecasts. While there is a theoretical case for adjustment, let us examine whether the forecasts

empirically exhibit trends within the calendar year. As a simple test of whether these values

might require adjustment before their inclusion in the VAR determining the pricing kernel, we

show the movement of the disagreement over time. Figure 2.2 plots next year disagreement as

measured by the average of the top 10 GDP growth predictions minus the bottom 10 GDP growth

predictions over time. Each prediction refers to a single economist queried for the survey. The

graph reveals downward movements in disagreement over the course of a series of months, but it is

not clear whether they are associated with movement within a year. The dark areas are intended to
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highlight periods of sustained consecutive downward movement in disagreement. From this cursory

view, disagreement seems to decline especially in cases where it is preceded by a previous decrease

in disagreement. While this pattern may partially result from a decrease in disagreement over the

period of a business cycle expansion, it could also be driven by the fixed horizon issue mentioned

above, where uncertainty decreases just by the nature of being a later month in the year.

Figure 2.2: Blue Chip Financial Forecasts Next Year Output Growth Disagreement. Highlighted
areas could reveal autocorrelated year-ahead disagreement for GDP.

For further investigation, a box-and-whisker graph is presented in Figure 2.3 summarizing

the distribution of disagreement by month, across 324 months between 1985 and 2012. The top

and bottom wicks represent the maximum and minimum disagreement for that given month. The

top and bottom of the box represent the 75% and 25% percentile of the 27 months within that

calendar month, respectively. Given this more concise visual representation of disagreement, there

does not seem to be any downward pattern to disagreement over the year, as might be expected.
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Even though there is more information about the next year in December compared to January, that

does not seem to consistently decrease the dispersion of forecasts as the ending of the calendar year

approaches.

Figure 2.3: Distribution of Disagreement for Next Year by Month. Disagreement measured as
average of top 10 predictions minus average of bottom 10 predictions.

On the other hand, for the within year forecasts, there is a clear decline in disagreement over

the course of any given year, as shown in Figure 2.4. These are the disagreement in GDP growth

for year Y during the months within year Y . As the year passes for these within-year forecasts, the

span of possible final values decreases given that a higher fraction of the influencing observations

for that year have already been observed, leading to the convergence shown in the figure.

The year-ahead prediction values to do not show a within year bias that needs to be cor-

rected for. In the next section, disagreement is measured using the year-ahead prediction measures,

so unadjusted Blue Chip data should be appropriate for inclusion in a VAR process. All other

macroeconomic measures are included consistent with BRS’s original prescribed model.
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Figure 2.4: Distribution of Disagreement for Current Year by Month. Disagreement measured as
average of top 10 predictions minus average of bottom 10 predictions.

2.2 Replication

This section attempts to replicate the results of BRS’s estimated affine model of the term

structure using the data described in the above section. BRS compare two of these models, with and

without Eurodollar futures, to demonstrate the importance of policy expectations in government

bond pricing. We begin by addressing the general form of affine term structure models and continue

with the specifics outlined by BRS in their model structure and estimation.

The price of any n-period zero-coupon bond in period t can be recursively defined as the

expected product of the pricing kernel in period t + 1, kt+1, and the price of the same security

matured one period in t+ 1:

pnt = Et[kt+1p
n−1
t+1 ] (2.2.1)

The pricing kernel, kt, encapsulates all relevant information to bond pricing decisions and is

used to price along all relevant maturities. In affine term structure models, as in BRS, zero-coupon

bonds are used so that yields all along the yield curve are comparable. Differences in yields must be
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solely determined by the perceived risk and expected changes in the pricing kernel. For simplicity,

it is assumed that the period-ahead pricing kernel is conditionally log-normal, a function only of

the current one-period risk-free rate, it and the prices of risk, λt:

kt+1 = exp (−it −
1

2
λ′tλt − λ′tεt+1) (2.2.2)

where λt is q× 1, with q = f ∗ l, where f is the number of factors and l is the number of lags.

ε of shape q × 1 is assumed N (0, 1) and are the shocks to the VAR process described below.

Without perfect foresight, agents price risk via a set of macroeconomic factors, Xt. The pro-

cess governing the evolution of the five factors influencing the pricing kernel is assumed represented

as a VAR(1):

Xt = µ+ ΦXt−1 + Σεt (2.2.3)

where Xt is an q × 1 vector. BRS include five factors and three lags of these factors in Xt,

with zeros in µ below the f element and ones and zeros in Φ picking out the appropriate values

as a result of lags l > 1. BRS’s chosen factors are mentioned in the above section. It is assumed

that this process fully identifies the time series of information entering bond pricing decisions. µ

and Φ are estimated using OLS. Σ summarizes covariance across of the residuals and is assumed

an identity matrix.

Agents price risk attributed to each macro factor given a linear (affine) transformation of the

current state-space, Xt:

λt = λ0 + λ1Xt (2.2.4)

where λ0 is q × 1 and λ1 is q × q.

We can then define the price of any zero-coupon bond of maturity n in period t as a function

of the pricing kernel, combining Eqs. 2.2.1–2.2.4, in Equation 2.2.5. This is the relationship that

makes these models “affine” and is consistent across the affine term structure model literature.

pnt = exp (Ān + B̄′nXt) (2.2.5)

where Ān and B̄n are recursively defined as follows:
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Ān+1 = Ān + B̄′n(µ− Σλ0) +
1

2
B̄′nΣΣ′B̄′n − δ0

B̄′n+1 = B̄′n(Φ− Σλ1)− δ′1 (2.2.6)

where Ā1 = δ0 and B̄1 = δ1 and δ0 and δ1 relate the macro factors to the one-period risk-free rate:

it = exp (δ0 + δ1Xt) (2.2.7)

In the same way, the yield can be expressed as:

ynt = An +B′nXt (2.2.8)

where An = −Ān/n and Bn = −B̄n/n.

Equations (2.2.1)–(2.2.4) completely identify a system relating a data-generating process of

macroeconomic measures to a pricing kernel and that pricing kernel to assets of similar character-

istics along a single yield curve. λ0 and λ1 are estimated using non-linear least squares to fit the

pricing error of selected yields along the yield curve, in this case: one, two, three, four, five, seven

and ten year maturity zero-coupon bonds. The model-predicted yields are generated by feeding

the VAR elements, Xt, for each t into Equation 2.2.8, using the estimated λ0 and λ1 in Equation

2.2.6. By setting the prices of risk to zero in λ0 and λ1, the implied risk-neutral yields can be

generated. To reduce the parameter space, it is assumed that the prices of risk corresponding to

lagged elements of Xt are zero, resulting in blocks of zeros below the f element of λ0 and outside

of upper left f × f elements of λ1.

Presented in Figure 2.5 are two graphs presented as they appear in Bernanke et al. (2005,

p. 46). Each graph shows three lines: the actual yield, the model-predicted yield, and the risk-

neutral yield. The model-predicted and risk-neutral yield are both generated from the estimated

parameters where the difference between the two is the implied term premium.

Table 2.2 is also taken from Bernanke et al. (2005, p. 47), presenting the standard deviation

of the pricing errors for all of the yields used in the estimation of the two models, with and without

Eurodollar futures included as a macro factor influencing the pricing kernel. At each maturity, the

pricing error is lower after the inclusion of Eudodollar futures, although the gain in fit is greater
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Figure 2.5: Page 46 from Bernanke et al. (2005)

for the shorter maturity yields. BRS take this as evidence that policy expectations play a major

role in shaping government bond yields.
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Table 2.2: Page 47 from Bernanke et al. (2005)

We now attempt to replicate the results presented in BRS using a custom-written solution

method in Python (see Chapter 4 for details) and using data available outside the Fed4. All factors

are as they appear in BRS. The two time series of yields, predicated, actual, and risk-neutral are

presented graphically in Figures 2.6 and 2.7, echoing their presentation in Figure 2.5 from BRS.

There are a few main results that align between both BRS’s original results and the results

of this chapter’s model runs. First, there is a positive term premium throughout the observation

period. In both Figures 2.6 and 2.7, the risk neutral predicted yield is below the actual and predicted

yield for the majority of the observation period. Second, for the ten-year yield, the term premium

declines throughout the observation period. This reinforces the qualitative observation that stable

inflation and growth decreased the perceived liquidity risk of longer maturity bonds over the course

of the Great Moderation, reducing the yield to hold these bonds above and beyond that predicted

by the modeled risk-neutral expectations.

Table 2.3 presents the standard deviation of the pricing error at each estimated maturity. The

pricing errors for the model with Eurodollar futures are similar to the original BRS estimation results

4The data was requested but was not available.
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Figure 2.6: Author’s Estimation Results Showing Actual, Predicted, and Risk-neutral Percentage
Yields for 2-year Treasury Constant Maturity. The risk-neutral yield is calculated by settings the
prices of risk in the estimated model equal zero. Actual yield is included for comparison.

Figure 2.7: Author’s Estimation Results Showing Actual, Predicted, and Risk-neutral Percentage
Yields for 10-year Treasury Constant Maturity. The risk-neutral yield is calculated by settings the
prices of risk in the estimated model equal zero. Actual yield is included for comparison.

shown in Table 2.2, while the pricing errors for the model without Eurodollar futures diverge more

substantially. The same convergence tolerance thresholds were used for both of the these models,
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with the only difference between them the addition of Eurodollar futures. The improvement in

pricing error from the addition of Eurodollar futures is not as large as that presented in 2.2. In

fact, the only difference in pricing error of more than five basis points is at the six month maturity.

Table 2.3: Standard Deviation of Pricing Error in Basis Points.

Maturity VAR with ED shocks VAR without ED shocks
6 months 34.84 39.27
1 year 53.07 57.22
2 years 74.29 77.30
3 years 79.88 82.22
5 years 79.09 81.06
7 years 77.15 79.36
10 years 72.62 74.80

It is difficult to perceive exactly why the results of replication differ so significantly from BRS’s

model. While the model run with Eurodollar futures comes quite close to the original results, the

author’s estimation of the model without Eurodollar futures performs much better than the results

presented by BRS. This could be due to a number of factors.

First, BRS use internal Fed zero-coupon yield data while this author’s estimation uses a

separate set of treasuries as described above. Using the same set of factors as BRS in Eq. 2.2.3 but

a slightly different set of predicted yields in Eq. 2.2.8 would result in different results for pricing

errors along the yield curve. Given the similarity of the yields used as described above and shown

in Figures 2.1a-2.1c, it is unlikely that this large of a difference in model performance could be

completely accounted for by small differences in the input yields.

Second, BRS may have set the convergence criteria for both parameter and/or function eval-

uation differences differently between the models with and without Eurodollar futures. In order to

investigate this sensitivity, multiple estimations were performed using the same set of factors but a

wide range of convergence criterion for both the sum of squared pricing errors and the parameter

estimates. Convergence tolerance thresholds for the sum of squared pricing errors were set to range

from 0.1 to 1× 10−5 with 15 values between the two, with four values at each power of 10. Specifi-

cally, the values were 7.5×10−n, 5×10−n, 2.5×10−n, and 1×10−n, with n ∈ {−2,−3,−4,−5} with
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the addition of 0.1, making for 17 possible values. The same range was used for the convergence

tolerance thresholds for the parameter estimates, making for 17× 17 = 289 estimations for each of

the models with and without Eurodollar futures. Convergence thresholds lower than 1 × 10−5 for

either the sum of squared pricing errors or the parameter estimates did not make any noticeable

changes in the parameter estimates. After examining the results of these models, it seemed that

changes in parameter estimates and thus pricing errors were driven primarily by the parameter

convergence threshold rather than the sum of squared errors convergence threshold.

Varying the different convergence criterion for the parameter estimates errors results in very

different pricing errors. Sets of pricing errors for a few key values of parameter convergence criterion

are presented in Table 2.4 for the models without Eurodollar futures first followed by the models

with Eurodollar futures. The sum of squared error convergence criterion is 1 × 10−8 across these

models. As can be seen, convergence could be reached with even lower thresholds, resulting in

better model fit than BRS’s presented results across all maturities. BRS do not explicitly mention

the convergence criteria that they use. If we compare the pricing error along the same convergence

threshold for the models without Eurodollar futures and with Eurodollar futures in Table 2.4, we

find that comparing the two models depends very much on the convergence criteria used. Again,

BRS emphasize the gain in model performance, as measured by the pricing error, by adding a fifth

factor, Eurodollar futures to their model.

For a true comparison between models, it makes sense to compare the two models using

the exact same convergence criteria along all dimensions. The differences in pricing error of the

two models, with and without Eurodollar, ceteris paribus, are presented in Table 2.5. Using the

strictest convergence criteria presented (xtol=0.0001), we find that the model with Eurodollar

futures outperforms the model without Eurodollar futures comparing all seven key yields. Using

looser convergence criteria, we find that the improvement in pricing error occurs only at certain

maturities. At the 0.05 and 0.1 levels, the model without Eurodollar futures actually outperforms

the model with futures at most key yields. At the 0.01 level and below, the model with Eurodollar

futures consistently outperforms the model without Eurodollar futures. It is not until these lower

convergence tolerance thresholds are used that the parameter estimates and thus the pricing errors

settle down to reliable levels. The levels chosen (0.1, 0.05, 0.01, 0.001, 0.0001) seemed to be key

convergence tolerance thresholds to generating more precise parameter estimates. In the context

of this modeling exercise, these levels seemed to generate changes in the parameter estimates when
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Table 2.4: Standard Deviation of Pricing Error by Parameter Difference Convergence Criterion.
Monthly data 1982-2004.

Model without Eurodollar factor
Maturity xtol=0.1 xtol=0.05 xtol=0.01 xtol=0.001 xtol=0.0001
6 months 52.78 53.39 44.60 39.64 39.81
1 year 111.07 112.15 84.09 57.79 57.73
2 years 160.35 160.10 112.34 78.68 77.97
3 years 166.23 165.33 116.72 83.30 82.74
5 years 175.48 173.95 114.20 82.21 81.65
7 years 185.80 184.04 118.81 80.54 79.95
10 years 195.21 193.72 141.93 76.10 75.43

Model with Eurodollar factor
6 months 51.57 51.59 36.88 37.46 35.21
1 year 113.33 112.89 57.98 54.71 53.41
2 years 171.24 168.44 85.97 77.53 74.46
3 years 180.94 177.10 92.63 82.50 79.91
5 years 189.03 184.70 91.80 81.65 79.21
7 years 196.81 192.94 93.81 80.23 77.26
10 years 203.66 201.14 95.12 76.14 72.71

moving to the next lower threshold. For example, moving from 0.075 to 0.05 did not always generate

a change in the parameter estimates, but moving from 0.05 to 0.1 consistently produced a change

in the parameter estimates.

While these thresholds are characteristic of this specific model and not generally applicable

to all affine models, the author recommends that convergence criteria should be lowered until either

convergence can no longer be reached or a relevant machine epsilon is hit. This recommendation

is based on the observation that model performance comparisons based on pricing error are incon-

sistent when the convergence tolerance is too high (loose), as shown in Table 2.5. It should also be

noted that even if a software claims to support very low convergence tolerances (higher precision),

the precision of the datatype is of special consideration with the recursive calculations of An and

Bn in equation 2.2.8. With each calculation of An and Bn based on An−1 and Bn−1, any numerical

precision difference will be expounded based on how high n goes up to. For example, for any C

based langauge using numbers based on the type double, precision below 2−52 = 2.22 × 10−16 is

not reliable for a single calculation and will be even higher once any kind of resursive calculations

are considered. Staying far above this machine epsilon for the convergence tolerance threshold is

recommended. In case of the C double, staying around 1 × 10−9 should result in high precision

while still staying away from any datatype precision issues, if that level of precision can be attained.

These recommendations are especially important when pricing error results are compared across
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models. Only when these levels are pushed low can comparable results be generated. This is pri-

marily a result of the fact that these models are non-linear and results can be highly sensitive to

the parameters of the numerical optimization method.

Table 2.5: Difference in Standard Deviation of Pricing Error between Model with and without
Eurodollar Factor. Function Difference is 1.49012e-8 for all columns. Monthly Data 1982-2004.

Maturity xtol=0.1 xtol=0.05 xtol=0.01 xtol=0.001 xtol=0.0001
6 months -1.21 -1.80 -7.72 -2.18 -4.60
1 year 2.26 0.74 -26.11 -3.08 -4.32
2 years 10.89 8.34 -26.37 -1.15 -3.51
3 years 14.71 11.77 -24.09 -0.80 -2.83
5 years 13.55 10.75 -22.40 -0.56 -2.44
7 years 11.01 8.90 -25.00 -0.31 -2.69
10 years 8.45 7.42 -46.81 0.04 -2.72
Sum 59.66 46.12 -178.50 -8.04 -23.11

Another interesting direction to consider is the statistic that BRS use to judge whether

improved model fit takes place. While standard deviation of the errors may be important for higher

order convergence, root-mean-square error (RMSE) or mean absolute deviation (MAD) is a much

more commonly used statistic used to compare the fit of different models (See Ang and Piazzesi

(2003) and Kim and Orphanides (2005)). Given this choice of comparison, this section also presents

an analogous table to Table 2.3 using RMSE in Table 2.6. This table largely mirrors the values and

patterns in 2.3.

As evidence of the importance of policy expectations to the yield curve, BRS use the improve-

ment in pricing error gained by adding Eurodollar futures as the fifth factor to the VAR determining

the pricing kernel. The results of this section confirm the use of Eurodollar futures in improving the

performance of BRS’s four factor model by lowering the pricing error across all directly estimated

maturities, although the improvement in pricing error is not quite as large when lower convergence

criteria were used. Using these lower convergence criteria, the models with and without Eurodollar

futures both outperformed BRS’s original presented results. Overall, this section confirms that

Eurodollar futures offer meaningful explanatory value in a term structure model estimated during

the “Great Moderation”.
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Table 2.6: Root Mean Squared Pricing Error in Basis Points

Maturity VAR with ED shocks VAR without ED shocks
6 months 34.84 37.82
1 year 53.07 56.95
2 years 74.29 76.39
3 years 79.88 81.52
5 years 79.09 81.25
7 years 77.15 80.07
10 years 72.62 74.80

2.3 Extension into the Great Recession of 2007-2009

BRS indicate that their five observed factor model estimated from 1982 to 2004 does “quite a

creditable job of explaining the behavior of the term structure over time” (Bernanke et al., 2005, p.

45). They also justify the use of Eurodollar futures as a fifth factor by noting the decrease in pricing

error when the factor is added. This section will consider the robustness of the model’s fit when the

observation period is extended to include the recent financial crisis. As noted above, BRS’s period

of study is firmly within the “Great Moderation”, a term introduced in Stock and Watson (2003),

to refer to the period from the early 1980’s to the mid 2000’s, when inflation was low and growth

was stable. Given the predictable economic conditions during this period, the choice of year-ahead

Eurodollar futures may have added explanatory value to the model through its correlation with

these stable economic conditions rather than via its value as an inter-temporally accurate proxy

of policy expectations. If this hypothesis is true, we may expect the explanatory value of the

model to deteriorate when estimated in a time period that includes the periods of higher economic

uncertainty and volatility not seen during the “Great Moderation”, particularly the recent financial

crisis.

In addition to testing the ability of BRS’s model outside of the original sample, this section

would also like to propose the addition of measures of economic uncertainty in order to further

extend the model and lead to more robust measures of the term premium. Following the housing

market collapse of 2007 and accompanying stock market crash and financial crisis, there was a

popular perception that aggregate economic uncertainty had increased. The potential of economic

uncertainty to affect the real economy has theoretical roots in Keynes (1936) and Minsky (1986),

who linked uncertainty to real economic activity through its effect on asset prices and investment.

While interest in this topic waned during the “Great Moderation”, the ability of economic uncer-
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tainty to drive and exacerbate real economic outcomes received a revival of interest during and

following the recent financial crisis. Bloom (2009) found that increases in economic uncertainty

built up from firm level data lead to a decrease followed by a rebound in both aggregate output and

employment. Baker et al. (2013) also finds that increases in uncertainty as measured using indi-

cators including newspaper references to uncertainty, economist forecast dispersion, and scheduled

congressional tax-code expirations lead to decreases in investment and other measures of economic

activity when included in a VAR.

If uncertainty has an impact on real economic outcomes, and if real economic outcomes are

used to inform the pricing kernel, then economic uncertainty could have an independent effect on

pricing the yield curve. Given the potential impact of uncertainty on the yield curve and the in-

crease in uncertainty following the stock market crash of 2008-2009, this section will also propose

the addition of proxies for economic uncertainty to BRS’s five factor model. Given the limited

availability of monthly survey data that includes forecast uncertainty measures, this section will

propose the use of two proxies, one for disagreement and one for volatility, in an attempt to price the

movements in the term structure associated with short- and medium-term uncertainty. The proxy

for disagreement will be the difference between the average of the top 10 predictions and the average

of the bottom 10 predictions of the year-ahead output forecasts from the Blue Chip Economic Indi-

cators. More robust measures based on difference between percentiles or dispersion measures from

the Blue Chip Financial Forecasts were not available. Even though the difference between upper

and lower survey result percentiles has commonly been used as a proxy for uncertainty (Zarnowitz

and Lambros (1987), Giordani and Söderlind (2003)), a fairly recent groups of papers, Rich and

Tracy (2010) and Rich et al. (2012), show that the relationship between economists’ disagreement

and uncertainty is inconsistent, challenging the main conclusion of Bomberger (1996). Rich et al.

(2012) use a mix of moment-based and inter-quartile range-based (IQR) approaches to show that,

in the best cases, disagreement measures can only explain about 20% of the variation in uncertainty

measures. With this conclusion, the authors instead use a quarterly measure of prediction uncer-

tainty from the European Central Bank conducted Survey of Professional Forecasters. A similarly

detailed monthly survey of U.S economists’ predictions is not currently available, so while forecast

disagreement may capture some of economic uncertainty, it alone cannot be expected to capture

economic uncertainty in general. Even though forecast disagreement may not capture uncertainty

alone, it has been shown to independently have a relationship with real output and inflation. For

example, Mankiw et al. (2004) show that a New-Keynesian model with sticky information is able
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to produce autocorrelated forecast errors seen in forecast disagreement data. Also, Dovern et al.

(2012) show that forecast disagreement is strongly correlated with business cycle movements.

The proxy for volatility will be a measure of stock market volatility, the Chicago Board

Options Exchange (CBOE) S&P 500 volatility index, commonly known as the VIX. Even though

the VIX has only been traded since March 26, 2004, it has been retrospectively calculated going

back to 1990. The value of the VIX is calculated to represent the expected 30-day volatility of the

S&P 500 and can be thought of as volatility expressed at an annual rate (CBOE, 2009). Volatility

can represent movement in any direction, so the measure is not a pure measure of uncertainty, but

does represent an indicator of expected movements in the stock market over a fairly short-period, at

least in the context of the monthly macroeconomic variables used as other factors in the model. The

use of stock market volatility in macroeconomic models and the result that stock market volatility

impacts other markets are both well-established. Fleming et al. (1998) specify a basic trading model

with transactions between stock, bond, and money markets, showing that the volatility linkages

between these markets are strong. It has also been established that volatility does have an impact

on macroeconomic growth, at least in some countries (Diebold and Yilmaz, 2008). Adrian et al.

(2010) include the VIX in a VAR estimating relationships between monetary, business cycle, and

financial markets.

As a partial response to Rich et al. (2012)’s critique, a third model will be estimated which

adds practitioner disagreement and stock market volatility together to the basic BRS model. Figure

2.8 plots both the disagreement measure and the VIX, revealing at least some visual correlation

between the two measures. While individually these measures may not reflect all economic uncer-

tainty, together in a single model they may come closer to summarizing short- to medium-term

uncertainty. These models will all be estimated using monthly data from May, 1990 to May, 2012.

During this period, the disagreement and volatility measures have a correlation coefficient of 0.4,

suggesting that, while the two are correlated, the correlation is far from perfect and they may

individually reveal different information about uncertainty.

For convenience, let us define the set of models by the macro factors that constitute them. The

model definitions are summarized in Table 2.7. Inclusion of the employment gap, inflation, expected

inflation, and the federal funds rate is defined as ‘baseline’ or ‘b’ since these are consistent across

all of the models and constitute BRS’s original comparison model. ‘E’ indicates that Eurodollars

futures are included in the model. ‘D’ represents the disagreement proxy and ‘V’ represents the

volatility proxy. Originally, appending data onto the end of the original test period (1982-2004) was
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Figure 2.8: Blue Chip Disagreement and VIX, 1990-2012

considered, but this was rejected for two reasons. First, reliable measures of disagreement (D) did

not begin until 1986. Second, in order to make reliable comparisons with the BRS model estimated

with our yield data, the results of which were presented in Table 2.3, it was important to use an

observation period of the same length, namely, 22 years of monthly data. Comparing a model

with more observations could result in decreases in the pricing error gained from a better fitting

set of observations added to one end of the observation period. This could lead to the conclusion

that a model performed better, when performance in the original period of observation has not

improved. Restricting to the same number of observations allows any model improvements to be

a result of changes in the macroeconomic environment as reflected in the data compared to the

original observation period of 1986-2004 and/or changes in the choice of factors in Xt of Equation

2.2.3 and not the result of the addition of more observations.
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Table 2.7: Model Classifications

Name Macro Factors

b Empl gap, inflation, expected inflation,
fed funds = baseline

b + E baseline, Eurodollar futures

b + D baseline, Blue Chip expectations dis-
agreement

b + V baseline, S&P 500 VIX

b + D + V baseline, Blue Chip expectations dis-
agreement, S&P 500 VIX

b + E + D baseline, Eurodollar futures, Blue Chip
expectations disagreement

b + E + V baseline, Eurodollar futures, S&P 500
VIX

b + E + D + V baseline, Eurodollar futures, Blue Chip
expectations disagreement, S&P 500
VIX

Again, each one of the models was estimated using the assumptions concerning block zeros

in λ0 and λ1 in Equation 2.2.3. The unknown parameters in λ0 and λ1 were estimated using

nonlinear least squares, initializing the guesses of all unknown elements to 0. A parameter conver-

gence tolerance threshold of 0.00001 and sum of squared errors convergence tolerance threshold of

1.49012 × 10−8 were used. These thresholds were set tighter than that implied by BRS’s original

model as a response to the questions raised about proper thresholds raised in the previous section.

Examining the results in Table 2.8 we see that there is a clear improvement in average pricing

error by adding any of the extra factors in models baseline + E, baseline + D, baseline + V,

and baseline + D + V over baseline. While baseline + D, baseline + V, and baseline + D +

V all have higher average pricing errors at all estimated maturities than baseline + E, each offers

additional explanatory value compared to the baseline model. This extension reinforces BRS’s

inclusion of Eurodollar futures as a proxy for expectations, and, when combined with the other

baseline variables, holds as a macroeconomic model summarizing a good deal of macroeconomic

movement and as a reasonable information set of the pricing kernel. While D, V, and D + V do
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not seem to replace or offer more explanatory value than E in this model, they do seem to offer

some explanatory value and may offer explanatory value that is entirely separate from expectations.

Given this hypothesis, three additional models are included: baseline + E + D, baseline

+ E + V, and baseline + E + D + V. These models are included to test whether measure-

ments of disagreement and volatility lower the pricing error of the model beyond adding Eurodollar

futures. Adding each of these measurements individually and together to baseline + E results in

lower pricing errors. This supports the hypothesis that disagreement and volatility both seem to

have information valuable to explaining movement in the term structure not contained in Eurodol-

lar futures. Eurodollar futures also may not fully capture higher moments of expectations that

disagreement and/or volatility do.

Table 2.8: RMSE for Estimated Models. Parameter difference is 0.00001 and function difference
is 1.49012 × 10−8 for all columns. Monthly data May, 1990 to May, 2012. *=90%, **=95%, and
***=99%, where these refer to confidence levels for a two-sided t-test for a difference in the mean
pricing error between the models shown in Table 2.9.

Maturity b b+E b+D b+V b+D+V b+E+D b+E+V b+E+D+V
6 months 24.25 18.49*** 23.01 23.19 22.89 16.64 15.86** 15.61
1 year 38.84 27.86*** 32.86* 33.45* 32.57 20.93*** 19.59*** 19.00
2 years 56.08 33.38*** 45.10*** 48.39** 45.20 23.53*** 22.58*** 22.10
3 years 62.32 35.44*** 50.14*** 54.50** 50.30 26.60*** 26.40*** 25.55
5 years 64.73 36.91*** 54.76*** 59.38 54.92 31.92*** 32.12** 31.19
7 years 63.42 38.04*** 54.67*** 59.55 54.71 33.20*** 34.68 33.02
10 years 58.97 35.60*** 52.59** 56.39 52.76 34.13 35.41 33.95

Table 2.9: Model Comparisons for T-Test.

Model Comparison
b + E b
b + D b
b + V b
b + D + V b + D
b + E + D b + E
b + E + V b + E
b + E + D + V b + E + D

Table 2.9 matches models to the comparison model that was used for running a two sample,

two-sided t-test for difference between the RMSE. The associated confidence levels, 90% (*), 95%

(**), and 99% (***), from these t-tests are included in Table 2.8 to show whether differences
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in pricing error are significant between each pair of models. The statistical significance of the

differences in pricing error reinforce the aforementioned conclusions that Eurodollar futures are

important to pricing the term structure and disagreement and volatility offer additional explanatory

value in helping to price higher moments of expectations. The decrease in pricing error from the

inclusion of Eurodollar futures is statistically significant at all maturity levels over the standard

baseline model. Importantly, the inclusion of Eurodollar futures results in a statistically significant

decline in pricing error, compared with the reference four factor model even in an observation period

that includes the financial crisis. Confidence levels for the b+D and the b+E+D models suggest

that the impact of adding disagreement is much greater at the longer maturity end of the yield

curve, with highest significance at the 2-7 year maturity levels in the b+D model and 1-7 years

in the b+E+D model. Overall, volatility does not have as much of an impact on the pricing

error, but there does seem to be some evidence that, when it does have an impact, it is primarily

concentrated in the shorter maturity end of the yield curve. Adding volatility produces statistically

significant differences in pricing error only in the 1-3 year range for the b+V model and in the six-

month to five-year range for the b+E+V model. The impact of disagreement concentrated more

on the medium- to long-term portion of the yield curve and the impact of volatility concentrated

more on the short- to medium-term portion of the yield curve suggests that the two measures offer

complementary but unique information to the pricing kernel.

For completeness, models are also estimated using Fama-Bliss (CRSP, 2013) implied zero-

coupon bonds data that are often used in the affine term structure model literature. While these

yields are at different points along the yield curve than the data used in the original BRS model,

unlike the yields used in Table 2.8, Fama-Bliss yields are true zero-coupon bonds and are a better

match for the theory underlining affine models, unlike the constant maturity yields used for the

previous analysis5. These results are provided as a validation of the model estimation procedure

used. Model results using Fama-Bliss yields are presented in Table 2.10. Results largely con-

firm the significance of disagreement, with even more added explanatory value in volatility in the

baseline+E+D+V over baseline+E+D. These results reinforce the main conclusions above,

primarily that: 1) Eurodollar futures contain information important to the pricing kernel inform-

ing the term structure of zero-coupon government bonds, 2) disagreement and volatility measures

provide information important to the pricing kernel above and beyond that of Eurodollar futures,

5In order for a single pricing kernel to price bonds all along the yield curve, the yields must be easily priced
and compared, making zero-coupon yields a good fit. This is addressed at the beginning of the replication section.
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and 3) disagreement and volatility themselves provide separate information and together lower the

pricing error more than each individually, given how they lower pricing error at different maturities.

Table 2.10: RMSE for Model Using Fama-Bliss Zero-coupon Bonds. Parameter difference is 0.00001
and function difference is 1.49012 × 10−8 for all columns. Monthly data May, 1990 to May, 2012.
***=99%, **=95%, and *=90%.

Maturity b b+E b+D b+V b+D+V b+E+D b+E+V b+E+D+V
1 year 40.85 23.53*** 35.24** 36.05* 35.69 14.03*** 15.44*** 13.46
2 years 58.06 27.39*** 48.99*** 49.92** 48.67 15.81*** 17.64*** 11.99***
3 years 65.90 30.87*** 55.06*** 56.55** 54.54 20.54*** 22.82*** 16.94***
4 years 68.03 32.95*** 57.31*** 59.37** 56.64 25.47*** 27.55*** 22.09**
5 years 67.62 32.72*** 58.59*** 60.88* 58.01 28.27*** 29.68* 25.26**

While the RMSE helps to establish the value of Eurodollar futures, disagreement, and volatil-

ity measures to informing pricing kernel, plots of the errors and term premia can help to build a

story as to why they may matter. Figure 2.9 plots the pricing errors of the five year yield for a

few select models from Table 2.86. Comparing the error plots, there is a clear change in the error

process moving from the baseline four factor b model (the first plot) to the model with Eurodol-

lar futures added b+E (the second plot). The error process becomes more concentrated around

zero and there seem to be fewer consecutive periods where the error is consecutively positive or

consecutively negative, revealing that more variance in the yield process is captured by informa-

tion explicitly included in the model. A few select periods, 1999-2000, 2001-2002, 2005-2007, and

2008-2009, are highlighted to show the change in the pattern of the pricing errors after adding

Eurodollar futures. These date ranges are linked to the tech stock boom of 1990-2000, the recession

of 2001, the housing market bubble of 2005-2007, and the Great Recession of of 2007-2009. This

desirable change in the error process along with the lower pricing error further reinforces BRS’s

original conclusion that Eurodollar futures offer important information in a pricing kernel. Adding

disagreement (the third plot) and volatility (the fourth plot) to the model do not seem to funda-

mentally change the error process to the degree that adding Eurodollar futures did, although there

does seem to be a further concentration of the pricing error around zero. The further concentration

around zero can also be seen in the highlighted periods. The error process taken alone seems to

indicate that the addition of Eurodollar futures leads to a more well-behaved error process and

lower pricing error, while the addition of disagreement and volatility lower the pricing error, but

6A more complete set of plots for the pricing error on one and five year yields is included in the Appendix in
Figure C.2
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do not generate a fundamental change in the error process in the same manner that the addition

of Eurodollar futures do.
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Examining the resulting time-varying term premia offers more information on what value

disagreement and volatility add to bond pricing agents’ decicision processes. Figure 2.10 shows the

time series of the implied five year bond term premium. This maturity was shown because it is

in the middle of the maturities, but other maturities reflected similar processes with larger term

premia at the longer end of the yield curve and smaller term premia at the shorter end of the yield

curve. Again, each plot is taken from a single estimated model. The addition of disagreement to

the pricing kernel in the third plot and volatility in the fourth plot do not reveal any noticable

changes for most of the observation period. The only exceptions are in the recession periods during

2001 and 2008-2009, highlighted in red.

In the 2001 recession, the change comes in the form of a double dip rather than a single dip

with the addition of disagreement. In both the 2001 and 2007-2009 recession, the term premium

is overall higher during the recession periods with the addition of the uncertainty proxies. This

observation is made more clear in Table 2.11, which shows the mean time-varying term premium

by date range, with a single estimated model per column7. The first row shows the entire sample

period, while each subsequent row shows the mean term premium during an expansion or recession

as defined by the Bureau of Labor Statistics. It is clear to see that there is not a large difference

in the time-varying term premium with the addition of disagreement or volatility in the entire

sample period or the expansion periods. A significant difference in the term premium only arises

with the addition of disagreement and volatility in the recession periods. With the addition of

these uncertainty proxies, the term premium is on average 34-36 basis points higher in the first

recession and 27-32 basis points higher in the second recession compared to the baseline model

with Eurodollar futures. In the context of this model, disagreement and volatility offer meaningful

information for bond pricing agents beyond that contained in Eurodollar futures, especially during

recessionary periods. This observation suggests that not only do bond pricing decisions respond to

these uncertainty proxies, but the response is aggravated during recessions. In the context of this

study, the impact of uncertainty on term premia in the yield curve is larger during recessionary

periods, but does not seem to generate meaningful differences during expansionary periods.

With this observation about the nature of the term premium, BRS’s original model could

underestimate the term premium during recessionary periods. This may also be true of any affine

model attempting to price the yield curve with observed factors with an observation period that

7Analogous tables for the maximum and minimum term premium are included in the Appendix in Tables C.1
and C.2. These tables largely mirror the qualitative results presented in Table 2.11
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includes a recession, although this study only investigates the impact of two recessions. This

inconsistency between recessions and expansions may reflect a general observation that the loadings

on macroeconomic factors informing the pricing kernel may be different during expansions and

recessions. During expansionary periods, government bond market agents may rely more heavily

on what they perceive to be stable economic indicators of real activity such as output and inflation.

While this information is not likely to be abandoned completely by these agents during recessions,

disagreement and volatility may crop up as particularly influential as most agents appetites for risk

go down during recessions. This leads to the increase in the term premia seen during recessions as

reflected in Table 2.11.



37

F
ig
ur
e
2.
10
:
P
lo
ts

of
T
im

e-
va
ry
in
g
T
er
m

P
re
m
iu
m

fo
r
F
iv
e
Y
ea
r
Y
ie
ld

fo
r
Se
le
ct

M
od

el
s.

E
ac
h
pl
ot

sh
ow

s
th
e
te
rm

pr
em

iu
m

fo
r
an

in
di
vi
du

al
m
od

el
.



38

Table 2.11: Mean Five Year Term Premium by Date Range and Model. Each row represents a date
range within which the mean is calculated and each column represents an individually estimated
model.

BRS factor models Uncertainty proxy models
b b+E b+E+D b+E+D+V

08/90 - 05/12 (Full Sample) 1.70 1.84 1.85 1.84
03/91 - 03/01 (Expansion) 2.14 2.01 2.00 1.98
03/01 - 11/01 (Recession) 1.18 1.56 1.92 1.90
11/01 - 12/07 (Expansion) 1.46 1.67 1.61 1.60
12/07 - 06/09 (Recession) 0.73 1.52 1.79 1.84

Potentially, the most valuable contribution of this extension is drawing out the difference

between types of uncertainty embedded in the premia on government bonds. While the proxies for

disagreement and volatility should be able to price at least some of the short- and medium-term

risk, there seems to be a fundamental increase in other risks of holding long-term bonds during

the financial crisis that are not fully captured by BRS’s original five factor model. As shown in

Table 2.11, there is an increase in the mean time-varying term premium moving from the 2001-2007

expansion to the 2007-2009 recession that is not observed in either of BRS’s original models, but

is observed with the addition of the two uncertainty proxies. With disagreement and volatility

measures capturing some of the movement in short-term uncertainty, the remaining unexpected

risk embedded in the premium should primarily be driven by longer-term uncertainty. Moreover,

this long-term risk rose when moving into the 2007-2009 recession and was imbedded in the yields

on government bonds.

Accurately estimating the time-varying term premium has large implications for monetary

policy, especially when a zero lower-bound on the federal funds rate is binding. In order for central

bank decisions regarding large scale asset purchases and expectation management to be effective,

the term premium on longer-maturity bonds must be accurately measured. It is important to

understand the varied impact Federal Reserve Board decisions will have on different forms of risk

and whether individual forms of monetary policy have an impact on each form differently.

2.4 Conclusion

This chapter extended BRS’s five factor model into the financial crisis and illustrated the

value of explicitly including measures of uncertainty in the information set driving government

bond yields. Eurodollar futures offer important information for pricing government bonds in a

sample including the “Great Recession” of 2007-2009. Disagreement and volatility measures were
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added to the model in an attempt to proxy for economic uncertainty. Adding these uncertainty

measures to the model further lowered the pricing error and produced an even higher performing

model beyond that produced by only including Eurodollar futures. Including uncertainty measures

also led to higher measures of the term premium on government bonds during both the 2001 and

2007-2009 recessions in comparing term premia to the four and five factor models proposed by BRS.

Higher estimated term premia may result from properly accounting for changes in the loadings on

observed factors in recessions, when uncertainty may play a larger role in bond market agents’

information set. Properly accounting for different types of uncertainty may also prove valuable

when evaluating the impact of monetary policy decisions, especially those targeting the yields on

longer maturity bonds.

For future research, this investigation could continue examining the value of measures of

disagreement and volatility as they inform the pricing kernel of affine models of the term structure.

This information may be priced in other affine models through the use of unobserved latent factors,

so correlating these observed uncertainty factors with estimated latent factor values could reveal

whether affine models are unnecessarily pricing these factors as unobserved. Explicitly pricing these

forms of risk could lead to higher performing models and easier interpretation of the information

set driving bond market decisions. Pricing yields using observed factors could also contribute to

better out of sample performance of these models.

It could also be interesting to investigate changes in the time series of the term premium after

adding measures to proxy for disagreement and volatility. Structural break tests as in Banerjee et al.

(1992) could reveal information as to how the data-generating process of the term premium changes

or shifts when adding these observed factors. This investigation could also reveal the significance

of certain events, such as Federal Reserve Board announcements, in contributing to short- versus

long-term risk.
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CHAPTER 3

REAL-TIME DATA AND INFORMING

AFFINE MODELS OF THE TERM

STRUCTURE

Economic agents participating in government bond markets respond to both individual and

external information when participating in bond transactions. Macroeconomic indicators influence

the price an agent is willing to pay for a bond of a given maturity through the effect that these

conditions have on current and future bond markets. Even though any given bond buying agent may

not plan on holding onto the bond for the entire maturity, they will still form their own expectations

of where they think the market will be when they decide to sell the bond. This observation has led

to the formal use of macroeconomic measures to inform bond yields in affine term structure models.

Affine models of the term structure are an attempt to price government bonds all along the

yield curve over time. These models are estimated using assumptions about the process governing

both observed and unobserved information implicit in bond-market pricing behavior. After esti-

mating the parameters of the model, estimates of a time-varying term premium can be derived from

the difference between the predicted yield and the risk-neutral yield. This term premium is the

additional return required by agents to compensate for the risk of holding the bond for its maturity.

The fit of these models can be examined by measuring the difference between the predicted yield

and the actual yields, also known as the pricing error. In cases where macroeconomic information

such as output and inflation measures are used to inform bond-pricing agents in these models, final

published data is often used. Yet, macroeconomic data is often revised quarters after its original

publication, so while this information represents movements in core macroeconomic measures, these

final data are not the public information that were available to bond-pricing agents at the time they
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made their bond buying decision. This may result in pricing errors that result from an information

set used to model the yields that was not available to the agents when the yields were determined.

Real-time data, the best guesses, and releases of current and recent macroeconomic measures at

the time of the market decision may more accurately reflect the information entering bond-pricing

decisions than final data. Through the use of the Survey of Professional Forecasters (2013) and the

Real-Time Data Set for Macroeconomists (2013b), made available through the Philadelphia Federal

Reserve Bank, real-time data can now easily be compiled to gain a more accurate picture of the

information driving yields. The use of real-time data to inform an affine model could thus result in

lower pricing errors.

This chapter will attempt to more fully address the role of real-time data in affine models

of the term structure than has been addressed in the literature so far. The importance of real-

time data in monetary macroeconomic models was seminally addressed in Orphanides (2001). In

this investigation, Orphanides demonstrates the inability of a Taylor (1993) rule to describe target

federal funds rate movement when using fully revised output and inflation rather than real-time

output and inflation measures. Orphanides also extends the importance of real-time data to other

macroeconomic relationships that depend on agents’ perceptions of past, present, and future eco-

nomic conditions. His main prescription for macroeconomic modeling is that real-time data is more

appropriate than final data when modeling any sort of economic behavior that depends on agents’

perceptions of economic conditions. Seminal papers in the affine term structure model literature,

such as Ang and Piazzesi (2003) and Kim and Wright (2005), use final data when fitting their

models to observed yield curves. The implicit assumption in these and most affine models using

final macroeconomic data to inform prices and yields is that either government bond market be-

havior is driven by economic fundamentals and not agents’ perceptions of economic fundamentals

or that agents’ perceptions of economic fundamentals mirror the true, revised final values. Because

yields by their nature are real-time, these models are relating real-time observations of yields to

movements in final data that were observed with error at the time the yields prevailed. The closest

attempt to document the value of using real-time data to inform the term structure of interest

rates was in a 2012 paper by Orphanides and Wei. In their paper, Orphanides and Wei attempt

to generate a better-fitting term structure model through three key adjustments: 1) using real-

time data, 2) modeling the pricing kernel using a VAR with rolling sample of 40 periods, and 3)

additionally informing the model using survey data, leading to a better-fitting model and better

out-of-sample prediction. These results are very interesting and suggest the value of real-time data
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in affine models, but the result of adding real-time data alone is not explicitly addressed. This

chapter will focus more explicitly on the value of real-time data alone, rather than the combined

value of multiple adjustments to an affine term structure model.

By investigating the value of real-time data alone, this chapter falls into a line of papers

attempting to supplement an affine term structure model with as much observed information as

possible. A common practice in affine term structure modeling is to combine observed and unob-

served information to explain movements in the yield curve. Explaining term structure movements

with observed information has some important advantages over using unobserved factors. Observed

information follows more naturally from a conception of bond markets driven by rational agents

that absorb available information and base their market decisions on this information. While using

unobserved information can be attractive for better performing pricing models, this information

ends up serving as a catch-all for different types of information not explicitly included in the model,

the value of which is difficult to derive based on the model results alone. Identifying observed

information that drives bond markets allows practitioners to build a more convincing story around

what information is valuable to these agents, rather than relying on unobserved information to fill

in that information gap.

In order to gain a theoretical understanding of the value of unobserved factors, some prac-

titioners often relate them back to moments of the term structure known as the “level”, “slope”,

and “curvature” as in Diebold et al. (2006), and Rudebusch and Wu (2008). This approach, while

leading to high performing models, does not help to build an understanding of agents’ decisions,

but rather models the term structure using characteristics of the yield curve. Other practition-

ers correlate the unobserved information with observed macroeconomic information or information

generated by structural models, such as in Ang and Piazzesi (2003) and Doh (2011). Correlating

unobserved information with observed macroeconomic variables does help with understanding the

decision making process of agents, but leads one to question why this observed information was not

explicitly included in the information set to begin with.

In the case of Doh (2011), the author correlates the unobserved factors with the shocks

(unexplained movement) generated by a dynamic-stochastic general equilibrium model (DSGE).

Even though these shocks are related back to a structural model and can be linked to specific

economic relationships, such as a Taylor rule or preferences in a utility specification, the approach

is still relating vital term structure pricing information back to random, unexplained shocks from a

structural model. If one of the end goals of term structure modeling is to gain a better understanding
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of bond pricing agents’ decision making process, using shocks to explain unobserved, estimated

information still leaves the driving force behind this unobserved information unexplained. While

unobserved factors will be introduced briefly later in this chapter, our focus will be on the value of

observed, real-time information in affine models of the term structure.

The structure of this chapter is as follows. Section 3.1 will introduce the model and detail how

information for a data generating process for real-time data is compiled. Section 3.2 will introduce

the data, considerations of real-time data specifically, and the yields priced. Section 3.3 will present

the results of estimating affine term structure models driven by both final data and real-time data

and compare the performance of these models as measured by root-mean-square error (RMSE)

along the relevant bond maturities used. The structure of the errors and implied term premia

generated by these models will also be presented using structural break and persistence tests. This

section will also make some observations about the nature of information entering bond pricing

decisions at different maturities. The last section will conclude.

3.1 Model

A starting point for any affine model of the term structure is defining a data generating process

to represent the macroeconomy and agents’ expectations of future macroeconomic conditions. In

the general case, we assume this data generating process is a vector autoregression (VAR) driven

by final data:

Xfin
t = µfin + ΦfinXfin

t−1 + Σfinεt (3.1.1)

with p lags, where Xfin
t is the fully revised information for the variables in X after all major

revisions have been reflected in the data. In this case, these are the final release results for Xt as

of the writing of this chapter (Q1 2014). µfin is a vector of constants, Φfin is a coefficient matrix,

and Σfin is a cross equation variance-covariance matrix, with εt assumed N (0, 1). It is assumed

that agents solve forward for Xfin
t+i with i ≥ 1 using the vector of constants µfin and the coefficient

matrix Φfin. The VAR form is a common choice for modeling the information set governing bond

markets because it is mathematically tractable and imposes few explicit restrictions. The vector

Xt and its movement summarized by the VAR is assumed the complete information set governing

the market decisions of bond buying agents through a pricing kernel.
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This corresponds to the form that is commonly used in most affine models of the term structure

and, as mentioned above, summarizes the movement of fundamentals and not necessarily market

perceptions of fundamentals. The definition of Equation 3.1.1 is intended to serve as a comparison

for the following real-time models.

In the same way we can define a VAR(n) information process governed by real-time data as:

Xρ
t = µρ + ΦρXρ

t−1 + Σρεt (3.1.2)

For each t, Xρ
t is the market expectation for the value of X during period t. Each lag of Xρ,

Xρ
t−1 · · ·X

ρ
t−p, is the release of that information for that lag of X available at time t. While Xρ

t

corresponds to a within-period expectation, Xρ
t−1 · · ·X

ρ
t−p each correspond to individual releases,

where the releases eventually become the final data, with the number of periods required to become

final depending on the statistic. For example, if t is Q1 2000 and Xρ contains output growth and

inflation, then Xρ
t−1 is the first release of Q4 1999 output growth and inflation, available in Q1

2000. In the same way, Xρ
t−2 is the second release of output growth and inflation for Q3 1999.

If we are modeling with n factors, we write Xρ
t as:

Xρ
t =



Market expectation→ x1r,t

Market expectation→
...

Market expectation→ xnr,t

Release 1→ x1r,t−1

Release 1→
...

Release 1→ xnr,t−1

Release 2 through (p− 2)→
...

Release p− 1→ x1r,t−p+1

Release p− 1→
...

Release p− 1→ xnr,t−p+1



(3.1.3)

with the appropriate elements labeled based on their source, r referring to the period in which the

values were observed and t the period of their occurrence. The elements for the current period (r

and t) are based on expectations as the time period has yet to transpire and no releases of data are

available. All elements for previous periods (r and t− i, i ≥ 1) refer to the release of the statistic
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available at r. For example, if the current observation is 2012 Q4 and x1 is output growth, then

x1r,t is the market expectation for 2012 Q4 output growth in 2012 Q4 and x1r,t−1 is the first release

of 2012 Q3 output growth. In the same way, we can write Xρ
t−1 as the stacked Release 1 through

Release p values.

An important assumption in the construction of the real-time process is that bond pricing

agents do not distinguish between adjustments to values because of information lag and adjustments

to values because of changes in calculation. In each reference period, r, they take the available

releases of estimates of previous period macroeconomic measures as the only information explicitly

driving bond market behavior, ignoring the values that they used in previous periods. While the

parameters of the data-generating process are estimated by using the entire real-time information

set together, the information set of observed economic information is completely updated at each

r. In other words, any fundamental changes to calculations of macroeconomic measures included in

the model immediately replace the information used on both sides of Equation 3.1.2 in the quarter

of the change. This is a major departure from a conventional VAR in that values are not repeated

across rows in the dataset. While the impact of changes to calculations versus data revisions may

have separate effects on bond markets, decomposing this effect is beyond the scope of this chapter.

The degree of departure that this real-time process has from a conventional final data driven

process will be mainly driven by the frequency of updates made to the statistics. For example, Table

3.1 shows the first, second, third, and final releases of real GDP growth and civilian unemployment

for Q3 1996. As can be seen, real GDP growth experiences significant revisions in every quarter

while unemployment does not receive any. While there are cases where there are revisions to

unemployment, they are much less common than revisions to GDP growth. This is important when

comparing final and real-time processes, because some macroeconomic variables may not experience

many revisions and are likely to generate very similar estimated processes as final release data. If

the role of real-time data is to be tested, it is important that the variables experience enough

revisions in both size and frequency to offer meaningfully different information.

Table 3.1: Quarterly Releases of Real GDP Growth and Civilian Unemployment for Q3 1996

Release Real GDP Growth (%) Unemployment (%)
1 2.1530 5.4
2 2.0776 5.4
3 2.0893 5.4
Final 1.0280 5.4
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In addition to revisions resulting from the information gathering process, there are also en

masse revisions when the calculation of the select measure changes (i.e GNP, GDP). In the final

data case, there is a single calculation for each statistic and when the calculation changes, updates

are made to the entire series, so for any given extract one calculation is used. In the real-time case,

each statistic is observed using the calculation used in that period. This is the calculation that is

used when those releases were observed. Any adjustments to the calculation of that statistic are

applied to the releases available in that period, but not to any prior releases for the same statistic

referencing the same period’s value. This is important to keep in mind, because for every r that

the real-time VAR in Equation 3.1.2 is estimated, the calculation used at r is applied for every

release of the statistics observed in r. Any change in the calculation of a statistic is only applied to

the values that are observed in the period of the change. As stated above, we assume that agents

do not distinguish between types of revisions, but simply take whatever release is available in the

period of observation.

In either the final (3.1.1) or real-time (3.1.2) driven process, µ is an np×1 vector of constants:

µ =





µ1

n× 1
µ2

...

µn

0

n(p− 1)× 1
0

...

0

(3.1.4)

where n is the number of factors and p the number of lags, with the first n elements µ1 through µn

estimated and all elements below the nth element set to 0. In the same way, we can write Φ as:
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Φ =





Φ1,1,t−1 Φ1,2,t−1 · · · Φ1,n,t−1 Φ1,1,t−2 · · · Φ1,n,t−2 · · · Φ1,1,t−p · · · Φ1,n,t−p

Φ2,1,t−1 Φ2,2,t−1 · · · Φ2,n,t−1 Φ2,1,t−2 · · · Φ2,n,t−2 · · · Φ2,1,t−p · · · Φ2,n,t−p
...

...
...

...
...

...
...

...
...

...
...

Φn,1,t−1 Φn,2,t−1 · · · Φn,n,t−1 Φn,1,t−2 · · · Φn,n,t−2 · · · Φn,1,t−p · · · Φn,n,t−p

In∗(p−1)×n∗(p−1) 0n∗(p−1)×n

(3.1.5)

where the top n× (np) array is estimated, the lower left n(p− 1)× n(p− 1) is an identity matrix,

and the lower right n(p−1)×n is a matrix of zeros. For each element in Φ, the first subscript refers

to the dependent variable predicted in Xt, the second subscript refers to the independent variable in

Xt−1, and the third value is the relevant lag. These constructions of µ and Φ are consistent across

both the final (Equation 3.1.1) and real-time data (Equation 3.1.2), but the estimated components

in either are estimated using with the final or real-time data respectively. Even though the shape

and position of unknown elements in µ and Φ are the same across the final and real-time VAR, it

is important to note the implications of the differences in their construction.

Once the data generating process for the information driving bond buying decisions is deter-

mined, the rest of the affine model can be constructed. We continue by writing the price of any

zero-coupon bond of maturity m as the expected product of the pricing kernel in period t+ 1, kt+1,

and the same security’s price one period ahead:

pmt = Et[kt+1p
m−1
t+1 ] (3.1.6)

It is assumed the pricing kernel, kt, summarizes all information entering the pricing decisions

of bonds all along the yield curve and is influenced only by the factors included in Xt in Equation

3.1.1. We assume the inter-temporal movement of the pricing kernel is conditionally log-normal and

a function of the one-period risk-free rate, it, the prices of risk, λt and shocks to the VAR process

in t+ 1, εt+1:
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kt+1 = exp (−it −
1

2
λ′tλt − λ′tεt+1) (3.1.7)

We define the prices of risk as a linear function of the macroeconomic factors:

λt = λ0 + λ1Xt (3.1.8)

where λ0 is np× 1 and λ1 is np× np. Combining Equations 3.1.6, 3.1.7, and 3.1.8 with Equations

3.1.1 or 3.1.2 depending on the process, we can write the price of any zero-coupon bond of maturity

m as:

pmt = exp (Ām + B̄′mXt) (3.1.9)

where Ām and B̄m are recursively defined as follows:

Ām+1 = Ām + B̄′m(µ− Σλ0) +
1

2
B̄′mΣΣ′B̄′m − δ0

B̄′m+1 = B̄′m(Φ− Σλ1)− δ′1 (3.1.10)

where Ā1 = δ0 and B̄1 = δ1 and δ0 and δ1 relate the macro factors to the one-period risk-free rate:

p1t = exp (δ0 + δ1Xt) (3.1.11)

To derive the yield, we can rewrite Equation 3.1.9 in terms of the yield:

ymt = Am +B′mXt (3.1.12)

where Am = −Ām/m and Bm = −B̄m/m.

Using a set of parameters passed in to generate Am and Bm, Equation 3.1.12 can be used to

calculate the predicted yields. The difference between the left and right-hand side of the equation

is the pricing error. With distinct Xt, µ, Φ, and Σ taken from either the final process (Equation

3.1.1) or the real-time process (Equation 3.1.2) along with estimates of λ0, λ1, δ0 and δ1, separate
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estimates of A and B in Equation 3.1.12 are used to generate the predicted term structure. The

difference between the predicted and actual term structure can be used to fit the unknown elements.

The estimation process will be addressed in more detail in Section 3.3. Before moving on to some

of the estimated model results of comparing a final data driven information set to a real-time data

driven information set, let us describe the data that we will use.

3.2 Data

This chapter only explicitly uses macroeconomic indicators to inform the term structure.

Across the models estimated, four different macroeconomic measures are used: output growth,

inflation, residential investment, and unemployment. All final data are quarterly and are obtained

from the Federal Reserve Bank of St. Louis (2013) website.1 Output is measured as quarter over

quarter annualized GNP/GDP growth throughout the observation period. Growth is used rather

than the output level in order for there to be consistency in the measure between the final and real-

time data, as consistent level information was not available across the two real-time data sources.

Inflation is measured as the quarter over quarter percentage change in the GNP/GDP deflator. The

change from GNP to GDP takes place in 1992. Residential investment is measured as the quarter

over quarter annualized percentage change in private residential fixed investment. Unemployment

is civilian unemployment. All four indicators are seasonally adjusted in both final and real-time

data, as only seasonally adjusted was available consistently across both the final and real-time data.

Real-time data is taken from a combination of data from the Survey of Professional Forecast-

ers (SPF) (2013) and the Real-Time Data Set for Macroeconomists (RTDS) (2013b) compiled by

the Philadelphia Federal Reserve Bank. The American Statistical Association (ASA) started ad-

ministering the SPF in 1968, asking a panelist of forecasters to submit their predictions for current

quarter and up to 5 quarters in the future of key macroeconomic indicators, as well as predictions

for the current and next calendar year, all seasonally adjusted. This makes the survey data par-

ticularly attractive for use in forecasting models, as it does not suffer from the fixed horizon issues

that surveys such as the Blue Chip Financial Forecasts survey does.2 The output and output price

indices are seasonally adjusted after collection by the ASA. The main drawback of the SPF is that

it is available only at a quarterly frequency, while other surveys, such as the Blue Chip survey, are

available at a monthly frequency. For each data point, the median, mean, cross-sectional dispersion,

1http://research.stlouisfed.org/fred2/

2For a discussion of these issues, see Chapter 2.
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and individual forecasts are available. The median expectation was chosen to represent the expec-

tation of the current quarter value, the ‘Market Expectation’ in Equation 3.1.3. The median was

chosen over the mean because, unlike the mean, it is robust to outliers. It was also chosen over the

cross-sectional dispersion or other quantiles that could be generated from the individual forecasts

because a single estimate was needed to make it comparable to the final-data driven models. As

published data for any macroeconomic measure is not available until after the completion of the

quarter, this within-quarter median forecast is taken as a reasonable approximation of the market’s

view of what that measure will be at the end of the period.

An alternative to SPF current quarter forecasts is the Federal Reserve internal “Greenbook”

data set (2013a), also supplied by the Philadelphia Federal Reserve Bank. Greenbook data are

the internal best-guess values for macroeconomic measure coincident with Federal Open Market

Committee (FOMC) meetings. These data were also considered as a replacement for the SPF data,

but were rejected for three reasons. First, the information is only available to those involved in

FOMC decision discussions and hence are not publicly available. Second, the Greenbook current

quarter forecasts for the measure is quite similar to the SPF within quarter forecasts and wouldn’t

likely alter the qualitative results of this study.

Figure 3.1 shows the time series of SPF and Greenbook within quarter output growth. Vi-

sually, the two series follow a similar pattern. When the final data is included in the plot shown

in Figure 3.2, it is clear to see that the difference between the real-time and final data is much

larger than the difference between the two real-time series. When the real-time data after-the-fact

differs from the final data, the two series both seem to differ in the same manner. Table 3.2 shows

that when comparing the mean, standard deviation, and median of the output growth and inflation

measures, the SPF and Greenbook statistics are very similar. When comparing either of these real-

time output growth measures to the final release measure, there is a larger difference between the

two. Combining these descriptive statistics with Figures 3.1 and 3.2 shows that the two real-time

statistics follow a similar process, especially when the final data is used as a point of comparison.

Third, Greenbook data is available only five years after the FOMC meeting in which they were

used. At the current chapter’s time of writing, this would exclude much of the financial crisis of

2007-2008 and all of the Great Recession of 2008-2009. Using the SPF data allows the financial

crisis and resulting downturn in growth to be included as part of the model. Because of these key

differences between Greenbook and SPF data, SPF current quarter forecasts are used in favor of

Greenbook current quarter forecasts in the estimation of the models.
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Figure 3.1: SPF and Greenbook Output Growth Statistics. SPF and Greenbook are both for within
the quarter queried. Series switches from GNP to GDP in 1992.

Figure 3.2: SPF, Greenbook, and Final Output Growth Statistics. SPF and Greenbook are both
for within the quarter queried. Series switches from GNP to GDP in 1992.
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Table 3.2: Descriptive Statistics for Output Growth and Inflation as Measured by the Median Survey
of Professional Forecasters within Quarter Statistic, the Greenbook Current Quarter Statistic, and
the Final Release Statistic. Data are quarterly from 1969:Q1 to 2007:Q4 as Greenbook is only
available at a five year lag.

SPF Greenbook Final
Output Growth

mean 2.435 2.472 3.089
std 2.301 2.807 3.316
min -5.598 -10.500 -8.400
25% 1.489 1.575 1.390
50% 2.585 2.600 3.200
75% 3.655 3.925 4.813
max 7.120 9.000 14.800

Inflation
mean 3.925 4.030 3.959
std 2.223 2.572 2.479
min 1.183 0.400 0.652
25% 2.233 2.100 2.186
50% 3.247 3.300 3.098
75% 4.718 5.200 5.266
max 10.233 12.400 11.781

Previous quarter real-time information comes from the Real Time Data Set for Macroe-

conomists, provided by the Federal Reserve Bank of Philadelphia. This data set is compiled by

manual collection of releases of macroeconomic measurements from public sources available in any

given quarter. For every time period t, the releases for macroeconomic measures in t − 1, t − 2,

. . . available at time t is recorded. This leads to a unique time series of values for 1 to t for every

t. For clarity, Table 3.3 shows an extract of real GNP. Each row signifies a statistic for a single

quarter. Each column is the period in which the information is observed. Along a single row moving

from left to right, another release arrives and the observation is revised. The release number is also

indicated in parenthesis next to the statistic. Each diagonal represents a single release, with the

first populated diagonal the first release, the diagonal above that the second release, and so on. The

details of the methodology of how this data set was compiled is addressed in Croushore and Stark

(2001). These data, along with the SPF median within-quarter forecast, fill out the other elements

in Equation 3.1.3.

When estimating the models, quarterly data from 1969 to 2012 will be considered. 2013 data

was available but the final data for 2013 had not yet passed through the major revisions and as a

result were excluded. There are a few important characteristics of the data over this period. Table

3.4 offers descriptive statistics for the output and inflation measures in the final and real-time data.
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Table 3.3: Sample of Real-time Data Set for Macroeconomists Real GNP

Release (#)
Occurrence period 1965:Q4 1966:Q1 1966:Q2 1966:Q3
1965:Q3 609.1 (1) 613.0 (2) 613.0 (3) 618.2 (4)
1965:Q4 621.7 (1) 624.4 (2) 631.2 (3)
1966:Q1 633.8 (1) 640.5 (2)
1966:Q2 644.2 (1)

Table 3.4: Descriptive Statistics of Real-time and Final Data, Quarterly Data, 1969-2012. Real-time
is measured here using the within quarter SPF median forecast.

Output Growth Inflation
statistic Real-time Final Real-time Final
mean 2.306 2.810 3.632 3.636
std 2.294 3.374 2.211 2.474
min -5.598 -8.607 0.617 -0.668
25% 1.482 1.200 2.011 1.947
50% 2.494 3.103 2.821 2.776
75% 3.473 4.539 4.358 4.680
max 7.120 14.800 10.232 11.781

The real-time within-quarter median forecasts have a lower time series standard deviation than the

comparison final data values for both output and inflation. Both are computed as the standard

deviation of the values over the entire observation period. If the median within quarter forecast

is thought of as the market’s perception, it seems as though, overall, the variation in forecasters’

expectation of within quarter output and inflation is lower than the variation in the ex-post final

release values.

If the results of modeling with real-time information are to be compared to the results of

modeling with final information, it is important that real-time data offers information that is

potentially different from that in final data. As a simple indication of the potential for this, Figure

3.3 shows a time series of the residuals of regressing real-time output on final output and a constant.

Specifically, the estimated relationship is:

yfint = E[yfint |It] + εt

= yρt,t + εt

(3.2.1)

where E[yfint |It] is the expectation of final output growth given the information set I, available

four quarters earlier, yfin is the final annualized quarter over quarter output growth and ε is the

unexplained portion. We use the SPF median within quarter forecast for economic growth for



54

yρt,t. For the purpose of this exercise, ε can also be thought of as the variation in yρt orthogonal

to variation in E[yfint |It]. As shown in Figure 3.3, there is a considerable amount of variation

in the final data that does not coincide with the real-time data measure. The thicker line shows

the 8 quarter lagged rolling mean of the residuals. On a basic level, the cyclical nature of the

residuals indicate there is a pattern in the real-time series not present in the final series (or vice-

versa). Recessions seem to coincide with either movements down or peaks in the rolling mean of

the residuals, with the exception of the July 1981 to November 1982 recession. The pattern of these

residuals are a simple indication that there is the potential for information in the real-time series

distinct from the final series.

Figure 3.3: Residuals of Univariate Regression of Final Output on Real-time Output. Bold line
represents 8 quarter lagged rolling average of the residuals. Highlighted areas indicate NBER (2013)
recessions.

3.2.1 Yields

Yields are used to fit the relationship defined in Equation 3.1.12. In order for a single pricing

kernel to recursively define yields all along a single yield curve, any differences in payouts resulting

from coupons should be eliminated. Yield data are the one, two, three, four, and five year implied

Fama Bliss zero-coupon yields. These yields are generated from the method described in Fama
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and Bliss (1987), where yields are selected from the observed term structure and transformed into

their zero-coupon form. Before presenting the modeling results, it is important to ensure that

the time series of yields can be modeled using a single set of parameters. Structural break tests

can help to inform this decision. If there are any structural breaks in the process governing the

yields that are not modeled in the macroeconomic information used to predict the yields, separate

models depending on the time period may be required. The sequential structural break approach

of Banerjee et al. (1992) is used to test for the presence of a single structural break in the data.

Each yield is modeled according to:

yt = µ0 + µ1τ1t(k) + µ2t+ αyt−1 + β(L)∆yt−1 + εt (3.2.2)

where yt is the yield in period t, µ0 is a constant, µ1 is the coefficient on the shift term, µ2 is the

coefficient on the time trend, α is the coefficient on the AR(1) term, and β(L) is a lag polynomial.

The shift term can be either a mean-shift or a trend-shift. In the case of a trend-shift, we model

τ1t(k) as:

τ1t(k) = (t− k)1(t>k) (3.2.3)

where k is the breakpoint and 1(t>k) is 1 if the current time period t is past k, otherwise 0. We

estimate Equation 3.2.2 for each k, with k ranging from 15% of T to 85% of T , where T is the total

number of observations. We test with 4 lags in each process to allow for 4 quarters of persistence

and to be consistent with the number of lags used in the VAR models. Figure 3.4 shows the time

series of the F-statistics for a null hypothesis of no structural break µ1 = 0 in each of the yields. The

three horizontal lines represent the 10%, 5% and 2.5% critical values for the F-statistic of testing

whether a structural break exists. We use the continuous maximum function to determine the

timing of the single structural break. All five yields show a structural break in the early 1980s. The

one and two year yield break point is in Q3 1980 and the structural break in the three, four, and five

year yield is in Q1 1981. This coincides with Paul Volker’s time as Fed chairman when there was a

concentrated effort to raise interest rates in order to stamp out inflation. As shown in Figures 3.5

and 3.6, none of the macroeconomic factors, final or real-time, are associated with the structural

break in the yields. With a structural break appearing in the yields that does not appear in any of

the macroeconomic factors, a model with time constant parameters may not be appropriate. Given
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this observation, the term structure models will be estimated with an observation period beginning

in 1982, after the structural break in the yields.

Figure 3.4: Time Series of F-statistics Used to Test for Structural Breaks in the Observed One,
Two, Three, Four, and Five Year Yields. The horizontal black lines correspond to the 10%, 5% and
2.5% significance levels from bottom to top for the F-statistics taken from Banerjee et al. (1992)

3.3 Results

In the set of models below, we solve a number of models, using an information set including

quarter over quarter real output growth, quarter over quarter inflation, residential investment, and

unemployment. These exact measures are defined in section 3.2. We compare models using two,

three, and four observed factors. The two factor model uses output growth and inflation alone, the

three factor model adds residential investment, and the four factor model adds unemployment, all in

that order. We use four lags in both the real-time and final data driven models in order to account

for all of the real-time information and make the models comparable in their structure. We also

include a three factor model with two observed factors and a single latent factor for completeness.
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Figure 3.5: Time Series of F-statistics Used to Test for Structural Breaks in the Final Values of
Output Growth, Inflation, Residential Investment, and Unemployment. The horizontal black lines
correspond to the 10%, 5% and 2.5% significance levels from bottom to top for the F-statistics
taken from Banerjee et al. (1992)

We make some simplifying assumptions in order to lessen the parameter space in these models.

We assume that the prices of risk are non-zero only in response to the current values in Xt. With

n factors, this results in block zeros below the nth element of λ0 and outside the n × n upper

left-hand block in λ1 in Equation 3.1.8. In these models with only observed values, Equation 3.1.1

and Equation 3.1.2 can be estimated using OLS, leaving only the parameters in Equation 3.1.8

to be estimated using numerical approximation methods. Numerical approximation methods are

required because there is not a closed form solution for λ0 and λ1 and their unknown values can

only be derived based on the implied pricing error from Equation 3.1.12. Non-linear least squares

is used to fit the unknown parameters in Equation 3.1.8 to minimize the sum of the square of the

pricing errors, defined as:

∑
m

T∑
t=1

(ymt − (Am +B′mXt))
2 (3.3.1)
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Figure 3.6: Time Series of F-statistics Used to Test for Structural Breaks in the Real-time Values of
Output growth, Inflation, Residential Investment, and Unemployment. The horizontal black lines
correspond to the 10%, 5% and 2.5% significance levels from bottom to top for the F-statistics
taken from Banerjee et al. (1992)

wherem ∈ [4, 8, 12, 16, 20], the 5 maturities (in quarters) of zero-coupon bonds fitted in this exercise

and T is the number observations. A function and parameter difference convergence threshold of

1× 10−7 was used.

Table 3.5 presents the root-mean-square pricing error (RMSE) across multiple models, com-

paring models estimated with a final data process and a real-time data process. For each model,

the pricing error for the yields used to fit the model is shown. The results show that there is a clear

advantage, as measured by a decrease in RMSE, to modeling the information set using real-time

data over final data, despite the fact there is arguably more information in the final data. Each

column F(n) and RT(n) corresponds to the n-factor model as defined above. In the three models,

the 2, 3, and 4 factors cases, the real-time model outperforms the final model. The use of multiple

comparison models helps to show that it is in fact the real-time data alone that is improving the

performance of these models. P-values are calculated by testing for the equivalence of means (of the
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pricing errors of the two models) using a t-test that allow for different variances. These p-values are

attached to the real-time columns in Table 3.5 with * for 10% and ** for 5%. As more factors are

added to each model, the models improve in performance, but the advantage of using real-time data

over final data increases. In the four factor models, the switch from a final process to a real-time

process shows that the biggest performance difference comes in the lower maturity yields, specifi-

cally in the one and two year yields. This indicates that a real-time data driven pricing kernel is

closer to the information set driving bond market decisions than a final data driven pricing kernel.

This also indicates that the information may have different explanatory value at distinct ends of

the yield curve. Specifically, real-time information may have more value at the shorter end of the

yield curve. This particular observation will be discussed more below.

Table 3.5: RMSE for Models using Final (F) and Real-time (RT) Data. The number in parenthesis
indicates the number of observed factors included and the l indicates that a single latent factor was
included. Observation period is 1982-2012. *=10%, **=5%, and ***=1%, where these refer to
p-values testing for the equivalence of means (of the pricing errors for the two models) using a
t-test that allows for different variances.

Maturity F (2) RT (2) F (3) RT (3) F (4) RT (4) F (2 + l) RT (2 + l)
1 year 198.71 187.24 194.07 176.75 182.43 156.84** 44.25 38.21
2 years 197.35 186.51 195.67 177.25 182.84 162.33* – –
3 years 194.26 182.40 194.63 174.41 181.28 162.49 24.97 25.33
4 years 191.92 178.98 191.35 169.92* 178.49 162.45 43.91 40.02
5 years 189.18 175.85 186.05 166.06 173.82 159.83 57.25 55.34

For completeness an additional pair of models using final and real-time data are estimated

using the first two observed factors and a single latent factor in the VAR process. Only two observed

factors were included to ensure convergence of the estimated parameters. The latent factor is solved

for by assuming that the two year bond is solved without error. Selecting other yields as priced

without error was tried, but the two year was chosen because it struck a balance of small pricing

errors for both the one year and longer maturities. An iterative solution method is used as in Ang

and Piazzesi (2003), whereby initial guesses are generated for the unknown parameters holding

other parameters constant and each iteration is solved via maximum likelihood. The pricing error

of these models is shown in the last two columns of Table 3.5. The inclusion of the latent factor

vastly decreases the pricing errors in both models, as would be expected. Another result of adding

the latent factor is that the differences in the pricing error between the final and real-time models is

much smaller. This may indicate that latent factor(s) in final data driven affine models of the term
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structure may be compensating for the fact that real-time data is more appropriate. While the

latent factor is clearly consuming much more of the pricing error than that priced by the advantage

of using real-time over final data alone, this result may indicate that some of the unpriced error

may be due to the inappropriate use of final data.

In order to focus on the value of final versus real-time data alone, the two four factor models

driven only by observed factors will be the focus of discussion moving forward. As each column

of Table 3.5 represents an individual model, there is a unique error process for each. Figure 3.7

plots the residuals of the two 4 factor models. The two processes appear very similar, confirming

the close relationship between the real-time and final data.3 Upon further examination, there are

some important differences in the error processes. Estimating an AR process can help to reveal

differences in inter-temporal persistence in the error terms. In general, we would expect a more

robust pricing kernel to better model prices and generate normally distributed errors without any

inter-temporal persistence. Using BIC to determine the number of lags (AIC resulted in the same

number of lags), we find that the appropriate number of lags for the final model errors was two and

for the real-time models was one. An AR(2) process is also included for the real-time error in order

to have a point of comparison for the final model error AR(2). The results from the estimation of

these models are shown in Table 3.6. In order to get an indication of the degree of persistence in the

series, we can sum the AR coefficients in each model (Andrews and Chen, 1994). These sums are

provided in the last column of Table 3.6. When comparing the models using the BIC-determined

number of lags, the sums of the parameters indicate a higher degree of persistence in the pricing

errors generated by the final model compared to the real-time model at every one of the estimated

maturities. If we compare the real-time and final data error processes using the same number of

lags (2), lower persistence in the real-time model is observed in three of the five yields. The two

and three year yields show close to the same persistence, while the one, four, and five year pricing

errors show markedly lower persistence. While persistence is present in both the final and real-time

generated errors, less persistence may indicate that there are cyclical movements in each of the

yields that a real-time data informed kernel models more closely than a final-data informed kernel.

It is also interesting to note that while there is overall less persistence in the real-time data

model generated pricing errors compared to those generated by the final data model, the coefficient

on the first AR lag is higher with the real-time model. This may indicate that there are some

3The correlation between the four factor model final and real-time pricing error time series are 0.846, 0.891,
0.867, 0.864, and 0.850 for the one, two, three, four and five year yields, respectively.
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persistent explanatory variables that are missing from the real-time data model. Because the

persistence in the first lag coefficient is lower in the final data model, this may indicate that a

complete model could benefit from including some final data and/or latent factors.
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In order to further investigate differences in the results of these two models, we can examine

the time series of the time-varying term premium. Using the results from each fully estimated model,

we can also calculate the implied term premium by taking the difference between the predicted

yield and the risk-neutral yield, which is equivalent to the difference between the P-measure and Q-

measure. The risk-neutral yield is the predicted yield calculated holding the prices of risk zero (λ0

and λ1 in Equation 3.1.8). The time-varying term premia plots are shown in Figure 3.8. While the

error plots were very similar, the plots of the implied term premia show some interesting differences,

specifically when comparing the shorter maturities. At the one year maturity, the time series of

the term premium seems to experience much more frequent fluctuations than that modeled with

the final data. There also seems to be less of a seasonal movement in the term premium. The

real-time models produce more erratic movements in the term premium at the shorter maturities,

with sustained seasonal movements only showing up in the longer maturities. In the final data,

all of the yields seem to experience sustained seasonal positive or negative movements in the term

premium.
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These patterns in the term premium can be more formally investigated in an autocorrelation

plot. Figure 3.9 presents autocorrelation plots of the time-varying implied term premium for the

final and real-time models. Across the five maturities in the final model, there is persistent au-

tocorrelation in the term premium. This pattern does not vary much according to the maturity.

The autocorrelation terms are significant at the 1% level eight to ten lags back, a period of two

years. The real-time model generated term premia on the other hand only develop persistence in

the longer maturities. Autocorrelation estimates for the one year and two year real-time model

generated term premia are not significantly different from zero at even the shortest of lags. This

suggests that the term premia on the shorter maturity yields are not driven by a persistent process.

For term premia associated with the three to five year maturities, the autocorrelation coefficients

have a greater similarity with those generated by the final data model term premia. As we move

further out the term structure to longer maturities, the term premia both become more persistent

and this persistence becomes closer to that generated by the final data drive models. In fact, the

five year maturity term premia for both the final and real-time models has significant autocorrela-

tion from the 1 to the 8 quarter lag, becoming insignificant at the 8 quarter lag, even though the

correlation coefficients are significantly different.

This comparison in the pattern of the term premium could indicate a difference in the pricing

behavior in the markets of bonds of different maturities. The real-time portion of Figure 3.9 seems

to indicate that shorter maturity bond markets respond to volatile, short-term perceived risk, while

the risk attached to longer maturity yields is more consistent across periods. This follows naturally

from the fact that if at least some of the agents purchasing one and two year bonds do not plan

to hold them to term, the price at which they will be able to sell them will be highly dependent

on the short-term economic outlook. This leads to within-period shocks to the macroeconomic

factors included to inform the pricing kernel having a large impact on the perceived risk of these

assets. From the results of the final and real-time models, it seems as though only real-time

information can appropriately capture this risk embodied in short-term economic predictions. The

model driven by final data, on the other hand, shows a very similar term premium process between

all five yields, but this results in a model that does not fit as well. Given a stable VAR process

governing the observed information, longer maturity premia unsurprisingly are less volatile and

have a more tempered response to macroeconomic shocks. The effects of within-period shocks to

the macroeconomic factors on the perceived risk of longer maturity bonds could be through the

maintenance of general uncertainty about the economic horizon years ahead. In other words, while
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the riskiness of short-term bonds is transitory, the riskiness of longer term bonds is more persistent.

Furthermore, in these models this difference is only captured through the use of real-time data,

but could often be modeled in other contexts through the use of one or more latent factors. As

shown in the results in Table 3.5, a single latent factor can account for a large degree of variation

in the shorter maturity yields and also lessens the advantage of using real-time over final data.

Even though the use of a latent factor leads to a much tighter fitting model as measured by pricing

errors across all the maturities, it also clouds the advantage of using real-time data and the subtle

differences in the impact that real-time data has on shorter maturities.
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The use of real-time data reveals a more robust structure to the differences in the risk premium

of yields of different maturities. When pricing at shorter maturities, agents seem to respond more

radically to changes in perceptions in macroeconomic factors and the term premium is more volatile.

These perceptions are accounted for more fully through the use of real-time data. Longer maturity

bond premia respond to macroeconomic factors, but through cyclical fluctuations implicit in the

VAR and not through the idiosyncrasies of period-to-period movements. These should be important

considerations when considering the impacts of monetary policy and attempts to manipulate the

yield curve. The use of final data in term structure modeling may result in an oversimplified pricing

kernel that is less robust to quick changes in perceptions of macroeconomic conditions.

3.4 Conclusion

While the use of real-time information has become very popular in most sectors of macroeco-

nomic research, it has yet to fully penetrate affine term structure modeling of US Treasuries. This

chapter shows that the use of real-time data in estimating these models reveals a fundamentally

different nature to the term premia on bonds of different maturities. Estimating affine models of

the term structure with real-time data resulted in lower pricing error. The real-time data driven

models generated a greater variation in term premia persistence, with little to no persistence at

shorter maturities and higher persistence at longer maturities. This variation was not generated by

the final data driven model. Understanding what drives these differences and the different types

of information contributing to the pricing decisions in bond markets of different maturities is im-

portant to predicting the impact of monetary policy intending to shape the yield curve. The use of

exclusively final data can result in models that oversimplify the information driving premia and in

term premia in shorter maturity bonds that are less volatile than real-time perceptions of economic

measures would indicate.

Given the advantage of real-time data noted in this chapter, another avenue that this investi-

gation could take would be to examine the ability of real-time versus final data driven affine models

to forecast out-of-sample yields. While generating forecasts of the pricing kernel using final data

simply involves solving forward using the VAR data generating process, this same approach is not

possible with the real-time VAR specified in this chapter. While the final data VAR reuses the

dependent variables as explanatory variables when forecasting future period values, the real-time

data VAR does not. This makes forecasting difficult because the entire set of explanatory variables

are out-of-date when the next period’s value needs to be forecast. In order to obtain “real-time”
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forecasts from the real-time VAR, patterns in how revisions are made to macroeconomic variables

would need be modeled first. This process would then be to used to generate the predictions for

the real-time variables and the real-time VAR could be used to forecast out-of-sample yields.

Another area to consider for future research is whether the prominent role of latent factors

in the estimation of many affine models could be an artifact of the use of final as opposed to real-

time data. Results from this chapter suggest that adding even one latent factor compensates for

some of the differences in pricing error generated by a final versus a real-time data driven model.

Even though adding a latent factor greatly lessens the pricing error, the resulting error exhibits

persistence to a similar degree found in the final data driven models. Instead, the moments of

latent factors added to a final data driven model could be compared to the moments of principal

components derived from a real-time data driven pricing kernel. The principal components of the

real-time data driven pricing kernel may have similar properties to the latent factors estimated in

combination with final data. As latent factors are becoming increasingly common, demonstrating

how the information underlying latent factors relates to real-time data could lend more intuition to

the descriptions of latent factors. This chapter showed how real-time data improves the performance

of affine models without the use of latent factors and suggested that latent factors may compensate

for a lack of real-time data in final data driven models as measured by performance.
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CHAPTER 4

AN INTRODUCTION TO AFFINE, A

PYTHON SOLVER CLASS FOR AFFINE

MODELS OF THE TERM STRUCTURE

This chapter is intended to introduce and contextualize a new affine term structure modeling

package, affine. This package consolidates a variety of approaches to estimating affine models

of the term structure into a single, computational framework. Affine term structure models offer

an approach for obtaining an estimate of the time-varying term premium on government bonds of

various maturities, making them very attractive to those wishing to price bond risk. They also

offer a method of determining what information influences government bond market agents in their

pricing decisions. With the non-linear nature of these complex models, estimation is challenging,

often resulting in highly customized code that is useful for estimating a specific model but not

generally usable for estimating other similar models. The affine package is intended to provide a

useful abstraction layer between the specific structure of a given affine term structure model and

the components of the model that are common to all affine term structure models.

Overall, the package is designed to accomplish three main goals:

1) Lessen the cost of building and solving affine term structure models. Researchers in the

affine term structure modeling literature build highly specialized collections of computer code that

are difficult to maintain and cannot easily be adapted for use in related but separate affine models.

This leads to a much smaller group of researchers to the literature than might be possible if the

barrier to entry were lower.
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2) Provide a meaningful computational abstraction layer for building a variety of affine term

structure models. Affine term structure models come in many forms, possibly involving observed

factors, unobserved latent factors, different assumptions about correlations across relationships, and

different solution methodologies. This package aims to consolidate a large group of these models

under a simple application programming interface (API) that will be useful to those building affine

term structure models. While the theory behind affine models of the term structure has been

documented across many papers in the literature, this package represents the first comprehensive

computational approach for building these models in practice. This abstraction layer to affine

term structure models in general is itself a new contribution to the field. The chapter will detail

how models with different combinations of observed and unobserved factors in the pricing kernel,

different solution methods, different numerical approximation algorithms, and different assumptions

about the model structure can all be setup and built using this package.

3) Provide a single context in which many different affine models can be understood. Affine

term structure models often appear self-contained, with different transformations of the same func-

tional forms creating unnecessary differentiation in papers grounded in a single theoretical frame-

work. This package was constructed with the intent of identifying and implementing steps to solving

a model so that each can be customized by the end-user if necessary, but would continue to work

seamlessly with the other parts. The unified framework allows connections between separate mod-

els to be more easily understood and compared. The framework essentially provides the building

blocks for understanding and estimating an affine term structure model and the implications of

certain assumptions about the functional form.

The package is written in a combination of Python and C. The application programming

interface (API) is accessed entirely in Python and select components of the package are written

in C for speed. The package has been tested and is currently supported on Unix-based operating

systems such as Linux R© and Macintosh R© OS X R© and also the Microsoft R© Windows R© operating

system. It can be accessed entirely from a Python console or can be included in Python script.

The package has hard dependencies on other Python libraries including numpy, scipy, pandas,

and statsmodels. The package is currently distributed as a personal repository of the author at

https://github.com/bartbkr/affine and is distributed under the BSD license. A proposal will

be made in the future to include affine in statsmodels.

This chapter is divided into the following sections. The first section will discuss the standard

affine term structure model framework and why Python was chosen as the API layer for the package.
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The second section will briefly introduce the assumptions of the package about the data and the

meaning of the arguments passed to the model construction and estimation objects. This can

be used as a quick reference for building models. The third section describes the API in more

detail, with some examples of the yield curve and factor data that are used to inform the model.

This section also presents the theory behind the different estimation methods. The fourth section

presents the approach behind the development, including performance issues, some profiling results,

and challenges in development. The fifth section presents some scripts for executing affine term

structure models in other papers in the literature, including those found in Bernanke et al. (2005)

and Ang and Piazzesi (2003). Concise scripts are shown, with the full scripts included in the

Appendix. The final section concludes.

4.1 A Python Framework for Affine Models of the Term Structure

Affine term structure models are a methodological tool for deriving a span of yields on secu-

rities of different maturities in terms of the information used to price those bonds. The history of

affine models of the term structure begin with the assumptions laid out in Vasicek (1977). These

assumptions are that: 1) the short-rate is governed by a diffusion process, specifically a Weiner

process, 2) a discount bond’s price is solely determined by the spot rate over its maturity, and 3)

markets for the assets clear. Through these assumptions, a single factor or state variable can be

derived that governs all prices of assets along the term structure. Cox et al. (1985) took the ap-

proach of Vasicek (1977) and expanded it to the case where multiple factors could be used to price

the term structure. This innovation introduced by Cox et al. (1985) led to a series of papers that

derived and estimated these continuous time models of the term structure. Specifically, Litterman

and Scheinkman (1991), and Pearson and Sun (1994) both derive and estimated term structure

models that are functions of at least two state variables, but these variables were characterized in

terms of moments of the yield curve and were difficult to relate back to observed outcomes. Affine

term structure models are introduced in Duffie and Kan (1996) as a subset of these models by

specifying the prices of risk as an affine function of the factors.

The specification of the prices of risk as an affine transformation of the factors allows for

the process governing the factors to be derived separately from the model. With the flexibility

introduced by this affine specification, observed factors can be easily included. In practice, these

models are estimated in discrete time and it has become common practice to explicitly include only

the discrete-time specification of the models in the literature. Ang and Piazzesi (2003) introduced
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a discrete-time affine term structure model, where both observed and unobserved information are

included in the information governing bond markets and the process governing this information is

in the form of a vector autoregression (VAR). Other important models have come in a variety of

forms, including those determined solely by observed factors (Bernanke et al. 2005, Cochrane and

Piazzesi 2008), solely by unobserved factors (Dai and Singleton 2002, Kim and Wright 2005), or

by a combination of observed and unobserved factors (Kim and Orphanides 2005, Orphanides and

Wei 2012).

In addition to the assumptions of Vasicek (1977) and the specification of an affine transforma-

tion relating the factors to the prices of risk, discrete time affine models of the term structure also

assume that the pricing kernel follows a log-normal process, conditional on the prices of risk and the

shocks to the process governing the factors. This assumption is made in order to make the model

tractable and the pricing kernel a discrete function of the observed and unobserved components of

the model.

The class of affine term structure model defined above and further specified below are that

supported by the package. Modifications to the core functionality of the package to support other

model types are discussed in Section 4.5.

We write the price of the security at time t maturing in n periods as the expectation at time

t of the product of the pricing kernel in the next period, kt+1, and the price of the same security

matured one period, pn−1t+1 :

pnt = Et[kt+1p
n−1
t+1 ] (4.1.1)

This pricing kernel is defined as all information used by participants in the market to price

the security beyond that defined by the maturity of the security. The pricing kernel can also be

thought of as the stochastic discount factor.

In the literature, it is assumed that the pricing kernel is conditionally log-normal, a function

of the one-period risk-free rate, it, the prices of risk, λt, and the unexpected innovations to the

process governing the factors influencing the pricing kernel, εt+1:

kt+1 = exp (−it −
1

2
λ′tλt − λ′tεt+1) (4.1.2)
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with λt j × 1 where j is the number of factors used to price the term structure. Each factor is

assigned an implied price of risk and these are collected in the vector λt. The prices of risk are

estimated based on the variables included in the pricing kernel and the process specified to govern

the inter-temporal movement of these variables.

In the simple case, the process governing the movement of the factors is written as a VAR(1):

Xt = µ+ ΦXt−1 + Σεt (4.1.3)

where µ is a j × 1 vector of constants, Φ is a j × j matrix containing the parameters on the

different components of Xt−1, and Σ is a j × j matrix included to allow for correlations across the

relationships of the individual elements of Xt. In most cases, the VAR(1) is the restructuring of

a VAR(l) process with f factors, making j = l ∗ f . The package allows for some flexibility in the

process governing the factors, but is optimally used when the process can be simplified as a VAR(1).

A VAR is commonly used in the literature to summarize the process governing the factors included

in the pricing kernel for two reasons. The first reason is that a VAR is able to generate dynamics

between variables without requiring the specification of a structural model. The second is that the

process allows for the predicted values of the factors to be easily solved forward, where the agents

are forecasting the future values of the factors and their implied contribution to the pricing kernel

using the functional form specified in Equation 4.1.3. The ability to generate implied future values

of the pricing kernel is essential to solving for maturities of yields all along the yield curve. Xt can

be any combination of observed and unobserved (latent) factors. Observed factors are fed into the

model and latent factors are recursively calculated depending on the solution method.

It is assumed that the prices of risk in time t are a linear function of the factors in time t.

This assumption is what makes affine term structure models “affine”, as the prices of risk, λt, are

an affine transformation of the factors:

λt = λ0 + λ1Xt (4.1.4)

where λ0 is a j × 1 vector of constants and λ1 j × j is a parameter matrix that transforms the

factors included in Xt into the risk associated with each of those factors.

In order to solve for the implied price of bonds all along the yield curve, we first define the

relationship between the one period risk-free rate it and the factors influencing the pricing kernel:
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it = δ0 + δ′1Xt (4.1.5)

where δ0 is 1×1 and δ1 is a j×1 vector relating the macro factors to the one-period risk-free rate.

In order to write the price of the bond as a function of the factors and parameters of the

data-generating process governing the factors, we can combine Equations 4.1.1-4.1.51 to write the

price of any maturity zero-coupon bond as:

pnt = exp (Ān + B̄′nXt) (4.1.6)

where Ān (1× 1) and B̄n (j × 1) are recursively defined as follows:

Ān+1 = Ān + B̄′n(µ− Σλ0) +
1

2
B̄′nΣΣ′B̄′n − δ0

B̄′n+1 = B̄′n(Φ− Σλ1)− δ′1 (4.1.7)

and the recursion starts with Ā0 = δ0 and B̄1 = δ1,

We can take the log of the price of a bond and divide it by the maturity of the bond to derive

the continuously compounded yield, ynt , of a bond at any maturity:

ynt = − log(pnt )

n

= An +B′nXt(+ε
n
t )

(4.1.8)

where An = −Ān/n and Bn = −B̄n/n and εnt is the pricing error for a bond of maturity n at time

t.

This general model setup defines most discrete time affine term structure models, including

the models of Chen and Scott (1993), Duffie and Kan (1996), Ang and Piazzesi (2003), Kim and

Wright (2005), and Rudebusch and Wu (2008). The parameters for any given model consist of λ0,

λ1, δ0, δ1, µ, Φ, and Σ. There is not a closed form solution for the unknown parameters in the model

1For details on how these relationships are derived, see Ang and Piazzesi (2003).
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given the recursive definition of A and B in Equation 4.1.8, so the unknown elements cannot be

directly calculated using transformations of the set of yields, y, and factors, X. Solution methods

involve a penalty function defined in terms of the pricing error, ε. A numerical approximation

algorithm must also be chosen to determine the parameters that optimize the objective function.

In addition to the assumptions made in common with the canonical affine term structure

model outlined above, the package also makes a few other theoretical assumptions:

• The data generating process for factors influencing the pricing kernel (X) can be written as a

VAR(1) as in 4.1.3.

• All latent factors (if used) are ordered after observed factors in the construction of the VAR

(4.1.3) governing the pricing kernel.

• In the case of Direct Maximum Likelihood, there is one yield priced without error for each latent

factor.

• In the case of Kalman Maximum Likelihood, the observed factors are orthogonal to the latent

factors in both the data generating process for the factors (4.1.3) and the prices of risk (4.1.4).

The first two of these assumptions are made in order to simplify the development process and

could be loosened in future versions of the package. Approaches to building models where these

assumptions are not appropriate are included in Section 4.5. The third and fourth assumptions

refer to the specifics of two of the solution methods and are explained in more detail in Section

4.3.2.

4.1.1 Why Python?

The choice of Python as the user API layer was driven by a number of factors. First, Python is

a high-level programming language that can be scripted similar to many popular linear algebra and

statistical languages such as MATLAB R© (2013), R (R Core Team, 2012), and Stata R© (StataCorp,

2013). A large reason for this easy transition from other statistical languages is the existence of

modules such as numpy (Oliphant et al., 2005–2014), scipy (Jones et al., 2001–2014), pandas

(McKinney, 2005–2014), and statsmodels (Perktold et al., 2006–2014). These modules are all

open-source and offer robust functionality for performing mathematical and statistical analysis in

Python.

numpy offers a high performance linear algebra and array manipulation API very similar to

MATLAB. Multi-dimensional arrays created using numpy can be manipulated by their indices and



78

combined with other arrays using standard linear algebra functions. scipy, dependent on numpy,

ports many open-source tools for numerical integration and optimization through an easy to use

API. Much of the core functionality in scipy comes from the ATLAS (Whaley and Petitet, 2005)

and LAPACK (Anderson et al., 1999) libraries, which offer high performance numerical approxi-

mation algorithms written in C and Fortran. pandas, a more recently developed Python module,

builds in high performance DataFrame manipulation, inspired by the data-frame concept in R,

allowing for access to elements of two-dimensional arrays by row and column labels. statsmodels

offers basic statistical and econometric tools such as linear regression, time series methods, likeli-

hood based approaches, sampling methods, and other tools. These modules allow for a transition

to Python in the context of statistical and mathematical modeling.

Second, Python is free and open source and has a similar license in practice to the Berkeley

Software Distribution (BSD), allowing it to be used in both open and closed source applications.

In practice, this also makes Python free of cost, requiring only computer hardware and a modern

operating system to use. It is largely platform agnostic, running on Linux, UNIX R©, OS X, and

Windows. Building this package in a proprietary statistical or mathematical language such as

SAS R©, Stata, or MATLAB would require a financial burden on the users of the package that

would negate one of the intended purposes of this package: making affine term structure modeling

accessible to a wider group of users.

Third, Python is a general purpose object-orientated programming language, a feature not

shared by most statistical programming languages. This allows the package to be easily extended

and modified to the need of the user. The extensibility of the package will be demonstrated in

a later section of this chapter. The package can also be included in other large scope projects

built in Python that may have non-statistical components such as web applications, graphical user

interfaces, or distributed computing systems. These characteristics of Python make it very suitable

for building package that are usable for a beginner but also extendible to one’s own needs.

4.1.2 Package Logic

Before defining the API that is used to build a model, it may be useful to visualize the

process that dually defines the steps through which an affine term structure model is built and

estimated and the logic of the package used to initialize and solve these models. Figures 4.1 and

4.2 map the logic of this process. Figure 4.1 shows the essential arguments that must be passed

to initialize a unique affine model, or in the language of the package, a unique Affine model
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instance. These arguments include the set of yields, the factors influencing the pricing kernel, the

number of latent factors, descriptors of the VAR process in Equation 4.1.3, and the structure of

the parameter matrices.2 These components define a single model and are fed into a single Affine

object. Once the model object is built, the model can be solved. The solution method and numerical

approximation algorithm are passed into the solve function. Other options related to these solution

approaches are also specified here. The definition of these different solution methods and numerical

approximation algorithms are specified later in the chapter. Moving on to Figure 4.2, the numerical

method is selected, determining the criteria that are applied as to whether or not convergence

has been achieved. Once the solution method and numerical approximation algorithm are chosen

(when the solvemethod is called), the parameter set optimizing the objective function is iteratively

determined. The loop in the lower half of the figure summarizes the process through which the

objective function is internally calculated by the package and is included for illustrative purposes

but is not modified by the end user. First, the parameter matrices, λ0, λ1, δ0, δ1, µ, Φ, and Σ are

calculated using the values supplied by the numerical approximation algorithm. Then the A and

B arrays are recursively calculated based on these parameter matrices. (This recursive calculation

is performed either by a C or Python function depending on whether a C compiler is available.

More detail on these two different approaches to calculating the same information are included in

Section 4.4.) If convergence is achieved, then the parameter matrices are returned, otherwise the

loop continues. There is also an implied internal dialogue that takes place to determine whether the

numerical approximation algorithm generates invalid results, such as division by zero or a singular

matrix. In some cases, numbers outside of the valid parameter space are passed and the process is

exited.

This level of abstraction provides a comprehensive approach to building a variety of affine

models of the term structure. Many of the seemingly separate approaches of affine models using

different combinations of observed and unobserved factors and solution methodologies can be se-

lected by simply passing arguments either instantiating the Affine object or when executing the

solve method. Different solution methodologies can be used simply by changing these arguments

rather than rewriting the entire code base, an advantage over an approach of coding every step of

the estimation process.

2It is important to note that while we refer to these as matrices here, they are in fact numpy arrays, which
support matrix operations.



80

Figure 4.1: Package Logic
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Figure 4.2: Package Logic (continued)
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4.2 Assumptions of the Package

Before moving on into the details of how the package is used to build and estimate an affine

term structure model, let us define the assumptions made by the package about how the data is

constructed and the meaning of the arguments passed at different stages of the estimation process.

4.2.1 Data/Model Assumptions

There are two pandas DataFrames used to estimate the model: the yields (y in Equation

4.1.8) and the observed factors (X in Equation 4.1.3). The frequency of the observations in the

observed factors and the yields must be equivalent. The DataFrame of yields is passed in through

the yc_data argument and must have the following characteristics:

• One row per time period (month if monthly, quarter if quarterly).

• Moving forward in history from top to bottom.

• One column per yield.

• Yields are arranged in order of increasing maturity from left to right.

• All cells in the DataFrame are populated and of a numeric type.

The observed factor DataFrame is passed in through the var_data argument and must be

organized with the following characteristics:

• One row per time period (month if monthly, quarter if quarterly).

• Moving forward in history from top to bottom.

• One column per observed factor.

• All cells in the DataFrame are populated and of a numeric type.

Both of these DataFrames are passed into the Affine class object. The other arguments to

the Affine and whether they are required are:

• lags (required)

– Type: integer

– The number of lags for the VAR process specified in Equation 4.1.3.

• neqs (required)

– Type: integer

– The number of observed factors. In most cases this will be the number of columns in
var_data.

• mats (required)
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– Type: list of integers

– The maturities of the yields contained in yc_data. Each element of the list indicates the
maturity of the yield in terms of the periodicity of var_data and yc_data.

• lam_0_e (required)

– Type: numpy masked array

– Specifies λ0 parameter with known values filled and elements to be estimated masked.

• lam_1_e (required)

– Type: numpy masked array

– Specifies λ1 parameter with known values filled and elements to be estimated masked.

• delta_0_e (required)

– Type: numpy masked array

– Specifies δ0 parameter with known values filled and elements to be estimated masked.

• delta_1_e (required)

– Type: numpy masked array

– Specifies δ1 parameter with known values filled and elements to be estimated masked.

• mu_e (required)

– Type: numpy masked array

– Specifies µ parameter with known values filled and elements to be estimated masked.

• phi_e (required)

– Type: numpy masked array

– Specifies Φ parameter with known values filled and elements to be estimated masked.

• sigma_e (required)

– Type: numpy masked array

– Specifies Σ parameter with known values filled and elements to be estimated masked.

• latent

– Type: int

– Default: 0

– Specifies the number of latent factors to be included in the pricing kernel.

• adjusted

– Type: boolean

– Default: False

– Specifies whether each row of var_data has already been transformed into an X for a
VAR(1)

More detail on the implications and specification of each these arguments can be found in

Section 4.3.
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4.2.2 Solution Assumptions

The model is estimated by calling the solve method of the Affine model object. The first

argument of the solve method, guess_params, must be a list the length of the masked elements

across the parameter arguments lam_0_e, lam_1_e, delta_0_e, delta_1_e, mu_e, phi_e, and

sigma_e. This list contains the guesses for values of the elements in these parameter arrays to

begin numerical maximization of the objective function. The other parameters for the solve method

define the solution method, numerical approximation algorithm, and other options applied to these

methods. The solution methods where these arguments are applied are indicated by “Used In” and

are ignored otherwise:

• method (required)

– Type: string

– Values: nls (non-linear least squares), ml (direct maximum likelihood), kalman (Kalman
filter maximum likelihood)

– Indicates solution method and objective function used to estimate model.

• alg

– Type: string

– Values: newton (Newton-Raphson method), nm (Nelder-Mead method), bfgs (Broyden-
Fletcher-Goldfarb-Shanno algorithm), powell (modified Powell’s method), cg (non-linear con-
jugate gradient method), ncg (Newton CG method)

– Default: newton

– Used in: ml, kalman

– Indicates numerical approximation algorithm used to optimize objective function.

• no_err

– Type: list of integers

– Used in: ml when latent 6= False

– Specifies column indices of yields priced without error.

– Zero-indexing so first column yield priced without error would be indicated with a zero.

• maxfev

– Type: integer

– Used in: nls, ml, kalman

– Maximum number of function evaluations for algorithm.

• maxiter

– Type: integer

– Used in: nls, ml, kalman

– Maximum number of iterations for algorithm.



85

• ftol

– Type: float

– Used in: nls, ml, kalman

– Function value convergence criteria.

• xtol

– Type: float

– Used in: nls, ml, kalman

– Parameter value convergence criteria.

• xi10

– Type: list of floats

– Used in: kalman

– Starting value for Kalman latent variables.

– Length should be number of latent factors.

• ntrain

– Type: integer

– Used in: kalman

– Number of training periods for Kalman filter likelihood.

• penalty

– Type: float

– Used in: kalman

– Penalty for hitting upper or lower bounds in Kalman filter likelihood

• upperbounds, lowerbounds

– Type: list of floats

– Used in: kalman

– Upper and lower bounds on unknown parameters

These are the primary arguments passed into the solve method. Additional arguments

not specified here can be passed into the method and are passed directly to the statsmodels

LikelihoodModel object. For more information on these other arguments, please see the docu-

mentation for this method provided by statsmodels3. More detail on these methods and arguments

can be found in Section 4.3.2.

3http://statsmodels.sourceforge.net/devel/index.html#
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4.3 API

Let us now discuss the details of how a model would be built and estimated. For each model, a

unique Affine class object must be instantiated. Each model is comprised of a unique set of yields,

a unique set of factors used to inform these yields, a unique parameter space to be estimated, and

conditions regarding whether unobserved latent factors will be estimated. The method for preparing

a model is first defining the arguments required for initializing an Affine object. These arguments

were listed in Section 4.2, but will be examined here in more detail.

yc_data is a pandas DataFrame4 of the yields, with each column signifying a single maturity.

The columns of yc_data must be ordered by increasing maturity from left to right. Listing 4.1

shows the first rows of Fama-Bliss zero-coupon bond yields for the one, two, three, four, and five

year maturities properly collected in yc_data. Notice how the columns are ordered from left to

right in order of increasing maturity. The data must also be ordered moving forward in time from

the top to the bottom of the DataFrame.

Listing 4.1: Yields DataFrame

1 In [2]: yc_data.head()

2 Out[2]:

3 one_yr two_yr three_yr four_yr five_yr

4 DATE

5 1952-07-01 1.923628 2.027498 2.090729 1.999381 2.139048

6 1952-10-01 1.912545 2.060032 2.148343 2.102396 2.167263

7 1953-01-01 1.973496 2.144469 2.131533 2.132738 2.267305

8 1953-04-01 2.364201 2.483449 2.194755 2.421391 2.690273

9 1953-07-01 2.291936 2.336414 2.278795 2.420576 2.715765

10

11 [5 rows x 5 columns]

var_data is also a DataFrame, containing the observed factors included in the VAR pro-

cess specified in Equation 4.1.3 that informs the pricing kernel. In the general case, var_data

has one column for each factor. Listing 4.2 shows how var_data would be structured with four

observed factors: output, the price of output (price_output), residential investment (resinv), and

unemployment (unemp).

4For more information on pandas DataFrames, see the pandas documentation at http://pandas.pydata.
org/pandas-docs/stable/



87

Listing 4.2: Yields DataFrame

1 In [3]: var_data.head()

2 Out[3]:

3 output price_output resinv unemp

4 DATE

5 1948-04-01 1.62508 0.88112 7.2 3.7

6 1948-07-01 0.55943 1.85048 -0.6 3.8

7 1948-10-01 0.10339 0.31250 -6.7 3.8

8 1949-01-01 -1.36232 -0.52887 -6.6 4.7

9 1949-04-01 -0.33905 -0.99782 -2.1 5.9

10

11 [5 rows x 4 columns]

The number of lags is specified in the lags argument. In this case, the number of observations

in yc_data should be equal to the number of observations in var_data minus the number of lags

required in the VAR. In situations where the information governing the pricing kernel does not follow

a standard VAR, as in the case of a real-time estimated VAR (see Chapter 3 for the construction

of a model like this), each row of var_data can contain current values and lagged values of each

factor. In this case, the columns should be ordered in groups of lags, with each factor in the same

order. Specifically, the columns should be in order:

x1t , x
2
t , . . . , x

f
t , x

1
t−1, . . . , x

f
t−1, . . . , x

1
t−l, . . . , x

f
t−l (4.3.1)

where f is the number of observed factors and l is the number of lags. The columns are ordered

from left to right going back in time. When the data are structured this way with f ∗ l columns,

the adjusted argument should be set to True. In the standard VAR case, var_data only contains

x1t through xft resulting in f columns (as shown in Listing 4.2) and adjusted is set to False. Of

course, a standard VAR could also be passed with all current and lag columns included, so the

adjusted flag is added for convenience. In either case, neqs should be set to the number of unique

factors, f , used to inform the securities and lags should be set to the number of lags, l.

mats is a list of integers defining the maturities of each of the columns in yc_data, in a

manner compatible with the frequency of the data (i.e, monthly, quarterly, annually). For example,

if the model is constructed at a quarterly frequency and the columns of yc_data correspond to the

1, 2, 3, 4, and 5 year maturities, then mats would appear as in Listing 4.3.
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Listing 4.3: Maturity argument

1 mats = [4, 8, 12, 16, 20]

The arguments lam_0_e, lam_1_e, delta_0_e, delta_1_e, mu_e, phi_e, and sigma_e are

numpymasked arrays that are able to serve as known values of parameters defining the affine system,

restrictions to the estimation process, and the location of parameters to be estimated in the arrays.

These arrays can be thought of functioning like matrices in linear algebra, but they can also be

one, two, or more dimensions. The name “array” primarily stems from the fact that the data within

these structures are stored in C arrays, a basic C data type that allows for the storing of related

data of a single type and accessed through an index.

4.3.1 Parameter Specification by Masked Arrays

As mentioned earlier, in the class of discrete-time affine term structure models addressed in

this chapter, the parameters consist of λ0, λ1, δ0, δ1, µ, Φ, and Σ. These parameters map to

function arguments of the initialization function, __init__, as:

Table 4.1: Algebraic Model Parameters Mapped to Affine Class Instantiation Arguments

Algebraic name Argument Name Dimensions Meaning
λ0 lam_0_e j × 1 Constant vector for prices of risk
λ1 lam_1_e j × j Coefficients for prices of risk
δ0 delta_0_e 1 × 1 Constant relating factors to risk free rate
δ1 delta_1_e j × 1 Coefficients relating factors risk-free rate
µ mu_e j × 1 Constant vector for VAR governing factors
Φ phi_e j × j Coefficients for VAR
Σ sigma_e j × j Covariance for VAR

where the shapes of these arrays are defined with j = f ∗ l, f the number of factors and l the

number of lags in the VAR governing the factors informing the pricing kernel. This defines cases

where Xt contains only observed factors.

The parameters are spread across these arrays. There are few cases where all of the elements

of these sets of parameters are estimated, as the parameter space grows very quickly when factors

are added to Xt to inform the pricing kernel. The package supports the ability, through numpy

masked arrays, to allow only a subset of the elements in these arrays to be estimated, while others

are held constant. For example, it is a common practice to restrict the prices of risk to respond

to only the elements in Xt from Equation 4.1.4 that correspond to elements that actually occur in

period t. For example, with Xt of shape j×1, then we might restrict the elements of λt in Equation
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4.1.4 below the f element to zero. In this case, we would declare λ0 and λ1 in the script shown in

Listing 4.4.

Listing 4.4: Masked array assignment

1 import numpy.ma as ma

2 f = 5

3 l = 4

4 j = f * l

5 lam_0_e = ma.zeros((j, 1))

6 lam_1_e = ma.zeros((j, j))

7 lam_0_e[:f, 1] = ma.masked

8 lam_1_e[:f, :f] = ma.masked

If we display the contents of lam_0_e, we see that the first f elements are “masked”, with the

rest of the elements unmasked with a value of 0, as shown in Listing 4.5.5

Listing 4.5: Masked array access

1 In [1]: lambda_0

2 Out[1]:

3 masked_array(data =

4 [[--]

5 [--]

6 [--]

7 [--]

8 [--]

9 [0.0]

10 [0.0]

11 [0.0]

12 ...

13 [0.0]],

14 mask =

15 [[ True]

16 [ True]

17 [ True]

18 [ True]

19 [ True]

5All variables and element examinations will be shown as they appear in IPython (Pérez and Granger, 2007).
IPython is an extended Python console with many features including tab completion, in-line graphics, and many
other features beyond that of the standard Python console.
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20 [False]

21 [False]

22 [False]

23 ...

24 [False]],

25 fill_value = 1e+20)

For every masked array examined in the console, the first array shown is the values and

the second is the masks. When the affine package interprets each of the seven masked arrays, it

takes the masked elements as elements that need to be estimated. To be clear, elements that are

masked appear as empty in the data array and True in the mask. This allows smaller parameter

sets to be defined using assumptions about orthogonality between elements and other simplifying

assumptions. Each of the parameter matrices must be passed in as a numpy masked arrays, even

if all of the parameters in the array are set prior to the estimation process or, in the language

of the package, unmasked. Guesses for starting the estimation process of the unknown values are

addressed later.

The remaining undiscussed argument to the Affine object is latent, which is needed in

the case of unobserved latent variables used to inform the pricing kernel. It is common practice

as demonstrated in papers such as Ang and Piazzesi (2003), Kim and Wright (2005), and Kim

and Orphanides (2005) to allow for the recursive definition of unobserved, latent factors in Xt.

These factors are defined as statistical components of the pricing error that are drawn out through

recursive definition of their implied effect on the resulting pricing error. These factors and their

interpretation is discussed in more detail in Chapter 3. The latent argument dually identifies

the inclusion of latent factors and the number of latent factors. If latent is False or 0, then no

unobserved latent factors will be estimated and Xt is solely comprised of the observed information

passed in as var_data. In the case where latent > 0, then latent factors will be estimated,

according to the integer specified. It is assumed that these latent factors are ordered after any

observed information in Xt. In the case of latent factors, the number of rows in λ0 and λ1 from

Equation 4.1.4 and µ, Φ, and Σ from Equation 4.1.3 need to be increased according to the number

of latent factors. If we let υ be the number of unobserved latent factors included in the model and

j defined as before, we can define the shape of each of the parameters as:
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λ0 : (j + υ × 1)

λ1 : (j + υ)× (j + υ)

δ0 : 1× 1

δ1 : (j + υ)× 1

µ : (j + υ)× 1

Φ : (j + υ)× (j + υ)

Σ : (j + υ)× (j + υ)

(4.3.2)

In the case of latent factors, var_data is still submitted with only the observed information.

The package automatically appends additional columns to var_data during the solution process

discussed in a later section.

In both cases (with and without latent factors), after the data is imported and parameter

masked arrays are defined, the Affine class object is created in Listing 4.6:

Listing 4.6: Affine model object instantiation

1 In [2]: model = Affine(yc_data=yc_data, var_data=var_data, lags=lags,

2 neqs=neqs, mats=mats, lam_0_e=lam_0_e, lam_1_e=lam_1_e,

3 delta_0_e=delta_0_e, delta_1_e=delta_1_e, mu_e=mu_e,

4 phi_e=phi_e, sigma_e=sigma_u, latent=latent)

Upon attempted initialization, a number of checks are applied to ensure that shapes of all

of the input data and parameter masked arrays are of the appropriate size. Error messages are

returned to the user if any of these consistency checks are failed and creation of the object also

fails. Upon successful initialization, this method returns a class instance to which various methods

and parameters are attached. In Listing 4.6, this object is defined as model. Any one of the input

arguments can be accessed on the object after it is created. For example, if the mats argument

defining the maturities of the yields needed to be accessed after the object has been been allocated

in the console, it could be done as shown in Listing 4.7.

Listing 4.7: Model attribute access

1 In [3]: model.mats

2 Out[3]: [4, 8, 12, 16, 20]
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For completeness, the source for the initialization function is shown in Listing 4.8. This source

code is not directly accessed by the user, but is a convenient method to reviewing what the optional

and required arguments are. Required arguments appear first, do not have a default value assigned,

and the order in which they are supplied matters. The requirement arguments are followed by the

optional arguments that have default values which are applied when the user does not supply them.

Listing 4.8: Affine object instantiation function

1 class Affine(LikelihoodModel, StateSpaceModel):

2 """

3 Provides affine model of the term structure

4 """

5 def __init__(self, yc_data, var_data, lags, neqs, mats, lam_0_e, lam_1_e,

6 delta_0_e, delta_1_e, mu_e, phi_e, sigma_e, latent=0,

7 no_err=None, adjusted=False, use_C_extension=True):

4.3.2 Estimation

Once the model object is successfully instantiated, the unknown parameters can be estimated

using the solve function of the object. The function with its arguments and documentation as

they appear in the package is shown in Listing 4.9. Again, this code is included for completeness,

but it is not directly accessed by the end user. For an overview of the arguments and each of

their meaning and format, see Sections 4.2 and 4.3. This method takes both required and optional

arguments and returns the fully estimated arrays, along with other information that defines the

solution. These arguments define the method and restrictions for arriving at a unique parameter

set, if possible. The starting values for the unknown elements of the parameter space are passed in

as a list of values through the guess_params argument. The values specified in this list replace

the unknown elements of each of the masked arrays defined in Table 4.1, in the order that they

appear, and within each array in row-major order.6

Listing 4.9: Affine object estimation function

1 full_output=False, **kwargs):

2 """

3 Returns tuple of arrays

6Row-major refers to the order in which the elements of the arrays are internally stored, but is used here to
indicate the elements are filled moving from left to right until the end of the row is reach and then the next row is
jumped to.
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4 Attempt to solve affine model based on instantiated object.

5

6 Parameters

7 ----------

8 guess_params : list

9 List of starting values for parameters to be estimated

10 In row-order and ordered as masked arrays

11

12 method : string

13 solution method

14 nls = nonlinear least squares

15 ml = direct maximum likelihood

16 kalman = kalman filter derived maximum likelihood

17 alg : str {’newton’,’nm’,’bfgs’,’powell’,’cg’, or ’ncg’}

18 algorithm used for numerical approximation

19 Method can be ’newton’ for Newton-Raphson, ’nm’ for Nelder-Mead,

20 ’bfgs’ for Broyden-Fletcher-Goldfarb-Shanno, ’powell’ for modified

21 Powell’s method, ’cg’ for conjugate gradient, or ’ncg’ for Newton-

22 conjugate gradient. ‘method‘ determines which solver from

23 scipy.optimize is used. The explicit arguments in ‘fit‘ are passed

24 to the solver. Each solver has several optional arguments that are

25 not the same across solvers. See the notes section below (or

26 scipy.optimize) for the available arguments.

27 attempts : int

28 Number of attempts to retry solving if singular matrix Exception

29 raised by Numpy

30

31 scipy.optimize params

32 maxfev : int

33 maximum number of calls to the function for solution alg

34 maxiter : int

35 maximum number of iterations to perform

36 ftol : float

37 relative error desired in sum of squares

38 xtol : float

39 relative error desired in the approximate solution

40 full_output : bool

41 non_zero to return all optional outputs

42

43 Returns
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44 -------

45 Returns tuple contains each of the parameter arrays with the optimized

46 values filled in:

47 lam_0 : numpy array

48 lam_1 : numpy array

49 delta_0 : numpy array

50 delta_1 : numpy array

51 mu : numpy array

52 phi : numpy array

53 sigma : numpy array

54

55 The final A, B, and parameter set arrays used to construct the yields

56 a_solve : numpy array

57 b_solve : numpy array

58 solve_params : list

59

60 Other results are also attached, depending on the solution method

61 if ’nls’:

62 solv_cov : numpy array

63 Contains the implied covariance matrix of solve_params

64 if ’ml’ and ’latent’ > 0:

65 var_data_wunob : numpy

66 The modified factor array with the unobserved factors attached

67 """

68 k_ar = self.k_ar

69 neqs = self.neqs

70 mats = self.mats

The method argument takes as a string the solution method defining the information used

to determine which of a set of parameter values is closer to the true values. The options currently

supported are: non-linear least squares, nls; direct maximum likelihood (ML), ml; and Kalman

filter maximum likelihood, kalman. In cases where latent factors are added to the model, ml

or kalman must be used. These two methods of calculating the likelihood also involve different

assumptions about how latent factors are calculated. Specific assumptions are required to calculate

the latent factors because both the parameters applied to the latent factors and the latent factors

themselves are unobserved prior to estimation. The methods for calculating the unobserved factors

will be discussed below in each of the method descriptions.
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Non-linear Least Squares

Non-linear least squares minimizes the sum of squared pricing errors across the yields used

in the estimation process and is not used in the case of latent factors. This function is formally

defined as:

∑
n

T∑
t=1

(ynt − (An +B′nXt))
2 (4.3.3)

with An and Bn defined as in Equation 4.1.8, n choosing the maturities of yields that are used to

fit the model, and T is the number of observations. This method is used in Bernanke et al. (2005)

and Cochrane and Piazzesi (2008).

Unobserved factor approaches

In the case where unobserved factors are included in the pricing kernel, assumptions must

be made about how these factors are calculated. Several approaches have been introduced regard-

ing what assumptions are made to calculate the factors and two of these approaches are directly

supported in the package: direct maximum likelihood and Kalman filter maximum likelihood.

The direct maximum likelihood follows directly from the term structure modeling tradition

of Cox et al. (1985) and Duffie and Kan (1996), whereby only unobserved factors were used to

price the term structure and by definition, these unobserved factors priced the yield curve without

any error. Ang and Piazzesi (2003) extended this method to a pricing kernel composed of both

observed and unobserved factors. The advantages of this method lie in the fact that a high level

of precision can be achieved and that no assumptions are required concerning the starting values

of the unobserved values. The disadvantages are that the parameter estimates are often highly

dependent on the choice of yields priced without error. If this method is chosen, robustness tests

should be performed in order to ensure that the results are not completely dependent on the yields

chosen. Difficulty can also arise in direct maximum likelihood estimation because the latent factors

are simultaneously estimated with the parameters applied to these latent factors. In some cases

this could lead to explosive results depending on the numerical approximation algorithm used.

Maximum likelihood estimation via the Kalman filter is another method for calculating the

likelihood when latent factors are included in the pricing kernel. Instead of requiring assumptions

about which yields are priced without error, a Kalman state space system builds in unobserved

components as part of its definition. Starting values for the latent factors combined with the
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parameters values are combined to begin the recursion to solve for all values of the latent factors

after the initial period. Because this method does not involve simultaneous calculation of the latent

factors and the parameters applied to them, reaching a solution through numerical approximation

is often times faster than in the direct maximum likelihood case. It can also be useful if the number

of estimated parameters is high. Because the values of the latent factors are dependent on the

starting values chosen, this can result in a loss of precision in the confidence intervals (Duffee and

Stanton, 2012). If the results in the direct maximum likelihood case are very sensitive to the yields

chosen to be priced without error, calculating the likelihood under the Kalman filter may result in

more stable parameter estimates.

These two methods are those directly supported by the package and are discussed in greater

detail below. When choosing the appropriate method, the number of free parameters, the number

of latent factors, and the sensitivity of the parameter estimates to the assumptions of the likelihood

should all be considered when choosing a solution method.

Direct Maximum Likelihood

In the case of direct maximum likelihood, ml, the log-likelihood is maximized. If any latent

factors are included, they must each be matched to a yield measured without error. The number

of yields used to fit the model must be greater than or equal to the number of latent factors in this

case. The column indices of the yields measured without error in the yc_data argument must be

specified in the no_err argument. The length of no_err must be equal to the number of latent

variables specified during model initialization in the latent argument. In each of these cases, if

the condition is not met, an exception is raised.

The latent factors are solved by taking both the parameters and yields estimated without

error and calculating the factors that would have generated those yields given the set of parameters.

Any remaining yields included in the estimation process are assumed estimated with error. This

corresponds to the method prescribed in Chen and Scott (1993) and Ang and Piazzesi (2003). In

the case of the yields estimated without error, we can rewrite Equation 4.1.8 as:

yut = At +B′tXt (4.3.4)

where u signifies a yield maturity observed without error. Once At and Bt are calculated for each

of the yut observed without error, this becomes a system of linear equations through which the

unknown, latent elements of Xt can be directly solved for. Let us define E as the set of yields
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priced with error. After the latent factors in Xt are implicitly defined for each t, Xt can be used to

determine the pricing error for the other yields used to estimate the model:

yet = At +B′tXt + εet (4.3.5)

where ye signifies a yield maturity observed with error with e ∈ E and εt is the pricing error at

time t.

The likelihood is specified according to Ang and Piazzesi (2003):

log(L(θ)) =− (T − 1) log |det(J)| − (T − 1)
1

2
log(det(ΣΣ′))

− 1

2

T∑
t=2

(Xt − µ− ΦXt−1)′(ΣΣ′)−1(Xt − µ− ΦXt−1)

− T − 1

2
log(

∑
e∈E

σ2
e)− 1

2

T∑
t=2

∑
e∈E

(εt,e)
2

σ2
e

(4.3.6)

where e ∈ E picks out the yields measured with error, εt,e corresponds to the resulting pricing

error in Equation 4.3.5 in time t for each yield measured with error indexed by e, and σe is the

variance of the measurement error associated with the eth yield measured with error. By definition,

the number of yields measured with error is the total number of yields minus the number of yields

measured without error or the length of mats minus the length of no_err.

The Jacobian of the pricing error relationships is defined as:

J =

 I 0 0

Bo Bu I

 (4.3.7)

where Bo is comprised of the stacked coefficient vectors for each Bn corresponding to the observed

factors and Bu is comprised of the stacked coefficient vectors in Bn corresponding to the unobserved

factors price without error. With γ yields priced, Bo is γ × j and Bu is γ × υ.
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Specifically:

(
Bo Bu

)
=



Boy1 Buy1

Boy2 Buy2

· · · · · ·

Boyγ Buyγ


(4.3.8)

where each Boy1 is comprised of the first j elements in By1 corresponding to the observed factors

and each Buy1 is comprised of the remaining υ elements in By1 corresponding to the unobserved

factors, with each y1, y2, . . . referring to the maturity of one of the γ yields priced. Each Bot is 1× j

and each But is 1×υ. For a specific example, if we are using quarterly data and the one, two, three,

four, and five year yields are priced, then Bo and Bu would appear as:

(
Bo Bu

)
=



Bo4 Bu4

Bo8 Bu8

Bo12 Bu12

Bo16 Bu16

Bo20 Bu20


(4.3.9)

=



B4

B8

B12

B16

B20


(4.3.10)

where each of B4, B8, B12, B16, and B20 are taken from the corresponding yield relationships in

Equation 4.1.8.

Kalman Filter Maximum Likelihood

In addition to direct ML, Kalman filter derived likelihood is also available when unobserved

factors are estimated. Redefining the affine system in terms of a standard state space system is

relatively straightforward. After constructing the numpy masked arrays in Table 4.1, an observation

equation is generated for each yield column in yc_data. We can re-use the nomenclature defined

above by expanding Bo and Bu to include all yields, since the Kalman filter likelihood does not
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require that any of the yields be observed without error, defining the observation equation as:

ynt = An +Bon
′Xt,o +Bun

′Xt,u + ε (4.3.11)

where Bno (j × 1) and Bnu (υ × 1) are the components of Bn corresponding to the observed and

unobserved components, respectively, and ε is the pricing error. As noted in Section 4.2, the package

assumes that the unobserved components are ordered after the observed components in the VAR

system and the unobserved factors are orthogonal to the observed factors, so the state equation is

written as the lower right corner (υ × υ) portion of Φ, Φu:

Xt+1,u = ΦuXt,u + ωt+1 (4.3.12)

where:

E(ωt, ωτ ) =

 Σu for t = τ

0 otherwise
(4.3.13)

and Σu is the lower right corner υ× υ portion of Σ. Values for the earliest t are initialized to begin

the recursion that leads to the values for the latent factors Xt+r,u after the initial period where

r is the number of training periods. The package currently does not support estimation through

the Kalman filter derived likelihood with non-zero covariance between the observed and unobserved

factors.7 The log-likelihood for each maturity is calculated as indicated in Hamilton (1994, p. 385)

and then summed over all maturities to get the total log-likelihood.

The numerical approximation algorithm for the non-linear least squares method is the Levenberg-

Marquardt algorithm and is not influenced by changes to the alg argument, while a number of

different numerical approximation algorithms can be used for both the direct and Kalman ML

cases. These correspond to the different methods documented in the scipy optimize module and

include, but are not limited to, Newton-Raphson, Nelder-Mead, Bryoden, Fletcher, Goldfarb, and

Shanno, and Powell methods. Most of these methods are accessed through the LikelihoodModel

statsmodels class. The numerical approximation algorithm is chosen by the alg argument to the

solve function.

7This is currently not possible given how the Kalman Filter likelihood is calculated. The observed factor
dynamics are not included in the state space equation.
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In addition to the solution method and numerical approximation algorithm, other function

arguments can also be passed to the solve function, depending on the prior choices of solution

method and numerical approximation algorithm. In the case of direct ML, the no_err argument is

required, a list of indices of columns of yc_data assumed estimated without error. Zero-indexing

is used to indicate the columns in no_err, with a 0 indicating that the first column be estimated

without error, a 1 indicating the second column be estimated without error, etc. Zero-indexing is

consistent with the rest of the Python language and any C-based language for that matter. For

example, if the columns in yc_data are the one, two, three, four, and five year yields and the two

and four year yields are estimated without error, then no_err can be defined as in Listing 4.10:

Listing 4.10: Assignment of columns maturities priced without error

1 no_err = [1, 3]

This would result in the two and four year yields being estimated without error and the one, three,

and five year yields estimated with error. The no_err argument does not apply in the case of

Kalman ML and even if it is passed to the solve function, it will be ignored.

The xi10, ntrain, and penalty arguments only apply to the Kalman ML method and are

ignored otherwise even if they are passed. xi10 defines the starting vector of values in the first

period estimated in the state equation defined in Equation 4.3.12. This argument should be a list

the length of the number of latent factors, equal to υ and the latent argument in creation of the

model object. ntrain is the number of training periods for the state space system, defining how

many periods of recursion must be performed before the observations enter the calculation of the

likelihood.8 penalty is a floating point number that, if supplied, determines the numerical penalty

that is subtracted from the likelihood if the upperbounds or lowerbounds are hit. upperbounds

and lowerbounds are both lists of floating point numbers whose length must be equal to the

number of individual elements to be estimated across all of the parameter matrices. They define

the upper bounds and lower bounds, respectively for when the penalty is hit for each of the

parameters to be estimated.

8Given that the Kalman Filter recursion begins with an assumption regarding the initial value of unobserved
state, a few periods simulating the system may be desired to lessen the effect of the initial state on the likelihood
calculation.
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Additional keyword arguments can be passed to these methods that are passed to the numer-

ical optimization method. More detail can also be found in the scipy optimize documentation

(Jones et al., 2001–2014).9

4.4 Development

Development of affine began with the intention of being an open-source project written in

Python alone, supported by the Python modules mentioned above, namely, numpy (Oliphant et al.,

2005–2014), scipy (Jones et al., 2001–2014), pandas (McKinney, 2005–2014), and statsmodels

(Perktold et al., 2006–2014). Even with the many solution methods presented in the above section,

performance (or lack thereof) would be a key factor to adoption in the field. As even those affine

term structure models that are driven solely by observed information are still non-linear and require

numerical approximation methods to solve, any steps that slow down the calculation of the objective

function will inhibit performance. Details on how performance is affected and how solving that

problem was approached is documented later in this section.

The general approach of optimizing every line of code will end up taking more time that it

is worth. In some cases, code can be rewritten (refactored) in more efficient Python code and a

desirable level of performance can be reached. In other cases, the performance issues may be a result

of the high-level language nature of Python. As Python does not have static data types and performs

frequent behind-the-scenes checks of implied data types, looping operations can sometimes consume

more computational time than desired. In these situations, Python has a convenient feature of being

able to pass objects to and from compiled C code. C is a low-level statically typed language requiring

explicit memory management, but it allows for greater performance. The potential for performance

increases of C over Python arise for a number of reasons.

First, static typing prevents many of the continual data type checks that Python performs

behind the scenes. Static data typing forces the developer to set the data type of a single variable or

an array by the time its value is assigned, defining the amount of space that a variable will take up.

This prevents variables from being resized and frees up the language from needing to consistently

re-evaluate the required space in memory to hold the information attached to a variable. Static

typing is not available in Python unless the core language is extended with an outside package,

namely, Cython (Behnel et al., 2004).

9The scipy optimize documentation can be found at http://docs.scipy.org/doc/scipy/reference/
optimize.html#
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Second, without going into too much detail, memory allocation in C allows for greater control

over how information is stored. For data structures like arrays in C, there are no checks that

the data entered into an array is within the bounds of that array. In contrast, a list can be

dynamically built in Python without any bounds put on its size initially. In C, the size of an array

must be initialized before any of its elements are assigned values, but element values can be set

beyond the bounds of the array resulting in other addresses in random-access memory (RAM)

being overwritten! C also allows explicit access to two structures in RAM, the stack and the heap.

Variables allocated on the stack are quickly removed and are automatically deallocated once the

scope of the variable is escaped. Variables allocated on the heap are allocated at a slightly slower

pace than the stack and are not deallocated unless explicitly deleted. If variables allocated on the

heap are not deallocated, the package could suffer from memory leaks. Allocation on the heap is

necessary for any objects passed from C back to Python. These two RAM structures allow for any

intermediate steps in our calculations to be performed using stack variables, with heap variables

only used when information needs to be passed from C to Python.

Finally, pointer arithmetic in C allows for extremely high performance when iterating over

arrays. If a C array can be assumed to be contiguous in memory, that is, occupying an uninter-

rupted section of memory, then this assumption can be used for a performance advantage. As an

example, suppose that we wanted to create an array of integers that is the sum of the elements of

two other arrays of the same length. We could write the operation in (at least) two ways. First,

we could assign values to the summed array by iterating through the indices, as shown in Listing

4.11:

Listing 4.11: Explicit array iteration in C

1 int first_array[1000], second_array[1000], summed_array[1000];

2 /* Assign values to first_array and second_array */

3 /* ... */

4 /* Assign sum of two to summed_array */

5 for (int i = 0;i < 1000;i++) {

6 summed_array[i] = first_array[i] + second_array[i];

7 }

We could also perform the same operation using pointer arithmetic in Listing 4.12:

Listing 4.12: Pointer arithmetic iteration in C
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1 int first_array[1000], second_array[1000], summed_array[1000];

2 /* Assign values to first_array and second_array */

3 /* ... */

4 /* Assign sum of two to summed_array */

5 int farray_pt = first_array;

6 int sarray_pt = second_array;

7 int sumarray_pt = summed_array;

8 for (int i = 0;i < 1000;i++) {

9 *sumarray_pt = *farray_pt + *sarray_pt;

10 sumarray_pt++;

11 farray_pt++;

12 sarray_pt++;

13 }

While the second option may seem more complex at first glance, it is actually more efficient.

Every time that the element at a specific index is accessed, a memory address lookup operation

takes place, as in first_array[i]. The second version of the code simply iterates over the pointers

to the elements held in each of the arrays, thus allowing for quicker access. An array in C is simply

a pointer to the memory address of the first element, leading to lines 5 through 7 in Listing 4.12.

With each iteration, the elements in first_array, second_array, and summed_array are accessed

through the memory address of their elements and the pointers to those addresses are incremented

by the number of bytes used by the respective data type, in this case int. This makes full use

of the fact that these arrays are allocated contiguously on the stack. This optimization becomes

extremely useful when the implicit number of dimensions in an array is greater than one. This

ability to perform pointer arithmetic in C is fully utilized in many of the C operations below in the

package.

Determining what components of the package can benefit from being written in C involved

some investigation. Writing in C is more difficult than Python and components should be extended

into C only if there is the potential for a material performance gain. This is where code profiling tools

are of great use. Code profiling tools allow developers to determine where their code is spending

the most time. Given that the primary distribution of Python is written in C, the primary code

profiling tool is a C extension, cProfile. This extension can be called when any Python script

is executed and it will produce binary output that summarizes the amount of CPU time spent on
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every operation performed in the code. This binary output requires other tools in order to interpret

it.10

Table 4.2 is the consolidated output of profiling the solve function based on a model esti-

mation process using only observed factors. Each row of the table shows a function called in the

estimation process paired with the total computational time spent in that function. Only the func-

tions with the highest total time are shown. This time reflects the amount of time spent within the

function, excluding time spent in sub-functions. It is easy to see that the function that takes the

most computational time is gen_pred_coef, which is emphasized in italics. A high computational

time can be the result of a single execution of a function taking a long time, a single function being

called many times, or a combination of both. A function that is called many times may not benefit

from refactoring in C because it is taking up computational time through the fact that it is used

so frequently, not because a single call is slow. In order to get a sense of which of these, the output

shown in Table 4.2 can be combined with output that shows the percentage of time consumed by

each call. Figure 4.3 shows the percentage of time spent on each function called by _affine_pred.

_affine_pred calculates the implied yields given a set of parameters and comprises 99% of the

computational time of a call to solve11. In the figure, gen_pred_coef has a thicker outline and is

shown to comprise 19.05% of each call to _affine_pred. The majority of the time in the function

is spent on the {numpy.core._dotblas.dot} operation.

This information was used to determine what parts of the code could benefit from being

written in C rather than Python. While the {numpy.core._dotblas.dot} function seems like a

good candidate because of the amount of time spent in this function, it has already been optimized

in C and thus does not qualify. The params_to_array function, shown in Figure 4.3, is a pure

Python function, so could be a candidate. This function takes a set of parameters and generates the

appropriate two dimensional arrays required to calculate the predicted yields. This function relies

heavily on numpy masked arrays and functions providing abstract functionality in Python. Because

of this dependence on abstract numpy functionality, it was not a good candidate for rewriting in

C, as rewriting would likely involve recreating much of the core functionality already provided by

numpy.

10RunSnakeRun (Fletcher, 2001–2013) is a popular choice for interpretting C profiling output and is easy to
set up for use with Python but offers few options for displaying the output. KCacheGrind (Weidendorfer, 2002,2003)
offers all of the features of RunSnakeRun and more options for output display, but involves more setup and requires
the use of another tool, pyprof2calltree (Waller, 2013), in order to generate the appropriate output from a Python
script cProfile.

11These graphs were created using KCacheGrind (Weidendorfer, 2002,2003)
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On the other hand, gen_pred_coef is a good candidate for passing into a C function. It

requires extensive, recursive looping and only involves linear algebra operations. The code for

this function is shown in Listing 4.13. This function takes the parameter arrays generated by

params_to_arrays and generates the An and Bn parameters that enter into the relationship

defined in Equation 4.1.8. Each of these two arrays is constructed recursively based on the set of

equations specified in Equation 4.1.7. Written in pure Python, this function involves iteration and

looping over multiple arrays, a series of intermediate calculations performed on multidimensional

arrays, and dynamic creation of two multidimensional arrays, An and Bn. No matter which solution

method or numerical approximation algorithm is chosen, there will be repeated instances of sets of

parameters being passed into this function.

As can be seen, the for loop beginning in line 36 of the function iterates until the maximum

maturity specified in the mats argument is reached. For each of these iterations, a_pre, a_solve,

b_pre, and b_solve are calculated for the specific maturity, corresponding to Ān, An, B̄n, and Bn,

respectively, from Equations 4.1.7 and 4.1.8. A number of array dot products and index access

operations need to be performed in each iteration. The nature of these operations and recursive

form of the calculation prompted a C version of the code to be written, which is included in the

Appendix in Listing D.1.

Listing 4.13: Native Python Function for generating A and B

1 mu : numpy array

2 phi : numpy array

3 sigma : numpy array

4

5 Returns

6 -------

7 a_solve : numpy array

8 Array of constants relating factors to yields

9 b_solve : numpy array

10 Array of coeffiencts relating factors to yields

11 """

12 max_mat = self.max_mat

13 b_width = self.k_ar * self.neqs + self.lat

14 half = float(1)/2

15 # generate predictions

16 a_pre = np.zeros((max_mat, 1))
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17 a_pre[0] = -delta_0

18 b_pre = np.zeros((max_mat, b_width))

19 b_pre[0] = -delta_1[:,0]

20

21 n_inv = float(1) / np.add(range(max_mat), 1).reshape((max_mat, 1))

22 a_solve = -a_pre.copy()

23 b_solve = -b_pre.copy()

24

25 for mat in range(max_mat-1):

26 a_pre[mat + 1] = (a_pre[mat] + np.dot(b_pre[mat].T, \

27 (mu - np.dot(sigma, lam_0))) + \

28 (half)*np.dot(np.dot(np.dot(b_pre[mat].T, sigma),

29 sigma.T), b_pre[mat]) - delta_0)[0][0]

30 a_solve[mat + 1] = -a_pre[mat + 1] * n_inv[mat + 1]

31 b_pre[mat + 1] = np.dot((phi - np.dot(sigma, lam_1)).T, \

32 b_pre[mat]) - delta_1[:, 0]

33 b_solve[mat + 1] = -b_pre[mat + 1] * n_inv[mat + 1]

34

35 return a_solve, b_solve

36

37 def opt_gen_pred_coef(self, lam_0, lam_1, delta_0, delta_1, mu, phi,

38 sigma):

39 """

40 Returns tuple of arrays

41 Generates prediction coefficient vectors A and B in fast C function

42

43 Parameters

44 ----------

45 lam_0 : numpy array

46 lam_1 : numpy array

The change in profiling output after rewriting the gen_pred_coef is shown in Table 4.2

and Figure 4.4. The C extension version of gen_pred_coef is italicized for reference. Comparing

these tables shows that the computational time spent in the function drops from 8.817 to 1.365

seconds. The function highest on the list in terms of computational time is now a core Python

function get_token rather than a function written specifically for the package. Because it is highly

unlikely that any core components of package would need to be written, the fact that the most
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computationally expensive function now appears eighth on the list rather than first is a good sign

that code refactoring has been effective. Figure 4.4 reinforces the conclusion that handing this

function over to C was effective. Again, the function has again been given a thicker border. Instead

of taking up 19.05% of each _affine_pred call, the function now only takes up 2.54% of each call.

Because this function is called each time a new set of predicted yields need to be generated, the

relative advantage of using the C based method over the original pure Python method increases as

the number of iterations required for A and B goes up.

Table 4.2: Profiling Output of Pure Python Solve Function.

filename:lineno(function) Total time
affine.py:424(gen_pred_coef) 8.817
{numpy.core._dotblas.dot} 6.336
{isinstance} 4.626
parser.py:59(get_token) 4.510
locale.py:363(normalize) 4.303
StringIO.py:119(read) 3.940
_strptime.py:295(_strptime) 3.196
{len} 3.165
tools.py:372(parse_time_string) 2.512
__init__.py:49(normalize_encoding) 2.433

Table 4.3: Profiling Output of Hybrid Python/C Solve Function.

filename:lineno(function) Total time

parser.py:59(get_token) 2.841
StringIO.py:119(read) 2.270
core.py:2763(_update_from) 2.114
locale.py:363(normalize) 1.958
{getattr} 1.753
_strptime.py:295(_strptime) 1.446
parser.py:356(_parse) 1.387
{affine.model._C_extensions.gen_pred_coef} 1.365
{isinstance} 1.296
{len} 1.296
{numpy.core._dotblas.dot} 1.177
tools.py:372(parse_time_string) 1.132
__init__.py:49(normalize_encoding) 1.101
locale.py:347(_replace_encoding) 1.044
index.py:1273(get_loc) 1.036
parser.py:156(__init__) 0.993
{setattr} 0.958
core.py:3040(__setitem__) 0.882
{method ’get’ of ’dict’ objects} 0.812
parser.py:149(split) 0.788
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In order for the C code to efficiently construct the A and B arrays, various dot product

functions were built that relied on pointer arithmetic. These functions are included at the top of

the C code presented in Listing D.1 in the Appendix. The A and B arrays are both constructed as

one dimensional arrays on the heap for two reasons. First, two-dimensional arrays are possible in

C, but they are not nearly as high performing as one-dimensional arrays. A two-dimensional array

in C is an array of pointers to pointers, with each row index referring to a separate, non-contiguous

address in RAM. This means that if an element of the array is referred to by both indices, i.e.

array[i][j], this involves two lookups of the RAM location of these elements. These operations are

much more efficient if the arrays are stored as one-dimensional arrays and the implicit indexing

is handled by any of the operations involving these arrays. Care must be taken to ensure that

an allocation of these arrays as one-dimensional is successful.12 Second, constructing numpy arrays

from one-dimensional arrays is much simpler than constructing them from multi-dimensional arrays,

especially with the C-API provided with numpy. Once a single-dimensional C array is allocated on

the heap, it only needs to be wrapped in a numpy array constructor, as seen in a simple example

in Listing 4.14.

Listing 4.14: C array to numpy array

1 int rows = 3;

2 int cols = 5;

3 npy_intp dims[2] = {rows, cols};

4 /* allocate contiguous one dimensional */

5 double *myarray = (double *) malloc(rows * cols * sizeof(double));

6 /* fill in elements in myarray */

7 /* ... */

8 /* Allocate numpy array in C */

9 PyArrayObject *myNParray;

10 myNParray = (PyArrayObject *) PyArray_SimpleNewFromData(2, dims, double,

11 myarray);

12 PyArray_FLAGS(myNParray) |= NPY_OWNDATA;

13 Py_DECREF(myNParray);

The array in C is assumed to be contiguous in RAM but the dimensions are passed in as a

length two array of type npy_intp, a type provided by the numpy library. In line 5 the C array,

12Checking to make sure that the arrays are successfully allocated is accomplished in C by testing if the array
is equal to NULL. Examples of this can be seen in the C code in the Appendix.
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myarray is allocated on the heap. After filling in the values, the Python object to be returned

from C to Python is initialized in line 9. In lines 10 and 11, the Python object is defined as a

wrapper around the original C array, without needing to allocate new data for the array. It is

then ensured that the Python object controls the deallocation responsibility of the object in line

12 using the PyArray_FLAGS function and the array flag NPY_OWNDATA. In order for there to be

appropriate deallocation of the numpy array once in Python, the correct number of references must

be set using the Py_DECREF function. The function PyArray_SimpleNewFromData is the preferred

way of creating a numpy array based on data already allocated in C (Oliphant et al., 2014).

4.4.1 Testing

Testing of the package was performed with the empirical applications presented in Chapter 2

and Chapter 3. These two chapters both involved the estimation of affine term structure models,

some of which were compared to other published results and others which were unique models

estimated by the author. Both of these chapters depended completely on affine to build and

estimate the models. The estimated results of the package for the models in Baker (2014a) were

compared to the published results in Bernanke et al. (2005) and they generated similar pricing errors

and term premium dynamics. Discrepancies between the results are minimal and are addressed in

Baker (2014a). In Baker (2014b), the estimation process using affine generated well-fitting term

structure dynamics in line with much of the literature. A test of the logic programmed to generate

the prediction matrices A and B in Equation 4.1.8 was that the Python and C versions of the

function were programmed based on the theory, not on each other. When it was assured that both

were functioning properly independently, their results were compared and the results were identical

down to the machine epsilon of the C data type double.

When the Affine object is allocated, many assertions are performed on the shape of the

observed factor and yield data, the shape of each of the parameter arrays listed in Table 4.1, and

the combinations of the other arguments to the objects. These other assertions include ensuring

that appropriate non-error yield columns are supplied if Direct Maximum Likelihood is used as the

solution method. If any of these assertions fail, creation of the Affine object fails and the user is

notified of what caused the failure. This allows the user to modify the script and retry instantiation

of the Affine object.

Unit tests were written in order to stabilize the core functionality of the package throughout

development and across environments. As contributions are made to the package by other develop-
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ers, unit tests validate that the core components of the package are functioning as expected through

iterations of source code changes. These tests are included in the Appendix in Listing D.3. These

tests ensure that all of the individual functions used in the package to build and solve the model

are operating correctly. In some cases, the tests validate that no errors are thrown by the package

when correctly formated arguments are used. In other cases, the tests confirm that when incorrectly

formatted arguments are passed to the package, an error message is raised that indicates to the

user that there is an issue with the argument. Other tests run model estimation processes that are

known to converge and confirm that they do in fact converge.

The unit tests are organized as functions in classes, where all of the unit test functions

within a class share the same setup. In the case of the unit tests written for Affine, each

class defines a collection of valid arguments that successfully create an Affine object. There

are currently three classes of unit tests: TestInitiatilize, TestEstimationSupportMethods,

and TestEstimationMethods. These classes are intended to separate unit tests with different pur-

poses. Each test in TestInitiatilize begins by initializing valid arguments to an observed factor

model and contains tests related to proper initial creation of an Affine object. The first unit test

function, test_create_correct, passes these valid arguments to the Affine class and confirms

that the instance of the class exists. There are then five test functions that each increment the

dimensions of one of the parameter array arguments by one so that its shape is no longer valid and

then verifies that an error is raised indicating that the parameter array is of incorrect shape. There

are then two tests, test_var_data_nulls and test_yc_data_nulls, that replace just one of the

values in the observed factor and the yield data respectively with a null value and confirm that an

appropriate error is raised. The final test in this class, test_no_estimated_values, modifies the

two parameter arrays that have masked values, unmasks them, and confirms that an error is raised

indicating that there are no elements in the parameter arrays to estimate.

The TestEstimationSupportMethods class contains tests confirming that calculations the

package relies on are functioning properly. These are all in the form of positive tests, where the unit

test only fails if an error is raised in the operation. The setup for the tests in this class is that of a

more complex affine model with latent factors so that all of the possible calculations necessary to

solve an affine model are possible. The first four tests, test_loglike, test_score, test_hessian,

and test_std_errs, each confirm that with a correct model setup the likelihood, numerical score,

numerical Hessian, and numerical standard errors respectively can be calculated. The next test,

test_params_to_array, confirms that when passing values for the unknown elements in the
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parameter arrays into the params_to_array function, the parameter arrays are returned, both

when masked and standard numpy arrays are needed. test_params_to_array_zeromask per-

forms similar testing on a function that returns arrays with unmasked elements set to zero cor-

responding to guess values equal to zero. The next two unit tests, test_gen_pred_coef and

test_opt_gen_pred_coef, each test whether the generation of the A and B coefficients in Equa-

tion 4.1.8 for all maturities is successful, using a pure Python function or a C function respectively.

The next unit test, test_py_C_gen_pred_coef_equal, confirms that given the model setup for

this class, the Python and C functions generate the same result. The final three unit tests for this

class, test__solve_unobs, test__affine_pred, and test__gen_mat_list, each confirm that

private functions used internally by the package are operating correctly. test__solve_unobs con-

firms that the function that generates the latent factors returns valid results. test__affine_pred

validates that the internal function used to stack the predicted yields into a one-dimensional array

generates a result of the expected size. test__gen_mat_list tests whether or not the internal

function used to determine the yields priced with and without error correctly generates these yields

with the specific model setup in this class.

The final class, TestEstimationMethods, contains tests for running the estimation processes.

For the setup, models with and without latent factors are created. The first test, test_solve_nls,

attempts to estimate a model without latent factors. The second test, test_solve_ml, attempts

to estimate a model with a latent factor. As in the previous unit test class, these are both positive

tests, meaning that they merely test for whether convergence is possible given the current setup. If

there were any issues with the outside numerical approximation libraries, these issues would cause

the unit tests to fail.

After the user has installed affine, the entire suite of unit tests can be run using nose, a

Python package that aids in the organization and writing of unit tests. This is accomplished by

running the nosetests command in the top directory of the source code. Each unit test can also

be run individually using a nosetests command specifying a path to the test in the source code13.

For example, in order to initiate the test that verifies that an incorrectly shaped lam_0_e will raise

an error, the following command should be run in the top level of the source code:

Listing 4.15: Running a specific unit test

1 nosetests affine.tests.test_model:TestInitiatilize.test_wrong_lam0_size

13For more information about nose, see https://nose.readthedocs.org/en/latest/.
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In this example, the path to the Python file containing the unit tests is

affine/tests/test_model.py, the name of the class that contains the specific test we want

to run is TestInitiatilize, and the name of the test function is test_wrong_lam0_size. In

cases where users want to validate the installation of the package, running all of the unit tests using

the nosetests command is sufficient.

It is important to note that, while these unit tests do provide a reasonable amount of coverage

for the basic functionality of the package, they are not an exhaustive list of all possible unit tests,

nor do they cover all possible use cases. As development continues on affine, more unit tests will

continue to be developed. It should also be noted that modifications made to the package may

require changes to the unit tests in order for them to pass.

4.4.2 Issues

A few issues were encountered during development, specifically in development of the C

extension. The first major issue pertained to proper allocation and reference counting of objects

passed from C to Python. First, an attempt was made to create numpy arrays from C multi-

dimensional arrays based on several online examples, but discovering a way to properly transfer

ownership of these arrays to Python proved difficult. The arrays would often be returned to Python,

but would be over-written in RAM before it was appropriate to do so, meaning that the reference

counts to the Python array had been incorrectly set in C prior to the objects being returned to

Python. After battling with this and getting inconsistent results on 32- and 64-bit architectures,

single-dimensional arrays were used instead of two-dimensional arrays.

The use of one-dimensional arrays ended up leading to a significant performance improvement

because pointer arithmetic could be used. This led to the writing of four bare-bones functions in

C that perform the dot-product of two one-dimensional arrays (implied two-dimensional). The

four functions are derived from the possibilities of transposing the first array, or the second array,

neither, or both. In order for these functions to work correctly with the numpy arrays supplied to

the C function, it must be ensured that the data referenced by the arrays is held contiguously in

C. These arrays passed into the C function are initialized in Python, and there is not a guarantee

that numpy arrays initialized in this way are held contiguously. Contiguous ordering of the data can

be ensured using the np.ascontiguousarray, which is applied to the arrays prior to being passed

into the function when the optimized C extension is successfully installed.
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Another push in the way of single-dimensional arrays came with the fact that arrays of

indeterminate length at compile time cannot be passed into C functions. Because the package

is developed for the general case, the sizes of all of the arrays used to compute A and B are of

indeterminate length at compile time. The dimensions of the array along with the pointers can be

passed to the functions. When the arrays are one-dimensional and contiguous, the pointer to the

first element of the array along with the number of rows and columns is enough information to

be able to perform any kind of operation on a pair of arrays. Many of the tutorials on the use of

the numpy C-API use multi-dimensional C arrays, but this may be based on the fact that many of

the users are coming from a Python background. Single-dimensional, contiguous arrays are much

better for performance and fit more naturally into C-based code development.

Another issue that was encountered in development was acceptable levels of differences be-

tween Python and C based results. One of the benefits of writing the Python and C methods for

the same operations was using one to test the results of the other. Testing strict equality (==) in

Python versus C proved problematic. After calculating the A and B arrays in both Python and

C, some of the entries in arrays would be equal, while others would differ by an amount no greater

than 1e-12. The first way that I approached the issue was ensuring that the numpy float64 data

type used in numpy arrays was equivalent to the NPY_DOUBLE C data type used in the C extension.

This involved going into the lower layers of numpy source code, eventually confirming that they were

both equivalent to C double types. After confirming each line of code in both versions, further

research led to the conclusion that these differences were driven by machine epsilon floating point

comparisons. Machine epsilon refers to potential differences in the results of equivalent mathemat-

ical operations driven by floating point rounding. These specific machine epsilon differences likely

resulted from differences in libc and built-in numpy functions. These differences are important to

keep in mind when attempting to set convergence criteria too tightly in the numerical approxima-

tion algorithms. These are not likely to reliably hold below 1e-12, given the recursive nature of the

construction of A and B. The default convergence criteria for parameter and function differences in

the package is therefore 1e-7, as this is well above the machine epsilon but low enough to generate

reliable results in most modeling exercises.

4.5 Building Models

In order to flesh out the context for this package, it may be useful to describe how the

approaches of some of the important works in affine term structure modeling could be achieved
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using the package. This section will focus on models that would not involve any adjustments to the

core package in order to obtain the same approach, but will also present an example of a modeling

approach that would involve modifications to select function in the original package. Before moving

on to specific examples, it may be useful to summarize the current coverage of the package. Table

4.4 documents the papers and respective models that can be estimated using this package.

Table 4.4: Affine Term Structure Modeling Papers Matched with Degree of Support from Package

Paper Solution method Latent factors Modifications required
Chen and Scott (1993) Direct ML Yes No
Dai and Singleton (2000) Simulated Method of Moments Yes Yes
Dai and Singleton (2002) Direct ML Yes No
Ang and Piazzesi (2003) Direct ML Yes No
Bernanke et al. (2005) Non-linear least squares No No
Kim and Orphanides (2005) Kalman filter ML Yes No
Kim and Wright (2005) Kalman filter ML Yes No
Diebold et al. (2006) Kalman filter ML Yes No
Cochrane and Piazzesi (2008) Non-linear least squares No No
Orphanides and Wei (2012) Direct ML Yes Yes

As is shown, most of the approaches of the seminal papers are directly supported by the

package. The methods of Dai and Singleton (2000) and Orphanides and Wei (2012) would both

require modification to the core Affine class. Even in these cases, the level of abstraction provided

by the package allows individual components to be modified while leaving the rest of the package

intact.

A few of the approaches of these papers will be discussed in subsections below, specifically

in how they would be performed using affine. In each of these sections, the outline of the code

is shown with only the key steps invoked using the package. For complete scripts for each of these

methods, please see Section E of the Appendix.

4.5.1 Method of Bernanke et al. (2005)

The affine term structure model of Bernanke et al. (2005) uses a pricing kernel driven solely

by observed information. The authors assume that the process governing the observed information

is a VAR(4) with five macroeconomic variables using monthly data. They fit a yield curve of zero-

coupon bonds using the yields on the six month, one, two, three, four, five, seven, and ten year

yields. With only the use of observed factors informing the pricing kernel, the authors estimate the

parameters in Equations 4.1.3 and 4.1.5 using OLS prior to estimation of the prices of risk. This

vastly decreases the number of parameters to be estimated compared to models using latent factors
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and leaves only the parameters in λ0 and λ1 to be estimated. They also assume that the prices of

risk in Equation 4.1.4 are zero for all but the elements in λt corresponding to the contemporaneous

elements in Xt.

Assuming that the data has already been imported and the other parameter arrays have been

setup, the model can be initialized and estimated as shown in Listing 4.16:

Listing 4.16: Bernanke et al. (2005) model setup

1 import numpy.ma as ma

2 from affine.model.affine import Affine

3

4 # number of observed factors

5 n_vars = 5

6 # number of lags in VAR process

7 lags = 4

8 # maturities of yields in months

9 mats = [6, 12, 24, 36, 48, 60, 84, 120]

10

11 #import yield curve data into yc_data and macroeconomic data into var_data

12 #...

13 #fill in values of delta_0_e, delta_1_e, mu_e, phi_e, and sigma_e from OLS

14 #...

15 #initialize the lambda_0 and lambda_1 arrays

16 lam_0_e = ma.zeros([n_vars * lags, 1])

17 lam_1_e = ma.zeros([n_vars * lags, n_vars * lags])

18 #mask only contemporaneous elements (elements to be estimated)

19 lam_0_e[:n_vars, 0] = ma.masked

20 lam_1_e[:n_vars, :nvars] = ma.masked

21

22 #instantiate model

23 model = Affine(yc_data=yc_data, var_data=var_data, mat=mats, lags=lags,

24 lam_0_e=lam_0_e, lam_1_e=lam_1_e, delta_0_e=delta_0_e,

25 delta_1_e=delta_1_e, mu_e=mu_e, phi_e=phi_e, sigma_e=sigma_e)

26 #construct guess_params

27 guess_params = [0] * model.guess_length()

28 #solve model

29 solved_model = model.solve(guess_params, method=’nls’)
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Lines 15-20 ensure that the prices of risk are restricted to zero for all but the contemporaneous

values of Xt. The model object is created in lines 23-25. The solve function is called in line 29

with the nls options signifying non-linear least squares, which is appropriate given that no latent

factors are estimated in this model. Because the parameter space tends to be smaller in models

with no latent factors, these models tend to solve in a shorter amount of time than those with latent

factors. For example, at the precision levels indicated in Chapter 2, each model took around three

minutes to solve. The starting values for each of the unknown parameters across λ0 and λ1 are set

to zero and the number of unknown parameters across the parameters arrays can be generated from

the object using the guess_length() function. The solved_model Python tuple contains each

of the parameter arrays passed into the Affine class object with any masked elements solved for.

In this example, the different parameter arrays are accessed in the tuple of objects returned. The

estimated parameter arrays could also be accessed as attributes of the solution object along with

the standard errors. The standard errors are calculated by numerically approximating the Hessian

of the parameters. A future release of the package will include more user friendly presentations

of the results in formatted tables. When a likelihood based approach is used, formatted tables

of many of the parameter estimates and their standard errors are provided by the statsmodels

LikelihoodModel class that Affine inherits from. Documentation for this formatted output is

provided in statsmodels.

4.5.2 Method of Ang and Piazzesi (2003)

Another model setup that can easily be implemented using affine is that first used in Chen

and Scott (1993) but more recently used in Ang and Piazzesi (2003). In this chapter, a five factor

model is estimated with two observed factors summarizing movements in output and inflation,

respectively, and three unobserved factors. Their method for estimating the models involves a

four-step iterative process where unknown elements in individual parameter arrays are estimated

in different steps. This approach is outlined in Listing 4.17. In this method, the components of µ,

Φ, and Σ in Equation 4.1.3 pertaining to the observed factors are estimated with the assumption

that the two observed factors are orthogonal to the unobserved factors14. The components of the

short-rate relationship, Equation 4.1.5, pertaining to the observed factors are also estimated via

OLS. This takes place in lines 19-2115. Beginning in Step 1 on line 30, the unknown parameters in

14This assumption is made by Ang and Piazzesi (2003) to decrease the number of estimated parameters

15For complete detail of a setup script for this method, see Listing E.2 in the Appendix.
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δ1 and Φ are estimated and a model solved object is retained in lines 38-39. In this example listing,

the model solution method is indicated as direct maximum likelihood, the numerical approximation

method is BFGS, and the one month, one year, and five year yields are measured without error.

Using the estimated Hessian matrix from Step 1, the standard error of each parameter is estimated

and, as specified in Ang and Piazzesi (2003), the insignificant parameters are set to zero in a

new parameter list in lines 44-65. This parameter list is used to generate the masked arrays and

parameter guesses for Step 2 and the final estimation step. In Step 2, beginning in line 69, the

unknown parameters in λ1 are estimated, holding λ0 at 0 and δ1 and Φ at their estimated values

after Step 1. The model again is re-estimated and the insignificant parameters in λ1 are set to

zero, with the estimated value of λ1 retained for use in Step 3 and the final estimation step. In

Step 3, beginning in line 86, an analogous estimated is performed where the estimated δ1, Φ, and

λ1 from Step 1 and 2 are used to estimate only the unknown parameters in λ0. The insignificant

parameters in λ0 are set to zero, with the estimated values in λ0 is held for the final estimation

step. In the final estimation step beginning in line 93, the significant parameters across δ1, Φ, λ0,

and λ1 are all re-estimated, with the insignificant parameters in these arrays held at 0, and using

the estimated values from Steps 1-3 as initial estimates. This last estimation step produces the

final estimation results. This entire process took less than ten minutes to solve on a laptop with

1.8GHz CPU speed.

Listing 4.17: Ang and Piazzesi (2003) model setup

1 import numpy as np

2 import numpy.ma as ma

3 import scipy.linalg as la

4 from affine.model.affine import Affine

5

6 # number of observed factors

7 n_vars = 2

8 # number of lags in VAR process

9 lags = 12

10 # number of latent variables to estimate

11 latent = 3

12 #maturities of yields

13 mats = [1, 3, 12, 36, 60]

14 #indices of maturities to be estimated without error

15 no_err = [0, 2, 4]
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16

17 #import yield curve data into yc_data and macroeconomic data into var_data

18 #...

19 #fill in values of delta_0_e, delta_1_e, mu_e, phi_e, and sigma_e from OLS

20 #pertaining to observed factors

21 #...

22 #initialize the lambda_0 and lambda_1 arrays

23 phi_e[-latent:, -latent:] = ma.masked

24 delta_1_e[-latent:, 0] = ma.masked

25

26 #initialize lambda arrays to all zeros, but not masked

27 lam_0_e = ma.zeros([n_vars * lags, 1])

28 lam_1_e = ma.zeros([n_vars * lags, n_vars * lags])

29

30 ##Step 1

31 model1 = Affine(yc_data=yc_data, var_data=var_data, mats=mats, lags=lags,

32 lam_0_e=lam_0_e, lam_1_e=lam_1_e, delta_0_e=delta_0_e,

33 delta_1_e=delta_1_e, mu_e=mu_e, phi_e=phi_e, sigma_e=sigma_e,

34 latent=latent)

35

36 #initialize guess_params

37 #...

38 solved_model1 = model1.solve(guess_params=guess_params, no_err=no_err,

39 method=’ml’, alg=’bfgs’)

40 parameters1 = solved_model1.solve_params

41 #calculate numerical hessian of solved_params

42 std_err = model1.std_errs(parameters1)

43

44 #create list of parameters in parameters1 that are significant based on std_err

45 #and put in sigparameters1, otherwise replace with zero

46 tval = parameters1 / std_err

47 sigparameters1 = []

48 for tix, val in enumerate(tval):

49 if abs(val) > 1.960:

50 sigparameters1.append(parameters1[tix])

51 else:

52 sigparameters1.append(0)

53

54 #retrieve new arrays with these values replaced, used for estimation in later

55 #steps
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56 parameters_for_step_2 = solved_model1.params_to_array(sigparameters1,

57 return_mask=True)

58 delta_1 = parameters_for_step_2[3]

59 phi = parameters_for_step_2[5]

60

61 #retrieve arrays for final step 4 estimation with only values masked that were

62 #significant

63 parameters_for_final = solved_model1.params_to_array_zeromask(sigparameters1)

64 delta_1_g = parameters_for_final[3]

65 phi_g = parameters_for_final[5]

66

67 ##End of Step 1

68

69 #Step 2

70 #Estimate only unknown parameters in lam_1_e, results in model solve object

71 #solved_model2, use arrays delta_1 and phi from above

72 lam_1_e[-latent, -latent] = ma.masked

73 lam_1_e[:n_vars, :n_vars] = ma.masked

74 #...

75

76 #set insignificant parameters equal to zero in sigparameters2

77 parameters_for_step_3 = solved_model2.params_to_array(sigparameters2,

78 return_mask=True)

79 lambda_1 = parameters_for_step_3[1]

80

81 parameters_for_final = solved_model2.params_to_array_zeromask(sigparameters2,

82 return_mask=True)

83 lambda_0_g = parameters_for_final[1]

84 #End of Step 2

85

86 #Step 3

87 #Estimate unknown parameters in lam_0_e, with all pre-estimated values held at

88 #estimated values using delta_1, phi, (from Step 1) and lambda_1 (from Step 2)

89

90 #collect lambda_0_g and lambda_0 similar to Step 2

91 #Step 3

92

93 #Step 4

94 #Estimate model using guesses and assumptions about insignificant arrays set

95 #equal to zero
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96 model4 = Affine(yc_data=yc_data, var_data=var_data, mats=mats, lags=lags,

97 lam_0_e=lambda_0_g, lam_1_e=lambda_1_g, delta_0_e=delta_0,

98 delta_1_e=delta_1_g, mu_e=mu_e, phi_e=phi_g, sigma_e=sigma_u,

99 latent=latent)

100

101 #construct guess_params from final estimated values in Steps 1-3

102 solved_model4 = model.solve(guess_params=guess_params, no_err=no_err,

103 method=’ml’, alg=’bfgs’)

These two demonstrations show that much of the model building steps are abstracted by the

use of the Affine class object. Each script easily enables one to generate plots of the respective

pricing errors and time-varying term premia. The Kalman filter ML method is also supported by

the package and the approach would not be much different from that presented in Listing 4.17. The

only modifications required would be the method argument would need to be changed to kalman and

the appropriate additional arguments specified in Section 4.2 would need to be supplied. Kalman

filter ML results could be used to replicate the approaches used in Kim and Wright (2005) and

Diebold et al. (2006). To make a change in the likelihood calculation approach, the method simply

needs to be changed when calling the solve method.

4.5.3 Method of Orphanides and Wei (2012)

There are some approaches that have yet to be directly implemented in the package such

as the Iterative ML approach used in Duffee and Stanton (2012) and Orphanides and Wei (2012).

This approach could be included in future versions of the package, but could also be executed by

the user by inheriting from the Affine class and altering the log-likelihood definition.

As an example of an approach that would require modifications to the package, let us examine

the model estimated in Orphanides and Wei (2012). In this paper, the authors estimated an affine

term structure model using a rolling VAR rather than a fixed parameter VAR. Because of this, the

likelihood calculation needs to be changed because the package assumes that the estimated param-

eters in the process governing the factors (Equation 4.1.3) are constant throughout the estimation

period. The suggested way of making these modifications is through inheriting from the Affine

class16 and making modifications only to the necessary components. An outline of this approach

appears in Listing 4.18. A new class, RollingVARAffine is created on line 34, inheriting from

16The construction of the Affine model object as a Python class allows the user to create a custom class
that replicates the functionality of the original class, unless over-written. For more information on object-oriented
programming in Python, see https://docs.python.org/2/tutorial/classes.html.
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the Affine class. In line 35-39, the loglike function, which return the likelihood, over-writes

the original method for this class of the same name. This likelihood would be replaced with the

likelihood as it is calculated in Orphanides and Wei (2012), given a set of values for the unknown

parameters. The actual likelihood for this method is not shown.

Once the object is modified to fit the specific affine model formulation, the setup and estima-

tion can continue just as in the other examples. The model object is created in lines 41-44. Only µ,

Φ, and Σ are estimated in the estimation step, performed in lines 49-50. The unknown parameters

are passed into the newly defined likelihood just as before and the rest of the components of the

estimation process are unchanged. These estimated arrays are used in the second estimation step,

when λ0 and λ1 are estimated in Step 2 in lines 57-72.

Listing 4.18: Orphanides and Wei (2012) model setup

1 import numpy as np

2 import numpy.ma as ma

3 import scipy.linalg as la

4 from affine.model.affine import Affine

5

6 # number of observed factors

7 n_vars = 2

8 # number of lags in VAR process

9 lags = 2

10 # number of latent factors

11 latent = 1

12 # maturities of yields

13 mats = [4, 8, 20, 28, 40]

14 # index of yield estimated without error

15 no_err = [3]

16

17 #import yield curve data into yc_data and macroeconomic data into var_data

18 #...

19 #fill in values of delta_0_e, delta_1_e, mu_e, phi_e, and sigma_e from OLS

20 #mu_e, phi_e, and sigma_e are constructed with an extra dimension as they

21 #differ every time period

22 #initialize the lambda_0 and lambda_1 arrays

23 mu_e[-latent:, 0, :] = ma.masked

24 phi_e[-latent:, -latent:, :] = ma.masked

25 sigma_e[-latent:, -latent:, :] = ma.masked
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26

27 #initialize lambda arrays to all zeros, but not masked

28 lam_0_e = ma.zeros([n_vars * lags, 1])

29 lam_1_e = ma.zeros([n_vars * lags, n_vars * lags])

30

31 #create a new class that inherits from Affine

32 #inheriting from Affine means that all methods are the same except for those

33 #redefined

34 class RollingVARAffine(Affine):

35 def loglike(self, params):

36 #here write the likelihood in terms of rolling VAR rather than fixed

37 #parameter VAR

38

39

40 #Instantiate RollingVARAffine class

41 model1 = RollingVARAffine(yc_data=yc_data, var_data=var_data, mats=mats,

42 lags=lags, lam_0_e=lam_0_e, lam_1_e=lam_1_e,

43 delta_0_e=delta_0_e, delta_1_e=delta_1_e, mu_e=mu_e,

44 phi_e=phi_e, sigma_e=sigma_e, latent=latent)

45

46 #initialize guess_params

47 #...

48 #attempt to solve model

49 solved_model1 = model1.solve(guess_params=guess_params, no_err=no_err,

50 method=’ml’, alg=’bfgs’)

51

52 #retrieve new arrays with these values replaced, used for estimation in step 2

53 mu = solve_model1[4]

54 phi = solve_model1[5]

55 sigma = solve_model1[6]

56

57 #Step 2

58 #Estimate lambda_0 and lambda_1

59 #solved_model2, use arrays mu, phi, and phi from above

60 lam_0_e[:nvars, 0] = ma.masked

61 lam_0_e[-latent, 0] = ma.masked

62 lam_1_e[-latent, -latent] = ma.masked

63 lam_1_e[:n_vars, :n_vars] = ma.masked

64

65 final_model = RollingVARAffine(yc_data=yc_data, var_data=var_data, mats=mats,
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66 lags=lags, lam_0_e=lam_0_g, lam_1_e=lam,

67 delta_0_e=delta_0, delta_1_e=delta_1, mu_e=mu,

68 phi_e=phi, sigma_e=sigma, latent=latent)

69

70 #construct guess_params from final estimated values in Steps 1-3

71 fsolved_model = final_model.solve(guess_params=guess_params, no_err=no_err,

72 method=’ml’, alg=’bfgs’)

Listing 4.18 shows how the approach to modifying the core Affine class in order to estimate

models outside of the original supported models. This approach to extending the core package

could lead to more supported models and greater coverage of the affine term structure literature.

4.6 Conclusion

This chapter discussed how a variety of affine term structure models can be understood

as choices among a series of permutations within a single modeling framework, including model

structure, number of latent factors, solution method, and numerical approximation algorithm. This

single framework was presented within the context of a new package, affine, that contributes to

the term structure literature via its ability to simplify the process of building and solving affine

models of the term structure. This technical framework within which affine term structure models

can be built and understood is itself a new contribution to the literature and opens the doors for

new theoretical connections to be established between previously disparate model construction and

estimation approaches. This chapter demonstrated how many models could be built and estimated

by only supplying data and arguments, with even more able to be built and solved with minor

extensions of the package. The structure of the package lends itself naturally to extension and

select parts of the solution of the process can be modified while leaving the rest of the package

intact. With the theoretical background explicitly linked to the package, building models using this

package should be much more simple, lowering the cost of contributing to the affine term structure

model literature. The package has also been optimized for computational speed, making it easier

to run a larger number of models faster.

In addition to this computational framework on its own, this chapter also detailed the de-

velopment of the package and the advantages and challenges of developing computational package

in Python and C. Given the current popularity of Python in mathematical modeling circles and C

as a low-level computationally efficient language, the approaches to development outlined in this
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chapter could serve as a useful reference for those attempting to develop computationally efficient

packages in Python.

In the near future, I would like to expand the basic functionality of the package to include

basic plotting of the results through the matplotlib library. Plotting is already supported through

the core functionality used from other libraries, but specific methods could be written that would

generate popular charts such as time series of the pricing error, the latent factors, and the time-

varying term premium. I would also like to make the data type checks more robust and provide more

feedback to the user regarding errors with the setup of their data or parameter arrays. This would

include writing some robust Python exception handling classes specific to this package. Another

feature I would like to include is more robust handling of errors encountered in the numerical

approximation algorithms. There are times when the numerical approximation algorithms pass in

invalid guesses as values, so I would like to offer the user more of a buffer from these errors, which

can sometimes be cryptic. I would also like to add more well-formatted output of the estimated

parameters and their standard errors.
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CHAPTER 5

CONCLUSION

This dissertation has contributed to the affine term structure model literature by making sug-

gestions for additions and modifications to the pricing kernel in the first two chapters and providing

a computational modeling framework within which a wide variety of discrete-time affine models can

be estimated in the third chapter. Chapter 2 demonstrated how measures of uncertainty can con-

tribute valuable information to a pricing kernel driven by observed factors. Adding uncertainty

information to the pricing kernel produced a better fitting model and generated higher term premia

during recessions. This change in the term premia from the addition of uncertainty proxies to the

pricing kernel suggested that, not only do different horizons of uncertainty enter the term premia,

but explicitly pricing certain horizons leads to changes in the estimates of the term premia. Chap-

ter 3 showed how real-time data used in place of final-release data produced a better performing

model when measured using root-mean-square pricing error. This chapter also demonstrated that

a real-time data driven affine term structure model produces an erratic term premium for shorter

maturity bonds but a more inter-temporally persistent term premium for longer maturity bonds.

This distinction was not generated by the equivalent model driven by final data and could be lost in

a broader class of models exclusively using final-release data. This chapter also showed that some

of the advantage of using real-time over final data to price the yield curve is lost with the addition

of unobserved, latent factors to the pricing kernel. With the increasingly common use of latent fac-

tors in affine term structure to increase model performance, the implications of using these factors

should be considered when determining how observed information enters bond markets. Together,

the first two chapters showed how modeling with observed factors can reveal important information

about what drives bond market decisions.

Chapter 4 provided a general framework within which affine term structure models can be

built and solved and is the essential backdrop to the first two chapters. The models in Chapters
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2 and 3 were both built and solved using the algorithms and approach presented in this chapter.

The ease with which factors and model structure could be changed and tested within the first

two chapters was a result of design choices in the package and could potentially be very useful for

others building affine term structure models. Consistent term structure modeling algorithms are

not in widespread use and the package presented in Chapter 4 intends to begin to fill this void.

The chapter also documented the approach taken by the author to developing a package that can

efficiently estimate these non-linear models and provide meaningful abstraction to those building

these models. Assumptions built into the package and issues in development are both documented.

The chapter provides a framework within which models based on both observed and unobserved

factors can be built and understood. This framework in itself represents a unique contribution to

the field that could be used by many practitioners moving forward.

This dissertation offers context to the role that observed factors may play in decomposing

how the bond market behaves as a whole. With the increased use of latent factors in the affine term

structure model literature, investigating how latent factors relate to and interact with these observed

components could lead to a deeper understanding of the full information set that drives bond market

decisions. An avenue of future research would be to continue examining both how the inclusion

of specific observed factors impact estimates of latent factors and how the statistical moments of

the observed factors relate to latent factors estimated within a single model. Results from Chapter

3 suggested that latent factors can somewhat compensate for information misspecification in the

pricing kernel, but it is still unclear what other observed information latent factors may be pricing.

Further research is required in this area to help pin down what observed information latent factors

represent.

Given the observations of Chapter 2 regarding the changing role of uncertainty in recessions

compared to expansions, I would also like to further research how the weights on different factors

change at different points in the business cycle. The current canonical affine term structure modeling

framework assumes that the prices of risk are a constant, affine transformation of the factors

throughout the observation period. Loosening this restriction by allowing the prices of risk to be

temporally dependent could allow for a more robust specification of factors in different parts of the

business cycle. Early evidence suggesting changes in the weights on the factors could come in the

form of structural break tests as suggested by Bai et al. (1998), testing changes governing the prices

of risk alone. This investigation would not need to be limited to observed factor models alone and

could be expanded into models integrating unobserved latent factors.
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This dissertation has served as a starting point for further investigations into the roles that

observed factors play in affecting the performance and attributes of affine term structure models.

Specifically, this dissertation has shown that, not only does the choice of observed factors impact

performance, but which observed factors are included impact the time series of the term premia.

Differences in results generated by observed factor models could be obscured by the inclusion of

latent factors. The flexibility to estimate many different affine term structure models introduced

with the package presented in the Chapter 4 will allow for simpler testing of how observed and

latent factors influence pricing decisions. The package also allows for greater flexibility in changing

assumptions about the characteristics of the models and provides a single framework for under-

standing how a single model relates to the broader class of term structure models.
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APPENDIX A

DATA FOR CHAPTER 2

All data used for Chapter 2 are at a monthly frequency.

Monthly Treasury Bill and Treasury Constant Maturities are taken from the Federal Reserve

Bank of St. Louis (FRED), including 6 month, and one, two, three, five, seven, and ten year

maturities.

http://research.stlouisfed.org/fred2/categories/115

Fama-Bliss zero-coupon yields were downloaded from Wharton Research Data Services, which

is only available by subscription:

http://wrds-web.wharton.upenn.edu/wrds/

Total non-farm employment is taken from the BLS website:

http://data.bls.gov/pdq/SurveyOutputServlet?request\_action=wh\&graph\_name=

CE\_cesbref1

The PCE price index and federal funds rate data are taken from the FRED site:

http://research.stlouisfed.org/fred2/categories/9

http://research.stlouisfed.org/fred2/series/FEDFUNDS

Blue Chip Financial Forecast data were obtained from the individual publications available

at the American University Library. The link is provided here:

http://198.91.33.107:8080/cgi-bin/Pwebrecon.cgi?BBID=11859965

Eurodollar futures were obtained from a Bloomberg (2012) terminal.

VIX data was obtained from the Chicago Board Options Exchange (CBOE) VIX page, as

this is the authority which calculates and trades this statistic:

http://www.cboe.com/micro/vix/historical.aspx
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APPENDIX B

DATA FOR CHAPTER 3

All data used in this chapter are at a quarterly frequency.

Final release output growth is the annualized GNP quarter over quarter growth prior to

1992 and the annualized GDP quarter over quarter from 1992 and after. Final release inflation

is measured as the quarter over quarter percentage in the GNP/GDP deflator with the transition

taking place in 1992 also. Residential investment is also measured as an annualized quarter over

quarter percentage change. Unemployment is the civilian unemployment rate. Each of the these

statistics were downloaded from the FRED site:

http://research.stlouisfed.org/fred2/series/GNP/18

http://research.stlouisfed.org/fred2/series/GDP

http://research.stlouisfed.org/fred2/series/GNPDEF

http://research.stlouisfed.org/fred2/series/GDPDEF/

http://research.stlouisfed.org/fred2/series/PRFIC96/

http://research.stlouisfed.org/fred2/series/UNRATE/

The market expectations for the current quarter are taken from the Survey of Professional

Forecasters which is made available by the Federal Reserve Bank of Philadelphia:

http://www.phil.frb.org/research-and-data/real-time-center/survey-of-professional-

forecasters/

The previous quarter releases are taken from the Real-time Data Set for Macroeconomists

and are available for download from the Federal Reserve Bank of Philadelphia site:

http://www.philadelphiafed.org/research-and-data/real-time-center/real-time-

data/



132

As in Chapter 2, the Fama-Bliss zero-coupon yield data was downloaded from the Wharton

Research Data Services:

http://wrds-web.wharton.upenn.edu/wrds/
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APPENDIX C

ADDITIONAL FIGURES AND TABLE

FOR CHAPTER 2

Table C.1: Maximum Five Year Term Premium by Date Range and Model. Each row represents
a date range within which the maximum is calculated and each column represents an individually
estimated model.

BSR factor models Uncertainty proxy models
b b+E b+E+D b+E+D+V

08/90 - 05/12 (Full Sample) 3.50 2.97 3.45 3.43
03/91 - 03/01 (Expansion) 2.91 2.72 2.74 2.72
03/01 - 11/01 (Recession) 1.37 1.83 2.09 2.08
11/01 - 12/07 (Expansion) 1.96 2.02 2.05 2.02
12/07 - 06/09 (Recession) 1.26 2.20 2.64 2.62

Table C.2: Minimum Five Year Term Premium by Date Range and Model. Each row represents
a date range within which the minimum is calculated and each column represents an individually
estimated model.

BSR factor models Uncertainty proxy models
b b+E b+E+D b+E+D+V

08/90 - 05/12 (Full Sample) 0.20 0.66 0.75 0.84
03/91 - 03/01 (Expansion) 1.43 1.25 1.35 1.33
03/01 - 11/01 (Recession) 0.86 1.40 1.69 1.69
11/01 - 12/07 (Expansion) 0.87 1.25 1.11 1.11
12/07 - 06/09 (Recession) 0.20 0.66 0.75 0.84
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Figure C.1: Plots of Difference between Yields on One, Three, and Five-year Constant Maturity
Government Bond Yields and Fama-Bliss Implied Zero Coupon Bond Yields.

(a)

(b)

(c)
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APPENDIX D

SOURCE CODE FOR AFFINE

Listing D.1: C Code for generating A and B

1 #include "Python.h"

2 #include "arrayobject.h"

3 #include "C_extensions.h"

4 #include <math.h>

5 #include <stdio.h>

6

7 struct module_state {

8 PyObject *error;

9 };

10

11 /* === Constants used in rest of program === */

12 const double half = (double)1 / (double)2;

13

14

15 /* ==== Set up the methods table ====================== */

16 static PyMethodDef _C_extensions_methods[] = {

17 {"gen_pred_coef", gen_pred_coef, METH_VARARGS, NULL},

18 {NULL, NULL}

19 };

20

21 #if PY_MAJOR_VERSION >= 3

22 #define GETSTATE(m) ((struct module_state*)PyModule_GetState(m))

23 #else

24 #define GETSTATE(m) (&_state)

25 static struct module_state _state;

26 #endif

27
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28 // All of this is specific code for Python 3

29 #if PY_MAJOR_VERSION >= 3

30

31 static int _C_extensions_traverse(PyObject *m, visitproc visit, void *arg) {

32 Py_VISIT(GETSTATE(m)->error);

33 return 0;

34 }

35

36 static int _C_extensions_clear(PyObject *m) {

37 Py_CLEAR(GETSTATE(m)->error);

38 return 0;

39 }

40

41

42 static struct PyModuleDef moduledef = {

43 PyModuleDef_HEAD_INIT,

44 "_C_extensions",

45 NULL,

46 sizeof(struct module_state),

47 _C_extensions_methods,

48 NULL,

49 _C_extensions_traverse,

50 _C_extensions_clear,

51 NULL

52 };

53

54 /* ==== Initialize the _C_extensions functions ====================== */

55 // Module name must be _C_extensions in compile and linked

56

57 #define INITERROR return NULL

58

59 PyObject *

60 PyInit__C_extensions(void)

61

62 #else

63 #define INITERROR return

64

65 void

66 init_C_extensions(void)

67 #endif
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68 {

69 #if PY_MAJOR_VERSION >= 3

70 PyObject *module = PyModule_Create(&moduledef);

71 #else

72 PyObject *module = Py_InitModule("_C_extensions", _C_extensions_methods);

73 #endif

74 import_array();

75 #if PY_MAJOR_VERSION >= 3

76 return module;

77 #endif

78 }

79

80 /* Array helper functions */

81 /* ==== Matrix sum function ===== */

82 void mat_sum(int rows, int cols, double *arr1, double *arr2,

83 double *result) {

84 int mat_size, inc;

85 mat_size = rows * cols;

86 for (inc=0;inc < mat_size;inc++) {

87 *result = *arr1 + *arr2;

88 arr1++;

89 arr2++;

90 result++;

91 }

92 }

93

94 /* ==== Matrix subtraction function ===== */

95 void mat_subtract(int rows, int cols, double *arr1, double *arr2,

96 double *result) {

97 int mat_size, inc;

98 mat_size = rows * cols;

99 for (inc=0;inc < mat_size;inc++) {

100 *result = *arr1 - *arr2;

101 arr1++;

102 arr2++;

103 result++;

104 }

105 }

106

107 /* ==== Matrix product functions ===== */



139

108 void mat_prodct(int row1, int col1, double *arr1,

109 int col2, double *arr2,

110 double *result) {

111

112 int dim1_row, dim2_col, dim1_col, col1_mod, row2_mod;

113 double sum, *arr1pt, *arr2pt;

114

115 col1_mod = 0;

116 for (dim1_row = 0; dim1_row < row1; dim1_row++) {

117 row2_mod = 0;

118 for (dim2_col = 0; dim2_col < col2; dim2_col++) {

119 arr1pt = &arr1[col1_mod];

120 arr2pt = &arr2[row2_mod];

121 sum = 0;

122 for (dim1_col = 0; dim1_col < col1; dim1_col++) {

123 sum += (*arr1pt) * (*arr2pt);

124 arr1pt++;

125 arr2pt+=col2;

126 }

127 *result = sum;

128 result++;

129 row2_mod++;

130 }

131 col1_mod += col1;

132 }

133 }

134

135 /* ==== Matrix product functions tpose first argument ===== */

136 void mat_prodct_tpose1(int row1, int col1, double *arr1,

137 int col2, double *arr2,

138 double *result) {

139

140 int dim1_row, dim1_col, dim2_col, row1_mod, row2_mod;

141 double sum, *arr1pt, *arr2pt;

142

143 row1_mod = 0;

144 for (dim1_col = 0;dim1_col < col1;dim1_col++) {

145 row2_mod = 0;

146 for (dim2_col = 0;dim2_col < col2;dim2_col++) {

147 arr1pt = &arr1[row1_mod];
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148 arr2pt = &arr2[row2_mod];

149 sum = 0;

150 for (dim1_row = 0;dim1_row < row1;dim1_row++) {

151 sum += (*arr1pt) * (*arr2pt);

152 arr1pt+=col1;

153 arr2pt+=col2;

154 }

155 *result = sum;

156 result++;

157 row2_mod++;

158 }

159 row1_mod++;

160 }

161 }

162

163 /* ==== Matrix product functions tpose second argument ===== */

164 void mat_prodct_tpose2(int row1, int col1, double *arr1,

165 int row2, double *arr2,

166 double *result) {

167

168 int dim1_row, dim2_row, dim1_col, col1_mod, col2_mod;

169 double sum, *arr1pt, *arr2pt;

170

171 col1_mod = 0;

172 for (dim1_row = 0; dim1_row < row1; dim1_row++) {

173 col2_mod = 0;

174 for (dim2_row = 0; dim2_row < row2; dim2_row++) {

175 arr1pt = &arr1[col1_mod];

176 arr2pt = &arr2[col2_mod];

177 sum = 0;

178 for (dim1_col = 0; dim1_col < col1; dim1_col++) {

179 sum += (*arr1pt) * (*arr2pt);

180 arr1pt++;

181 arr2pt++;

182 }

183 *result = sum;

184 result++;

185 col2_mod += col1;

186 }

187 col1_mod += col1;
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188 }

189 }

190

191 static PyObject *gen_pred_coef(PyObject *self, PyObject *args) {

192 PyArrayObject *lam_0, *lam_1, *delta_0, *delta_1, *mu, *phi, *sigma,

193 *a_fin_array, *b_fin_array;

194

195 int lam_0_cols, lam_1_cols, mu_rows, mu_cols, phi_rows, phi_cols,

196 sigma_rows, sigma_cols, mat, bp_offset, bp_noffset, next_mat, i;

197

198 const int max_mat;

199

200 double *lam_0_c, *lam_1_c, *delta_0_c, *delta_1_c, *mu_c, *phi_c,

201 *sigma_c, divisor;

202

203 // Parse input arguments to function

204 if (!PyArg_ParseTuple(args, "O!O!O!O!O!O!O!i",

205 &PyArray_Type, &lam_0, &PyArray_Type, &lam_1, &PyArray_Type, &delta_0,

206 &PyArray_Type, &delta_1, &PyArray_Type, &mu, &PyArray_Type, &phi,

207 &PyArray_Type, &sigma, &max_mat))

208 return NULL;

209 if (NULL == lam_0 || NULL == lam_1 || NULL == delta_0 || NULL == delta_1 ||

210 NULL == mu || NULL == phi || NULL == sigma) return NULL;

211

212 // Get dimesions of all input arrays

213 lam_0_cols=lam_0->dimensions[1];

214 lam_1_cols=lam_1->dimensions[1];

215 const int delta_1_rows=delta_1->dimensions[0];

216 mu_rows=mu->dimensions[0];

217 mu_cols=mu->dimensions[1];

218 phi_rows=phi->dimensions[0];

219 phi_cols=phi->dimensions[1];

220 sigma_rows=sigma->dimensions[0];

221 sigma_cols=sigma->dimensions[1];

222

223 // Create C arrays

224 lam_0_c = pymatrix_to_Carrayptrs(lam_0);

225 lam_1_c = pymatrix_to_Carrayptrs(lam_1);

226 delta_0_c = pymatrix_to_Carrayptrs(delta_0);

227 delta_1_c = pymatrix_to_Carrayptrs(delta_1);
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228 mu_c = pymatrix_to_Carrayptrs(mu);

229 phi_c = pymatrix_to_Carrayptrs(phi);

230 sigma_c = pymatrix_to_Carrayptrs(sigma);

231

232 // Initialize collector arrays

233 npy_intp a_dims[2] = {max_mat, 1};

234 npy_intp b_dims[2] = {max_mat, delta_1_rows};

235 int b_pre_rows = delta_1_rows;

236

237 double a_pre[max_mat];

238 double b_pre[max_mat * delta_1_rows];

239 double *a_fin = (double*) malloc(max_mat*sizeof(double));

240 double *b_fin = (double*) malloc(max_mat * delta_1_rows * sizeof(double));

241

242 if (a_fin==NULL) {

243 printf("Failed to allocate memory for a_fin\n");

244 }

245 if (b_fin==NULL) {

246 printf("Failed to allocate memory for b_fin\n");

247 }

248

249 // Initialize intermediate arrays

250 // Elements for a_pre calculation

251 double dot_sig_lam_0_c[sigma_rows * lam_0_cols];

252 double diff_mu_sigl_c[mu_rows];

253 double dot_bpre_mu_sig1_c[1];

254

255 double dot_b_pre_sig_c[sigma_cols];

256 double dot_b_sigt_c[sigma_rows];

257 double dot_b_sst_bt_c[1];

258

259 // Elements for b_pre calculation

260 double dot_sig_lam_1_c[sigma_rows * lam_1_cols];

261 double diff_phi_sig_c[phi_rows * phi_cols];

262 double dot_phisig_b_c[phi_cols];

263

264 // Perform operations

265 a_pre[0] = -delta_0_c[0];

266 a_fin[0] = -a_pre[0];

267 for (i = 0;i < delta_1_rows;i++) {
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268 b_pre[i] = -delta_1_c[i];

269 b_fin[i] = -b_pre[i];

270 }

271

272 double b_pre_mat_c[b_pre_rows];

273

274 // Calculate unchanging elements

275 mat_prodct(sigma_rows, sigma_cols, sigma_c,

276 lam_0_cols, lam_0_c,

277 dot_sig_lam_0_c);

278 mat_subtract(mu_rows, mu_cols, mu_c, dot_sig_lam_0_c, diff_mu_sigl_c);

279

280 for (mat = 0; mat < (max_mat - 1); mat++) {

281

282 next_mat = mat + 1;

283

284 // Setup indexes

285 bp_offset = mat * delta_1_rows;

286 bp_noffset = next_mat * delta_1_rows;

287

288 // Need this b_pre_mat for proper array reading

289 for (i = 0; i < b_pre_rows; i++) {

290 b_pre_mat_c[i] = b_pre[bp_offset + i];

291 }

292

293 mat_prodct_tpose1(b_pre_rows, 1, b_pre_mat_c,

294 1, diff_mu_sigl_c,

295 dot_bpre_mu_sig1_c);

296

297 mat_prodct_tpose1(b_pre_rows, 1, b_pre_mat_c,

298 sigma_cols, sigma_c,

299 dot_b_pre_sig_c);

300 mat_prodct_tpose2(1, sigma_cols, dot_b_pre_sig_c,

301 sigma_rows, sigma_c,

302 dot_b_sigt_c);

303 mat_prodct(1, sigma_rows, dot_b_sigt_c,

304 1, b_pre_mat_c,

305 dot_b_sst_bt_c);

306

307 // Divisor to prepare for b_fin calculation
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308 divisor = (double)1 / ((double)next_mat + (double)1);

309

310 a_pre[next_mat] = a_pre[mat] + dot_bpre_mu_sig1_c[0] +

311 (half * dot_b_sst_bt_c[0]) - delta_0_c[0];

312 a_fin[next_mat] = -a_pre[next_mat] * divisor;

313

314 // Calculate next b elements

315 mat_prodct(sigma_rows, sigma_cols, sigma_c,

316 lam_1_cols, lam_1_c,

317 dot_sig_lam_1_c);

318 mat_subtract(phi_rows, phi_cols, phi_c, dot_sig_lam_1_c,

319 diff_phi_sig_c);

320 mat_prodct_tpose1(phi_rows, phi_cols, diff_phi_sig_c,

321 1, b_pre_mat_c,

322 dot_phisig_b_c);

323

324

325 for (i = 0; i < delta_1_rows; i++) {

326 b_pre[bp_noffset + i] = dot_phisig_b_c[i] - delta_1_c[i];

327 b_fin[bp_noffset + i] = -b_pre[bp_noffset + i] * divisor;

328 }

329 }

330

331 // Free core arrays

332 free(lam_0_c);

333 free(lam_1_c);

334 free(delta_0_c);

335 free(delta_1_c);

336 free(mu_c);

337 free(phi_c);

338 free(sigma_c);

339

340 a_fin_array = (PyArrayObject *) PyArray_SimpleNewFromData(2, a_dims,

341 NPY_DOUBLE,

342 a_fin);

343 PyArray_FLAGS(a_fin_array) |= NPY_OWNDATA;

344 b_fin_array = (PyArrayObject *) PyArray_SimpleNewFromData(2, b_dims,

345 NPY_DOUBLE,

346 b_fin);

347 PyArray_FLAGS(b_fin_array) |= NPY_OWNDATA;
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348

349 PyObject *Result = Py_BuildValue("OO", a_fin_array, b_fin_array);

350

351 // Set proper reference counts for numpy arrays

352 Py_DECREF(a_fin_array);

353 Py_DECREF(b_fin_array);

354

355 return Result;

356 }

357

358 /* ==== Create Carray from PyArray ======================

359 Assumes PyArray is contiguous in memory.

360 Memory is allocated! */

361 double *pymatrix_to_Carrayptrs(PyArrayObject *arrayin) {

362 double *c, *a, *inc;

363 int i, mat_size, n, m;

364

365 n = arrayin->dimensions[0];

366 m = arrayin->dimensions[1];

367 mat_size = n * m;

368 c = malloc(n * m * sizeof(*c));

369 a = (double *) arrayin->data;

370 inc = c;

371 for (i=0;i < mat_size;i++) {

372 *c = *a;

373 c++;

374 a++;

375 }

376 return inc;

377 }

378

379 /* ==== Free a double *vector (vec of pointers) ========================== */

380 void free_Carrayptrs(double **v, int rows) {

381 int i;

382 for (i = 0; i < rows; i++) {

383 free(*(v + i));

384 }

385 free(v);

386 }

387
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388 void free_CarrayfPy(double **v) {

389 free((char*) v);

390 }
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Listing D.2: Affine package

1 """

2 The class provides Affine, intended to solve affine models of the

3 term structure

4 This class inherits from the statsmodels LikelihoodModel class

5 """

6

7 import numpy as np

8 import statsmodels.api as sm

9 import pandas as pa

10 import scipy.linalg as la

11 import re

12

13 from numpy import linalg as nla

14 from numpy import ma

15 from scipy.optimize import fmin_l_bfgs_b

16 from statsmodels.tsa.api import VAR

17 from statsmodels.base.model import LikelihoodModel

18 from statsmodels.regression.linear_model import OLS

19 from statsmodels.tools.numdiff import approx_hess, approx_fprime

20 from statsmodels.tsa.kalmanf.kalmanfilter import StateSpaceModel, kalmanfilter

21 from operator import itemgetter

22 from scipy import optimize

23 from util import retry

24

25 try:

26 from . import _C_extensions

27 avail_fast_gen_pred = True

28 except:

29 avail_fast_gen_pred = False

30

31 #############################################

32 # Create affine class system #

33 #############################################

34

35 class Affine(LikelihoodModel, StateSpaceModel):

36 """

37 Provides affine model of the term structure

38 """



148

39 def __init__(self, yc_data, var_data, lags, neqs, mats, lam_0_e, lam_1_e,

40 delta_0_e, delta_1_e, mu_e, phi_e, sigma_e, latent=0,

41 no_err=None, adjusted=False, use_C_extension=True):

42 """

43 Attempts to instantiate an affine model object

44 yc_data : DataFrame

45 yield curve data

46 var_data : DataFrame

47 data for var model

48 lags : int

49 number of lags for VAR system

50 Only respected when adjusted=False

51 neqs : int

52 Number of equations

53 Only respected when adjusted=True

54 mats : list of int

55 Maturities in periods of yields included in yc_data

56 latent: int

57 Number of latent variables to estimate

58 no_err : list of ints

59 list of the column indexes of yields to be measured without error

60 ex: [0, 3, 4]

61 (1st, 4th, and 5th columns in yc_data to be estimated without

62 error)

63

64 For all estimate parameter arrays:

65 elements marked with ’E’ or ’e’ are estimated

66 n = number of variables in fully-specified VAR(1) at t

67

68 lam_0_e : Numpy masked array, n x 1

69 constant vector of risk pricing equation

70 lam_1_e : Numpy masked array, n x n

71 parameter array of risk pricing equation

72 delta_0_e : Numpy masked array, 1 x 1

73 constant in short-rate equation

74 delta_1_e : Numpy masked array, n x 1

75 parameter vector in short-rate equation

76 mu_e : Numpy masked array, n x 1

77 constant vector for VAR process

78 phi_e : Numpy masked array, n x n
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79 parameter array for VAR process

80 sigma_e : Numpy masked array, n x n

81 covariance array for VAR process

82 """

83 self.yc_data = yc_data

84 self.var_data = var_data

85 self.yc_names = yc_data.columns

86 self.num_yields = len(yc_data.columns)

87 self.yobs = len(yc_data)

88 self.names = names = var_data.columns

89 k_ar = self.k_ar = lags

90 if neqs:

91 self.neqs = neqs

92 else:

93 neqs = self.neqs = len(names)

94

95 self.latent = latent

96

97 self.lam_0_e = lam_0_e

98 self.lam_1_e = lam_1_e

99 self.delta_0_e = delta_0_e

100 self.delta_1_e = delta_1_e

101

102 self.mu_e = mu_e

103 self.phi_e = phi_e

104 self.sigma_e = sigma_e

105

106 # generates mats: list of mats in yield curve data

107 self.mats = mats

108 self.max_mat = max(mats)

109

110 if latent:

111 self.lat = latent

112 else:

113 self.lat = 0

114

115 self.no_err = no_err

116 if no_err:

117 # parameters for identification of yields measured without error

118 self.err = list(set(range(len(mats))).difference(no_err))
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119 self.no_err_mat, self.err_mat = self._gen_mat_list()

120 # gen position list for processing list input to solver

121 self.noerr_cols, self.err_cols = self._gen_col_names()

122

123 # whether to use C extension

124 if avail_fast_gen_pred and use_C_extension:

125 self.fast_gen_pred = True

126 else:

127 self.fast_gen_pred = False

128

129 if adjusted:

130 assert len(yc_data.dropna(axis=0)) == \

131 len(var_data.dropna(axis=0)), \

132 "Number of non-null values unequal in VAR and yield curve data"

133 var_data_vert = self.var_data_vert = var_data[ \

134 var_data.columns[:-neqs]]

135 var_data_vertm1 = self.var_data_vertm1 = var_data[ \

136 var_data.columns[neqs:]]

137

138 else:

139 assert len(yc_data.dropna(axis=0)) == len(var_data.dropna(axis=0)) \

140 - k_ar, \

141 "Number of non-null values unequal in VAR and yield curve data"

142

143 # Get VAR input data ready

144 x_t_na = var_data.copy()

145 for lag in range(1, k_ar + 1):

146 for var in var_data.columns:

147 x_t_na[str(var) + ’_m’ + str(lag)] = \

148 pa.Series(var_data[var].values[:-(lag)],

149 index=var_data.index[lag:])

150

151 var_data_vert = self.var_data_vert = x_t_na.dropna( \

152 axis=0)[x_t_na.columns[:-neqs]]

153 var_data_vertm1 = self.var_data_vertm1 = x_t_na.dropna( \

154 axis=0)[x_t_na.columns[neqs:]]

155

156 self.var_data_vertc = self.var_data_vert.copy()

157 self.var_data_vertc.insert(0, "constant",

158 np.ones((len(var_data_vert), 1)))



151

159

160 self.periods = len(self.var_data_vert)

161 self.guess_length = self._gen_guess_length()

162 assert self.guess_length > 0, "guess_length must be at least 1"

163

164 # final size checks

165 self._size_checks()

166

167 super(Affine, self).__init__(var_data_vert)

168

169 def solve(self, guess_params, method, alg="newton", attempts=5,

170 maxfev=10000, maxiter=10000, ftol=1e-8, xtol=1e-8, xi10=[0],

171 ntrain=1, penalty=False, upperbounds=None, lowerbounds=None,

172 full_output=False, **kwargs):

173 """

174 Returns tuple of arrays

175 Attempt to solve affine model based on instantiated object.

176

177 Parameters

178 ----------

179 guess_params : list

180 List of starting values for parameters to be estimated

181 In row-order and ordered as masked arrays

182

183 method : string

184 solution method

185 nls = nonlinear least squares

186 ml = direct maximum likelihood

187 kalman = kalman filter derived maximum likelihood

188 alg : str {’newton’,’nm’,’bfgs’,’powell’,’cg’, or ’ncg’}

189 algorithm used for numerical approximation

190 Method can be ’newton’ for Newton-Raphson, ’nm’ for Nelder-Mead,

191 ’bfgs’ for Broyden-Fletcher-Goldfarb-Shanno, ’powell’ for modified

192 Powell’s method, ’cg’ for conjugate gradient, or ’ncg’ for Newton-

193 conjugate gradient. ‘method‘ determines which solver from

194 scipy.optimize is used. The explicit arguments in ‘fit‘ are passed

195 to the solver. Each solver has several optional arguments that are

196 not the same across solvers. See the notes section below (or

197 scipy.optimize) for the available arguments.

198 attempts : int
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199 Number of attempts to retry solving if singular matrix Exception

200 raised by Numpy

201

202 scipy.optimize params

203 maxfev : int

204 maximum number of calls to the function for solution alg

205 maxiter : int

206 maximum number of iterations to perform

207 ftol : float

208 relative error desired in sum of squares

209 xtol : float

210 relative error desired in the approximate solution

211 full_output : bool

212 non_zero to return all optional outputs

213

214 Returns

215 -------

216 Returns tuple contains each of the parameter arrays with the optimized

217 values filled in:

218 lam_0 : numpy array

219 lam_1 : numpy array

220 delta_0 : numpy array

221 delta_1 : numpy array

222 mu : numpy array

223 phi : numpy array

224 sigma : numpy array

225

226 The final A, B, and parameter set arrays used to construct the yields

227 a_solve : numpy array

228 b_solve : numpy array

229 solve_params : list

230

231 Other results are also attached, depending on the solution method

232 if ’nls’:

233 solv_cov : numpy array

234 Contains the implied covariance matrix of solve_params

235 if ’ml’ and ’latent’ > 0:

236 var_data_wunob : numpy

237 The modified factor array with the unobserved factors attached

238 """
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239 k_ar = self.k_ar

240 neqs = self.neqs

241 mats = self.mats

242 latent = self.latent

243 yc_data = self.yc_data

244 var_data_vert = self.var_data_vert

245

246 if method == "kalman" and not self.latent:

247 raise NotImplementedError( \

248 "Kalman filter not supported with no latent factors")

249

250 elif method == "nls":

251 func = self._affine_pred

252 var_data_vert_tpose = var_data_vert.T

253 # need to stack for scipy nls

254 yield_stack = np.array(yc_data).reshape(-1, order=’F’).tolist()

255 # run optimization

256 solver = retry(optimize.curve_fit, attempts)

257 reslt = solver(func, var_data_vert_tpose, yield_stack, p0=guess_params,

258 maxfev=maxfev, xtol=xtol, ftol=ftol,

259 full_output=True, **kwargs)

260 solve_params = reslt[0]

261 solv_cov = reslt[1]

262

263 elif method == "ml":

264 assert len(self.no_err) == self.lat, \

265 "Number of columns estimated without error must match " + \

266 "number of latent variables"

267

268 if method == "bfgs-b":

269 func = self.nloglike

270 bounds = self._gen_bounds(lowerbounds, upperbounds)

271 reslt = fmin_l_bfgs_b(x0=guess_params, approx_grad=True,

272 bounds=bounds, m=1e7, maxfun=maxfev,

273 maxiter=maxiter, **kwargs)

274 solve_params = reslt[0]

275 score = self.score(solve_params)

276

277 else:

278 reslt = self.fit(start_params=guess_params, method=alg,
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279 maxiter=maxiter, maxfun=maxfev, xtol=xtol,

280 ftol=ftol, **kwargs)

281 solve_params = reslt.params

282 score = self.score(solve_params)

283 self.estimation_mlresult = reslt

284

285 elif method == "kalman":

286 self.fit_kalman(start_params=guess_params, method=alg, xi10=xi10,

287 ntrain=ntrain, penalty=penalty,

288 upperbounds=upperbounds, lowerbounds=lowerbounds,

289 **kwargs)

290 solve_params = self.params

291 score = self.score(solve_params)

292

293 lam_0, lam_1, delta_0, delta_1, mu, phi, sigma = \

294 self.params_to_array(solve_params)

295

296 a_solve, b_solve = self.gen_pred_coef(lam_0, lam_1, delta_0, delta_1,

297 mu, phi, sigma)

298

299 if latent:

300 lat_ser, jacob, yield_errs = self._solve_unobs(a_in=a_solve,

301 b_in=b_solve)

302 var_data_wunob = var_data_vert.join(lat_ser)

303

304 # attach solved parameter arrays as attributes of object

305 self.lam_0_solve = lam_0

306 self.lam_1_solve = lam_1

307 self.delta_0_solve = delta_0

308 self.delta_1_solve = delta_1

309 self.mu_solve = mu

310 self.phi_solve = phi

311 self.sigma_solve = sigma

312 self.solve_params = solve_params

313

314 if latent:

315 return lam_0, lam_1, delta_0, delta_1, mu, phi, sigma, a_solve, \

316 b_solve, solve_params, var_data_wunob

317

318 elif method == "nls":



155

319 return lam_0, lam_1, delta_0, delta_1, mu, phi, sigma, a_solve, \

320 b_solve, solv_cov

321

322 elif method == "ml":

323 return lam_0, lam_1, delta_0, delta_1, mu, phi, sigma, \

324 a_solve, b_solve, solve_params

325

326 def score(self, params):

327 """

328 Return the gradient of the loglike at params

329

330 Parameters

331 ----------

332 params : list

333

334 Notes

335 -----

336 Return numerical gradient

337 """

338 loglike = self.loglike

339 return approx_fprime(params, loglike, epsilon=1e-8)

340

341 def hessian(self, params):

342 """

343 Returns numerical hessian.

344 """

345 loglike = self.loglike

346 return approx_hess(params, loglike)

347

348 def std_errs(self, params):

349 """

350 Return standard errors

351 """

352 hessian = self.hessian(params)

353 std_err = np.sqrt(-np.diag(la.inv(hessian)))

354 return std_err

355

356 def loglike(self, params):

357 """

358 Returns float
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359 Loglikelihood used in latent factor models

360

361 Parameters

362 ----------

363 params : list

364 Values of parameters to pass into masked elements of array

365

366 Returns

367 -------

368 loglikelihood : float

369 """

370

371 lat = self.lat

372 per = self.periods

373 var_data_vert = self.var_data_vert

374 var_data_vertm1 = self.var_data_vertm1

375

376 lam_0, lam_1, delta_0, delta_1, mu, phi, \

377 sigma = self.params_to_array(params)

378

379 if self.fast_gen_pred:

380 solve_a, solve_b = self.opt_gen_pred_coef(lam_0, lam_1, delta_0,

381 delta_1, mu, phi, sigma)

382

383 else:

384 solve_a, solve_b = self.gen_pred_coef(lam_0, lam_1, delta_0,

385 delta_1, mu, phi, sigma)

386

387 # first solve for unknown part of information vector

388 lat_ser, jacob, yield_errs = self._solve_unobs(a_in=solve_a,

389 b_in=solve_b)

390

391 # here is the likelihood that needs to be used

392 # use two matrices to take the difference

393 var_data_use = var_data_vert.join(lat_ser)[1:]

394 var_data_usem1 = var_data_vertm1.join(lat_ser.shift())[1:]

395

396 errors = var_data_use.values.T - mu - np.dot(phi,

397 var_data_usem1.values.T)

398 sign, j_logdt = nla.slogdet(jacob)
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399 j_slogdt = sign * j_logdt

400

401 sign, sigma_logdt = nla.slogdet(np.dot(sigma, sigma.T))

402 sigma_slogdt = sign * sigma_logdt

403

404 var_yields_errs = np.var(yield_errs, axis=1)

405

406 like = -(per - 1) * j_slogdt - (per - 1) * 1.0 / 2 * sigma_slogdt - \

407 1.0 / 2 * np.sum(np.dot(np.dot(errors.T, \

408 la.inv(np.dot(sigma, sigma.T))), errors)) - (per - 1) / 2.0 * \

409 np.log(np.sum(var_yields_errs)) - 1.0 / 2 * \

410 np.sum(yield_errs**2/var_yields_errs[None].T)

411

412 return like

413

414 def nloglike(self, params):

415 """

416 Return negative loglikelihood

417 Negative Loglikelihood used in latent factor models

418 """

419 like = self.loglike(params)

420 return -like

421

422 def gen_pred_coef(self, lam_0, lam_1, delta_0, delta_1, mu, phi, sigma):

423 """

424 Returns tuple of arrays

425 Generates prediction coefficient vectors A and B

426

427 Parameters

428 ----------

429 lam_0 : numpy array

430 lam_1 : numpy array

431 delta_0 : numpy array

432 delta_1 : numpy array

433 mu : numpy array

434 phi : numpy array

435 sigma : numpy array

436

437 Returns

438 -------
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439 a_solve : numpy array

440 Array of constants relating factors to yields

441 b_solve : numpy array

442 Array of coeffiencts relating factors to yields

443 """

444 max_mat = self.max_mat

445 b_width = self.k_ar * self.neqs + self.lat

446 half = float(1)/2

447 # generate predictions

448 a_pre = np.zeros((max_mat, 1))

449 a_pre[0] = -delta_0

450 b_pre = np.zeros((max_mat, b_width))

451 b_pre[0] = -delta_1[:,0]

452

453 n_inv = float(1) / np.add(range(max_mat), 1).reshape((max_mat, 1))

454 a_solve = -a_pre.copy()

455 b_solve = -b_pre.copy()

456

457 for mat in range(max_mat-1):

458 a_pre[mat + 1] = (a_pre[mat] + np.dot(b_pre[mat].T, \

459 (mu - np.dot(sigma, lam_0))) + \

460 (half)*np.dot(np.dot(np.dot(b_pre[mat].T, sigma),

461 sigma.T), b_pre[mat]) - delta_0)[0][0]

462 a_solve[mat + 1] = -a_pre[mat + 1] * n_inv[mat + 1]

463 b_pre[mat + 1] = np.dot((phi - np.dot(sigma, lam_1)).T, \

464 b_pre[mat]) - delta_1[:, 0]

465 b_solve[mat + 1] = -b_pre[mat + 1] * n_inv[mat + 1]

466

467 return a_solve, b_solve

468

469 def opt_gen_pred_coef(self, lam_0, lam_1, delta_0, delta_1, mu, phi,

470 sigma):

471 """

472 Returns tuple of arrays

473 Generates prediction coefficient vectors A and B in fast C function

474

475 Parameters

476 ----------

477 lam_0 : numpy array

478 lam_1 : numpy array
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479 delta_0 : numpy array

480 delta_1 : numpy array

481 mu : numpy array

482 phi : numpy array

483 sigma : numpy array

484

485 Returns

486 -------

487 a_solve : numpy array

488 Array of constants relating factors to yields

489 b_solve : numpy array

490 Array of coeffiencts relating factors to yields

491 """

492 max_mat = self.max_mat

493

494 return _C_extensions.gen_pred_coef(lam_0, lam_1, delta_0, delta_1, mu,

495 phi, sigma, max_mat)

496

497 def params_to_array(self, params, return_mask=False):

498 """

499 Returns tuple of arrays

500 Process params input into appropriate arrays

501

502 Parameters

503 ----------

504 params : list

505 list of values to fill in masked values

506 return_mask : boolean

507

508

509 Returns

510 -------

511 lam_0 : numpy array

512 lam_1 : numpy array

513 delta_0 : numpy array

514 delta_1 : numpy array

515 mu : numpy array

516 phi : numpy array

517 sigma : numpy array

518 """
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519 lam_0_e = self.lam_0_e.copy()

520 lam_1_e = self.lam_1_e.copy()

521 delta_0_e = self.delta_0_e.copy()

522 delta_1_e = self.delta_1_e.copy()

523 mu_e = self.mu_e.copy()

524 phi_e = self.phi_e.copy()

525 sigma_e = self.sigma_e.copy()

526

527 all_arrays = [lam_0_e, lam_1_e, delta_0_e, delta_1_e, mu_e, phi_e,

528 sigma_e]

529

530 arg_sep = self._gen_arg_sep([ma.count_masked(struct) for struct in \

531 all_arrays])

532

533 for pos, struct in enumerate(all_arrays):

534 struct[ma.getmask(struct)] = params[arg_sep[pos]:arg_sep[pos + 1]]

535 if not return_mask:

536 all_arrays[pos] = np.ascontiguousarray(struct,

537 dtype=np.float64)

538

539 return tuple(all_arrays)

540

541 def params_to_array_zeromask(self, params):

542 """

543 Returns tuple of arrays + list

544 Process params input into appropriate arrays by setting them to zero if

545 param in params in zero and removing them from params, otherwise they

546 stay in params and value remains masked

547

548 Parameters

549 ----------

550 params : list

551 list of values to fill in masked values

552

553 Returns

554 -------

555 lam_0 : numpy array

556 lam_1 : numpy array

557 delta_0 : numpy array

558 delta_1 : numpy array
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559 mu : numpy array

560 phi : numpy array

561 sigma : numpy array

562 guesses : list

563 List of remaining params after filtering and filling those that

564 were zero

565 """

566 paramcopy = params[:]

567 lam_0_e = self.lam_0_e.copy()

568 lam_1_e = self.lam_1_e.copy()

569 delta_0_e = self.delta_0_e.copy()

570 delta_1_e = self.delta_1_e.copy()

571 mu_e = self.mu_e.copy()

572 phi_e = self.phi_e.copy()

573 sigma_e = self.sigma_e.copy()

574

575 all_arrays = [lam_0_e, lam_1_e, delta_0_e, delta_1_e, mu_e, phi_e,

576 sigma_e]

577

578 arg_sep = self._gen_arg_sep([ma.count_masked(struct) for struct in \

579 all_arrays])

580

581 guesses = []

582 # check if each element is masked or not

583 for struct in all_arrays:

584 it = np.nditer(struct.mask, flags=[’multi_index’])

585 while not it.finished:

586 if it[0]:

587 val = paramcopy.pop(0)

588 if val == 0:

589 struct[it.multi_index] = 0

590 else:

591 guesses.append(val)

592 it.iternext()

593

594 return tuple(all_arrays + [guesses])

595

596 def _updateloglike(self, params, xi10, ntrain, penalty, upperbounds,

597 lowerbounds, F, A, H, Q, R, history):

598 """
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599 Returns combined loglikelihood for kalman filter

600 Ignores F,A,H,Q,R,

601 """

602 paramsorig = params

603 if penalty:

604 params = np.min((np.max((lowerbounds, params), axis=0),upperbounds),

605 axis=0)

606

607 mats = self.mats

608 per = self.periods

609 lat = self.lat

610

611 yc_data = self.yc_data

612 X = self.var_data_vertc

613

614 obsdim = self.neqs * self.k_ar

615 dim = obsdim + lat

616

617 lam_0, lam_1, delta_0, delta_1, mu, phi, sigma = \

618 self.params_to_array(params=params)

619

620 solve_a, solve_b = self.opt_gen_pred_coef(lam_0, lam_1, delta_0,

621 delta_1, mu, phi, sigma)

622

623 F = phi[-lat:, -lat:]

624 Q = sigma[-lat:, -lat:]

625 R = np.zeros((1, 1))

626

627 # initialize kalman to zero

628 loglike = 0

629

630 # calculate likelihood for each maturity estimated

631 for mix, mat in enumerate(self.mats):

632 obsparams = np.concatenate((solve_a[mat-1],

633 solve_b[mat-1][:-lat]))

634 A = obsparams

635 H = solve_b[mat-1][-lat:]

636 y = yc_data.values[:, mix]

637 loglike += kalmanfilter(F, A, H, Q, R, y, X, xi10, ntrain, history)

638
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639 if penalty:

640 loglike += penalty * np.sum((paramsorig-params)**2)

641

642 return loglike

643

644 def _solve_unobs(self, a_in, b_in):

645 """

646 Solves for unknown factors

647

648 Parameters

649 ----------

650 a_in : list of floats (periods)

651 List of elements for A constant in factors -> yields relationship

652 b_in : array (periods, neqs * k_ar + lat)

653 Array of elements for B coefficients in factors -> yields

654 relationship

655

656 Returns

657 -------

658 var_data_c : DataFrame

659 VAR data including unobserved factors

660 jacob : array (neqs * k_ar + num_yields)**2

661 Jacobian used in likelihood

662 yield_errs : array (num_yields - lat, periods)

663 The errors for the yields estimated with error

664 """

665 yc_data = self.yc_data

666 var_data_vert = self.var_data_vert

667 yc_names = self.yc_names

668 num_yields = self.num_yields

669 names = self.names

670 k_ar = self.k_ar

671 neqs = self.neqs

672 lat = self.lat

673 no_err = self.no_err

674 err = self.err

675 no_err_mat = self.no_err_mat

676 err_mat = self.err_mat

677 noerr_cols = self.noerr_cols

678 err_cols = self.err_cols



164

679

680 yc_data_names = yc_names.tolist()

681 no_err_num = len(noerr_cols)

682 err_num = len(err_cols)

683

684 # need to combine the two matrices

685 # these matrices will collect the final values

686 a_all = np.zeros([num_yields, 1])

687 b_all_obs = np.zeros([num_yields, neqs * k_ar])

688 b_all_unobs = np.zeros([num_yields, lat])

689

690 a_sel = np.zeros([no_err_num, 1])

691 b_sel_obs = np.zeros([no_err_num, neqs * k_ar])

692 b_sel_unobs = np.zeros([no_err_num, lat])

693 for ix, y_pos in enumerate(no_err):

694 a_sel[ix, 0] = a_in[no_err_mat[ix] - 1]

695 b_sel_obs[ix, :] = b_in[no_err_mat[ix] - 1, :neqs * k_ar]

696 b_sel_unobs[ix, :] = b_in[no_err_mat[ix] - 1, neqs * k_ar:]

697

698 a_all[y_pos, 0] = a_in[no_err_mat[ix] - 1]

699 b_all_obs[y_pos, :] = b_in[no_err_mat[ix] - 1][:neqs * k_ar]

700 b_all_unobs[y_pos, :] = b_in[no_err_mat[ix] - 1][neqs * k_ar:]

701

702 # now solve for unknown factors using long arrays

703 unobs = np.dot(la.inv(b_sel_unobs),

704 yc_data.filter(items=noerr_cols).values.T - a_sel - \

705 np.dot(b_sel_obs, var_data_vert.T))

706

707 # re-initialize a_sel, b_sel_obs, and b_sel_obs

708 a_sel = np.zeros([err_num, 1])

709 b_sel_obs = np.zeros([err_num, neqs * k_ar])

710 b_sel_unobs = np.zeros([err_num, lat])

711 for ix, y_pos in enumerate(err):

712 a_all[y_pos, 0] = a_sel[ix, 0] = a_in[err_mat[ix] - 1]

713 b_all_obs[y_pos, :] = b_sel_obs[ix, :] = \

714 b_in[err_mat[ix] - 1][:neqs * k_ar]

715 b_all_unobs[y_pos, :] = b_sel_unobs[ix, :] = \

716 b_in[err_mat[ix] - 1][neqs * k_ar:]

717

718 yield_errs = yc_data.filter(items=err_cols).values.T - a_sel - \
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719 np.dot(b_sel_obs, var_data_vert.T) - \

720 np.dot(b_sel_unobs, unobs)

721

722 lat_ser = pa.DataFrame(index=var_data_vert.index)

723 for factor in range(lat):

724 lat_ser["latent_" + str(factor)] = unobs[factor, :]

725 meas_mat = np.zeros((num_yields, err_num))

726

727 for col_index, col in enumerate(err_cols):

728 row_index = yc_data_names.index(col)

729 meas_mat[row_index, col_index] = 1

730

731 jacob = self._construct_J(b_obs=b_all_obs, b_unobs=b_all_unobs,

732 meas_mat=meas_mat)

733

734

735 return lat_ser, jacob, yield_errs

736

737 def _affine_pred(self, data, *params):

738 """

739 Function based on lambda and data that generates predicted yields

740 data : DataFrame

741 params : tuple of floats

742 parameter guess

743 """

744 mats = self.mats

745 yc_data = self.yc_data

746

747 lam_0, lam_1, delta_0, delta_1, mu, phi, sigma \

748 = self.params_to_array(params)

749

750 if self.fast_gen_pred:

751 solve_a, solve_b = self.opt_gen_pred_coef(lam_0, lam_1, delta_0,

752 delta_1, mu, phi, sigma)

753

754 else:

755 solve_a, solve_b = self.gen_pred_coef(lam_0, lam_1, delta_0,

756 delta_1, mu, phi, sigma)

757

758 pred = []
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759 for i in mats:

760 pred.extend((solve_a[i-1] + np.dot(solve_b[i-1], data)).tolist())

761 return pred

762

763 def _gen_arg_sep(self, arg_lengths):

764 """

765 Generates list of positions

766 """

767 arg_sep = [0]

768 pos = 0

769 for length in arg_lengths:

770 arg_sep.append(length + pos)

771 pos += length

772 return arg_sep

773

774 def _gen_col_names(self):

775 """

776 Generate column names for err and noerr

777 """

778 yc_names = self.yc_names

779 no_err = self.no_err

780 err = self.err

781 noerr_cols = []

782 err_cols = []

783 for index in no_err:

784 noerr_cols.append(yc_names[index])

785 for index in err:

786 err_cols.append(yc_names[index])

787 return noerr_cols, err_cols

788

789 def _gen_mat_list(self):

790 """

791 Generate list of mats measured with and wihout error

792 """

793 yc_names = self.yc_names

794 no_err = self.no_err

795 mats = self.mats

796 err = self.err

797

798 no_err_mat = []
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799 err_mat = []

800

801 for index in no_err:

802 no_err_mat.append(mats[index])

803 for index in err:

804 err_mat.append(mats[index])

805

806 return no_err_mat, err_mat

807

808 def _construct_J(self, b_obs, b_unobs, meas_mat):

809 """

810 Consruct jacobian matrix

811 meas_mat : array

812 """

813 k_ar = self.k_ar

814 neqs = self.neqs

815 lat = self.lat

816 num_yields = self.num_yields

817 num_obsrv = neqs * k_ar

818

819 msize = neqs * k_ar + num_yields

820 jacob = np.zeros([msize, msize])

821 jacob[:num_obsrv, :num_obsrv] = np.identity(neqs*k_ar)

822

823 jacob[num_obsrv:, :num_obsrv] = b_obs

824 jacob[num_obsrv:, num_obsrv:num_obsrv + lat] = b_unobs

825 jacob[num_obsrv:, num_obsrv + lat:] = meas_mat

826

827 return jacob

828

829 def _gen_guess_length(self):

830 lam_0_e = self.lam_0_e

831 lam_1_e = self.lam_1_e

832 delta_0_e = self.delta_0_e

833 delta_1_e = self.delta_1_e

834 mu_e = self.mu_e

835 phi_e = self.phi_e

836 sigma_e = self.sigma_e

837

838 all_arrays = [lam_0_e, lam_1_e, delta_0_e, delta_1_e, mu_e, phi_e,
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839 sigma_e]

840

841 count = 0

842 for struct in all_arrays:

843 count += ma.count_masked(struct)

844

845 return count

846

847 def _size_checks(self):

848 """

849 Run size checks on parameter arrays

850 """

851 dim = self.neqs * self.k_ar + self.lat

852 assert np.shape(self.lam_0_e) == (dim, 1), "Shape of lam_0_e incorrect"

853 assert np.shape(self.lam_1_e) == (dim, dim), \

854 "Shape of lam_1_e incorrect"

855

856 assert np.shape(self.delta_1_e) == (dim, 1), "Shape of delta_1_e" \

857 "incorrect"

858 assert np.shape(self.mu_e) == (dim, 1), "Shape of mu incorrect"

859 assert np.shape(self.phi_e) == (dim, dim), \

860 "Shape of phi_e incorrect"

861 assert np.shape(self.sigma_e) == (dim, dim), \

862 "Shape of sig_e incorrect"

863

864 def _gen_bounds(self, lowerbounds, upperbounds):

865 if lowerbounds or upperbounds:

866 bounds = []

867 for bix in range(max(len(lowerbounds), len(upperbounds))):

868 tbound = []

869 if lowerbounds:

870 tbound.append(lowerbounds[bix])

871 else:

872 tbound.append(-np.inf)

873 if upperbounds:

874 tbound.append(upperbounds[bix])

875 else:

876 tbound.append(np.inf)

877 bounds.append(tuple(tbound))

878 else:
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879 return None
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Listing D.3: Unit tests

1 """

2 Affine unit tests

3

4 For the following in the docs:

5 L = number of lags in VAR process governing pricing kernel

6 O = number of observed factors in VAR process governing pricing kernel

7 U = number of unobserved, latent factors in VAR process governing

8 pricing kernel

9 """

10 from unittest import TestCase

11

12 import unittest

13 import numpy as np

14 import numpy.ma as ma

15 import pandas as pa

16

17 from affine.constructors.helper import make_nomask

18 from affine.model.affine import Affine

19

20 # parameters for running tests

21 test_size = 100

22 lags = 4

23 neqs = 5

24 nyields = 5

25 latent = 1

26

27 class TestInitialize(TestCase):

28 """

29 Tests for methods related to instantiation of a new Affine object

30 """

31 def setUp(self):

32

33 np.random.seed(100)

34

35 # initialize yield curve and VAR observed factors

36 yc_data_test = pa.DataFrame(np.random.random((test_size - lags,

37 nyields)))

38 var_data_test = pa.DataFrame(np.random.random((test_size, neqs)))
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39 mats = list(range(1, nyields + 1))

40

41 # initialize masked arrays

42 self.dim = dim = lags * neqs

43 lam_0 = make_nomask([dim, 1])

44 lam_1 = make_nomask([dim, dim])

45 delta_0 = make_nomask([1, 1])

46 delta_1 = make_nomask([dim, 1])

47 mu = make_nomask([dim, 1])

48 phi = make_nomask([dim, dim])

49 sigma = make_nomask([dim, dim])

50

51 # Setup some of the elements as non-zero

52 # This sets up a fake model where only lambda_0 and lambda_1 are

53 # estimated

54 lam_0[:neqs] = ma.masked

55 lam_1[:neqs, :neqs] = ma.masked

56 delta_0[:, :] = np.random.random(1)

57 delta_1[:neqs] = np.random.random((neqs, 1))

58 mu[:neqs] = np.random.random((neqs, 1))

59 phi[:neqs, :] = np.random.random((neqs, dim))

60 sigma[:, :] = np.identity(dim)

61

62 self.mod_kwargs = {

63 ’yc_data’: yc_data_test,

64 ’var_data’: var_data_test,

65 ’lags’: lags,

66 ’neqs’: neqs,

67 ’mats’: mats,

68 ’lam_0_e’: lam_0,

69 ’lam_1_e’: lam_1,

70 ’delta_0_e’: delta_0,

71 ’delta_1_e’: delta_1,

72 ’mu_e’: mu,

73 ’phi_e’: phi,

74 ’sigma_e’: sigma

75 }

76

77 def test_create_correct(self):

78 """
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79 Tests whether __init__ successfully initializes an Affine model object.

80 If the Affine object does not successfully instantiate, then this test

81 fails, otherwise it passes.

82 """

83 model = Affine(**self.mod_kwargs)

84 self.assertIsInstance(model, Affine)

85

86 def test_wrong_lam0_size(self):

87 """

88 Tests whether size check asserts for lam_0_e is implemented

89 correctly. If the lam_0_e parameter is not of the correct size,

90 which is (L * O + U) by 1, then an assertion error should be raised,

91 resulting in a passed test. If lam_0_e is of the incorrect size and

92 no assertion error is raised, this test fails.

93 """

94 mod_kwargs = self.mod_kwargs

95 # lam_0_e of incorrect size

96 mod_kwargs[’lam_0_e’] = make_nomask([self.dim - 1, 1])

97 self.assertRaises(AssertionError, Affine, **mod_kwargs)

98

99 def test_wrong_lam1_size(self):

100 """

101 Tests whether size check asserts for lam_1_e is implemented correctly.

102 If the lam_1_e parameter is not of the correct size, which is (L

103 * O + U) by (L * O + U), then an assertion error should be raised,

104 resulting in a passed test. If lam_1_e is of the incorrect size and no

105 assertion error is raised, this test fails.

106 """

107 mod_kwargs = self.mod_kwargs

108 # lam_1_e of incorrect size

109 mod_kwargs[’lam_1_e’] = make_nomask([self.dim - 1, self.dim + 1])

110 self.assertRaises(AssertionError, Affine, **mod_kwargs)

111

112 def test_wrong_delta_1_size(self):

113 """

114 Tests whether size check asserts for delta_1_e is implemented

115 correctly. If the delta_1_e parameter is not of the correct size, which

116 is (L * O + U) by 1, then an assertion error should be raised,

117 resulting in a passed test. If delta_1_e is of the incorrect size and

118 no assertion error is raised, this test fails.
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119 """

120 mod_kwargs = self.mod_kwargs

121 # delta_1_e of incorrect size

122 mod_kwargs[’delta_1_e’] = make_nomask([self.dim + 1, 1])

123 self.assertRaises(AssertionError, Affine, **mod_kwargs)

124

125 def test_wrong_mu_e_size(self):

126 """

127 Tests whether size check asserts for mu_e is implemented correctly. If

128 the mu_e parameter is not of the correct size, which is (L * O + U) by

129 1, then an assertion error should be raised, resulting in a passed

130 test. If mu_e is of the incorrect size and no assertion error is

131 raised, this test fails.

132 """

133 mod_kwargs = self.mod_kwargs

134 # mu_e of incorrect size

135 mod_kwargs[’mu_e’] = make_nomask([self.dim + 2, 1])

136 self.assertRaises(AssertionError, Affine, **mod_kwargs)

137

138 def test_wrong_phi_e_size(self):

139 """

140 Tests whether size check asserts for phi_e is implemented correctly.

141 If the phi_e parameter is not of the correct size, which is (L * O + U)

142 by (L * O + U), then an assertion error should be raised, resulting in

143 a passed test. If phi_e is of the incorrect size and no assertion error

144 is raised, this test fails.

145 """

146 mod_kwargs = self.mod_kwargs

147 # phi_e of incorrect size

148 mod_kwargs[’phi_e’] = make_nomask([self.dim + 2, self.dim - 1])

149 self.assertRaises(AssertionError, Affine, **mod_kwargs)

150

151 def test_wrong_sigma_e_size(self):

152 """

153 Tests whether size check asserts for sigma_e is implemented correctly.

154 If the sigma_e parameter is not of the correct size, which is (L

155 * O + U) by (L * O + U), then an assertion error should be raised,

156 resulting in a passed test. If sigma_e is of the incorrect size and no

157 assertion error is raised, this test fails.

158 """
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159 mod_kwargs = self.mod_kwargs

160 # sigma_e of incorrect size

161 mod_kwargs[’sigma_e’] = make_nomask([self.dim - 2, self.dim])

162 self.assertRaises(AssertionError, Affine, **mod_kwargs)

163

164 def test_var_data_nulls(self):

165 """

166 Tests if nulls appear in var_data whether an AssertionError is raised.

167 If any nulls appear in var_data and an AssertionError is raised, the

168 test passes. Otherwise if nulls are passed in and an AssertionError is

169 not raised, the test fails.

170 """

171 mod_kwargs = self.mod_kwargs

172 # replace a value in var_data with null

173 mod_kwargs[’var_data’][1, 1] = np.nan

174 self.assertRaises(AssertionError, Affine, **mod_kwargs)

175

176 def test_yc_data_nulls(self):

177 """

178 Tests if nulls appear in yc_data whether AssertionError is raised. If

179 any nulls appear in yc_data and an AssertionError is raised, the test

180 passes. Otherwise if nulls are passed in and an AssertionError is not

181 raised, the test fails.

182 """

183 mod_kwargs = self.mod_kwargs

184 # replace a value in var_data with null

185 mod_kwargs[’yc_data’][1, 1] = np.nan

186 self.assertRaises(AssertionError, Affine, **mod_kwargs)

187

188 def test_no_estimated_values(self):

189 """

190 Tests if AssertionError is raised if there are no masked values in

191 the estimation arrays, implying no parameters to be estimated. If

192 the object passed in has no estimated values and an AssertionError

193 is raised, the test passes. Otherwise if no estimated values are

194 passed in and an AssertionError is not raised, the test fails.

195 """

196 mod_kwargs = self.mod_kwargs

197 # replace a value in var_data with null

198 mod_kwargs[’lam_0_e’] = make_nomask([self.dim, 1])
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199 mod_kwargs[’lam_1_e’] = make_nomask([self.dim, self.dim])

200 self.assertRaises(AssertionError, Affine, **mod_kwargs)

201

202 class TestEstimationSupportMethods(TestCase):

203 """

204 Tests for support methods related to estimating models

205 """

206 def setUp(self):

207

208 np.random.seed(100)

209

210 # initialize yield curve and VAR observed factors

211 yc_data_test = pa.DataFrame(np.random.random((test_size - lags,

212 nyields)))

213 var_data_test = pa.DataFrame(np.random.random((test_size, neqs)))

214 mats = list(range(1, nyields + 1))

215

216 # initialize masked arrays

217 self.dim = dim = lags * neqs + latent

218 lam_0 = make_nomask([dim, 1])

219 lam_1 = make_nomask([dim, dim])

220 delta_0 = make_nomask([1, 1])

221 delta_1 = make_nomask([dim, 1])

222 mu = make_nomask([dim, 1])

223 phi = make_nomask([dim, dim])

224 sigma = make_nomask([dim, dim])

225

226 # Setup some of the elements as non-zero

227 # This sets up a fake model where only lambda_0 and lambda_1 are

228 # estimated

229 lam_0[:neqs] = ma.masked

230 lam_0[-latent:] = ma.masked

231 lam_1[:neqs, :neqs] = ma.masked

232 lam_1[-latent:, -latent:] = ma.masked

233 delta_0[:, :] = np.random.random(1)

234 delta_1[:neqs] = np.random.random((neqs, 1))

235 mu[:neqs] = np.random.random((neqs, 1))

236 phi[:neqs, :] = np.random.random((neqs, dim))

237 sigma[:, :] = np.identity(dim)

238
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239 self.mod_kwargs = {

240 ’yc_data’: yc_data_test,

241 ’var_data’: var_data_test,

242 ’lags’: lags,

243 ’neqs’: neqs,

244 ’mats’: mats,

245 ’lam_0_e’: lam_0,

246 ’lam_1_e’: lam_1,

247 ’delta_0_e’: delta_0,

248 ’delta_1_e’: delta_1,

249 ’mu_e’: mu,

250 ’phi_e’: phi,

251 ’sigma_e’: sigma,

252 ’latent’: latent,

253 ’no_err’: [1]

254 }

255

256 self.guess_params = np.random.random((neqs**2 + neqs + (2 * latent),)

257 ).tolist()

258 self.affine_obj = Affine(**self.mod_kwargs)

259

260 def test_loglike(self):

261 """

262 Tests if loglikelihood is calculated. If the loglikelihood is

263 calculated given a set of parameters, then this test passes.

264 Otherwise, it fails.

265 """

266 self.affine_obj.loglike(self.guess_params)

267

268 def test_score(self):

269 """

270 Tests if score of the likelihood is calculated. If the score

271 calculation succeeds without error, then the test passes. Otherwise,

272 the test fails.

273 """

274 self.affine_obj.score(self.guess_params)

275

276 def test_hessian(self):

277 """

278 Tests if hessian of the likelihood is calculated. If the hessian
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279 calculation succeeds without error, then the test passes. Otherwise,

280 the test fails.

281 """

282 self.affine_obj.hessian(self.guess_params)

283

284 def test_std_errs(self):

285 """

286 Tests if standard errors are calculated. If the standard error

287 calculation succeeds, then the test passes. Otherwise, the test

288 fails.

289 """

290 self.affine_obj.std_errs(self.guess_params)

291

292 def test_params_to_array(self):

293 """

294 Tests if the params_to_array function works correctly, with and without

295 returning masked arrays. In order to pass, the params_to_array function

296 must return masked arrays with the masked elements filled in when the

297 return_mask argument is set to True and contiguous standard numpy

298 arrays when the return_mask argument is False. Otherwise, the test

299 fails.

300 """

301 arrays_no_mask = self.affine_obj.params_to_array(self.guess_params)

302 for arr in arrays_no_mask:

303 self.assertIsInstance(arr, np.ndarray)

304 self.assertNotIsInstance(arr, np.ma.core.MaskedArray)

305 arrays_w_mask = self.affine_obj.params_to_array(self.guess_params,

306 return_mask=True)

307 for arr in arrays_w_mask:

308 self.assertIsInstance(arr, np.ma.core.MaskedArray)

309

310 def test_params_to_array_zeromask(self):

311 """

312 Tests if params_to_array_zeromask function works correctly. In order to

313 pass, params_to_array_zeromask must return masked arrays with the

314 guess_params elements that are zero unmasked and set to zero in the

315 appropriate arrays. The new guess_params array is also returned with

316 those that were 0 removed. If both of these are not returned correctly,

317 the test fails.

318 """
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319 guess_params_arr = np.array(self.guess_params)

320 neqs = self.affine_obj.neqs

321 guess_params_arr[:neqs] = 0

322 guess_params = guess_params_arr.tolist()

323 guess_length = self.affine_obj._gen_guess_length()

324 params_guesses = self.affine_obj.params_to_array_zeromask(guess_params)

325 updated_guesses = params_guesses[-1]

326 self.assertEqual(len(updated_guesses), len(guess_params) - neqs)

327

328 # ensure that number of masked has correctly been set

329 count_masked_new = ma.count_masked(params_guesses[0])

330 count_masked_orig = ma.count_masked(self.affine_obj.lam_0_e)

331 self.assertEqual(count_masked_new, count_masked_orig - neqs)

332

333 def test_gen_pred_coef(self):

334 """

335 Tests if Python-driven gen_pred_coef function runs. If a set of

336 parameter arrays are passed into the gen_pred_coef function and the

337 A and B arrays are returned, then the test passes. Otherwise, the test

338 fails.

339 """

340 params = self.affine_obj.params_to_array(self.guess_params)

341 self.affine_obj.gen_pred_coef(*params)

342

343 def test_opt_gen_pred_coef(self):

344 """

345 Tests if C-driven gen_pred_coef function runs. If a set of parameter

346 arrays are passed into the opt_gen_pred_coef function and the A and

347 B arrays are return, then the test passes. Otherwise, the test fails.

348 """

349 params = self.affine_obj.params_to_array(self.guess_params)

350 self.affine_obj.opt_gen_pred_coef(*params)

351

352 def test_py_C_gen_pred_coef_equal(self):

353 """

354 Tests if the Python-driven and C-driven gen_pred_coef functions produce

355 the same result, up to a precision of 1e-14. If the gen_pred_coef and

356 opt_gen_pred_coef functions produce the same result, then the test

357 passes. Otherwise, the test fails.

358 """
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359 params = self.affine_obj.params_to_array(self.guess_params)

360 py_gpc = self.affine_obj.gen_pred_coef(*params)

361 c_gpc = self.affine_obj.opt_gen_pred_coef(*params)

362 for aix, array in enumerate(py_gpc):

363 np.testing.assert_allclose(array, c_gpc[aix], rtol=1e-14)

364

365 def test__solve_unobs(self):

366 """

367 Tests if the _solve_unobs function runs. If the _solve_unobs function

368 runs and the latent series, likelihood jacobian, and yield errors are

369 returned, then the test passes. Otherwise the test fails.

370 """

371 guess_params = self.guess_params

372 param_arrays = self.affine_obj.params_to_array(guess_params)

373 a_in, b_in = self.affine_obj.gen_pred_coef(*param_arrays)

374 result = self.affine_obj._solve_unobs(a_in=a_in, b_in=b_in)

375

376 def test__affine_pred(self):

377 """

378 Tests if the _affine_pred function runs. If the affine_pred function

379 produces a list of the yields stacked in order of increasing maturity

380 and is of the expected shape, the test passes. Otherwise, the test

381 fails.

382 """

383 lat = self.affine_obj.lat

384 yobs = self.affine_obj.yobs

385 mats = self.affine_obj.mats

386 var_data_vert_tpose = self.affine_obj.var_data_vert.T

387

388 guess_params = self.guess_params

389 latent_rows = np.random.random((lat, yobs))

390 data = np.append(var_data_vert_tpose, latent_rows, axis=0)

391 pred = self.affine_obj._affine_pred(data, *guess_params)

392 self.assertEqual(len(pred), len(mats) * yobs)

393

394 def test__gen_mat_list(self):

395 """

396 Tests if _gen_mat_list generates a length 2 tuple with a list of the

397 maturities estimated without error followed by those estimated with

398 error. If _gen_mat_list produces a tuple of lists of those yields
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399 estimates without error and then those with error, this test passes.

400 Otherwise, the test fails.

401 """

402 no_err_mat, err_mat = self.affine_obj._gen_mat_list()

403 self.assertEqual(no_err_mat, [2])

404 self.assertEqual(err_mat, [1,3,4,5])

405

406 class TestEstimationMethods(TestCase):

407 """

408 Tests for solution methods

409 """

410 def setUp(self):

411

412 ## Non-linear least squares

413 np.random.seed(100)

414

415 # initialize yield curve and VAR observed factors

416 yc_data_test = pa.DataFrame(np.random.random((test_size - lags,

417 nyields)))

418 var_data_test = pa.DataFrame(np.random.random((test_size, neqs)))

419 mats = list(range(1, nyields + 1))

420

421 # initialize masked arrays

422 self.dim_nolat = dim = lags * neqs

423 lam_0 = make_nomask([dim, 1])

424 lam_1 = make_nomask([dim, dim])

425 delta_0 = make_nomask([1, 1])

426 delta_1 = make_nomask([dim, 1])

427 mu = make_nomask([dim, 1])

428 phi = make_nomask([dim, dim])

429 sigma = make_nomask([dim, dim])

430

431 # Setup some of the elements as non-zero

432 # This sets up a fake model where only lambda_0 and lambda_1 are

433 # estimated

434 lam_0[:neqs] = ma.masked

435 lam_1[:neqs, :neqs] = ma.masked

436 delta_0[:, :] = np.random.random(1)

437 delta_1[:neqs] = np.random.random((neqs, 1))

438 mu[:neqs] = np.random.random((neqs, 1))
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439 phi[:neqs, :] = np.random.random((neqs, dim))

440 sigma[:, :] = np.identity(dim)

441

442 self.mod_kwargs_nolat = {

443 ’yc_data’: yc_data_test,

444 ’var_data’: var_data_test,

445 ’lags’: lags,

446 ’neqs’: neqs,

447 ’mats’: mats,

448 ’lam_0_e’: lam_0,

449 ’lam_1_e’: lam_1,

450 ’delta_0_e’: delta_0,

451 ’delta_1_e’: delta_1,

452 ’mu_e’: mu,

453 ’phi_e’: phi,

454 ’sigma_e’: sigma

455 }

456

457 self.guess_params_nolat = np.random.random((neqs**2 + neqs)).tolist()

458 self.affine_obj_nolat = Affine(**self.mod_kwargs_nolat)

459

460 ## Maximum likelihood build

461

462 # initialize masked arrays

463 self.dim_lat = dim = lags * neqs + latent

464 lam_0 = make_nomask([dim, 1])

465 lam_1 = make_nomask([dim, dim])

466 delta_0 = make_nomask([1, 1])

467 delta_1 = make_nomask([dim, 1])

468 mu = make_nomask([dim, 1])

469 phi = make_nomask([dim, dim])

470 sigma = make_nomask([dim, dim])

471

472 # Setup some of the elements as non-zero

473 # This sets up a fake model where only lambda_0 and lambda_1 are

474 # estimated

475 lam_0[:neqs] = ma.masked

476 lam_0[-latent:] = ma.masked

477 lam_1[:neqs, :neqs] = ma.masked

478 lam_1[-latent:, -latent:] = ma.masked
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479 delta_0[:, :] = np.random.random(1)

480 delta_1[:neqs] = np.random.random((neqs, 1))

481 mu[:neqs] = np.random.random((neqs, 1))

482 phi[:neqs, :] = np.random.random((neqs, dim))

483 sigma[:, :] = np.identity(dim)

484

485 self.mod_kwargs = {

486 ’yc_data’: yc_data_test,

487 ’var_data’: var_data_test,

488 ’lags’: lags,

489 ’neqs’: neqs,

490 ’mats’: mats,

491 ’lam_0_e’: lam_0,

492 ’lam_1_e’: lam_1,

493 ’delta_0_e’: delta_0,

494 ’delta_1_e’: delta_1,

495 ’mu_e’: mu,

496 ’phi_e’: phi,

497 ’sigma_e’: sigma,

498 ’latent’: latent,

499 ’no_err’: [1]

500 }

501

502 self.guess_params_lat = np.random.random((neqs**2 + neqs +

503 (2 * latent),)).tolist()

504 self.affine_obj_lat = Affine(**self.mod_kwargs)

505

506

507 def test_solve_nls(self):

508 """

509 Tests whether or not basic estimation is performed for non-linear least

510 squares case without any latent factors. If the numerical approximation

511 method converges, this test passes. Otherwise, the test fails.

512 """

513 guess_params = self.guess_params_nolat

514 method = ’nls’

515 solved = self.affine_obj_nolat.solve(guess_params, method=method,

516 alg=’newton’)

517

518 def test_solve_ml(self):
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519 """

520 Tests whether or not model estimation converges is performed for direct

521 maximum likelihood with a single latent factor. If the numerical

522 approximation method converges, this test passes. Otherwise, the test

523 fails.

524 """

525 guess_params = self.guess_params_lat

526 method = ’ml’

527 self.affine_obj_lat.solve(guess_params, method=method, alg=’bfgs’,

528 xtol=0.1, ftol=0.1)

529

530 ##Need test related to Kalman filter method

531

532 if __name__ == ’__main__’:

533 unittest.main()
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APPENDIX E

SAMPLE SCRIPTS FOR EXECUTING

MODELS AND VIEWING RESULTS

Listing E.1: Example script executing Bernanke et al. (2005) approach

1 """

2 This script estimates a model with final data

3 """

4 import numpy as np

5 import numpy.ma as ma

6 import scipy.linalg as la

7 import pandas as pa

8 import datetime as dt

9 import matplotlib.pyplot as plt

10

11 from statsmodels.api import OLS

12 from statsmodels.tsa.api import VAR

13 from pandas.tseries.offsets import *

14 from affine.model.affine import Affine

15

16 import ipdb

17

18 ####################################################

19 # Create function for unmask all elements np array #

20 ####################################################

21 def unmask_zarray(dims):

22 array = ma.zeros(dims)

23 array[:, :] = ma.masked

24 array[:, :] = ma.nomask
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25 return array

26

27 latent = [False,

28 1,

29 2,

30 3]

31

32 ##############################

33 # Prepare macro data for VAR #

34 ##############################

35 macro_data = pa.read_csv("./data/macro_data_final/macro_data_quarterly.csv",

36 index_col = 0, parse_dates=True, sep=";")

37

38 macro_data.rename(columns={’GDP’: ’output’, ’Prices’: ’price_output’,

39 ’Resinv’: ’resinv’}, inplace=True)

40

41 macro_data = macro_data[[’output’, ’price_output’, ’resinv’, ’unemp’]]

42 #macro_data = macro_data[[’output’, ’price_output’]] * 4

43 macro_vars = macro_data.columns.tolist()

44

45 neqs = len(macro_vars)

46 lags = 4

47 lat = 0

48 dim = neqs * lags + lat

49

50 #########################

51 # Grab yield curve data #

52 #########################

53 quarters = [4, 8, 12, 16, 20]

54 #set 36 mth as estimated with no error

55 no_err = [3]

56

57 ycdata = pa.read_csv("./data/fama-bliss/fama-bliss_formatted.csv",

58 index_col=0, parse_dates=True)

59

60 yc_cols = [’TMYTM_1’, ’TMYTM_2’, ’TMYTM_3’, ’TMYTM_4’, ’TMYTM_5’]

61 mod_yc_data = ycdata[yc_cols]

62 mod_yc_data[’year’] = mod_yc_data.index.year

63 mod_yc_data[’month’] = mod_yc_data.index.month

64 mod_yc_data[’day’] = 1
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65 mod_yc_data = mod_yc_data[mod_yc_data[’month’].isin([1, 4, 7, 10])]

66 mod_yc_data[’index’] = mod_yc_data.apply(

67 lambda row: dt.datetime(int(row[’year’]),

68 int(row[’month’]),

69 int(row[’day’])), axis=1)

70 mod_yc_data = mod_yc_data.set_index(’index’)[yc_cols]

71

72 var_dates = pa.date_range("1/1/1982", "10/1/2012",

73 freq="QS").to_pydatetime()

74 yc_dates = var_dates[lags:]

75

76 use_macro_data = macro_data.ix[var_dates]

77 #demean and standadize the data

78 use_macro_data = (use_macro_data - use_macro_data[lags:].mean()) / \

79 use_macro_data[lags:].std()

80 use_yc_data = mod_yc_data.ix[yc_dates]

81

82 mu_e = unmask_zarray((dim, 1))

83 phi_e = unmask_zarray((dim, dim))

84 sigma_u = unmask_zarray((dim, dim))

85

86 ##########################################

87 # Create mu_e, phi_e and sigma masked arrays #

88 ##########################################

89 var_fit = VAR(use_macro_data, freq="Q").fit(maxlags=lags)

90 coefs = var_fit.params.values

91 mu_e[:neqs] = coefs[0, None].T

92 if lat:

93 phi_e[:neqs,:-lat] = coefs[1:].T

94 else:

95 phi_e[:neqs] = coefs[1:].T

96

97 phi_e[neqs:dim - lat, :(lags - 1) * neqs] = np.identity((lags - 1) * neqs)

98 sigma_u[:neqs, :neqs] = np.linalg.cholesky(var_fit.sigma_u)

99 if lat:

100 sigma_u[neqs:-lat, neqs:-lat] = np.identity((lags - 1) * neqs)

101 sigma_u[-lat:,-lat:] = np.identity(lat)

102 else:

103 sigma_u[neqs:, neqs:] = np.identity((lags - 1) * neqs)

104
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105 ###############################

106 # Create lambda masked arrays #

107 ###############################

108 lambda_0_e = unmask_zarray((dim, 1))

109 lambda_1_e = unmask_zarray((dim, dim))

110

111 ##############################

112 # Create delta masked arrays #

113 ##############################

114 final_data = pa.read_csv("./data/macro_data_final/macro_data.csv", sep=";",

115 index_col=0, parse_dates=True, na_values="M")

116 rf_rate = final_data["fed_funds"].ix[yc_dates]

117

118 delta_ind = use_macro_data.ix[yc_dates]

119 delta_ind["constant"] = 1

120 delta_model = OLS(rf_rate, delta_ind).fit()

121 delta_0 = unmask_zarray((1, 1))

122 delta_1_e = unmask_zarray((dim, 1))

123 delta_0[0, 0] = delta_model.params[-1]

124 delta_1_e[:neqs, 0] = delta_model.params[:-1]

125

126 df_tp = [’one_yr_tp_final’,

127 ’two_yr_tp_final’,

128 ’three_yr_tp_final’,

129 ’four_yr_tp_final’,

130 ’five_yr_tp_final’]

131 df_errs = [’one_yr_errs_final’,

132 ’two_yr_errs_final’,

133 ’three_yr_errs_final’,

134 ’four_yr_errs_final’,

135 ’five_yr_errs_final’]

136

137 one_yr_tp_final = pa.DataFrame(index=yc_dates)

138 two_yr_tp_final = pa.DataFrame(index=yc_dates)

139 three_yr_tp_final = pa.DataFrame(index=yc_dates)

140 four_yr_tp_final = pa.DataFrame(index=yc_dates)

141 five_yr_tp_final = pa.DataFrame(index=yc_dates)

142

143 one_yr_errs_final = pa.DataFrame(index=yc_dates)

144 two_yr_errs_final = pa.DataFrame(index=yc_dates)
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145 three_yr_errs_final = pa.DataFrame(index=yc_dates)

146 four_yr_errs_final = pa.DataFrame(index=yc_dates)

147 five_yr_errs_final = pa.DataFrame(index=yc_dates)

148

149 xtol = 0.00001

150 ftol = 0.00001

151

152 # Setup model

153 np.random.seed(101)

154

155 print "xtol " + str(xtol)

156 print "ftol " + str(ftol)

157 print "Begin " + str(yc_dates[0])

158 print "End " + str(yc_dates[-1])

159 print "latent = " + str(lat)

160

161 rerun = False

162

163 ###################

164 # Final iteration #

165 ###################

166

167 lambda_0_e[:neqs, 0] = ma.masked

168 lambda_1_e[:neqs, :neqs] = ma.masked

169 model = Affine(yc_data=use_yc_data, var_data=use_macro_data,

170 lam_0_e=lambda_0_e, lam_1_e=lambda_1_e, delta_0_e=delta_0,

171 delta_1_e=delta_1_e, mu_e=mu_e, phi_e=phi_e,

172 sigma_e=sigma_u, mats=quarters)

173

174

175 if rerun:

176 guess_length = model.guess_length

177 guess_params = [0.0000001] * guess_length

178 out_bsr = model.solve(guess_params=guess_params, method=’nls’, ftol=ftol,

179 xtol=xtol, maxfev=10000000, maxiter=1000000,

180 full_output=False, alg=’nm’)

181 lam_0, lam_1, delta_0, delta_1, mu, phi, sigma, a_s, b_s, \

182 solve_params = out_bsr

183 #maybe make function later to do this

184 pa.DataFrame(lam_0).to_csv("./results/final/lam_0.csv", index=False)



189

185 pa.DataFrame(lam_1).to_csv("./results/final/lam_1.csv", index=False)

186 pa.DataFrame(delta_0).to_csv("./results/final/delta_0.csv", index=False)

187 pa.DataFrame(delta_1).to_csv("./results/final/delta_1.csv", index=False)

188 pa.DataFrame(mu).to_csv("./results/final/mu.csv", index=False)

189 pa.DataFrame(phi).to_csv("./results/final/phi.csv", index=False)

190 pa.DataFrame(sigma).to_csv("./results/final/sigma.csv", index=False)

191 else:

192 #read from csv

193 lam_0 = pa.read_csv("./results/final/lam_0.csv").values

194 lam_1 = pa.read_csv("./results/final/lam_1.csv").values

195 delta_0 = pa.read_csv("./results/final/delta_0.csv").values

196 delta_1 = pa.read_csv("./results/final/delta_1.csv").values

197 mu = pa.read_csv("./results/final/mu.csv").values

198 phi = pa.read_csv("./results/final/phi.csv").values

199 sigma = pa.read_csv("./results/final/sigma.csv").values

200

201

202 ###################

203 # Collect results #

204 ###################

205

206 a_rsk, b_rsk = model.gen_pred_coef(lam_0=lam_0, lam_1=lam_1, delta_0=delta_0,

207 delta_1=delta_1, mu=mu, phi=phi,

208 sigma=sigma)

209

210 #generate no risk results

211 lam_0_nr = np.zeros([dim, 1])

212 lam_1_nr = np.zeros([dim, dim])

213 sigma_zeros = np.zeros_like(sigma)

214 a_nrsk, b_nrsk = model.gen_pred_coef(lam_0=lam_0_nr, lam_1=lam_1_nr,

215 delta_0=delta_0, delta_1=delta_1, mu=mu,

216 phi=phi, sigma=sigma_zeros)

217 X_t = model.var_data_vert

218 per = model.yc_data.index

219 act_pred = pa.DataFrame(index=per)

220 for i in quarters:

221 act_pred[str(i) + ’_act’] = model.yc_data[’TMYTM_’ + str(i / 4)]

222 act_pred[str(i) + ’_pred’] = a_rsk[i-1] + np.dot(b_rsk[i-1], X_t.T)

223 act_pred[str(i) + ’_nrsk’] = a_nrsk[i-1] + np.dot(b_nrsk[i-1].T, X_t.T)

224 act_pred[str(i) + ’_err’] = (act_pred[str(i) + ’_act’] - \
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225 act_pred[str(i) + ’_pred’])

226 act_pred[str(i) + ’_sqer’] = (act_pred[str(i) + ’_act’] - \

227 act_pred[str(i) + ’_pred’])**2

228 act_pred[str(i) + ’_tp’] = act_pred[str(i) + ’_pred’] - \

229 act_pred[str(i) + ’_nrsk’]

230 one_yr = act_pred.reindex(columns = filter(lambda x: ’4’ in x, act_pred))

231 two_yr = act_pred.reindex(columns = filter(lambda x: ’8’ in x, act_pred))

232 three_yr = act_pred.reindex(columns = filter(lambda x: ’12’ in x, act_pred))

233 four_yr = act_pred.reindex(columns = filter(lambda x: ’16’ in x, act_pred))

234 five_yr = act_pred.reindex(columns = filter(lambda x: ’20’ in x, act_pred))

235

236 #generate st dev of residuals

237 yields = [’one_yr’, ’two_yr’, ’three_yr’, ’four_yr’, ’five_yr’]

238 for yld in yields:

239 print yld + " & " + str(np.sqrt(np.mean(eval(yld).filter(

240 regex= ’.*sqer$’).values)) * 100)

241 tp = yld + ’_tp_final’

242 err = yld + ’_errs_final’

243 eval(tp)[yld] = eval(yld).filter(regex=’.*tp$’)

244 eval(err)[yld] = eval(yld).filter(regex=’.*err$’)

245

246 # if xix == len(xtols) - 1 and fix == len(ftols) - 1:

247 # for df in df_tp:

248 # eval(df).to_csv(’./results/final/’ + df + ’.csv’,

249 # float_format=’%.8f’)

250 # for df in df_errs:

251 # eval(df).to_csv(’./results/final/’ + df + ’.csv’,

252 # float_format=’%.8f’)

253

254

255 #out of sample forecasting

256 solve_forward = 10

257 yc_data = model.yc_data.copy()

258 yc_data_cols = yc_data.columns.tolist()

259 for per in range(10):

260 row = mu + np.dot(phi, X_t[-1:].T)

261 date = X_t[-1:].index.to_pydatetime()[0] + MonthBegin() + \

262 MonthBegin() + MonthBegin()

263 X_t.loc[date, :] = row.T

264 for qix, quart in enumerate(quarters):
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265 col = yc_data_cols[qix]

266 yc_data.loc[date, col] = a_rsk[quart-1] + np.dot(b_rsk[quart-1], row)
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Listing E.2: Example script executing Ang and Piazzesi (2003) approach

1 """

2 This script estimates a model with final data

3 """

4 import numpy as np

5 import numpy.ma as ma

6 import scipy.linalg as la

7 import pandas as pa

8 import datetime as dt

9 import matplotlib.pyplot as plt

10

11 from statsmodels.api import OLS

12 from statsmodels.tsa.api import VAR

13 from affine.model.affine import Affine

14

15 import ipdb

16

17 ####################################################

18 # Create function for unmask all elements np array #

19 ####################################################

20 def unmask_zarray(dims):

21 array = ma.zeros(dims)

22 array[:, :] = ma.masked

23 array[:, :] = ma.nomask

24 return array

25

26 latent = [False,

27 1,

28 2,

29 3]

30

31 ##############################

32 # Prepare macro data for VAR #

33 ##############################

34 macro_data = pa.read_csv("./data/macro_data_final/macro_data_quarterly.csv",

35 index_col = 0, parse_dates=True, sep=";")

36

37 macro_data.rename(columns={’GDP’: ’output’, ’Prices’: ’price_output’,

38 ’Resinv’: ’resinv’}, inplace=True)
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39

40 macro_data = macro_data[[’output’, ’price_output’]]

41 macro_vars = macro_data.columns.tolist()

42

43 neqs = len(macro_vars)

44 lags = 4

45 lat = 1

46 dim = neqs * lags + lat

47

48 #########################

49 # Grab yield curve data #

50 #########################

51 quarters = [4, 8, 12, 16, 20]

52 #set 36 mth as estimated with no error

53

54 ycdata = pa.read_csv("./data/fama-bliss/fama-bliss_formatted.csv",

55 index_col=0, parse_dates=True)

56

57 yc_cols = [’TMYTM_1’, ’TMYTM_2’, ’TMYTM_3’, ’TMYTM_4’, ’TMYTM_5’]

58 mod_yc_data = ycdata[yc_cols]

59 mod_yc_data[’year’] = mod_yc_data.index.year

60 mod_yc_data[’month’] = mod_yc_data.index.month

61 mod_yc_data[’day’] = 1

62 mod_yc_data = mod_yc_data[mod_yc_data[’month’].isin([1, 4, 7, 10])]

63 mod_yc_data[’index’] = mod_yc_data.apply(

64 lambda row: dt.datetime(int(row[’year’]),

65 int(row[’month’]),

66 int(row[’day’])), axis=1)

67 mod_yc_data = mod_yc_data.set_index(’index’)[yc_cols]

68

69 var_dates = pa.date_range("1/1/1982", "10/1/2012",

70 freq="QS").to_pydatetime()

71 yc_dates = var_dates[lags:]

72

73 use_macro_data = macro_data.ix[var_dates]

74 #demean and standadize the data

75 use_macro_data = (use_macro_data - use_macro_data[lags:].mean()) / \

76 use_macro_data[lags:].std()

77 use_yc_data = mod_yc_data.ix[yc_dates]

78
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79 mu_e = unmask_zarray((dim, 1))

80 phi_e = unmask_zarray((dim, dim))

81 sigma_u = unmask_zarray((dim, dim))

82

83 ##########################################

84 # Create mu_e, phi_e and sigma masked arrays #

85 ##########################################

86 var_fit = VAR(use_macro_data, freq="Q").fit(maxlags=lags)

87 coefs = var_fit.params.values

88 mu_e[:neqs] = coefs[0, None].T

89 if lat:

90 phi_e[:neqs,:-lat] = coefs[1:].T

91 else:

92 phi_e[:neqs] = coefs[1:].T

93

94 phi_e[neqs:dim - lat, :(lags - 1) * neqs] = np.identity((lags - 1) * neqs)

95 sigma_u[:neqs, :neqs] = np.linalg.cholesky(var_fit.sigma_u)

96 if lat:

97 sigma_u[neqs:-lat, neqs:-lat] = np.identity((lags - 1) * neqs)

98 sigma_u[-lat:,-lat:] = np.identity(lat)

99 else:

100 sigma_u[neqs:, neqs:] = np.identity((lags - 1) * neqs)

101

102 ###############################

103 # Create lambda masked arrays #

104 ###############################

105 lambda_0_e = unmask_zarray((dim, 1))

106 lambda_1_e = unmask_zarray((dim, dim))

107

108 ##############################

109 # Create delta masked arrays #

110 ##############################

111 final_data = pa.read_csv("./data/macro_data_final/macro_data.csv", sep=";",

112 index_col=0, parse_dates=True, na_values="M")

113 rf_rate = final_data["fed_funds"].ix[yc_dates]

114

115 delta_ind = use_macro_data.ix[yc_dates]

116 delta_ind["constant"] = 1

117 delta_model = OLS(rf_rate, delta_ind).fit()

118 delta_0 = unmask_zarray((1, 1))
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119 delta_1_e = unmask_zarray((dim, 1))

120 delta_0[0, 0] = delta_model.params[-1]

121 delta_1_e[:neqs, 0] = delta_model.params[:-1]

122

123 df_tp = [’one_yr_tp_final’,

124 ’two_yr_tp_final’,

125 ’three_yr_tp_final’,

126 ’four_yr_tp_final’,

127 ’five_yr_tp_final’]

128 df_errs = [’one_yr_errs_final’,

129 ’two_yr_errs_final’,

130 ’three_yr_errs_final’,

131 ’four_yr_errs_final’,

132 ’five_yr_errs_final’]

133

134 one_yr_tp_final = pa.DataFrame(index=yc_dates)

135 two_yr_tp_final = pa.DataFrame(index=yc_dates)

136 three_yr_tp_final = pa.DataFrame(index=yc_dates)

137 four_yr_tp_final = pa.DataFrame(index=yc_dates)

138 five_yr_tp_final = pa.DataFrame(index=yc_dates)

139

140 one_yr_errs_final = pa.DataFrame(index=yc_dates)

141 two_yr_errs_final = pa.DataFrame(index=yc_dates)

142 three_yr_errs_final = pa.DataFrame(index=yc_dates)

143 four_yr_errs_final = pa.DataFrame(index=yc_dates)

144 five_yr_errs_final = pa.DataFrame(index=yc_dates)

145

146 xtol = 1e-5

147

148 ftol = 1e-5

149

150 max = 50

151 min = 0.0000001

152

153 no_err = [1]

154 # Setup model

155 np.random.seed(101)

156

157 print "xtol " + str(xtol)

158 print "ftol " + str(ftol)
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159 print "Begin " + str(yc_dates[0])

160 print "End " + str(yc_dates[-1])

161 print "latent = " + str(lat)

162 print "noerr = " + str(no_err)

163

164 #only need iterative process if latent variables are estimated

165 ################################################################

166 # First iteration, estimate phi and others, hold lambdas const #

167 ################################################################

168 phi_e[-lat,-lat] = ma.masked

169 delta_1_e[-lat, 0] = ma.masked

170

171 print "First estimation"

172 model = Affine(yc_data=use_yc_data, var_data=use_macro_data,

173 lam_0_e=lambda_0_e, lam_1_e=lambda_1_e,

174 delta_0_e=delta_0, delta_1_e=delta_1_e, mu_e=mu_e,

175 phi_e=phi_e, sigma_e=sigma_u, mats=quarters,

176 latent=1)

177

178 guess_length = model.guess_length

179 guess_params = np.linspace(0.5, 1.5, guess_length)

180

181 #try random stuff for all params

182 #guess_params = (np.random.random((guess_length,)) * (1.0 / 10000)).tolist()

183

184 out_bsr = model.solve(guess_params=guess_params, method=’ml’,

185 ftol=ftol, xtol=xtol, maxfev=10000000,

186 maxiter=1000000, full_output=False, alg=’nm’,

187 no_err=no_err)

188 a, b, c, d, e, f, g, a_s, b_s, solve_params, var_data_wunob = out_bsr

189

190 hessian = model.hessian(solve_params)

191 std_err = np.sqrt(-np.diag(la.inv(hessian)))

192

193 print std_err

194

195 tval = solve_params / std_err

196 rep_vals = []

197 for tix, val in enumerate(tval):

198 if abs(val) > 1.960:
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199 rep_vals.append(solve_params[tix])

200 else:

201 rep_vals.append(0)

202

203 #fill in relevant values of phi_e and delta_1

204 a, b, c, delta_1, d, phi, e = model.params_to_array(rep_vals,

205 return_mask=True)

206 a, b, c, delta_1_g, d, phi_g, e, d1phi_guesses = \

207 model.params_to_array_zeromask(rep_vals)

208

209 ##############################################################

210 # Second iteration, estimate lambda_1, hold lambda_0 at zero #

211 ##############################################################

212 print "Second estimation"

213 lambda_1_e[-lat, -lat] = ma.masked

214 lambda_1_e[:neqs, :neqs] = ma.masked

215

216 model = Affine(yc_data=use_yc_data, var_data=use_macro_data,

217 lam_0_e=lambda_0_e, lam_1_e=lambda_1_e,

218 delta_0_e=delta_0, delta_1_e=delta_1, mu_e=mu_e,

219 phi_e=phi, sigma_e=sigma_u, mats=quarters,

220 latent=True)

221

222 guess_length = model.guess_length

223 guess_params = np.linspace(0.5, 1.5, guess_length)

224

225 out_bsr = model.solve(guess_params=guess_params, method=’ml’,

226 ftol=ftol, xtol=xtol, maxfev=10000000,

227 maxiter=1000000, full_output=False, alg=’nm’,

228 no_err=no_err)

229 a, b, c, d, e, f, g, a_s, b_s, solve_params, var_data_wunob = out_bsr

230

231 hessian = model.hessian(solve_params)

232 std_err = np.sqrt(-np.diag(la.inv(hessian)))

233

234 print std_err

235

236 tval = solve_params / std_err

237 rep_vals = []

238 for tix, val in enumerate(tval):
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239 if abs(val) > 1.960:

240 rep_vals.append(solve_params[tix])

241 else:

242 rep_vals.append(0)

243

244 #fill in relevant values of lambda_1

245 a, lambda_1, b, c, d, e, f = model.params_to_array(rep_vals,

246 return_mask=True)

247 a, lambda_1_g, b, c, d, e, f, l1_guesses = \

248 model.params_to_array_zeromask(rep_vals)

249

250 #######################################################################

251 # Third iteration, esimate lambda_0, holding lambda_1 at prior values #

252 #######################################################################

253 print "Third estimation"

254 lambda_0_e[:neqs, 0] = ma.masked

255 lambda_0_e[-lat:, 0] = ma.masked

256

257 model = Affine(yc_data=use_yc_data, var_data=use_macro_data,

258 lam_0_e=lambda_0_e, lam_1_e=lambda_1, delta_0_e=delta_0,

259 delta_1_e=delta_1, mu_e=mu_e, phi_e=phi, sigma_e=sigma_u,

260 mats=quarters, latent=True)

261

262 guess_length = model.guess_length

263 guess_params = np.linspace(0.5, 1.5, guess_length)

264

265 out_bsr = model.solve(guess_params=guess_params, method=’ml’,

266 ftol=ftol, xtol=xtol, maxfev=10000000,

267 maxiter=1000000, full_output=False, alg=’nm’,

268 no_err=no_err)

269 a, b, c, d, e, f, g, a_s, b_s, solve_params, var_data_wunob = out_bsr

270

271 hessian = model.hessian(solve_params)

272 std_err = np.sqrt(-np.diag(la.inv(hessian)))

273

274 print std_err

275

276 tval = solve_params / std_err

277 rep_vals = []

278 for tix, val in enumerate(tval):
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279 if abs(val) > 1.960:

280 rep_vals.append(solve_params[tix])

281 else:

282 rep_vals.append(0)

283

284 #fill in relevant values of lambda_1

285 lambda_0, a, b, c, d, e, f = model.params_to_array(rep_vals,

286 return_mask=True)

287 lambda_0_g, a, b, c, d, e, f, l0_guesses = \

288 model.params_to_array_zeromask(rep_vals)

289

290 ###################

291 # Final iteration #

292 ###################

293 print "Fourth estimation"

294

295 model = Affine(yc_data=use_yc_data, var_data=use_macro_data,

296 lam_0_e=lambda_0_g, lam_1_e=lambda_1_g,

297 delta_0_e=delta_0, delta_1_e=delta_1_g, mu_e=mu_e,

298 phi_e=phi_g, sigma_e=sigma_u, mats=quarters,

299 latent=True)

300

301 guess_params = l0_guesses + l1_guesses + d1phi_guesses

302 out_bsr = model.solve(guess_params=guess_params, method=’ml’,

303 ftol=ftol, xtol=xtol, maxfev=100000,

304 maxiter=100000, full_output=False, alg=’nm’,

305 no_err=no_err)

306 lam_0, lam_1, delta_0, delta_1, mu, phi, sigma, a_s, b_s, solve_params, \

307 var_data_wunob = out_bsr

308

309 ###################

310 # Collect results #

311 ###################

312

313 a_rsk, b_rsk = model.gen_pred_coef(lam_0=lam_0, lam_1=lam_1, delta_0=delta_0,

314 delta_1=delta_1, mu=mu, phi=phi,

315 sigma=sigma)

316

317 #generate no risk results

318 lam_0_nr = np.zeros([dim, 1])
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319 lam_1_nr = np.zeros([dim, dim])

320 sigma_zeros = np.zeros_like(sigma)

321 a_nrsk, b_nrsk = model.gen_pred_coef(lam_0=lam_0_nr, lam_1=lam_1_nr,

322 delta_0=delta_0, delta_1=delta_1, mu=mu,

323 phi=phi, sigma=sigma_zeros)

324 if lat:

325 X_t = var_data_wunob

326 else:

327 X_t = model.var_data_vert

328 per = model.yc_data.index

329 act_pred = pa.DataFrame(index=per)

330 for i in quarters:

331 act_pred[str(i) + ’_act’] = model.yc_data[’TMYTM_’ + str(i / 4)]

332 act_pred[str(i) + ’_pred’] = a_rsk[i-1] + np.dot(b_rsk[i-1], X_t.T)

333 act_pred[str(i) + ’_nrsk’] = a_nrsk[i-1] + np.dot(b_nrsk[i-1].T, X_t.T)

334 act_pred[str(i) + ’_err’] = (act_pred[str(i) + ’_act’] - \

335 act_pred[str(i) + ’_pred’])

336 act_pred[str(i) + ’_sqer’] = (act_pred[str(i) + ’_act’] - \

337 act_pred[str(i) + ’_pred’])**2

338 act_pred[str(i) + ’_tp’] = act_pred[str(i) + ’_pred’] - \

339 act_pred[str(i) + ’_nrsk’]

340 one_yr = act_pred.reindex(columns = filter(lambda x: ’4’ in x, act_pred))

341 two_yr = act_pred.reindex(columns = filter(lambda x: ’8’ in x, act_pred))

342 three_yr = act_pred.reindex(columns = filter(lambda x: ’12’ in x, act_pred))

343 four_yr = act_pred.reindex(columns = filter(lambda x: ’16’ in x, act_pred))

344 five_yr = act_pred.reindex(columns = filter(lambda x: ’20’ in x, act_pred))

345

346 #generate st dev of residuals

347 yields = [’one_yr’, ’two_yr’, ’three_yr’, ’four_yr’, ’five_yr’]

348 for yld in yields:

349 print yld + " & " + str(np.sqrt(np.mean(eval(yld).filter(

350 regex= ’.*sqer$’).values)) * 100)

351 tp = yld + ’_tp_final’

352 err = yld + ’_errs_final’

353 eval(tp)[yld] = eval(yld).filter(regex=’.*tp$’)

354 eval(err)[yld] = eval(yld).filter(regex=’.*err$’)

355

356 #plot five year pricing errors

357 five_yr_errs_final[’five_yr’].plot(subplots=True)

358 #plot one year pricing errors
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359 one_yr_errs_final[’five_yr’].plot(subplots=True)

360 #plot one year time-varying term premium

361 one_yr_tp_final[’five_yr’].plot(subplots=True)

362 #plot five year time-varying term premium

363 five_yr_tp_final[’five_yr’].plot(subplots=True)
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