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1 Introduction

One of the most crucial assumptions underlying empirical modeling in econometrics is
that of the constancy (homogeneity, invariance) of model parameters. For example,
in the simple AR(1) model, yt = a0 + a1yt−1 + ut, t ∈ T:={0, 1, ...}, the parame-
ters (a0, a1, σ2) are assumed to be constant (t−invariant). This assumption lies at
the heart of empirical modeling because without it no reliable statistical modeling
and inference is possible. Indeed, the primary objective of empirical modeling is to
capture the invariant features of the phenomenon of interest in the form of such con-
stant parameters. Despite its importance, this assumption is rarely tested in practice
and the current tools for detecting essential forms of departures are not adequately
effective.
It is widely appreciated that economic data usually exhibit heterogeneity over time

(times series) as well as over individuals (cross-section). In time series modeling this
heterogeneity occurs frequently because, invariably, economies grow and change over
time. The main reason why econometricians were very slow to adopt the ARMA(p,q)
model was the fact that this model assumes stationarity. This form of modeling be-
came popular after Box and Jenkins (1970) proposed a way to address the presence of
heterogeneity in economic time series using differencing. That led to a revival of time
series modeling in econometrics, but raised the question of the appropriateness of dif-
ferencing as a general way of addressing non-stationarity. The ‘unit root’ literature,
led by Dickey and Fuller (1979) and Phillips (1986, 1987), provided certain partial
answers to this question, but it also gave the misleading impression that unit roots
(UR) and cointegration (Engle and Granger, 1987, Johansen, 1991) provide general
ways to capture the time heterogeneity in general. In the case of the UR(1) model,
which corresponds to the AR(1) model with a1 = 1, the most general form of hetero-
geneity implicitly imposed is that E(yt) = µ0+µ1t, and Cov(yt, yt−k) = σ(0)·(t− k),
where k = 0, 1, ..., t. Perron (1989) raised the issue of another form of heterogeneity,
structural breaks, that economic time series often exhibit, but cannot be captured
by unit root modeling, advancing the possibility that a0 or/and a1 might change
abruptly at specific points t0. More generally, one can make a strong case that the
use of differencing and time trends in the mean in the context of AR(p) models ac-
counts for only a small fraction of heterogeneity structures one can expect in time
series modeling; see Spanos (1999), ch. 8.
Testing and estimation of parameters in the context of statistical models that

are subject to t-heterogeneity has been the subject of considerable research. One of
the pioneering studies in this area is that of Chow (1960), who proposed an F-test
for a single structural break in a linear regression model. However an important
limitation of this test is that the date of the break must be known. To overcome
this problem researchers have developed testing procedures which do not presuppose
knowledge of the break point(s). Quandt (1960) proposed choosing the largest Chow
statistic over all possible break points. Brown, Durbin and Evans (1975) developed
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an alternative procedure based on recursive residuals, by proposing the cumulative
sum (CUSUM) and CUSUM squared tests to deal with cases where the break point
is unknown. Recent work has extended these tests in several directions to allow for
multiple breaks, unit root dynamics and heteroskedasticity. Some important contri-
butions include Nyblom’s (1989) test for martingale parameter variation, Andrews’s
(1993) asymptotic theory for Quandt’s (1960) test, and the exponentially weighted
tests of Andrews and Ploberger (1994). Also Ploberger, Kramer and Kontrus (1989),
Hansen (1992), Andrews, Lee and Ploberger (1996), and Bai and Perron (1998, 2003)
develop tests for consistently estimating the size and timing of the breaks. For a
recent survey of the structural break literature see Perron (2005). Most of the tests
developed in the structural break literature are designed to detect discrete shifts in
the model parameters.
In this paper we develop an alternative approach to testing for t-invariance of the

model parameters, based on the stationarity of the primary sample moments; means,
variances and covariances. The proposed procedure differs from the existing literature
in two important ways. First, it focuses on detecting more general forms of non-
stationarity rather than just abrupt changes. Second, it is based on rolling window
estimates of the primary moments (mean, variance and covariance) of the variables,
rather than the model parameters. The rationale is that the model parameters θ are
functions (θ = H(ϕ)) of the primary moments ϕ of the underlying stochastic process
and any t-heterogeneity in the latter (ϕ(t)) is almost certain to be reflected in θ(t).
Focusing on the first two moments, mean, variance and covariance is motivated by
the fact that higher central moments, in terms of which the model parameters are
specified, are functions of the first two moments. Using a single realization of a non-
stationary and highly dependent process is often inadequate for a thorough probing for
departures from the parameter t-invariance assumption. Hence, to implement this
procedure we use the Maximum Entropy (ME) density bootstrap of Vinod (2004)
in order to enhance the available data information by generating several faithful
replicas of the original data. We carry out a number of Monte Carlo experiments to
demonstrate and evaluate the performance of the proposed testing procedure. The
simulation results indicate that the testing procedure has sufficient power to detect
non-stationarity even for small sample sizes, as well as the capacity to distinguish
whether the t-heterogeneity arises from the mean or the variance of the process.
The remainder of the paper is organized as follows. Section 2 motivates the idea

behind testing the primary moments for t-invariance using heterogenous variants of
the Normal, Autoregressive model. The need for alternative tests is stimulated in
section 3 and in section 4 we provide a description of the suggested testing procedure
which is based on the ME bootstrap and the idea of a rolling window estimator
(RWE). The simulation design and results are presented in section 5 and in section
6 we apply the testing procedure to a number of macroeconomic series in order to
assess its ability to detect a variety of forms of non-stationarity. We conclude by
summarizing the main points, and indicating possible refinements and extensions.
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2 Motivation

In this section we propose an alternative way of testing for t-invariance, that is based
on the primary moments (marginal and joint moments) of the series involved. The
rationale is that the model parameters are functions of the primary moments and
departures from t-homogeneity in the latter are likely to be imparted onto the former.
To see the relationship between the primary moments and the model parameters,
consider the underlying parametrization of the Normal Autoregressive Model.

[A] The Normal Autoregressive (AR(1)) Model, takes the form:

yt = a0 + a1yt−1 + ut, (ut|Ft−1) ∼ N(0, σ2), (1)

where Ft−1 = σ(Y0
t−1) is sigma field generated by the past history of yt, Y

0
t−1 :=

(yt−1, yt−2, ..., y1). In this case the relevant reduction assumptions on the process {yt,
t ∈ T} that would give rise to model (1) are: (i) (D) Normal, (ii) (M) Markov and
(iii) (H) Stationarity (see Spanos, 2001), where:µ

yt
yt−1

¶
∼ N

µµ
µ
µ

¶
,

µ
σ0 σ1
σ1 σ0

¶¶
, t ∈ T.

The relationship between the model parameters φ := (a0, a1, σ
2) and the primary

parameters ψ := (µ, σ0, σ1) is:

a0 = (1− a1)µy, a1 =
σ1
σ0
, σ2 = (σ0 − σ21

σ0
) = σ0(1− a21).

The complete specification for the AR(1) model is given in table 1.

Table 1: Normal Autoregressive (AR(1)) model

Statistical GM: yt = α0 + α1yt−1 + ut, t ∈ T,
[1] Normality: f(yt | Y0

t−1;θ), for Y
0
t−1 := (yt−1, ..., y1),

[2] Linearity: E(yt | σ(Y0
t−1)) = α0 + α1yt−1,

[3] Homosked.: V ar(yt | σ(Y0
t−1)) = σ0, free of Y0

t−1,
[4] Markoveness: {(yt | Y0

t−1), t ∈ T} is a Markov process,
[5] t-homogeneity: θ :=(α0, α1, σ0) are t-invariant ∀t ∈ T.

A crucial distinction made in this specification is that of heteroskedasticity vs.
t-heterogeneity; see Spanos (1986). Heteroskedasticity denotes the functional depen-
dence of the conditional variance on the conditioning variables Y0

t−1, i.e. V ar(yt |
σ(Y0

t−1)) = h(Y0
t−1), as opposed to t-heterogeneity which refers to the functional

dependence on the index t. i.e. V ar(yt | σ(Y0
t−1))=σ(t). The distinction is important

because the source of the departure in the two cases is different; the former can arise
because of departures from the Normality assumption, but the latter arises when the
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process {yt, t ∈ T} is non-stationary. Although, it is possible that ψ are time hetero-
geneous but θ are t-invariant, it can only happen in very restrictive circumstances,
as demonstrated below. Hence, detecting heterogeneity in the primary moments ψ
will usually indicate departures from parameter t-invariance.
In order to illustrate how any form of heterogeneity in the primary moments is

likely to give rise to departures from the t-invariance of the model parameters let
us consider the following Heterogeneous Normal Autoregressive Model (see Spanos,
2001).
[B] The Non-Stationary, Normal Autoregressive Model:

yt = a0(t) + a1(t)yt−1 + ut,
¡
ut| Y0

t−1
¢
∼ N

¡
0, σ2(t)

¢
. (2)

In this case the relevant reduction assumptions on the process {yt, t ∈ T} that would
give rise to (2) are: (D) Normal, and(M) Markov (see Spanos, 2001):µ

yt
yt−1

¶
∼ N

µµ
µ(t)

µ(t−1)

¶
,

µ
σ(t, t) σ(t, t−1)

σ(t−1, t) σ(t−1, t−1)

¶¶
, t ∈ T, (3)

where the primary moments ψ(t) := (µ(t), σ(t, t), σ(t, t−1)) are allowed to be ar-
bitrary functions of t. The relationship between the model parameters φ(t) :=
(a0(t), a1(t), σ

2(t)) and the primary parameters ψ(t) is:

a0(t)= (1−a1(t))µ(t), a1(t)=
σ(t,t−1)

σ(t−1,t−1) , σ2(t)=σ(t, t)− [σ(t,t−1)]2
σ(t−1,t−1)=σ(t, t)(1−a21(t)).

These parameterizations indicate most clearly that any heterogeneity, either in the
mean or the variance or both, is likely to give rise to t-heterogeneity in the parameters.
To see this consider a very special case of (3) where µ(t) and σ(t, s) take the simplest
forms:

µ(t) = µ0 · t, σ(t, s) = σ(|t− s|) ·min(t, s),
known as separable heterogeneity; see Spanos (1999). In this case (3) reduces to:µ

yt
yt−1

¶
∼ N

µµ
µ · t

µ · (t−1)

¶
,

µ
σ(0) · t σ(1) · (t− 1)

σ(1) · (t− 1) σ(0) · (t− 1)

¶¶
, t ∈ T, (4)

giving rise to an AR(1) model with t-heterogeneous parameters a0(t) and σ2(t) :

a0(t)=µa1 + µ(1− a1)t, a1=
σ(1)
σ(0)

, σ2(t) = σ(0) [a21 + (1− a21)t] ;

see Spanos (1990). The t-heterogeneity disappears only when σ(0) = σ(1), which is
the well-known unit root case (a1 = 1), i.e. {yt, t ∈ T} is a Wiener process. This
example demonstrates clearly that unit root heterogeneity is only a very special form
of moment heterogeneity. It’s clear, however, that almost every other form of moment
heterogeneity one can think of will give rise to model parameter t-heterogeneity. It
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can be shown that heterogeneous primary moments will give rise to t-homogenous
model parameters only on a set of measure zero; see Maasoumi (2001).
The generic null and alternative hypotheses will be of the form:

H0 : κ(t, s) = κ(|t− s|), vs. H1 : κ(t, s) 6= κ(|t− s|), t, s ∈ T, (5)

where κ(t, s) denotes the first two moments of the model distribution, say κ(t, s) :=
(µ(t), σ(t, t), σ(t, s)), t 6= s. Confining the discussion to the first two moments is
motivated partly by the fact that the higher moments and cumulants (in terms of
which the model parameters are defined) are functions of the first two moments, and
partly to keep the discussion of the different scenarios manageable. Extending the
results to include higher moments is straightforward. Another crucial issue raised by
hypotheses of the form (5) is that of the incidental parameter problem since evaluation
under the alternative requires one to estimate parameters that change with t. The
way to deal with this problem is to use a bootstrapping algorithm that enhances
the sample information in appropriate ways that addresses the incidental parameter
problem; the technique adapted for this purpose is the Maximum Entropy bootstrap
proposed by Vinod (2004).
The perspective adopted in this paper is one of Mis-Specification (M-S) testing

because the issue of whether the model parameters change with the index t, concerns
probing outside the boundaries of the model. As such specifying particular forms of
heterogeneity in H1 is not particularly helpful because the rejection of the null in this
context does not entitle one to deduce the alternative is valid; see Spanos (2000). This
is a classic case of the fallacy of rejection: evidence against H0 is (mis)interpreted as
evidence for the alternative - see Mayo and Spanos (2004). Adoption of the alternative
should be justified on its own merit on the basis that it gives rise to a statistically
adequate model; see Spanos (2000). That is, once some form of non-stationarity
is detected one can proceed to determine its form and nature as well as provide a
structural interpretation when appropriate.

2.1 Andrews & Ploberger tests

In an attempt to motive the need for alternative testing procedures which can de-
tect smooth changing t-heterogeneity in the parameters we assess the capacity of the
Andrews & Ploberger (1994) tests to detect smoothly changing mean and variance
trends using Monte Carlo experiments. While these tests were originally designed for
abrupt model parameter shifts, the lack of alternative testing procedures for other
forms of heterogeneity, made this popular for testing any form of parameter invari-
ance. We will assess the ability of these tests to detect departures from homogeneity
using several functional forms for µ(t) and σ2(t) and we report the actual rejection
rates at significance level α = 5%. For each scenario we use a sample of size n = 100
and N=10, 000 replications; the results concerning the actual power of these tests are
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summarized in tables 3-4. For the details on these choices and additional scenarios,
see Koutris (2005)
The Andrews & Ploberger (1994) statistics are based on Quandt’s idea which eval-

uates the Chow statistic at every possible breakpoint. This is equivalent to the statis-
tic SupF = suptFt, where the supremum of the Chow statistic is taken over the time t.
They developed the exponentially weighted Wald statistic ExpF=ln

R
exp

¡
Ft
2

¢
dw(t)

and the average F test AveF=
R
t
Ftdw(t) where w is a measuring putting weight 1

t2−t1
on each integer t in the interval [t1, t2], and showed that these are optimal against
distant and very local alternatives, respectively. The simulation results in Table 2a
(see also Table 2b in Appendix A) indicate that the p-value approximations proposed
by Hansen (1997) show a systematic upward discrepancy from the nominal type I er-
ror. Therefore, tables 3 and 4 report the size-corrected empirical power based on the
percentiles of the empirical distribution of the A&P statistics, evaluated for n=100
observations under the null.

Table 2a: Empirical type I error (α=5%) based on R=10,000

Test Statistic
Andrews
p-value

bootstrap
p-value

Hetero-Corrected
p-value

SupF 8.38 14.95 14.04 13.02
ExpF 2.61 14.64 12.01 11.29
AveF 2.01 10.71 10.49 12.75

It rep orts the p ercentage of fa lse rejections in R=10,000 exp erim ental tria ls.

Ideally th is should b e equal to a=5%

Table 3: Empirical, size-corrected Power of
A&P tests under mean trend; α=5%
Trend Function SupF ExpF AveF

µ(t) = µ+ 0.02t 21.82 24.94 23.14
µ(t) = µ+ 0.001t+ 5(10−4t2) 7.61 9.61 9.29
µ(t) = exp(0.01t) + µ 18.3 18.98 18.27

µ(t) =

µ
5

1+exp(−t4 )

¶
+ µ 7.45 8.21 6.98

It rep orts the p ercentage of correct rejections in R=10,000 exp erim ental tria ls.

Ideally th is should b e as close to 100% as possib le

The results in tables 2 - 4 (see also Koutris, 2005) indicate that the A&P statistics
have very low power in detecting smoothly trending t-heterogeneity in the parameters.
The results are not surprising because these tests were designed to detect abrupt
parameter shifts. This, however, raises the need for more effective testing procedures
under more general forms of heterogeneity.
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Table 4: Empirical, size-corrected Power of
A&P tests under variance trend; α=5%
Trend Function SupF ExpF AveF

σ2(t)=σ2+0.05·t 10.78 3.94 9.95
σ2(t)=σ2+0.03·t+0.01·t2 21.53 4.65 19.58
σ2(t)=σ2+exp(0.02·t) 14.87 5.94 14.1
It reports the prop ortion of correct rejections in R=10,000 experim ental tria ls.

Ideally th is should b e as close to 100% as possib le

3 Testing for non-stationarity using resampling

In this section we investigate the t-invariance of the primary moments by using the
idea of rolling window estimator and applying the Maximum Entropy bootstrap by
Vinod (2004). The choice of the rolling window (overlapping and non-overlapping)
estimator is motivated by the fact that stationarity implies constancy across window
estimates. Hence, by testing the non-constancy of such estimators we propose tests
for stationarity.

3.1 Rolling Window Estimator

According to Banerjee, Lumsdaine and Stock (1992) the term ‘recursive estimator’
is due to Brown et al. (1975). The notion of a rolling or fixed-window (see Spanos,
1986, p. 562) estimator dates back to early statistical quality control literature; see
Shewhart (1939).

Definition 1 Let {Rt}t=1,..,n be a random process, and θ be the unknown parameter
to be estimated and θ̂ = g(R) be an estimator based on the process. Furthermore, let
PR = {PRi}i∈I be a partition of the process, such that:

PRti
={Rt:t∈[ti, ti−1+l]}, ti=1, 2, ..., n−(l−1), (6)

where l is the fixed window size. The rolling estimator θ̂rti of the unknown parameter
θ is defined as:

θ̂rti = g(PRti
) for ti = 1, 2, ..., n−(l−1). (7)

The rolling (window) estimators are based on a changing subsample of fixed length
l that moves sequentially through the sample, giving rise to a series of estimates for
θ.
The first weakness of the fixed window estimators, is that they require a large

sample size. The second problem when using a rolling estimator is the trade off
between the window size l and the number of rolling window estimates. Even though
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a large window size could yield a more precise estimate of the unknown population
parameter θ, this may not be a representative of the θ especially in the presence
of heterogeneity. In this paper we use a rolling window of small size and we apply
resampling techniques to each window so as to estimate θ with higher precision. There
are still two problems with this strategy. First, traditional resampling techniques
require large sample sizes. Secondly, departures from the IID assumption affect the
performance of the bootstrap methods (see Spanos and Kourtellos, 2002). In an effort
to overcome some of these problems we apply the Maximum Entropy bootstrap of
Vinod (2004) which is reliable for small sample sizes and is designed to be robust to
deviations from the IID assumption.

3.2 Maximum Entropy Bootstrap

The Maximum Entropy (ME) bootstrapping procedure proposed by Vinod (2004)
is an essential component of our procedure. It provides a reliable resampling algo-
rithm for short non-stationary time series. The ME bootstrap is similar to Efron’s
traditional bootstrap but avoids the three restrictions which make the traditional
bootstrap unsuitable for economic and financial time series data. To explain these
three restrictions consider a time series xt over the range t = 1, . . . , T. The traditional
bootstrap sample repeats some xt values and requires that none of the resampled val-
ues can differ from the observed ones. It also requires the bootstrap resamples to lie
in the interval [min (xt) ,max (xt)] . These two conditions are quite restrictive in prac-
tice. The third restriction arises because the bootstrap resample shuffles xt in such a
way that all dependence and heterogeneity information in the time series sequence is
lost. This is particularly crucial for testing heterogeneity because any reordering will
distort the information contained in the data. To address these issues the traditional
literature has made attempts to remove one or two of these restrictions but not all
three. For example the ‘smooth bootstrap is supposed to be able to avoid the second
restriction while ‘block resampling’ is designed to avoid destroying the dependence
information (see Berkowitz and Killian, 2000).
The ME bootstrap is more appealing because it simultaneously avoids all three

problems. Moreover, the bootstrap algorithm is based on the ME density and sat-
isfies the ergodic theorem, Doob’s theorem and almost sure convergence of sampling
distributions of pivotal statistics without assuming stationarity. In particular, the
ME density f (x) is chosen so as to maximize H = E (− log f (x)) (Shannon’s in-
formation), subject to certain mass-preserving and mean preserving constraints; see
Vinod (2004) for the details.
Using the idea of maximum entropy density, the ME algorithm to generate mul-

tiple ensembles of stochastic process realization is specified in the following steps:

Step 1: Define a T × 2 sorting matrix called S1. In the first column place the ob-
served time series xt while in the second column place the index set Indx = {1, 2, ..., T}.
Step 2: Sort the matrix S1 with respect to the numbers in its first column. This
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sort yields the order statistics x(t) in the first column and a vector Iord of sorted Indx
in the second column to be used later. Then compute ‘intermediate points’ zt as
averages of successive order statistics as follows:

zt =
x(t)+x(t+1)

2
, t = 1, ..., T−1,

and construct the intervals It defined on zt and mt with specific weights on the order
statistics x(t) defined in the equations shown below:

a. f(x) = 1
m1
exp

³
[x−z1]
m1

´
, x ∈ I1, m1=

3x(1)
4
+

x(2)
4
.

b. f(x) = 1
zk−zk−1 , x ∈ (zk, zk+1] , with mean mk :

mk =
x(k−1)
4

+
x(k)
2
+ xk+1

4
for k = 1, 2, .., T − 1.

c. f(x) = 1
mT
exp

³
[zT−1−x]

mT

´
, x ∈ IT , mT=

x(T−1)
4
+3xT

4
.

Step 3: Choose a seed, create T uniform pseudorandom numbers pj in the [0, 1]
interval, and identify the range Rt =

¡
t
T
, t+1

T

¤
for t = 0,. . .T −1 wherein each pj falls.

Step 4: Match each Rt with It by using the following equations:

xj,t,me = zT−1 − |θ| ln (1− pj) if pj ∈ R0 ,

xj,t,me = z1 − |θ| |ln (1− pj)| if pj ∈ RT−1

or as a linear interpolation and obtain a set of T values {xj,t} as the j-th resample.
Here θ is the mean of the standard exponential distribution. Make sure that the mean
of the uniform for each interval equals the correct mean mt by using add factors (see
Vinod, 2004 Remark 4, for more details).

Step 5: Define another T × 2 sorting matrix S2. Reorder the T members of the
set {xj,t} for the j-th resample obtained in step 4 in an increasing order of magnitude
and place them in column 1. Also place the sorted Iord of step 2 in column 2 of S2.

Step 6: Sort S2 matrix with respect to the second column to restore the order
{1, 2, .., T} there. The jointly sorted column 1 of elements is denoted by {xs,j,t} ,
where s reminds us of the sorting step.

Step 7: Repeat steps 1 to 6 a large number of times for j = 1, 2, ..., J.1

3.3 Description of the Testing Procedure

The primary objective of this paper is to develop a procedure for detecting departures
from the t-invariance of the first two moments of the stochastic vector {Zt, t ∈ T}.

1For our procedure J = 100
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Second order stationarity allows us to infer that the model parameters based on these
moments will also be t-invariant. This procedure is based on a rolling window estima-
tor. For each individual window we then use the ME bootstrap method to replicate
the series and create an ensemble in order to extract all the systematic statistical
information present in the data. This method allows us to efficiently estimate the
moments of the series based on multiple sets of realizations. Note that by choosing
a sufficiently small time window (i.e. fewer than 10 observations) and by focusing
on smooth functions of the time trend we can safely assume local homogeneity. In
this way we create a sequence of estimates for the first two moments of each random
variable.
Using the sequence of ME resampled replicas we formulate an F-type test for the

hypothesis of constant moments over time. This F-statistic is based on the residuals
from a restricted model and an unrestricted model for each sequence of estimates.
The restricted model assumes moment constancy over time. It is formed by using the
AR(1) specification for the estimated mean or variance since by construction these
sequences form a Markov(1) process. In the unrestricted model we allow for time
heterogeneity of a general form by adding a Bernstein polynomial of a specific degree
to the AR(1) model. The functional form of the Bernstein polynomial is:

Bk,ti =
Pk

j=0 βj

µ
k
j

¶
tji (1− ti)

k−j, k ∈ N, 0 < ti < 1, (8)

where N = {1, 2, .., }, and
©
βj
ª
j=1,2,..,k

denote unknown constants. The Bernstein
polynomials 8 form an orthogonal basis for the power polynomials of degree less than
of equal to w for any w ≥ 1; Lorentz (1986). The orthogonality of these polynomials
also has practical implications - it allows us to use a high degree polynomial without
the problem of near-multicolinearity. Another important attribute of these polyno-
mials is that they also provide good approximations for a variety of trend functions
that are present in real economic series.
The F-type test implemented leads to inference about the presence or not of time

trend in the moments of the processes. If we fail to reject the hypothesis of time
invariance, the sufficiency of this assumption allows us to conclude that the model
parameters based on these variable will also be t-invariant.
The proposed testing procedure can be described in the following 7 steps:

1. We begin by investigating each individual variable for time invariance. We first
determine the appropriate window size l. Based on our simulations we find that a
rule of thumb to chose the window size is: l =

£
n
10

¤
−2 , for sample sizes n ≤ 150.

Note that for larger sample sizes one should consider non-overlapping rolling window
estimates; see Koutris (2005). It is important to stress that in practice one should
vary the window size in an attempt to establish the robustness of the results with
respect to the choice of the window size. In the simulations that follow the robustness
to such small changes was confirmed.
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2. For each window of size l we generate an additional number of Vinod bootstrap
(V B = 100) samples denoted by VB.

3. Using the total number of observations available to us after bootstrapping,
which amount to (TV B) = l× (V B+1), we estimate the sample mean and variance
for each window. This gives rise to a sequence of T = n−(l−1) sample means, µ̂(ti)
and variance estimates, σ̂2(ti).

4. The assumption of time invariance of the moments, implies that these sequences
should have a constant mean and variance over time. We first check for time invariance
of the mean. The null hypothesis of our test in this case is: H0 : µ(ti) = µ for
ti = 1 . . . n−(l−1). Since we have overlapping windows the constructed sequences
exhibit first order Markov dependence and we use an AR(1) specification for the
restricted formulation:

µ̂(ti) = ao + a1 · µ̂(ti−1) + urµ(ti), (9)

where α0, a1, are the unknown model parameters to be estimated, and urµ are NIID
white noise errors. From this model we estimate the Restricted Sum of Squared
Residuals (RSSR) to be used in formulating the F-statistic.

5. In order to test for time trend in the moments of the series, we extend the above
AR(1) specification to incorporate a time trend of polynomial form. We use Bernstein
orthogonal polynomials of sufficiently high degree, so that we can approximate vari-
ous smooth trend functions. The alternative hypothesis in this case is: H1 : µ(ti) 6= µ
for any ti = 1 . . . n−(l−1). We thus estimate the unrestricted formulation for the
mean:

µ̂(ti) = a0o + a01 · µ̂(ti−1) +Bk,ti + uuµ(ti), (10)

and evaluate the Unrestricted Sum of Squared Residuals (USSR) to be used in the
F-test statistic, where Bk,t is the k−th degree Bernstein Orthogonal polynomial at
time t and uuµ is NIID errors.

6. We then calculate the F-statistic based on the RSSRµ and the USSRµ and
adjusted for the appropriate degrees of freedom (T−(k+2), k).
In a similar way we postulate, respectively, the restricted and unrestricted formu-

lations for the variance:

σ̂2(ti) = c0 + c1 · σ̂2(ti−1) + urσ2(ti), (11)

σ̂2(ti) = c00 + c01 · σ̂2(ti−1) +B0
k,ti
+ uuσ2(ti), (12)

where urσ2, uuσ2 are NIID errors. The estimation of (11)-(12) gives rise to the RSSRσ2

and the USSRσ2 , respectively, which form the F-statistic for testing H0 : σ̂
2(ti) = σ̂2

for ti = 1 . . . n− (l − 1) against H1 : σ̂
2(ti) 6= σ̂2 for any ti = 1 . . . n− (l − 1).

7. We repeat the same procedure for all the relevant variables in our model.
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The absence of t-heterogeneity in the moments, after thorough probing, is inter-
preted as evidence of its absence which, in turn, provides support for the t-invariance
of the model parameters. On the other hand, the presence of t-heterogeneity in the
moments calls for further testing and respecification of the statistical model. Respec-
ification is a different aspect of empirical modeling which we do not discuss explicitly
in this paper; see Spanos (2000, 2001).

4 Simulation design and results

To evaluate the proposed testing procedure we perform a number of Monte Carlo
experiments on the basis of which we assess both their size and local power. In these
experiments we simulate a variety of departures from the assumption of stationarity
of the moments. All experimental results reported are based on 10,000 replications
of sample sizes n = 60, n = 80 and n = 100. We have chosen these sample sizes to
illustrate the fact that the proposed procedure performs reasonably well even for small
sample sizes. Furthermore we report the percentage of rejection for three different
levels of significance (0.01, 0.05 and 0.10).
To ensure the correct actual size of the proposed testing procedure we relate the

choice of the appropriate window length to the .01, .05 and .10 quantiles of the
empirical distribution. In Table 5 (see Appendix A) we report simulation results con-
cerning the appropriate window length for different sample sizes; see Koutris (2005)
for further details. The ‘appropriate’ window length for sample of n = 60 appears to
be l = 5, for sample size n = 80 it is l = 6 and for sample size of n = 100 it is l = 8.
For these window sizes the estimated actual type I error seems to be reasonably close
to the nominal for the three different levels of significance considered.

4.1 Monte Carlo Experiments

In this section we describe the simulation design for our experiments. First we gen-
erate R = 10,000 samples of size n of the process {uti , ti = 1, 2, .., n} :

(u(1),u(2), ..,u(R)),

where each u(r), r = 1, 2, ..., R represents a vector of n pseudo-random numbers from
N(0, 1). By ‘feeding’ sequentially each u(r) into the statistical generating mechanism:

yti = µ(ti) + σ(ti)uti

we simulate the artificial data realizations. We then introduce a number of different
departures from the assumption of moment time homogeneity by considering differ-
ent functional forms of µ(ti) and σ(ti). The simulations and empirical analysis are
performed using the GAUSS programming language.
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4.1.1 Experiment 1: Smooth Mean Trend
In experiment 1 we generate data with four different time trends in the mean of the
series. The functional forms of these trends are shown below:

1. Linear: µ(ti) = µ+ 0.02ti, σ2 (ti) = 1

2. Quadratic: µ(ti) = µ+ 10−3ti + 5 · 10−4t2i , σ2 (ti) = 1

3. Exponential: µ(ti) = exp(10
−2ti) + µ, σ2 (ti) = 1

4. Logistic: µ(ti) = (
5

1+exp(
−ti
4
)
) + µ, σ2 (ti) = 1

4.1.2 Experiment 2: Smooth Variance Trend
Experiment 2 is designed to generate data series that exhibit three forms of variance
trends shown below:

1. Linear: µ (ti) = 0, σ2(ti) = σ2 + 0.05ti

2. Quadratic: µ(ti) = 0, σ
2(ti) = σ2 + .03ti + .01t2i

3. Exponential: µ(ti) = 0, σ
2(ti) = σ2 + exp(0.02 · ti)

4.1.3 Experiment 3: Single Mean Break
The main purpose of experiment 3 is to examine the extent to which our testing pro-
cedure can detect single breaks −mean shifts− introduced at three different locations
of the sample. We introduce a single mean shift of size two standard deviations at
the first (Q1), second (Q2) and third (Q3) quarter of the sample.

1. Single Mean Break at Q1 : µ(ti) = µ+ 2σ (ti) I{ti≥n
4}, σ2 (ti) = 1.

2. Single Mean Break at Q2 : µ(ti) = µ+ 2σ (ti) I{ti≥n
2}, σ2 (ti) = 1.

3. Single Mean Break at Q3 : µ(ti) = µ+ 2σ (ti) I{ti≥ 3n
4 }, σ2 (ti) = 1.

4.1.4 Experiment 4: Single Variance Break
Experiment 4 is similar to previous one in that it introduces single breaks at the
first (Q1), second (Q2) and third (Q3) quarter of the sample. In this experiment we
introduce a variance shift of two standard deviations.

1. Single variance Break at Q1 : µ(ti)=µ, σ2 (ti)=σ
2+2σ2I{ti≥n

4}

2. Single variance Break at Q2 : µ(ti)=µ, σ2 (ti)=σ
2+2σ2I{ti≥n

2}

3. Single variance Break at Q3 : µ(ti)=µ, σ2 (ti)=σ
2+2σ2I{ti≥ 3n

4 }
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4.2 Monte Carlo Results

Tables 6 through 9 present the results of the Monte Carlo simulations. In Table 6 we
present the rejection frequencies of the test when the mean has four different types
of heterogeneity: linear, quadratic, exponential and logistic function of time t. The
power of the test is reasonably high for all scenarios, and it increases with sample size.
Moreover, the actual size of the test for σ2 constant is close to the nominal. In addition
the test seems to have remarkably high power against the alternative of a linear or a
quadratic time-trend even in a sample of n = 60 observations. The simulated power
for the quadratic trend is 66.5%, 99.50% and 100% when n = 60, 80, 100, respectively.
We conclude that the closer is the functional form of the time trend to the polynomial
family, the better is the performance of the test. On the other hand, the exponential
function is less detectable and requires a sample size of n equal to 80 or greater in
order to have satisfactory power. Overall we see from Table 5 that even for weak
mean time trends the performance of the test is promising.

Table 6: Trending Mean
Trend Function α% H0 : µ constant H0 : σ

2 constant
n=60 n=80 n=100 n=60 n=80 n=100

Linear trend 1 11.28 30.85 60.47 2.13 1.69 2.23
µ(ti)=µ+0.02·ti 5 27.89 57.99 83.86 6.06 5.13 6.35

10 40.22 72.03 91.86 10.05 8.98 10.86
Quadratic trend 1 18.93 81.41 99.86 1.36 1.75 2.34

µ(ti)=µ+10
−3·ti+5·10−4·t2i 5 48.15 97.35 100 4.67 5.20 6.46

10 66.52 99.50 100 7.87 8.97 10.55
Exponential trend 1 5.06 15.18 40.63 2.17 1.69 2.24

µ(ti)= exp(10
−2ti)+µ 5 15.05 35.31 67.28 6.30 5.11 6.44

10 24.15 49.75 80.30 10.47 8.96 10.86
Logistic trend 1 34.50 31.42 54.05 2.39 2.01 3.03

µ(ti)=(
5

1+exp(−ti4 )
)+µ 5 56.52 50.25 61.89 7.02 6.43 7.42

10 65.06 59.47 66.98 12.15 10.41 13.53
It reports the rejection percentage for the null hyp othesis in R=10,000 exp erim ental tria ls, for each scenario .

Ideally for "µ constant" should b e as close to 100 as possib le and for "σ2 constant" close to a%

The results of the proposed testing procedure in the presence of variance het-
erogeneity are summarized in Table 7. The power is again reasonably high for the
polynomial time trends but for the exponential trend the testing procedure requires
larger sample sizes to perform well. Another interesting point to note is the ability
of the procedure to correctly distinguish between a smooth mean trend and a trend
in the variance. It is noticeable that there are some size distortions in testing for µ
constant.
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Table 7: Trending Variance
Trend Function a% H0 : µ constant H0 : σ

2 constant
n=60 n=80 n=100 n=60 n=80 n=100

Linear trend 1 1.79 2.91 4.99 13.57 24.83 36.62
σ2(ti)=σ

2+0.05·ti 5 7.29 10.29 14.12 30.02 48.70 62.43
10 13.19 16.77 22.43 41.87 62.49 75.27

Quadratic trend 1 8.53 14.72 20.36 44.68 52.28 60.40
σ2(ti)=σ

2+0.03·ti+0.01·t2i 5 28.37 30.45 38.81 67.35 73.38 79.79
10 40.14 40.47 49.38 76.92 81.97 87.33

Exponential trend 1 2.53 3.31 7.34 10.41 24.37 46.35
σ2(ti)=σ

2+exp(0.02·ti) 5 9.29 10.54 19.07 23.81 45.86 69.07
10 15.42 17.07 28.14 33.14 57.59 78.80

It reports the rejection p ercentage for the null hypothesis in R=10,000 exp erim ental tria ls, for each scenario .

Ideally for "µ constant" should b e close to a% and for "σ2 constant" as close to 100% as possib le

Finally we report Monte Carlo results which illustrate the ability of our test to
detect single, discrete breaks in the mean or variance. The simulations are performed
by considering a break of two standard deviations introduced at the first, second and
third quarter of the sample.

Table 8: Single Mean Break
Mean Break α% H0 : µ constant H0 : σ

2 constant
n=60 n=80 n=100 n=60 n=80 n=100

1 79.90 90.40 96.42 1.30 1.42 1.49
µ(ti)=µ+2σ·I{ti≥n

4} 5 93.91 98.74 99.35 5.10 4.05 4.10

10 97.00 99.72 99.89 7.80 6.68 7.21
1 16.60 26.89 34.14 0.79 0.83 1.02

µ(ti)=µ+2σ·I{ti≥n
2} 5 50.11 63.61 72.17 3.09 3.46 3.46

10 71.41 82.65 88.17 5.71 5.73 6.54
1 6.33 4.99 5.48 1.24 1.12 1.56

µ(ti)=µ+2σ·I{ti≥ 3n
4 } 5 23.11 21.62 21.77 4.45 3.79 4.00

10 39.76 39.50 40.47 7.65 6.48 7.16
It reports the rejection p ercentage for the null hypothesis in R=10,000 exp erim ental tria ls, for each scenario .

Ideally for "µ constant" should b e as close to 100 as p ossib le and for "σ2 constant" close to a%

The results reported in Tables 8 and 9 suggest that even though the test is designed
to detect smooth trends, it is also effective in detecting mean and/or variance shifts
in the series. As before the power of the test increases with the sample size n; the
test has higher power when the break is introduced earlier in the sample.
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Table 9: Single Variance Break
Variance Break a% H0 : µ constant H0 : σ

2 constant
n=60 n=80 n=100 n=60 n=80 n=100

1 1.78 1.10 2.13 4.81 6.88 15.35
σ2 (ti)=σ

2+2σ2I{ti≥n
4} 5 7.49 5.61 7.74 17.83 25.09 43.27

10 14.31 10.21 14.37 31.31 41.66 61.82
1 3.42 2.78 4.10 8.10 9.24 11.78

σ2 (ti)=σ
2+2σ2I{ti≥n

2} 5 11.66 9.52 12.24 24.03 28.18 33.50

10 19.76 15.31 19.54 37.33 43.56 51.85
1 8.66 6.84 9.50 23.30 23.27 23.54

σ2 (ti)=σ
2+2σ2I{ti≥ 3n

4 } 5 20.49 17.02 21.56 36.82 36.68 37.34

10 28.85 24.56 29.81 44.22 44.97 46.57
It reports the rejection p ercentage for the null hypothesis in R=10,000 exp erim ental tria ls, for each scenario .

Ideally for "µ constant" should b e close to a% and for "σ2 constant" as close to 100% as possib le

5 Empirical Illustration

The proposed resampling test procedure is applied to a number of macroeconomic
series in order to assess its ability to detect a variety of forms of non-stationarity.
The empirical analysis intents to complement the simulation evidence in assessing
the effectiveness of the proposed testing procedure.
The empirical investigation of these macro-series is based on the AR(p) specifi-

cation which is a simple extension of the AR(1) model given in table 1, i.e. E(yt |
σ(Y0

t−1)) = α0+
Pp

k=1 αkyt−k. The focus of the empirical modeling is the stationarity
of the first two moments of the process {yt, t ∈ T}. The proposed testing procedure is
applied to the ‘de-memorized’ series which result from estimating an adequate AR(p)
model and taking the residuals. The choice of p is based exclusively on statistical
adequacy grounds, ensuring that the residuals from the AR(p) do not have any ‘lin-
gering’ temporal dependence. We do not use Akaike-type information criteria for the
choice of p because when the estimated model is misspecified such procedures can
give rise to very misleading inferences; see Andreou and Spanos (2003). For com-
parison purposes we apply a variety of other structural change tests proposed in the
literature. In particular we apply the SupF, ExpF, AveF test statistics proposed by
Andrews and Ploberger (1994) and the approximations of these tests proposed by
Hansen (2001).
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5.1 Data

We consider four macroeconomic series exhibiting a variety of forms of non-stationarity
in the mean and/or the variance:
(i) Quarterly Yen/US dollar Exchange Rate1 (see fig. 1(a)) over the period
1982Q2-2005Q2,
(ii) Monthly European Total Turnover Index2 (see fig. 2(a)) over the period
01/1995 - 08/2004,
(iii) Annual US Industrial Production Index1 (see fig. 3(a)) over the period
1921-2004,
(iv) Quarterly US Investment3 (see fig. 4(a)) over the period 1963Q2-1982Q4.
For the de-memorized US/Japan Exchange Rate series in fig. 1(b) we can clearly

discern some variance heterogeneity; the variance of the series appears to be decreas-
ing over time, while its mean seems to be stable over time. On the other hand the
de-memorized EU Total Turnover Index series (see fig. 2(b)) seems variance station-
ary around a trending mean. The Industrial Production series (see fig. 3(b)) seems to
have constant mean but a non-constant variance. Finally, the US Investment series
(see fig. 4(b)) seems to exhibit both mean and variance heterogeneity. Note that all
the above are educated conjectures based on eyeballing the time plots of the series.
In order to assess the heterogeneity characteristics of the series we need to formally
test these conjectures.

 

Fig. 1(a): US/Japan Exchange Fig. 1(b): Dem US/Jp Exchange

1Obtained from the St. Louis Reserve Federal Bank database
2Obtained from the Monthly Bulletin of the European Central Bank.
3Obtained from the Bureau of Economic Analysis.
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Fig. 2(a): EU TT Index Fig. 2(b): Dem EU TTI
 

Fig. 3(a): US Ind Prod.

 

Fig. 3(b): Demem Ind Prod.

Fig. 4(a): US Invest. Fig. 4(b): Dem Invest

5.2 Empirical Results

Using statistical adequacy in choosing the appropriate lag length, for the US/Japan
Exchange Rate, the US Industrial Production and the US Investment series p = 2,
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whereas for the EU/TTI series p = 3. On the de-memorized series we apply the pro-
posed testing procedure based on a Rolling OverlappingWindow Estimator (ROWE);
see table 10.

Table 10: Empirical Results
Variable Sample Size l H0 : µ constant H0 : σ

2 constant
US/Japan Exchange 91 7 0.403 3.495

(0.806) (0.011)**
EU Total Turnover 116 10 2.190 0.499

(0.075)* (0.737)
US Ind Production 84 7 0.114 2.716

(0.977) (0.036)**
US Investment 80 6 3.698 1.864

(0.009)*** (0.127)
Notes:

1. Entries are test statistics with p-values in parentheses
2. l is the rolling window length
3. (*), (**) , (***) refer to the rejection of the null hypothesis

at 10%, 5% and 1% level of significance, respectively.

The testing results given in Table 8, indicate that the US/Japan Exchange Rate
series is variance heterogeneous, while we have no evidence against the mean homo-
geneity assumption. For the EU TTI series our test indicates the presence of some
mean heterogeneity. For the US Industrial Production series the test indicates no
evidence against mean homogeneity, but it rejects variance homogeneity. Finally, the
testing procedure clearly rejects the mean homogeneity assumption for the US Invest-
ment series while it doesn’t provide much of support for the variance homogeneity.
For comparison purposes we apply the Andrews and Ploberger (A&P) (1994)

statistics and their approximations provided by Hansen (2000) to the same AR(p)
models estimated above. The results from the Andrews & Ploberger testing proce-
dures are given in Tables 11 through 14; see appendix B. The main conclusion is that
the A&P statistics did not detect any parameter heterogeneity in the four macro-
economic series; the only hint that there might be something worth investigating
further was given for the EU Total Turnover Index series. This result is not very
surprising because the A&P statistics are designed to capture a particular form of
non-stationarity, structural breaks.

6 Conclusion

A newmisspecification testing procedure for assessing the presence of non-stationarity
in the primary moments of a stochastic process is proposed. Motivated by the fact
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that model parameters are always functions of the underlying primary parameters,
the proposed test is based on rolling (overlapping) window estimates of the means and
the variances of the series involved. To be able to enhance the systematic information
contained in each window of observations we use the maximum entropy bootstrap as
an appropriate form of resampling in this context. The rationale for our perspective
is provided by the fact that one needs to establish the presence of non-stationarity in
the primary moments, before proceeding to establish its form; the latter cannot be
established using a misspecification test. The effectiveness of the proposed procedure
is assessed using Monte Carlo simulations and empirical examples of actual time series
data. The Monte Carlo simulations and the empirical examples indicate that the
proposed testing procedure has the capacity to detect non-stationarity even for small
samples, and is able to distinguish between mean or/and variance non-stationarity.
Although the proposed testing procedure is based on general forms of non-stationarity,
it is shown to have good power against abrupt changes in the underlying moments.
This testing procedure can be used in conjunction with traditional tests to explore a
broader variety of possible departures from the t-homogeneity assumption.
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7 Appendix A - Monte Carlo simulations

Table 2(b): Empirical Size for Andrews & Ploberger statistics
for sample size n =100, based on R=10,000 replications

Test Statistic
Andrews
p-value

bootstrap
p-value

Hetero-Corrected
p-value

SupF 8.38 4.36 3.54 3.18
ExpF 2.61 3.88 2.80 2.51
AveF 2.01 2.11 2.29 3.31

Type I error for α = 1%

Test Statistic
Andrews
p-value

bootstrap
p-value

Hetero-Corrected
p-value

SupF 8.38 25.170 24.800 23.540
ExpF 2.61 25.110 21.770 21.800
AveF 2.01 19.940 19.290 22.180

Type I error for α = 10% ∗

It rep orts the p ercentage of fa lse rejections in R=10,000 exp erim ental tria ls.

Ideally th is shou ld b e equal to a%

24



Table 5: Empirical Size for the resampling testing procedure
Type I error based on 10,000 replications

Sample Window H0: µ constant H0: σ2 constant
Size Length 1% 5% 10% 1% 5% 10%

n = 50 4 1.21 5.42 9.75 1.01 4.75 8.54
5 3.51 9.65 14.62 1.82 8.21 12.57

n = 60 4 0.86 3.27 6.43 1.32 4.55 7.79
5 1.65 5.82 10.52 2.12 6.13 10.16
6 3.07 8.74 14.44 3.11 5.09 13.56

n = 70 4 0.28 2.87 5.18 1.15 4.25 7.18
5 0.91 4.68 9.05 2.10 4.81 9.77
6 1.75 6.97 11.76 3.13 7.71 11.92

n = 80 5 0.65 3.78 7.11 1.83 4.45 7.82
6 1.39 5.49 9.66 1.71 5.09 9.02
7 3.35 7.04 11.69 2.87 7.32 13.51

n = 90 6 1.21 3.90 6.71 1.10 4.62 8.11
7 1.42 5.61 9.68 1.58 5.99 10.46
8 2.21 7.69 11.98 2.05 7.78 12.39

n = 100 7 1.39 4.78 8.51 1.71 5.10 8.84
8 1.98 6.57 11.06 2.26 6.37 11.02
9 3.10 7.72 12.07 2.59 8.42 13.21

n = 110 8 1.81 4.89 8.98 1.21 4.69 8.76
9 2.23 5.69 10.81 1.91 5.38 11.65
10 2.89 7.75 13.11 2.75 8.75 14.28

n = 120 9 1.35 3.75 7.78 2.18 5.89 8.97
10 2.12 5.31 9.87 2.51 6.05 10.91
11 2.63 6.98 12.31 3.81 9.71 14.02

It rep orts the p ercentage of fa lse rejections in R=10,000 exp erim ental tria ls.

Ideally th is should b e equal to a%
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8 Appendix B - A&P tests, empirical results

Table 11: Exchange Rate Japan/US

Test Statistic
Andrews
p-value

bootstrap
p-value

Hetero-Corrected
p-value

SupF 6.4256 0.417 0.338 0.572
ExpF 1.1671 0.465 0.451 0.591
AveF 1.9141 0.417 0.403 0.425

Table 12: European Total Turnover Index

Test Statistic
Andrews
p-value

bootstrap
p-value

Hetero-Corrected
p-value

SupF 9.7149 0.277 0.285 0.086
ExpF 2.4727 0.269 0.335 0.101
AveF 2.8780 0.438 0.489 0.185

Table 13: US Industrial Production

Test Statistic
Andrews
p-value

bootstrap
p-value

Hetero-Corrected
p-value

SupF 2.0209 0.999 0.993 0.977
ExpF 0.45317 0.926 0.964 0.908
AveF 0.79433 0.907 0.961 0.884

Table 14: US Investment

Test Statistic
Andrews
p-value

bootstrap
p-value

Hetero-Corrected
p-value

SupF 3.3021 0.992 0.980 0.995
ExpF 0.27832 1.000 1.000 1.000
AveF 0.39708 1.000 1.000 1.000
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