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ABSTRACT 

We investigate nonparametric regression techniques to estimate the distribution of 

the LD100α , 0 <α < 1, the lethal dose where 100α % of subjects show a response. Kernel 

methods are used to estimate the resulting response probability curve using real and 

simulated data. We apply and extend these kernel-based estimation procedures to a 

problem in evolutionary genetics where the prevalence of a genetic trait is mapped. In 

this setting, distance serves as a dose and the response probability curve is called a cline. 

We investigate the distributional properties of kernel estimates of LD100α  with special 

attention to the LD20, LD80, and the distance between them, called the cline width. 

Confidence intervals are constructed for LD20, LD80, and the cline width and small 

sample properties are investigated through series expansion and simulation.  
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CHAPTER 1 

INTRODUCTION 

The motivation of this dissertation stems from a research problem in evolutionary 

genetics in describing the geographic patterns of genetic diversity in a species. For 

example, Jaarola et al. (1997) mapped the geographic prevalence of certain genetic 

markers of voles. The prevalence of the genetic marker in a population is modeled by a 

monotonic sigmoidal-shaped curve p(x) dependent on a distance x from a fixed point. 

This represents the probability of a response and in the biological literature, such a curve 

is called a cline. It is in essence a dose response curve with dose corresponding here to 

distance. Biological assays are commonly used to study the dose response of the toxic 

effects of a chemical. The analysis often results in a similar sigmoidal-shaped dose-

response curve p(x) for a dose level x, showing that the toxic effects increase with 

increasing levels of the doses. The observed reaction yi of the ith subject (i = 1, …, n) at 

dose level xi is assumed to follow a Bernoulli (1, p(xi)) distribution, so that yi = 1 

represents the presence of a response and yi = 0 represents the absence of the response. Of 

interest is the estimate of p(x) and functionals of p(x), LD100α , for 0 < α  < 1, the lethal 

dosage (LD) level at which 100α % of the population dies. Of primary interest to 

biomedical researchers is the estimation of the LD50. In the area of carcinogenic risk 

assessment, values of α  less than 0.5 are also of interest. 
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The structure of a cline as a dose response curve in evolutionary biology yields 

information about gene flow and speciation mechanisms. Evolutionary biologists are 

interested in the extent of similarity of clines estimated by different genetic markers 

(Brumfield et al., 2001). Of concern are measures of the location and width of the cline. 

The location of the cline is defined as the LD50, here the distance that corresponds to a 

50% prevalence of the marker studied. The cline width is the distance between the LD20 

and the LD80, here the distances that correspond to a 20% and 80% marker prevalence. 

These measures provide valuable information to biologists regarding the extent of a zone 

where two species might hybridize, yielding crucial data for genetic differentiation. 

Dose-response curves can be modeled parametrically and nonparametrically. 

Common parametric approaches, shown in detail below, include the probit models (Bliss, 

1934; Finney, 1978) and logistic regression (Berkson, 1944). Various nonparametric 

methods for estimating the LD100α  of the dose-response curve are also briefly reviewed 

below. These include the Spearman-Karber estimator and the trimmed Spearman-Karber 

estimator (Hamilton, 1979; James, James, and Westenberger, 1984), robust estimators 

such as the L, M, and R-estimators (Miller and Halpern, 1980; James, James, and 

Westenberger, 1984) and smoothing splines (Brumfield et al., 2001). We will conclude 

the review with kernel estimators and methods (Müller and Schmitt, 1988; Hart, 1997) 

that we will examine in much more detail in the following chapters. 

The probit model assumes that p(x) is a normal cumulative distribution function. 

The probit curve 1p  is 






 −
Φ=

σ
µx

xp )(1 , where Φ  is the normal cumulative distribution 
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function, µ  is the location, and σ  is the slope parameter. The probit has the following 

properties: 

µ=50logLD  and 

σπ2

1
)(log' 501 =LDp . 

Maximum likelihood estimators µ̂  and σ̂  can be computed from the following likelihood 

function: 

∏
=

−−=
n

i

y
i

y
i

ii xpxpL
1

1
11 ))(1()(),( σµ . 

Dose response curves have been traditionally modeled also using logistic 

regression. In this approach the frequency p(x) at distance x, is modeled as: 

x

x

e

e
xp βα

βα

+

+

+
=

1
)( , 

where α  and β  are parameters to be estimated. The maximum likelihood estimates α̂  

and β̂  are obtained by maximizing the log-likelihood 

 
{ }∑

=

−−+=
n

i
iiii xpyxpyl

1

)](1log[)1()](log[),( βα . (1.1) 

To fit the logistic regression model, the frequencies are transformed to the form: 

x
xp

xp
βα +=









− )(1

)(
log . 

The transformed frequencies 








− )(1

)(
log

xp

xp
 are called the logits of p(x). These logit 

values can be fit by maximum likelihood using an iterative weighted linear regression on 

distance d (McCullagh and Nelder, 1989). 
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Nonparametric methods designed for estimating the LD50 were first proposed by 

Spearmen (1908) and Thompson (1947). Traditional nonparametric techniques for 

estimating only LD50 include the Spearman-Karber estimator and the trimmed Spearman-

Karber estimator (Hamilton, 1979; James, James, and Westenberger, 1984). When the 

mean of the population tolerance distribution exists, the Spearman-Karber estimator is the 

mean of the empirical tolerance distribution defined by the following: 

,)(
~

 ˆ  

 ∫
∞

∞−
= xFdxSKθ  

where )(
~

xF  is the empirical response curve. If the observed proportion of responses to 

first dose 1x  is 1p  = 0 and the response proportion of the last dose kx  is kp  = 1, then the 

Spearman-Kaber estimator can be written as 

∑
=

++ +−=
k

i
iiiiSK xxpp

1
11 .2/))((θ̂  

The 100α%-trimmed Spearman-Karber estimator is defined by trimming 100α% from 

each tail of the empirical tolerance distribution and taking the mean of the (appropriately 

normalized) remaining central part of the distribution: 

,
21

)(
~

 
ˆ

)1(
~

 

~
 

%100

1

1

α
θ

α

α
α −

=
∫

−−

−

F

F
SK

xFdx
 

0 ≤  α  < 0.5. The 50%-trimmed Spearman-Karber estimator is the median, which is the 

limit of the 100α%-trimmed Spearman-Karber estimator as α  →  0.5. These 

nonparametric Speaman estimators require the strong assumption of point symmetry of 

p(x). That is, p(log LD50 - x) = 1 – p(log LD50 + x). 
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Other nonparametric methods for estimating LD50 include robust estimators. 

Different classes of robust estimators are the L, M, and R-estimators. L-estimators are 

linear combinations of order statistics. Miller and Halpern (1980) defined L- and M-

estimators of the LD50 for quantal bioassay to be explicit or implicit functionals of the 

empirical tolerance distribution, the functionals being the same as those applied to the 

empirical distribution function in the iid case. The L-estimator for quantal bioassay is 

defined by: 

∑
+

−=
−−∆+=

1

10 ),ˆˆ)(ˆ(ˆ
k

ki
iiiL pppiJxxθ  

where ∆x is the equal dose spacing, 0x  is the middose, 11ˆ −−−− ≡ kk pp  =  0 and 11ˆ ++ ≡ kk pp  

= 1 by definition. The function J(u) is defined on the interval [0,1] and is symmetric 

about ½ with ∫ =
1 

0 
.1)( duuJ   

M-estimators are maximum likelihood type estimators. The M-estimator, Mθ̂  for 

quantal bioassay (Miller and Halpern, 1980) is defined to be the root of the equation: 

 
∑

+

−=
− =−Θ−Ψ

1

1 ,0)ˆˆ)((
k

ki
iii ppx  (1.2) 

where 11ˆ −−−− ≡ kk pp  = 0 and 11ˆ ++ ≡ kk pp  = 1 by definition. The Ψ -function is a 

generalization of the function – )(/)(' xfxf , which gives the maximum likelihood 

estimator for a location parameter θ . Iterative algorithms are necessary to find the root of 

(1.2). If the Ψ -function is non-monotone, problems can arise with the uniqueness of the 

root of (1.2) and the convergence of the iterative procedure.  
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R-estimators are estimators derived from rank tests. James, James, and 

Westenberger (1984) defined R-estimators for the LD50 in quantal bioassay. Let J be a 

nondecreasing integrable function defined on (0, 1), such that J(1-t) = -J(t) and J is not 

identically equal to zero. The R-estimator θ̂  based on J is the solution of the equation 

.0)(
~

 
2

)2(
~

1)(
~

 

 
=







 −−+
∫

∞

∞−
xFd

xFxF
J

θ
 

Müller and Schmitt (1988) compared the probit maximum likelihood estimator 

and kernel estimators in quantal bioassay for effective doses LD100α  where α  = .01, .05, 

.10, and .50. For the kernel method, they presented two asymptotically consistent 

approaches for constructing confidence intervals for the estimated LD100α . For 

constructing confidence intervals for LD50, Kelly (2001) presented three methods – 

Fieller’s method, profile likelihood, and the bootstrap. In the simulation, none of the three 

methods were found to be completely satisfactory for providing confidence intervals for 

LD50 unless very large sample sizes are taken. 

The most recent work on genetic cline estimation is that of Brumfield et al. (2001) 

using smoothing splines. Smoothing splines are flexible curves with various degrees of 

smoothness specified by a smoothing parameter. These curves are developed with an 

overall view of minimizing a penalized likelihood function. In this approach a log-

likelihood similar to that given by Equation (1.1) in the logistic regression discussion is 

penalized with a measure of roughness of the resulting fitted curve. The function p is 

chosen that minimizes the negative penalized log-likelihood function 

 [ ]2

1

( ( )) ( )
n

i
i

l p d n p d ddλ
=

′′− +∑ ∫  
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Here the standard likelihood is penalized for lack of smoothness. The integral measures 

the “roughness” of the chosen function p. A rough function has a rapidly changing slope. 

The overall rate of change of the slope of p can be measured by the integration of the 

square of its second derivative. The parameter λ is called the smoothing parameter which 

can also be indexed by an equivalent degrees of freedom. These equivalent degrees of 

freedom indicate the number of parameters needed to specify a function of the desired 

roughness or smoothness. Specifying values for either governs how much smoothness or 

roughness is permitted in the resulting function p. As λ→∞ larger penalties for roughness 

are imposed, the degrees of freedom approach 2 indicating that two parameters (a slope 

and an intercept) are needed. The resulting p that minimizes the negative penalized log-

likelihood becomes smoother, with its logit approaching a straight line. As λ→0, and 

little penalty is imposed for roughness, the degrees of freedom grow, the minimizing p 

can be rougher, eventually interpolating the data points. Values of λ between these 

extremes produce smooth curves that can closely model the patterns in the data. 

In the approach of Brumfield et al. (2001) the presence of a strong monotonic 

pattern of many genetic markers and the belief that a smooth monotonic function best 

describes the cline, often results in an assumption of monotonicity of the fitted cline. 

Algorithmically, as the equivalent degrees of freedom are reduced from a large value 

down to the value of 2, the resulting smoothing spline fits go from being a non-

monotonic interpolating function to a monotonic logistic fit (specified by a slope and 

intercept). The approach of Brumfield et al. (2001) was to examine the largest degrees of 

freedom that results in a monotonic fitting function.  
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Smoothing splines estimate the underlying genetic cline in a way that allows for 

an explicit consideration of the overall goodness of fit of the cline to the data. As flexible 

as this approach can be, its solution must come from a computational minimization 

procedure. An explicit formula is generally not available. Kernel estimation methods 

provide for this explicit estimation approach. These methods estimate the cline at a given 

point by a weighted average of “local” observations (Green and Silverman, 1994).  We 

will introduce these kernel methods as developed by Müller and Schmitt (1988) and Hart 

(1997). Estimates of the response function and asymptotic distributional properties for the 

functionals LD20, LD80, and the cline width will be presented. 

Chapter 2 of this dissertation provides the theoretical background of kernel 

estimation. Based on the distributional properties of the kernel estimator, we developed 

the distributional properties of LD20, LD80, and the cline width. Chapter 3 presents seven 

methods for computing the confidence intervals for the kernel estimates. The first two 

methods are adapted from Müller and Schmitt (1988). Müller and Schmitt assumed that 

the bias could be neglected when computing confidence intervals. In the third method, we 

extended the results of Müller and Schmitt by correcting the confidence intervals for bias. 

The next four methods are based on the distributional properties developed in Chapter 2. 

To examine the distributional results and to evaluate the performance of the 

kernel estimator for LD20, LD80, and the cline width, we performed a simulation study. 

Through generating replicate samples from the probit data, we examined the 

distributional properties of the kernel estimates. For various sample sizes, distributions of 

distance, and kernels, we applied each of the seven methods presented in Chapter 3 to 

compute the corresponding 95% confidence intervals for the estimates. The performance 
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review was based on the average length of the confidence intervals, the midpoint of the 

intervals, and the coverage probabilities. Results of the simulations are shown in Chapter 

4.  

We applied the kernel approach to estimate LD20, LD80, and the cline width for 

the field vole genetic data of Jaarola (1997). The results of the estimates and their 

corresponding 95% confidence intervals are presented in Chapter 5. We conclude our 

findings in the last chapter, where we discuss topics for future research. 
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CHAPTER 2 

KERNEL ESTIMATION 

The underlying assumption for our model is that the observed trait yi of the ith 

individual (i = 1,…, n) at distance xi follows a Bernoulli distribution with probability p(xi) 

given by 





−==

==

).(1)0(

)()1(

ii

ii

xpyP

xpyP
 

Distances xi’s are assumed to have density f(x). The Bernoulli trails are assumed to be 

independent for different individuals. The function p is the dose-response curve. Our goal 

is to estimate the distribution of LD20 and LD80 where 20% and 80% of the individuals 

possess a given trait. We are also interested in estimating the distribution of the distance 

between LD20 and LD80 called the cline width. We use a nonparametric kernel method in 

the estimation. 

Kernel estimation is a nonparametric smoothing technique. Kernel estimators 

smooth out the contribution of each observed data point over a local neighborhood of that 

data point. We consider the Gasser and Müller kernel estimator in our study, defined as 

 du
h

ux
Ky

h
xp

i

i

s

s

n

i
i  

1
)(ˆ

 

 
1 1

∫∑
−








 −
=

=

 (2.1) 

where h is called the bandwidth that controls the smoothness of )(ˆ xp ; K is a function 

called the kernel; du
h

ux
K

h

i

i

s

s
 

1  

 1
∫

−








 −

 
is the weight function; and 00 =s , 

2
1++

= ii
i

xx
s ,  



 
 

11 
 

 

ns  = 1. The distances xi are assumed to be uniformly distributed, that is,  

xi  = (i – 1) / (n – 1), i = 1, …, n.  

The following conditions of the kernel K are required: 

• K has support (-1, 1); 

• K is continuous; 

• ∫−
=

1 

1 
1 )( duuK ; 

• ∫−
=

1 

1 
0 )( duuuK . 

These conditions are necessary to have desirable consistency properties for the mean, 

variance, and bias. Epanechnikov (1969) found an optimal kernel by minimizing the 

mean squared error of the Gasser and Müller kernel estimator subject to the constraints 

that K has finite support and zero first moment. This optimal kernel  ( )21
4

3
)( uuK −=   

for -1 ≤  u ≤  1 and 0 otherwise is known as the Epanechnikov kernel.  

Distributional Properties of Kernel Estimator 

To simplify the presentation of formulas, we define 

∫∫ −−
==

1 

1 

221 

1 

2  )(   and    )( duuKuduuKJ KK σ . 

The expected value of the Gasser and Müller kernel estimator (Gasser and Müller 1979; 

Hart 1997) can be represented as 








+






 −
= ∫ n

Odu
h

ux
Kup

h
xpE

1
 )(

1
))(ˆ(

1 

0 
, 

where 
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duupxp
h

ux
K

hn
O i

n

i

s

s

i

i

 )]()([
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1

 

 1

−






 −
=







 ∑∫
= −

 

are terms of order 1/n. The variance of the kernel estimator (Gasser and Müller 1979; 

Hart 1997) can be represented as 

 






+






+=
22

2 11

)(

1
))(ˆ(

hn
O

n
OJ

xfnh
xpVar K

σ
 (2.2)   

In ))(ˆ( xpVar , 









−

−
=





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From this representation we can see that for the variance to tend to 0, we need n to tend to 

∞. Also, a smaller h means that we have fewer design points to be averaged, and 

therefore results in a larger variance. Equation (2.2) indicates that even if h is small, the 

variance will tend to 0 when nh tends to ∞. The design density f(x) also plays a role in the 

size of the variance; the variance will be small when the density of the design points is 

large. The bias of the Gasser-Müller estimator (Gasser and Müller 1979; Hart 1997) can 

be represented as 

 )()()("
2

)())(ˆ( 122
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−++=− nOhoxp
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xpxpE Kh σ  (2.3) 
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−

. 



 
 

13 

  

For the bias to be zero, it is necessary for h to tend to 0. For 2
Kσ  positive, the kernel 

estimator tends to underestimate )(xp  when )(" xp  is negative (peaked at x). Conversely, 

the kernel estimators overestimates )(xp  when )(" xp  is positive. The bias is largest at 

the sharpest peak or valley. The fact that the bias does not depend on the design density, 

f(x) makes the Gasser-Müller kernel estimator more appealing than other types of Kernel 

estimators such as the Nadaraya-Watson estimator (Nadaraya, 1964 and Watson, 1964). 

From Equations (2.2) and (2.3), we have 






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+






+=
22

2
2/1 11
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hn
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n
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xf
xpnhVar K

σ
 and 

).()()("
2

))())(ˆ()(( 122
2/52/1

2/1 −++=− nOhoxp
hn

xpxpnhE Kh σ  

As stated in Müller and Schmitt (1988), if 25 τ→nh as n ∞→  for some ≥  τ  0 then 

 .
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))(1)((
   ,

2
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2
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






 −
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xf

Jxpxp
xpNxpxpnh KKD σ

τ  (2.4) 

Distributional Properties of LD100α  
 

Based on the known distributional properties of the Kernel estimator, we follow 

Müller and Schmitt (1988) and Hart (1997) and derive the distributional properties of 

LD100α . From the distribution of )(ˆ xp  in (2.4), we define Zn,h which from standard 

results asymptotically follows a standard normal distribution: 

)1 ,0(
)](ˆ[

)](ˆ[)(ˆ
, N
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xpExp
Z D

h

hh
hn →

−
= . 
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Define 

,
)](ˆ[

)()](ˆ[
,
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B

h

h
hn

−
=  

and we have the following the quantity 

hnhn

h

h BZ
xpVar

xpxp
,,

)](ˆ[

)()(ˆ
+=

−
. 

The numerator in hnB ,  is the bias of the kernel estimator as given in Equation (2.3). The 

square of the denominator in hnB ,  is computed as 
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xpVar σ . (2.5) 

By minimizing the mean squared error of the kernel estimator (Hart, Corollary 3.1), we 

obtain the optimal local bandwidth choice, h* as follows. The mean squared error of the 

kernel estimator (Hart) is 

M(x;h) = M
~ (x;h) + R(n,h), 

where 

42
42

))("(
4)(

1
);(

~
kk xp

h
J

xfnh
hxM σ

σ
+=  

 and 

214 )()()(),( −− ++= nhOnOhohnR . 

The first term in );(
~

hxM  is the variance as shown in Equation (2.2); the second term is 

the squared bias as shown in Equation (2.3). When h decreases, the variance increases but 

the squared bias decreases. To balance the contribution of the variance and the squared 

bias to the mean squared error, h can be chosen to minimize M(x;h). To find the optimal 
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local bandwidth, we minimize the dominant term );(
~

hxM  by differentiating );(
~

hxM  with 

respect to h, setting the derivative to zero, and solving for h. We obtain 

0))("(
)(

);(
~ 425

2

=+−= kk xphJ
xnf

hxM
dh

d
σ

σ
. 

Solving for h leads to the following optimal local bandwidth:  
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  (2.6)  

Asymptotically, )1(2 αασ −→  as n → ∞ . The optimal bandwidth is proportional to 5
2

σ , 

the more variation in the data, the larger the optimal bandwidth. The optimal bandwidth 

is inversely proportional to the fifth root of the design density, the curvature, and the 

sample size. When the design is dense, the optimal bandwidth is small. When p(x) has a 

lot of curvature, the second derivative of p(x) changes very rapidly; we need to average 

the data in a smaller neighborhood, resulting in a small optimal bandwidth. When the 

sample size is large, the optimal bandwidth is relatively small. 

Let 
5/1

42)](")[(
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J
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. Taking 5/1−= Cnh  and using Equations (2.3) and (2.5), hnB ,  

becomes 
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We will estimate the quantity Bn,h for constructing the confidence interval. 

Ignoring the terms of 







n

O
1

 and smaller, Bn,h is asymptotic to 
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and 

 ).1 ,0(
)](ˆ[

)()(ˆ
, NB

xpVar

xpxp D
nC

h →−
−

 (2.8) 

Let ααθ 100LD= . Applying Taylor’s Theorem to the first order, we have 

)ˆ)(('ˆ)(ˆ)ˆ(ˆ ααααα θθθθθ −+= ppp , 

 
)('ˆ

)ˆ(ˆ)(ˆˆ
α

αα
αα θ

θθ
θθ

p

pp −
−=− . (2.9) 

We will show that 
)('ˆ

)ˆ(ˆ)(ˆ

α

αα

θ
θθ

p

pp −
−  →  

)('

)()(ˆ

α

αα

θ
θθ

p

pp −
− . In other words, we will show 

)ˆ(ˆ αθp → )( αθp  and )('ˆ αθp → )(' αθp .  

First, Müller and Schmitt (1988) show that )ˆ(ˆ αθp → )( αθp . They state the following in 

Assumption A(j): let K(j) be Lipschitz continuous on the real line and 

0/loglim 12 =+

∞→

j

n
nbn . From Theorem 3 (Müller and Schmitt), assume that αθ  ]1,[ δδ −∈  

and that Assumption A(j) holds for j = 0, 1, then αα θθ →ˆ    a.s.  as n .∞→  

If αα θθ →ˆ  a.s.  as n ∞→ , then from (2.9), αα θθ −ˆ → 0 and )ˆ(ˆ αθp → )(ˆ αθp . 

Further, by the Weak Law of Large Numbers, )(ˆ αθp → )( αθp . Thus, )ˆ(ˆ αθp → )( αθp . 

Next, )('ˆ αθp → )(' αθp  follows from Theorem 2 (Müller and Schmitt). 

Thus,  
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Using the results from Equation (2.8), we have 
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Thus, ignoring terms of order 1/n,  
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Distributional Properties of Cline Width 

Applying the results from Müller and Schmitt, we derive new results for the 

distribution of the cline width. As defined in the beginning of this Chapter, cline width is 

the distance between the locations that result in 20% and 80% prevalence, computed as 
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the difference between LD20 and LD80. From the results of Equation (2.15), the 

distribution of the cline width is 

.)ˆ,ˆ(2
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 (2.16) 

The computation of )ˆ,ˆ( 8.2. θθCov  is shown in the next section. 

Covariance of .2θ̂  and .8θ̂  

The variance of the cline width is computed as 

Var( 2.̂θ ) + Var( 8.̂θ ) – 2 Cov( 2.̂θ , 8.̂θ ). 

The covariance of 2.̂θ  and 8.̂θ  is derived as follows. 

Cov( 2.̂θ , 8.̂θ ) = E(( 2.θ - 2.̂θ )( 8.θ - 8.̂θ )). Applying the Mean Value Theorem, there exists a 

mean value ξ  between 2.̂θ  and 2.θ  such that 

)('ˆ)ˆ()ˆ(ˆ)(ˆ 2.2.2.2. ξθθθθ ppp −+=  

 )('ˆ
)(ˆ)ˆ(ˆˆ 2.2.

2.2. ξ
θθ

θθ
p

pp −
=−

 
(2.17) 

.|)(')(')(')('ˆ|  |)(')('ˆ| 2.2. θξξξθξ pppppp −+−=−  

By the Triangle Inequality, 

|)(')('|  |)('ˆ)('|  |)(')('ˆ| 2.2. θξξξθξ pppppp −+−≤−  

|)(')('||)('ˆ)('|sup 2.θξξξ
ξ

pppp −+−≤     . 

As stated in Theorem 2 (Müller and Schmitt), for j = 1, ]1 ,[ δδξ −∈ ,  for some δ  > 0, 
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. as    a.s    0|)(')('ˆ| sup
]-,1[

∞→→−
∈

npp ξξ
δδξ

 

As shown in the earlier section, 2.2.̂ θθ →    a.s.  as n ∞→ , and since 2.̂θ  < ξ  < 2.θ , 

2.θξ →   as n ∞→    a.s. 

By the continuity of 'p , 

. as  a.s.   0|)(')('| 2. ∞→→− npp θξ  

Thus, 

  . as  a.s.   0|)(')(ˆ| 2.
' ∞→→− npp θξ  (2.18) 

From (2.17), 
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As shown earlier in the above section, )()ˆ(ˆ 2.2. θθ pp →  a.s.   as n .∞→  

By Slutsky Theorem and from (2.18), 
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Similarly for LD80, 8.8.
8.

8.8. ˆ
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θθ

θ
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−

−
p

pp
. 

Thus, to the first order, 

Cov( 2.̂θ , 8.̂θ ) = E(( 2.θ - 2.̂θ )( 8.θ - 8.̂θ )) = E 
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The ))(ˆ),(ˆ( 8.2. θθ ppCov  term can be expressed as follows. 
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With the computation of ))(ˆ),(ˆ( 8.2. θθ ppCov  above, the covariance of LD20 and LD80 can 

be computed as 
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This is a workable computational form and simulation has shown that this 

covariance behaves much like the variance of an LD20. Similar to the variance, the 

covariance is proportional to the bandwidth and inversely proportional to the sample size, 

the design density, and the curvature of p(x). As we will see in the simulation chapter, 

this covariance term is generally quite small. 
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CHAPTER 3 

CONFIDENCE INTERVALS 

In this chapter we develop several approaches to construct confidence intervals 

for LD20, LD80, and the cline width. We evaluate seven methods for computing 

confidence intervals. The first two methods were formulated by Müller and Schmitt 

(1988). In constructing the confidence intervals, Müller and Schmitt ignored the bias. We 

extend Müller and Schmitt’s results by correcting their confidence intervals for bias and 

investigating their behavior for small samples. This bias-corrected confidence interval is 

presented in Method 3. The fourth through seventh methods are based on the 

distributional results (Hart 1997) shown in Chapter 2. 

Method 1: Müller and Schmitt 

From Theorem 4 (Müller and Schmitt), Equation (2.10), and Equation (2.11), the 

distribution of αθ̂  satisfies 
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Nnh KKD , 

where ∫−
=

1 

1 

2  )( duuKJK , and τ  has the following properties:  25 τ→nh as n ∞→  for 

some τ .  

Müller and Schmitt assumed that the bias can be ignored and computed the 
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confidence intervals for αθ̂  based on the distribution 
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Theorems 2 and 3 and Expressions (3.5) and (A.1) (Müller and Schmitt), they showed 

that a consistent estimator of the variance is 
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A 100(1-β )% confidence interval for αθ  is 

αβαθ vZ
2

ˆ ± . 

In the variance αv , the first derivative )ˆ('ˆ αθp  was estimated for the kernel 

( )4221
16

15
xx +− .  

It follows that a 100(1-β )% confidence interval for the cline width is 

)ˆ,ˆ(2)ˆˆ( 8.2.8.2.

2

2.8. θθθθ β CovvvZ −+±− . 

Method 2: Müller and Schmitt 
(Difference Quotient) 

Instead of evaluating )ˆ('ˆ αθp  in αv , Müller and Schmitt approximated the 

derivative by an one-sided difference quotient. Defining 

2/1

1

2
 

 1

 
1

)1(




























 −
−= ∑ ∫

= −

n

i

s

s

i

i

du
h

ux
K

h
ααξα , 



 
 

24 

  

Müller and Schmitt obtained difference quotients for the right and left sides of αθ  as 

)ˆˆ/( αξαα θθξ
α

−=∆ +r  and )ˆˆ/(
αξααα θθξ −−=∆ l , respectively. The resulting variances are 

2)ˆˆ( αξα θθ
α

−= +rv  and 2)ˆˆ(
αξαα θθ −−=lv . An asymmetric confidence interval for αθ  is 

constructed as 

))ˆˆ(ˆ),ˆˆ(ˆ(
22

αξαβαξααβα θθθθθθ
αα

−+−− +− ZZ . 

Similarly, a lower bound of the asymmetric confidence interval for the cline width is 
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8.8.
2

2.2.

2

2.8. 8.2.
θθθθθθθθ ξξβ CovZ −−+−−− −−  

and an upper bound of the asymmetric confidence interval for the cline width is 
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2.2.

2

2.8. 8.2.
θθθθθθθθ ξξβ CovZ −−+−+− ++ . 

Method 3: Müller and Schmitt (Bias-Corrected) 

Müller and Schmitt assumed that the bias could be neglected. Our simulation 

study in Chapter 4 has shown that the bias of LD20, LD80, and the cline width cannot be 

ignored, so we extended the Müller and Schmitt’s confidence intervals by adjusting for 

bias. Using the results from Theorem 4 (Müller and Schmitt), we obtained 
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To have a more specific understanding of how bias affects the confidence 

interval, we assume that p is the probit curve with the following distribution form for 

p(d): 
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where Φ  is the normal cumulative distribution function, µ  is the location, and σ  is the 

slope parameter. The first and second derivatives of p(d) are 
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As stated in Method 1, 25 τ→nh as n ∞→  for some τ . At LD20, the probit curve is 

concave up with positive )(" dp ; the bias is positive and we are overestimating )( 2.θp . To 

correct the positive bias shown in Equation (3.1), τ  has to be negative. Similarly, at 

LD80, the probit curve is concave down with negative )(" dp ; the bias is negative and we 

are underestimating )( 8.θp . To correct this negative bias, τ  has to be negative as well.  

Equation (3.1) can then be expressed as 
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Consequently, the bias-corrected 100(1-β )% confidence interval for αθ  is 
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and the bias-corrected 100(1-β )% confidence interval for the cline width is 
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Method 4: Hart (Bc,n) 
 

Based on the distributional results for αθ  shown in Equation (2.15), 
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a 100(1-β )% confidence interval for αθ  is 
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A 100(1-β )% confidence interval for the cline width is 
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Method 5: Hart (Bn,h) 
 
In place of Bc,n in the confidence interval presented in Method 4, we used Bn,h 

shown in Equation (2.7), 
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 The resulting confidence interval for αθ  is 
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and the confidence interval for the cline width is 
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Method 6: Hart (Simulated) 

The formula for computing confidence intervals is the same as in Method 5. The 

only difference is the approach for computing the quantity Bn,h. In Method 6, we 

computed Bn,h as 
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Method 7: Hart (Asymptotic) 

The formula for computing confidence intervals is the same as in Method 5 and 

Bn,h is defined the same manner as Method 6. The only difference is the approach for 

computing the quantity Bn,h asymptotically. In computing Bn,h, )](ˆ[ xpE h  and ))(ˆ( xpVar h  
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CHAPTER 4 

SIMULATION  

We performed a simulation study to verify the distributional results of LD20, 

LD80, and the cline width shown in Chapter 2. The simulation study also facilitates the 

evaluation of confidence intervals for LD20, LD80, and the cline width. We applied each 

of the seven methods presented in Chapter 3 to compute the corresponding 95% 

confidence intervals for the estimates.   

In our simulation study, we assumed that the true distribution of the location 

response curve follows the probit distribution with parameters mean, µ  = 0.5 and 

standard deviation, σ  = 0.1. For the probit curve, the values for LD20, LD80, and the cline 

width are 0.4158, 0.5842, and 0.1684, respectively. This chapter first presents the 

distributional results of LD20, LD80, and the cline width for the probit curve, followed by 

the evaluation of confidence intervals for the estimates. 

Distributional Results of LD20, LD80, and the  
Cline Width for the Probit 

Mimicking a real data example that we present later in Chapter 5, we created a 

probit data set with n = 156 observations. The distances are equally spaced, resulting in a 

design density f(x) = 1. We examined the distribution of LD20, LD80, and the cline width 

for the probit. The probit curve is shown in Figure 1. 
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Figure 1. Probit Curve. 

 
 
 

For the probit curve shown in Figure 1, LD20 = 0.4158 and LD80 = 0.5842. For 

estimating )(ˆ xp , we determined the value of the bandwidth based on the following 

formula for finding the optimal local bandwidth: 
5/1

42)](")[(

)1(







 −
=

nxpxf

J
h

K

K

σ
αα

, which leads 

to a bandwidth of 0.123 for this sample size n = 156. The relationship between the 

bandwidth and the sample size is shown in Figure 2.  The bandwidth decreases as the 

sample size increases.  

In Equation (2.8), we found that the asymptotic distribution of )(ˆ xp  is 
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To examine the above distribution, we used the true probit to generate 1,000 replicate 

samples. For computing )(ˆ xp , we used the optimal bandwidth of 0.123. For x = LD20, the 
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mean and variance of nc
h B

xpVar

xpxp
,
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are -0.158 and 0.964, respectively. For x = 

LD80, the mean of nc
h B

xpVar

xpxp
,

))(ˆ(

)()(ˆ
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−
 is 0.148 and the variance is 0.945. We evaluated 

 

n

b

0 50 100 150 200

0.
15

0.
20

0.
25

0.
30

 

Figure 2. Bandwidth and Sample Size. 
 
 
 

normality using Filliben’s test which computes a correlation coefficient of a QQ plot 

(Filliben, 1975). The hypothesis that  nc
h B

xpVar

xpxp
,

))(ˆ(

)()(ˆ
−

−
 is normally distributed for x = 

LD20, LD80 is rejected (Filliben’s correlation is 0.9880 for LD20 and 0.9912 for LD80; the 

approximate 5% cutoff is 0.9982 for a sample size of 1,000; since 0.9880 and 0.9912 are 

less than 5% cutoff, we reject normality). Due to the small sample size of 156, the means 

of nc
h B

xpVar

xpxp
,

))(ˆ(

)()(ˆ
−

−
for LD20 and LD80 deviate from zero. When we increased the 
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sample size to 600, the means of nc
h B

xpVar

xpxp
,

))(ˆ(

)()(ˆ
−

−
 for LD20 and LD80 are closer to zero 

(-0.0694 for LD20 and 0.0962 for LD80). To develop a simulation of the LD20 and LD80, 

we first begin with )(ˆ 20LDp and )(ˆ 80LDp . 

Distribution of )(ˆ 20LDp  and LD20 for the Probit 

The distribution of )(ˆ 20LDp for the 1,000 replicates samples are shown in the 

histogram in Figure 3. The mean of simulated )(ˆ 20LDp  is 0.233 and the variance of 

simulated )(ˆ 20LDp  is 0.00489 for the 1,000 replicate samples. The reference point of 0.2 

is the true probit value at LD20. )(ˆ 20LDp  tends to overestimate the probit at LD20 due to 

positive bias when p(x) is concave up at LD20. The curve in Figure 3 is the density of the 

normal distribution with estimated mean 0.236 and estimated variance 0.005003; the 

mean and the variance are estimated from Equation (2.4). 
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Figure 3. Distribution of )(ˆ 20LDp . 
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The distribution of the estimated variance of )(ˆ 20LDp  using Equation (2.14) for 

the 1,000 replicate samples is shown in Figure 4. We compared the distribution of the 

estimated variance with the variance 0.00503 (shown as the vertical line in Figure 4), 

estimated using Equation (2.14). The estimated variances lie predominantly to the right of 

0.00503. 
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Figure 4. Variance of )(ˆ 20LDp . 
 
 
 

Next, we examined the distribution of 2.̂θ . From the results presented in Equation 

(2.15), theory tells us that the distribution of αθ̂  is given by 
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where )(' αθp  is computed as the first difference of the simulated )(ˆ αθp  and )](ˆ[ αθpVar  

is computed using Equation (2.14). The distribution of 2.̂θ  is normally distributed 
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(Filliben's correlation 0.9994 for n = 1,000, the approximate 5% cutoff is 0.9982; since 

0.9994 > 5% cutoff, we cannot reject normality) as shown in the histogram in Figure 5.  

For our example the estimated mean and variance of 2.θ̂  are 0.4033 and 0.0006383, 

respectively. The density curve of the normal distribution with mean 0.4033 and variance 

0.0006383 is shown in Figure 5. The vertical line shows the true value of 2.θ  (0.4158) for 

the probit curve. 
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Figure 5. Distribution of 2.̂θ . 
 
 
 

For the 1,000 replicate samples, the mean of simulated 2.̂θ  is 0.4038 and the 

variance of simulated 2.̂θ  is 0.000716. We estimated the mean and the variance of 2.̂θ  

from Equations (2.12) and (2.13) for the 1,000 replicate samples. The distribution of the 

estimated mean and the estimated variance are shown in Figure 6 and Figure 7, 

respectively. The estimated means are mostly distributed to the left of 0.4033 (shown as 
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the vertical line in Figure 6) and the estimated variances are mostly distributed to the 

right of 0.000638 (shown as the vertical line in Figure 7).  
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Figure 6. Estimated Mean of 2.̂θ . 
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Figure 7. Estimated Variance of .2θ̂ . 
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Distribution of )(ˆ 80LDp  and LD80 for the Probit 

The distribution of )(ˆ 80LDp for the 1,000 replicates samples are shown in the 

histogram in Figure 8. The mean of simulated )(ˆ 80LDp  is 0.766 and the variance of 

simulated )(ˆ 80LDp  is 0.00492 for the 1,000 replicate samples. The reference point of 0.8 

is the true probit value at LD80. )(ˆ 80LDp  tends to underestimate the probit at LD80. 

Figure 8 also shows the density of )(ˆ 80LDp , estimated from the normal distribution with 

mean 0.764 and variance 0.005 using Equation (2.4). 
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Figure 8. Distribution of 80ˆ ( )p LD . 
 
 

 
The distribution of the estimated variance of )(ˆ 80LDp using Equation (2.14) for 

the 1,000 replicate samples is shown in Figure 9. We compared the distribution of the 

estimated variance with the variance 0.00503 (shown as the vertical line in Figure 9), 
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estimated using Equation (2.14). The estimated variances lie predominantly to the right of 

0.00503. 
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Figure 9. Variance of 80ˆ ( )p LD . 
 
 
 

Next, we examined the distribution of 8.̂θ . As shown in the histogram in Figure 

10, the distribution of 8.̂θ  from the simulation is normally distributed (Filliben's 

correlation is 0.9992 for n = 1,000, the approximate 5% cutoff is 0.9982; since 0.9992 > 

5% cutoff, we cannot reject normality). The simulated mean of 8.̂θ  is 0.5970 and the 

simulated variance is 0.0008157. For our example the estimated mean and variance of 8.̂θ  

are 0.5967 and 0.0006383 respectively. The density of 8.̂θ  from a normal distribution 

with estimated mean 0.5967 and estimated variance 0.0006383 is shown in Figure 10. 

The vertical line shows the true value of 8.θ  (0.5842) for the probit curve. 
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Figure 10. Distribution of 8.̂θ . 
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Figure 11. Estimated Mean of .8θ̂ . 
 
 
 
We also calculated the mean and variance of 8.̂θ  for the 1,000 replicate samples 

using Equations (2.12) and (2.13). The distribution of the estimated mean and the 
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estimated variance are shown in Figure 11 and Figure 12, respectively. The estimated 

means are mostly distributed to the right of 0.5967 (shown as the vertical line in Figure 

11) and the estimated variances are mostly distributed to the right of 0.000638 (shown as 

the vertical line in Figure 12). 

 

0.0002 0.0004 0.0006 0.0008 0.0010

0
50

0
10

00
15

00
20

00
25

00

 
 Variance of LD80 

Figure 12. Estimated Variance of 8.̂θ . 
 
 
 

Distribution of Cline Width for the Probit 

The distribution of the cline width )ˆˆ( 2.8. θθ − for the 1,000 replicates samples fails 

a test of normality (Filliben's correlation is 0.9936 for n = 1,000, the approximate 5% 

cutoff is 0.9982; since 0.9936 < 5% cutoff, we reject normality) as shown in the 

histogram in Figure 13. The simulated mean of the cline width for the 1,000 replicate 

samples is 0.1933 and the simulated variance is 0.001346. For our example the estimated 

mean and variance of the cline width are 0.1935 and 0.001277, respectively, estimated 

from Equation (2.16) without the covariance term in the calculation of variance. The 
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density of the cline width from a normal distribution with estimated mean 0.1935 and 

estimated variance 0.001277 is shown in Figure 13. The vertical line shows the true value 

of the cline width (0.1684) for the probit curve. Both the estimated and the simulated 

cline width tend to overestimate the cline width of the probit. 
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Figure 13. Distribution of the Cline Width. 
 
 
 

We also calculated the mean and variance of the cline width for the 1,000 

replicate samples using Equation (2.16). The distribution of the estimated mean is shown 

in Figure 14. The estimated means are mostly distributed to the right of 0.1935 (shown as 

the vertical line in Figure 14).  

We calculated the covariance of 2.θ  and 8.θ  for the probit data using Equation 

(2.20). For our example, the estimated covariance is 0.0002965. We calculated the 

variance of the cline width with and without the covariance term. With the covariance, 

the estimated variance is 0.000593 less than without. 
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Figure 14. Estimated Mean of )ˆˆ( 2.8. θθ − . 
 
 
 

The distributions of the estimated variance of the cline width with and without the 

covariance term are shown in Figure 15 and Figure 16, respectively. We compared the 

estimated variances with 0.0006837 (variance with covariance term) and 0.001277 

(variance without covariance term), shown as the vertical lines in the Figures. Both 

estimated variances (with and without the covariance term) lie predominantly to the right 

of the reference lines. 

In Figure 13, we displayed the distribution of the simulated cline width and 

observed that the simulated cline width overestimated the true cline width. Using the 

results shown in Chapter 3, we corrected the cline width for bias and computed the 

estimated cline width as 
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Figure 15. Estimated Variance of )ˆˆ( 2.8. θθ − with Covariance Term. 
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Figure 16. Estimated Variance of )ˆˆ( 2.8. θθ − without Covariance Term. 
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In the above formula, the nCB , for LD20 is 0.4977, and for LD80 the nCB ,  is              

-0.4977. The sign of the nCB , agrees with our findings of the simulated LD20 and LD80. As 

seen in Figures 5 and 10, the simulated LD20 underestimated the true LD20, whereas the 

simulated LD80 overestimated the true LD80. The distribution of the estimated cline width 

with bias correction is shown in Figure 17, with a mean of 0.1671 and a variance of 

0.00122. The vertical line in Figure 17 is the true cline width. Comparing the simulated 

cline width in Figure 13 and the estimated cline width in Figure 17, the bias-corrected 

estimated cline width is a better approximation to the true cline width. 
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Figure 17. Estimated Cline Width: Adjusting Simulated Cline Width for Bias. 
 

  
 

Kernel Estimates and Confidence Intervals for 
LD20, LD80, and the Cline Width 

 
As shown in Equation (2.2), the variance of the kernel estimator depends on the 

distribution of the design points.  Consequently, the design points also impact the optimal 
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local bandwidth (Equation (2.6)) and the confidence intervals. To assess the impact of 

different designs on confidence intervals, we selected equal percentile distances from the 

uniform distribution and the normal distribution. 

We examined the behavior of the kernel estimators for various sample sizes (50, 

100, 200, 400, and 800). The kernels that we used in the simulations are optimal or near 

optimal kernels as referenced by Hart (1997) and Müller and Schmitt (1988). These 

unimodal kernels are listed as follows and are shown in Figure 18. The kernel K21 is 

flatter and less peaked in the center. 

K21: 




 − 21

4

3
u , for -1 ≤  u ≤  1 

K22: )21(
16

15 42 uu +− , for -1 ≤  u ≤  1 

K23: )331(
32

35 642 uuu −+− , for -1 ≤  u ≤  1. 
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Figure 18. Kernels K21, K22, and K23. 

 
 



 
 

45 

  

 
For a given sample size, a given kernel, and a given design, we conducted 4,000 

simulations. The optimal bandwidths that we computed for the simulation study using 

Equation (2.6) are shown in Table 1. For the same sample size and design, the bandwidth 

for K23 is larger than K21 and K22. The bandwidths for the normal design are smaller 

than the uniform design within the same sample size and kernel. 

 
 
Table 1. Optimal Bandwidths by Sample Size, Design, and Kernel 

  Uniform Normal 

Sample 
size 

K21 K22 K23 
 

K21 K22 K23 

50 0.1539 0.1824 0.2071 0.1381 0.1636 0.1858 

100 0.1340 0.1588 0.1803 0.1182 0.1401 0.1591 

200 0.1167 0.1382 0.1569 0.1015 0.1203 0.1366 

400 0.1016 0.1203 0.1366 0.0874 0.1036 0.1176 

800 0.0884 0.1047 0.1189 0.0754 0.0893 0.1014 

 
 
 
We evaluated the 95% confidence intervals for LD20, LD80, and the cline width 

based on the mean interval length, the coverage probability of the estimates, and the 

midpoint of the interval. In our study, we have found that the quality of the kernel 

estimator does not depend much on the shape of the kernel. The kernels K21, K22, and 

K23 produce similar confidence intervals. The findings presented in the following 

sections pertain to kernel K21, but the results can be generalized to kernels K22 and K23. 
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Estimation of LD20 and LD80 

We present the LD20 and LD80 estimation results for uniform distances first, 

followed by the results for normal distances. 

Uniform Spacing of Distances 

Tables 2 through 5 show the mean interval length, the coverage probability of 

LD20, the interval midpoint, and the variance of LD20 using kernel K21 when the 

distances are uniformly spaced. The attributes of confidence intervals for LD20 shown in 

Tables 2 through 5 using kernel K21 with uniform distances are presented graphically in 

Figure 19. 

 
 
Table 2. LD20: Mean Interval Length (Kernel K21, Uniform Distances) 

 Sample size 

Method 50 100 200 400 800 

M & S 0.1577 0.1190 0.0900 0.0681 0.0516 

M & S, Difference Quotient (DQ) 0.2025 0.1425 0.1035 0.0756 0.0559 

M & S, bias corrected 0.2049 0.1444 0.1040 0.0759 0.0560 

Hart, Bnh simulated 0.1564 0.1185 0.0898 0.0681 0.0516 

Hart, Bnh asymptotic 0.1564 0.1185 0.0898 0.0681 0.0516 

Hart, Bnh 0.1564 0.1185 0.0898 0.0681 0.0516 

Hart, Bcn 0.1564 0.1185 0.0898 0.0681 0.0516 

 
 
 
The mean interval length, coverage probability, interval midpoint, and variance 

for LD80 are shown in Figure 20. These characteristics of confidence intervals for LD80 
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are very similar to those for LD20. The discussions below apply to the results for both 

LD20 and LD80, unless stated otherwise. 

 
 
Table 3. LD20: Coverage Probability (Kernel K21, Uniform Distances) 

 Sample size 

Method 50 100 200 400 800 

M & S 0.9108 0.8990 0.9043 0.9123 0.9098 

M & S, Difference Quotient (DQ) 0.9348 0.9185 0.9213 0.9240 0.9178 

M & S, bias corrected 0.9295 0.9220 0.9298 0.9350 0.9343 

Hart, Bnh simulated 0.9368 0.9238 0.9303 0.9353 0.9340 

Hart, Bnh asymptotic 0.9368 0.9235 0.9300 0.9350 0.9335 

Hart, Bnh 0.9293 0.9210 0.9278 0.9350 0.9315 

Hart, Bcn 0.9298 0.9218 0.9298 0.9350 0.9343 

 
 
 
For a given sample size, the mean interval lengths for all Hart methods are 

identical. The mean interval length for the M & S (bias-corrected) method is slightly 

shorter than the Hart methods. When the sample size is 100, the mean interval length for 

the M & S (bias-corrected) method is 0.1 and for the Hart Bcn the length is 0.12. When 

the sample size is 800, all methods including the biased M & S are about 0.05.  

Coverage probability is the percentage of replications in which the calculated 

95% confidence intervals include the true LD value. When the locations are uniformly 

spaced, the coverage probabilities are about 93% for Hart methods and the M & S (bias-

corrected) method, and slightly lower for the biased M & S methods.  
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Table 4. LD20: Interval Midpoint (Kernel K21, Uniform Distances) 

 Sample size 

Method 50 100 200 400 800 

M & S 0.3991 0.4020 0.4050 0.4077 0.4094 

M & S, Differene Quotient (DQ) 0.3803 0.3928 0.4000 0.4051 0.4078 

M & S, bias corrected 0.4185 0.4170 0.4164 0.4164 0.4159 

Hart, Bnh simulated 0.4156 0.4155 0.4152 0.4156 0.4158 

Hart, Bnh asymptotic 0.4159 0.4152 0.4154 0.4157 0.4155 

Hart, Bnh 0.4101 0.4111 0.4124 0.4137 0.4141 

Hart, Bcn 0.4189 0.4171 0.4164 0.4164 0.4159 

 
 
 

Table 5. LD20: Variance (Kernel K21, Uniform Distances) 

 Sample size 

Method 50 100 200 400 800 

M & S 0.00162 0.00092 0.00053 0.00030 0.00017 

M & S, Differene Quotient 
(lower bound) 

0.00484 0.00201 0.00095 0.00047 0.00024 

M & S, Difference Quotient  
(upper bound) 

0.00211 0.00114 0.00063 0.00035 0.00019 

M & S, bias corrected 0.00104 0.00066 0.00041 0.00025 0.00015 

Hart, Bnh simulated 0.00159 0.00091 0.00052 0.00030 0.00017 

Hart, Bnh asymptotic 0.00159 0.00091 0.00052 0.00030 0.00017 

Hart, Bnh 0.00159 0.00091 0.00052 0.00030 0.00017 

Hart, Bcn 0.00159 0.00091 0.00052 0.00030 0.00017 
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Figure 19. Confidence Intervals and Variance for LD20, Kernel = K21, Uniform Spacing 
of Distances. 
 
 
 

The interval midpoint serves as a measure of how close the estimates are to the 

true values. Hart methods and the M & S (bias-corrected) method provide far better LD 

estimates that are closer to the true LD values (0.4158 for LD20 and 0.5842 for LD80) than 

the biased M & S methods. The Hart simulated and the Hart asymptotic methods generate 

LD estimates that are closest to the true LD values, with very small underestimation of 

LD20 and slight overestimation of LD80 by the Hart simulated method. For the uniform 

distances, the Bnh method slightly underestimates LD20 and overestimates LD80, whereas 

the Bcn method and the M & S (bias-corrected) method slightly overestimate LD20 and 

underestimate LD80. For example, when the sample size is 100, the Bnh method 
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Figure 20. Confidence Intervals and Variance for LD80, Kernel = K21, Uniform Spacing 
of Distances. 
 
 
 
underestimates LD20 by about 1.1% and the Bcn and the M & S (bias-corrected) method 

overestimate LD20 by about 0.3%. The biased M & S methods underestimate LD20 and 

overestimate LD80 by a larger amount than the bias correction methods. All methods 

approach closer to the true LD values as sample size increases. 

The variances of LD20 are small. For a given sample size, the variances produced 

by the Hart methods are the same, ranging from 0.0016 for a sample size of 50 to 0.00017 
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for a sample size of 800. The M & S (bias-corrected) method produces slightly smaller 

variances than the Hart methods. 

Normal Spacing of Distances 

Figure 21 and Figure 22 show the mean interval length, the coverage probability, 

the interval midpoint, and the variance of LD20 and LD80 using kernel K21 when the 

distances are normally spaced. The graphs for LD20 and LD80 are very similar. 
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Figure 21. Confidence Intervals and Variance for LD20, Kernel = K21, Normal Spacing of 
Distances. 

 

In the case of the normal spacing of distances, the M & S methods produce 

shorter mean interval length than the Hart methods. For example, the mean interval 
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length for the M & S (bias-corrected) method is about half the length of the Hart 

methods. In general, the coverage probability for all methods is higher than 90%. The 

Hart methods and the M & S (bias-corrected) method yield very high coverage 

probability of LD20 that are close to 100%. The biased M & S methods produce coverage 

probability in the low 90%. 

 
 

LD80 mean interval length

Sample size

LD
80

 m
ea

n 
le

ng
th

200 400 600 800

0.
05

0.
15

0.
25

M&S
M&S DQ
M&S bias-corrected
Hart simulated
Hart asymptotic
Hart Bnh
Hart Bcn

LD80 coverage probability

Sample size

LD
80

 c
ov

er
ag

e 
pr

ob
ab

ili
ty

200 400 600 800

0.
92

0.
94

0.
96

0.
98

1.
00

LD80 interval midpoint

Sample size

LD
80

 in
te

rv
al

 m
id

po
in

t

200 400 600 800

0.
57

0.
59

0.
61

LD80 variance

Sample size

LD
80

 v
ar

ia
nc

e

200 400 600 800

0.
0

0.
00

2
0.

00
4

M&S
M&S DQ (LB)
M&S DQ (UB)
M&S bias-corrected
Hart simulated
Hart asymptotic
Hart Bnh
Hart Bcn

Figure 22. Confidence Intervals and Variance for LD80, Kernel = K21, Normal Spacing of 
Distances. 

 

The M & S (bias-corrected) method provides better LD estimates that are closer 

to the true LD than the Hart methods. The Hart simulated method generates LD estimates 
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that are closest to the true LD values. Both the Bnh and the Bcn methods overestimate 

LD20 and underestimate LD80. However, Bnh estimates are closer to the true LD than Bcn 

estimates. For a sample size of 100, the Bnh overestimates LD20 by 1.3% whereas the Bcn 

overestimates LD20 by 3.6%. The extent of underestimating LD20 and overestimating 

LD80 is more pronounced in the biased M & S methods than the bias-correction methods. 

All methods approach closer to the true LD as sample size increases. 

For a normal density design, all M & S and Hart methods produce very small LD 

variances, but they are still approximately three times larger than those for a uniform 

design density. For a given sample size, the variances produced by the Hart methods are 

the same, ranging from 0.003 for a sample size of 50 to 0.0006 for a sample size of 800.  

The variances produced by the M & S (bias-corrected) method are about one-fourth the 

size of variances produced by the Hart methods. 

Estimation of Cline Width 

The cline width is the difference between the LD80 value and the LD20 value, 

resulting in a true cline width of 0.1684 in our simulation study for the probit curve. We 

calculate the variance of the cline width in two ways, with and without a covariance term. 

Both ways yield identical interval midpoint. Including the covariance term lowers the 

variance of the cline width. For example, the variance of the cline width is 2.36% smaller 

when the sample size is 100 (0.00592 without covariance term versus 0.00578 with 

covariance term) using the Hart methods. As a result of smaller variance of the cline 

width, the method with the covariance term yields shorter interval length and lower  
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coverage probability. However, the difference becomes miniscule when the sample size 

is large. In fact, the variances are almost the same when the sample size is 400. 

Uniform Spacing of Distances 

The attributes of confidence intervals with and without the covariance terms in 

estimating the variance of the cline width are shown in Figures 23 and 24, respectively. 

Due to the similarity of the two figures, in the following sections, we discuss the 

confidence intervals that take into account the covariance in computing the variance of 

the cline width. 
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Figure 23. Confidence Intervals and Variance for Cline Width, Kernel = K21, Uniform 
Spacing of Distances (Variance of Cline Width is Computed with the Covariance Term). 
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For a given sample size, the mean interval lengths for all Hart methods are 

identical. The interval lengths are shorter for the M & S (bias-corrected) method than the 

Hart methods. The biased M & S methods produce the longest mean interval length. The 

Hart methods produce higher coverage probability than the M & S (bias-corrected) 

method. Coverage probability for Hart methods is above 93%. 
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Figure 24. Confidence Intervals and Variance for Cline Width, Kernel = K21, Uniform 
Spacing of Distances (Variance of Cline Width is Computed without the Covariance 
Term). 

 

Hart methods and the M & S (bias-corrected) method all provide accurate cline 

width estimates that are close to the true cline width of 0.1684. The Hart simulated and 
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the Hart asymptotic methods generate cline width estimates that are closest to the true 

cline width. For the uniform distance, the Bnh method overestimates the cline width, 

whereas the Bcn method and the M & S (bias-corrected) method slightly underestimate 

the cline width. When the sample size is 100, the Bnh overestimates the cline width by 

5.3% whereas the Bcn underestimates the cline width by 1.8%.  The biased M & S 

methods overestimate the cline width, by 15.8% when the sample size is 100. All 

methods approach closer to the true cline width as sample size increases. 

For a given sample size, the variances produced by the Hart methods are the 

same, ranging from 0.0019 for a sample size of 50 to 0.00035 for a sample size of 800. 

The variance of the cline width for the M & S (bias-corrected) method is smaller than the 

Hart methods, about 37% smaller when the sample size is 100. 

Normal Spacing of Distances 

Figure 25 and Figure 26 show the mean interval length, the coverage probability 

of the cline width, the interval midpoint, and the variance of the cline width using kernel 

K21 when the distances are normally spaced, with and without the covariance term in 

computing the variance of the cline width. 

The M & S (bias-corrected) method produces shorter mean interval length than 

the Hart methods, about half the length of the Hart methods. For example when the 

sample size is 100, the mean interval length for the M & S method is 0.13 compared to 

0.3 for the Hart methods. 

All Hart methods and the M & S (bias-corrected) method produce coverage 

probability close to 100%. The M & S (bias-corrected) method provides much better 
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cline width estimates that are very close to the true cline width of 0.1684 than the Hart 

methods. Both Bnh and Bcn methods underestimate the cline width. However, Bnh 

estimates are closer to the true cline width than Bcn estimates. With a sample size of 100, 

the underestimation of the cline width is 6.7% and 18% for the Bnh and Bcn, 

respectively. 

 
Cline width mean interval length

Sample size

cl
in

e
 w

id
th

 m
ea

n
 le

n
g

th

200 400 600 800

0
.1

0
.2

0
.3

M&S
M&S DQ
M&S bias-corrected
Hart simulated
Hart asymptotic
Hart Bnh
Hart Bcn

Cline width coverage probability

Sample size

cl
in

e
 w

id
th

 c
o

ve
ra

ge
 p

ro
b

a
b

ili
ty

200 400 600 800

0
.8

5
0

.9
0

0
.9

5
1

.0
0

Cline width interval midpoint

Sample size

cl
in

e
 w

id
th

 in
te

rv
a

l m
id

p
o

in
t

200 400 600 800

0
.1

4
0

.1
6

0
.1

8
0

.2
0

Cline width variance

Sample size

cl
in

e 
w

id
th

 v
a

ri
an

ce

200 400 600 800

0
.0

0
.0

0
2

0
.0

0
6

M&S
M&S DQ (LB)
M&S DQ (UB)
M&S bias-corrected
Hart simulated
Hart asymptotic
Hart Bnh
Hart Bcn

 

Figure 25. Confidence Intervals and Variance for Cline Width, Kernel = K21, Normal 
Spacing of Distances (Variance of Cline Width is Computed with the Covariance Term). 

 

The M & S (bias-corrected) method yields smaller variances than the Hart 

methods. For a sample size of 100, the variances of the cline width are 0.001 and 0.0058 

for the M & S (bias-corrected) method and the Hart methods, respectively. The variances 
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produced by the Hart methods are the same for a given sample size, ranging from 0.0096 

for a sample size of 50 to 0.0012 for a sample size of 800. These variances are about four 

times larger than those from the uniformly spaced distance. 
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Figure 26. Confidence Intervals and Variance for Cline Width, Kernel = K21, Normal 
Spacing of Distances (Variance of Cline Width is Computed without the Covariance 
Term). 

 

The performance of the biased M & S methods is poor compared to the bias-

corrected methods. The biased M & S methods produce longer interval length, lower 

coverage probability, and overestimate the cline width by 16% for a sample size of 100. 



 
 

59 

  

In summary, K21, K22, and K23 kernels generate similar estimates of LD20, LD80, 

and cline width and confidence intervals. The Hart methods and the M & S (bias-

corrected) method outperform the biased M & S methods. These bias corrected methods 

generate higher coverage probability, shorter mean interval length, and estimates closer 

to the truth values. As the sample size increases from 50 to 800, we observe the following 

general results: (1) the mean interval length decreases (for example, with the kernel K21 

and the uniform spacing of distances using the Hart methods, the mean interval length 

decreases from 0.16 to 0.05 in LD20 and LD80, and from 0.17 to 0.07 in the cline width); 

(2) the estimates approach closer to the true value (for example, with the kernel K21 and 

the uniform spacing of distances using the M & S (bias-corrected) method, the cline 

width estimate is 0.166 with a sample size of 50 compared to 0.1686 with a sample size 

of 800) and approaches closer to the true cline width value of 0.1684; (3) variance 

decreases at a rate of 1/n as sample size increases; (4) bandwidth decreases as sample size 

increases. When the sample size doubles, the bandwidth decreases by about 13% and 

14% for the uniform and the normal spacing of distances, respectively. 
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CHAPTER 5 

INTERVAL ESTIMATES FOR GENETIC CLINE 

In this chapter, we present the interval estimates of LD20, LD80, and the cline 

width for the mitochondrial DNA (mtDNA) in the Lund (Lu) population of the field vole 

(Jaarola, 1997). The mtDNA is a genetic marker that characterizes one trait of the field 

vole (Microtus agrestis) population. In a survey conducted from August to October in 

1986 to 1992 in southern Sweden, 156 field voles from 36 localities were collected for 

the mtDNA analysis. This sample size is typical in evolutionary genetics. Samples of 

mtDNA genetic materials were collected at various distances from a fixed location often 

a reference population or a geographic landmark. The distances were not equally spaced. 

The distances, the possession of some allele (number of successes) and the lack of that 

allele (number of failures) in the Lu population are shown in Table 6. 

In our discussion, we will refer to the mtDNA in the Lund population as lumt. An 

estimate of the probability density function of lumt distances scaled to [0, 1] using the    

S-PLUS function density is shown in Figure 27. The density function in S-PLUS is a 

smoothing operation that returns the x and y coordinates of a non-parametric estimate of 

the probability density of the data. These are kernel estimates. For each x value, the 

window is centered on that x and the heights of the window at each data point are 

summed. After normalization, this sum is the corresponding y value. The distances scaled 

to [0, 1] are shown as dots in Figure 27. 
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Table 6. mtDNA in Lund Population Data 

Distance (km) No. of successes No. of failures 

0.0 2 0 

17.4 17 0 

35.4 1 0 

39.9 7 0 

51.0 6 0 

58.2 4 0 

67.5 6 1 

71.1 1 1 

83.5 3 1 

83.4 4 3 

90.0 1 2 

103.5 5 3 

105.0 1 1 

108.6 1 3 

109.8 0 3 

112.5 0 4 

113.4 0 8 

115.8 0 2 

116.4 0 3 

120.0 0 5 

124.5 0 4 

132.6 0 3 

138.8 0 2 

140.7 0 2 

141.9 0 3 

145.8 0 1 

154.2 0 9 

155.2 0 7 
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Table 6 continued 

Distance (km) No. of successes No. of failures 

156.6 0 1 

157.9 0 7 

159.9 0 2 

161.7 0 6 

171.0 0 9 

175.0 0 1 
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Figure 27. Probability Density Function of lumt Distances. 

 
 
 

The Gasser-Müller estimator for lumt distances with Epanechnikov kernel (i.e., 

K(u) = .75(1-u2), -1 ≤  u ≤  1) and a bandwidth of 0.15 is shown in Figure 28. The kernel 

estimator, )(ˆ xp  displays a S-shaped curve that is decreasing, starting at a fixed value of x 

= 0 and dropping to a fixed value of x = 1. The LD20, LD80, and the cline width are 

estimated to be 0.656, 0.352, and 0.304, respectively. The number of successes and the 
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number of failures at each distance (scaled to [0, 1]) are jittered and plotted in Figure 28. 

The theory we have presented shows that this cline, its LD20, LD80, and width are biased. 
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Figure 28. Gasser-Müller Estimator with Epanechnikov Kernel (i.e., K(u) = .75(1-u2), for 
-1 ≤  u ≤  1) and a Bandwidth of 0.15. 
 
 
 

The simulations presented in Chapter 4 have indicated that the bias correction 

methods of Hart and M & S create more accurate estimates and confidence intervals than 

the biased M & S method. To compute the 95% confidence intervals for LD20, LD80, and 

the cline width, we used the Hart Bcn method and the M & S (bias-corrected) method. 

The 95% Bcn confidence intervals for LD20, LD80, and the cline width are computed as 
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where α  = 0.2 for LD20 and 0.8 for LD80; BC,n is computed as 
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The 95% M & S (bias-corrected) confidence intervals for LD20, LD80, and the cline width 

are computed as 
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In the Hart Bcn method and in the M & S (bias-corrected) confidence interval 

forumula, we need to compute the first derivative and the second derivative of x at αθ . 

To estimate )(' xp  and )(" xp , we used the first and second difference method as follows: 
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We evaluated the goodness of the second difference method using a known probit 

distribution with parameters µ  = .5 and σ  = .1. Further, we evaluated the probit curve at 

a sequence of equally spaced points. The second derivative of the probit distribution at 

LD20 and LD80 are 23.562 and -23.562, respectively. We compared these second 

derivatives with those computed using the second difference method for various sample 

sizes. The results are shown in Table 7. 

Table 7. Estimated Second Derivative of p(x) for the Probit 

n 2nd derivative at LD20 2nd derivative at LD80 

12 12.535 -12.331 

24 15.928 -16.099 

48 16.279 -17.520 

96 18.334 -20.884 

120 19.568 -18.993 

400 20.328 -19.900 

 
 
 

As the sample size increases, the estimated )(" αθp  becomes closer to the true )(" αθp  of 

the probit distribution. For a sample size of 400, we also compared the estimated 
αθ,,nCB  

with the true
αθ,,nCB . As shown in Table 8, the estimated 

αθ,,nCB are very close to the true 

αθ,,nCB . 

The second difference method requires the computation of )(ˆ xp . However, the 

computation of )(ˆ xp  requires the knowledge of the bandwidth h, and the optimal h 

requires the knowledge of )(" xp . The problem we are facing is that we have two 
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unknowns here (h and )(" xp ), both need to be estimated and they depend on each other. 

Our approach is to use some reasonable bandwidth to compute )(ˆ xp  first. With )(ˆ xp , we 

then estimated )(" xp . Using )(" xp , we estimated the optimal h. Finally, using the optimal 

h, we recalculated )(ˆ xp , )(' xp , and )(" xp .  

Table 8. Comparison of Estimated and True 
αθ,,nCB  

 LD20 LD80 

Method )(" 2.θp  
2.,, θnCB  )(" 8.θp  

8.,, θnCB  

true 23.562 0.4981 -23.562 -0.4981 

2nd difference 20.328 0.4981 -19.900 -0.4876 

 
 
 
We used an optimal bandwidth of 0.108 (initial bandwidth = 0.12) to estimate the 

LD20, LD80, and the cline width for the lumt distances. As stated earlier, the LD20, LD80, 

and the cline width for the lumt data are themselves estimates subject to bias as proven by 

the theory we presented. Both the Bcn and the M & S biased corrected estimates are 

attempts at correcting the bias of the estimates. The 95% confidence intervals for LD20, 

LD80, and the cline width for the lumt sample using the Bcn method and the M & S (bias-

corrected) method are shown in Table 9.  

Both the Hart Bcn method and the M & S (bias-corrected) method adjust the 

negative bias of the lumt LD20 estimate and produce larger LD20 estimates than the lumt 

LD20 estimate. On the other hand, both methods correct the positive bias of the lumt LD80 

estimate and the resulting bias-corrected LD80 estimates are smaller than the lumt LD80 
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estimate. The cline width has negative bias and both bias-corrected methods attempt to 

correct the bias by increasing the cline width estimate. 

Table 9. 95% Confidence Intervals for LD20, LD80, Cline Width for lumt Distance 

  Bcn M & S (bias-corrected) 

 lumt  Estimate 
95% confidence 

interval 
Estimate 

95% confidence 
interval 

LD20 0.6528 0.6569 (0.6381, 0.6757) 0.6689 (0.6342, 0.7036) 

LD80 0.3532 0.3455 (0.3233, 0.3676) 0.3358 (0.2948, 0.3767) 

Cline width 0.2995 0.3114 (0.2823, 0.3405) 0.3331 (0.2795, 0.3868) 

 
 
 
The Hart Bcn method produces shorter interval length than the M & S (bias-

corrected) method. In fact, the Bcn confidence intervals lie completely within the M & S 

(bias-corrected) intervals.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

In our research, we have developed the distributional properties of LD20, LD80, 

and the cline width. The bias of the estimators for LD20, LD80, and the cline width 

depends on the bandwidth, the sample size, the curvature of the cline )(" xp , and the 

variance of the kernel. When the bandwidth is given, the bias does not depend on the 

design density. However, if a data set is given and an optimal bandwidth is computed, the 

bias depends on the design density. When )(" xp  is positive, the bias is negative and the 

estimator tends to underestimate the LD. Conversely, the bias is positive and the 

estimator overestimates the LD when )(" xp  is negative. For the bias to be zero, it is 

necessary for the bandwidth to tend to zero. For the variance to tend to zero, we need the 

sample size to tend to ∞. For both the bias and the variance to tend to zero, we need nh to 

tend to ∞. Further, the variance is inversely proportional to the design density and the 

sample size. 

Based on the distributional properties of LD20, LD80, and the cline width, we 

developed approaches for constructing confidence intervals for LD20, LD80, and the cline 

width using the Müller and Schmitt method (1988) and the Hart method (1997). In the 

simulation study mimicking a real data example (Jaarola, 1997), we generated a data set 

containing 156 observations from a probit distribution with equally spaced design points. 

Using 1,000 replicate samples generated from the parent probit data, we verified the
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distributional properties of LD20, LD80, and the cline width. The simulated mean and 

variance of the estimates conform to the theoretical mean and variance.  

We evaluated the performance of the confidence intervals based on the interval 

midpoint, the interval length, and the coverage probability. For various sample sizes, 

design points, and kernels, the Hart method and the Müller and Schmitt (bias-corrected) 

method outperforms the Müller and Schmitt method (without bias correction). The Bnh 

and the Bcn of the Hart method produce similar estimates and coverage probability. The 

mean interval lengths for the two methods are identical. The sample size, the bandwidth, 

and the design points affect the quality of the confidence intervals. A larger sample size 

(which results in a smaller bandwidth) improves the performance of the confidence 

intervals. When the distances are uniformly spaced, the confidence intervals are more 

superior. 

Since the Hart method and the Müller and Schmitt (bias-corrected) method 

produce better confidence intervals than the biased Müller and Schmitt method, we used 

the Hart Bcn method and the M & S (bias-corrected) method to compute the confidence 

intervals for LD20, LD80, and the cline width of the mitochondrial DNA genetic data for 

the field voles. Both methods are comparable in correcting the bias of the estimates. 

Our simulation indicates that the covariance of LD20 and LD80  is quite small. One 

of the areas for future research is to explicitly express the covariance in terms of the 

sample size, the spatial sampling design density, the bandwidth, the variance, and the 

kernel, and to observe how the covariance varies with these characteristics. Based on our 

knowledge of the variance of the kernel estimator (Hart, 1997)  
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we conjecture that the covariance of ),(ˆ 8020 LDLDp  is positively related to the variance, 

and inversely proportional to the sample size, bandwidth, and the design density. 

This dissertation focuses on a response curve which increases or decreases 

monotonically. We have demonstrated that the kernel estimation performs well with a 

monotonic curve. For sufficiently large sample size (156 in our field vole genetic data) 

the kernel estimate is monotone. However, the kernel estimate is not necessarily 

monotone for finite samples, and α100LD  might not be defined. To solve the non-

monotonicity problem, methods for defining monotonized kernel estimates are needed. 

One such method (Müller and Schmitt, 1988) is to find for a given y coordinate (0 ≤ α ≤  

1) the corresponding x coordinate of the graph of the function estimate, take the average 

of the smallest and the largest of all x coordinates, where the kernel estimate is equal to 

α  and the estimate of the first derivative 
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Further work is needed to investigate the properties of cline width using this procedure. 

The Bcn method and the M & S (bias-corrected) method require the knowledge of 

)(' xp  and )(" xp  in the calculation of confidence intervals. In this dissertation, we have 
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used the second difference method for estimating the derivatives. Further investigation is 

needed to evaluate other methods such as the higher order kernel method as described in 

Hart (1997). 

In genetics fieldwork, samples are mostly collected at fixed locations. The 

distance between a starting point and these fixed points follows a discrete distribution. 

We used the kernel density estimation for smoothing the probability density function of 

the distance. Further research and techniques are needed to estimate LD20, LD80, and the 

cline width for discrete location sampling. It might also be of interest to match the 

experimental design with data analysis and to develop an optimal design to obtain the 

best estimates of LD20, LD80, and the cline width. 

In conclusion, our research has produced a new tool for estimating the cline width 

and its confidence interval using kernel techniques. This cline width provides valuable 

information to biologists regarding the extent of a zone where two species might 

hybridize, yielding crucial data for genetic diversity. 
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APPENDIX A 

S-PLUS PROGRAMS FOR SIMULATION STUDY 

This Appendix shows the codes for creating the simulation results presented in 

Chapter 4. The purposes of the simulation are twofold: (1) to investigate the distributional 

results of LD20, LD80, and the cline width for the probit curve; (2) to evaluate the 

performance of the confidence intervals for LD20, LD80, and the cline width. 

Creating Probit Data Set 

The following codes create a probit data set with parameters mean, µ  = 0.5 and 

standard deviation, σ  = 0.1 that contains 156 observations and to compute the optimal 

bandwidth. The distance is equally spaced. 

n <- 156 
m <- 1 
m2 <- 1000 
sigma <- 0.1 
mu <- 0.5 
alpha20 <- 0.2 
alpha80 <- 0.8 
 
LD20 <- qnorm(alpha20,mu,sigma) 
pLD20 <- pnorm((LD20 - mu)/sigma) 
p1LD20 <- dnorm(LD20,mu,sigma) 
p2LD20 <-  -(1/sqrt(2 * pi)) * (1/sigma^2) * exp(-0.5 * ((LD20 - 

mu)/sigma)^2) * ((LD20 - mu)/sigma) 
 
LD80 <- qnorm(alpha80,mu,sigma) 
pLD80 <- pnorm((LD80 - mu)/sigma) 
p1LD80 <- dnorm(LD80,mu,sigma)



 
 

73 
 

   
 

 
p2LD80 <-  -(1/sqrt(2 * pi)) * (1/sigma^2) * exp(-0.5 * ((LD80 - 

mu)/sigma)^2) * ((LD80 - mu)/sigma) 
 
# Kernel K21: 3/4*(1-x^2) 
B <- integrate(function(x){((3/4) * (1 - x^2) * x^2)} /2, -1, 1)$integral 
V <- integrate(function(x){((3/4)*(1-x**2))**2},-1,1)$integral 
 
C1 <- ((alpha20*(1-alpha20)*V)/(4*p2LD20^2*B^2))^.2 
 
# b is the bandwidth 
b <- C1/n^.2 
 
i <- 1:n 
xi <- (i-1)/(n-1) 
quanti le <- (xi-mu)/sigma 
probit <- pnorm(quanti le) 
wi <- seq(0,156,length=500)/156 
nw <-  length(wi) 
den <- density(xi,n=nw,from=0,to=1) 
x <- den$x 
f1x <- den$y 
mx <- max(diff(x)) 
gx <- sum(f1x)*mx 
fx <-- f1x/gx 
yi  <- rbinom(1*n,1,probit) 

Gasser and Müller Kernel Estimator 

The following codes compute the Gasser and Müller kernel estimator, 
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 xi1 <- xi[2:n] 
 xi1 <- c(xi1,1) 
 
 si <- (xi+xi1)/2 
 si0 <- c(0,si[1:n-1]) 
  
 xk <- -t(outer(x,c(0,si),"-")/b) 
 k <- abs(xk)<=1 
 int <- t(matrix(0,nw,n+1)) 
 wint <- matrix(0,n,nw) 
  
for (j in 1:nw){ 
    xk <- ifelse(xk<=(-1),-1,xk) 
    xk <- ifelse(xk>=1,1,xk) 
    int[, j ]  <- 3/4*((xk[,j]-(xk[,j]^3)/3)-((-1)-((-1)^3)/3)) 
    wint[, j ]  <- di ff(int[, j ]) 
   } 
  
 ld20 <- rep(0,m) 
 ld80 <- rep(0,m) 
  
 phat <- matrix(0,nw,m) 
 p1hatx <- matrix(0,nw-1,m) 
 p2hatx <- matrix(0,nw-2,m) 
  
 pld20 <- rep(0,m) 
 pld80 <- rep(0,m) 
  
 p1hat20 <- rep(0,m) 
 p2hat20 <- rep(0,m) 
   
 p1hat80 <- rep(0,m) 
 p2hat80 <- rep(0,m) 
  
 var20 <- rep(0,m) 
 var80 <- rep(0,m) 
 
 for(k in 1:m) { 
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  wint <- sweep(wint,2,apply(wint,2,sum),"/") 
   
  phat[,k] <- as.vector(yi%*%wint) 
   
  ld20[k] <- approx(phat[,k],x,alpha20)$y 
  p1hatx[,k] <- diff(phat[,k])/max(diff(x)) 
  p1hat20[k] <- approx(x[-1],p1hatx[,k],ld20[k])$y 
  p2hatx[,k] <- diff(p1hatx[,k])/max(diff(x)) 
  p2hat20[k] <- approx(x[c(1,length(x))],p2hatx[,k],ld20[k])$y 
  pld20[k] <- approx(x,phat[,k],LD20)$y 
     
  ld80[k] <- approx(phat[,k],x,alpha80)$y 
  p1hat80[k] <- approx(x[-1],p1hatx[,k],ld80[k])$y 
  p2hat80[k] <- approx(x[c(1,length(x))],p2hatx[,k],ld80[k])$y 
  pld80[k] <- approx(x,phat[,k],LD80)$y 
 } 
  
for(k in 1:m) { 
   
  xk120 <-  -(LD20-c(0, si))/b 
  xk120 <- ifelse(xk120 <= (-1), -1, xk120) 
  xk120 <- ifelse(xk120 >= 1, 1, xk120) 
  int120 <- (3/4) * ((xk120 - (xk120^3)/3) - ((-1) -  ((-1)^3)/3)) 
  wint120 <- diff(int120) 
  wint1220 <- sum(wint120^2) 
  var20[k] <- pld20[k]*(1-pld20[k])*wint1220 
 
  xk180 <-  -(LD80-c(0, si))/b 
  xk180 <- ifelse(xk180 <= (-1), -1, xk180) 
  xk180 <- ifelse(xk180 >= 1, 1, xk180) 
  int180 <- (3/4) * ((xk180 - (xk180^3)/3) - ((-1) -  ((-1)^3)/3)) 
  wint180 <- diff(int180) 
  wint1280 <- sum(wint180^2) 
  var80[k] <- pld80[k]*(1-pld80[k])*wint1280 
 
} 
  
# for computing O(1/n) in var(p(x)) 
  
d20 <- 1 #density of uniform = 1 
d80 <- 1 
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w1 <- seq(-1,1,.01) 
den20 <- density(ld20-b*w1,n=length(w1)) 
 
fO20 <- ((3/4)*(1-w1^2))^2/(den20$y) 
int120 <- sum(fO20[2:(length(fO20)-1)])*max(diff(w1)) 
int220 <- V/d20 
 
den80 <- density(lumtld80-b*w1,n=length(w1)) 
fO80 <- ((3/4)*(1-w1^2))^2/(den80$y) 
int180 <- sum(fO80[2:(length(fO80)-1)])*max(diff(w1)) 
int280 <- V/d80 
 
f20 <- rep(0,m) 
O1overnvar20 <- rep(0,m) 
v20 <- rep(0,m) 
f80 <- rep(0,m) 
O1overnvar80 <- rep(0,m) 
v80 <- rep(0,m) 
 
for(k in 1:m) { 
 
  f20[k] <- approx(x,phat[,k], ld20[k])$y 

O1overnvar20[k] <- (f20[k]*(1-f20[k])/(n*b))*(int120-int220) 
  v20[k] <- f20[k]*(1-f20[k])*V/(n*b*d20)+O1overnvar20[k]  
   
  f80[k] <- approx(x,phat[,k], ld80[k])$y 

O1overnvar80[k] <- (f80[k]*(1-f80[k])/(n*b))*(int180-int280) 
  v80[k] <- f80[k]*(1 - f80[k])*V/(n*b*d80)+ O1overnvar80[k] 
} 

Computing Bcn 

The following codes compute 
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 xi1 <- xi[2:n] 
 xi1 <- c(xi1,1) 
 si <- (xi+xi1)/2 
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 si0 <- c(0,si[1:n-1]) 
  
 sig2k <- 2*B 
   
# compute Bcn for LD20 
   
  C1 <- ((alpha20*(1-alpha20)*V)/(4*p2LD20^2*B^2))^.2 
  b <- C1/n^.2 
  xk120 <- -(LD20-c(0, si))/b 
  xk120 <- ifelse(xk120 <= (-1), -1, xk120) 
  xk120 <- ifelse(xk120 >= 1, 1, xk120) 
  int120 <- (3/4) * ((xk120 - (xk120^3)/3) - ((-1)- ((-1)^3)/3)) 
  wint120 <- diff(int120) 
  wint1220 <- sum((b*wint120)^2) 
  v320  <-  pLD20*(1-pLD20)*wint1220 
  Bcn220 <- (C1^3 * n^(-0.6) * 2 * B * p2LD20)/(2 *  
   sqrt(wint1220 * alpha20 * (1-alpha20))) 
   
# compute Bcn for LD80 
   
  xk180 <- -(LD80-c(0, si))/b 
  xk180 <- ifelse(xk180 <= (-1), -1, xk180) 
  xk180 <- ifelse(xk180 >= 1, 1, xk180) 
  int180 <- (3/4) * ((xk180 - (xk180^3)/3) - ((-1) -  ((-1)^3)/3)) 
  wint180 <- diff(int180) 
  wint1280 <- sum((b*wint180)^2) 
  v380  <-  pLD80*(1-pLD80)*wint1280 
  Bcn280[ik] <- (C1^3 * n^(-0.6) * 2 * B * p2LD80)/(2 *  
   sqrt(wint1280 * alpha80* (1-alpha80))) 

Bias of the Gasser- Müller Kernel Estimator 

The following codes compute the bias of the Gasser- Müller kernel estimator, 

)()()("
2

)())(ˆ( 122
2

−++=− nOhoxp
h

xpxpE Kh σ . 

# compute )(),( 12 −nOho  for LD20 

x <- seq(0,1,0.01) 
 
f20 <- function(u){i felse(abs((LD20-u)/b)<=1,3/4*(1-abs((LD20-

u)/b)^2),0)} 
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ff20 <- function(u){i felse(abs((LD20-u)/b)<=1, 
 3/4*(1-abs((LD20-u)/b)^2),0) * pnorm((u-mu)/sigma)} 
 
ag20 <- rep(0,n) 
ah20 <- rep(0,n) 
for (i in 1:n){ 
 ag20[i]  <- pxi[ i]*integrate(f20,lower=si0[i] ,upper=si[ i] ,  
 LD20=LD20,b=b)$integral 
 ah20[i]  <- integrate(ff20,lower=si0[i] ,upper=si[ i] ,  
 LD20=LD20,b=b,mu=mu,sigma=sigma)$integral 
} 
O1overn20 <- sum(ag20-ah20)/b 
 
o1int20  <-  integrate(function(v){v^2 * exp(-0.5 * ((LD20-
mu)/sigma)^2)*(-exp(-0.5*((-2*(LD20-mu)*b*v+b^2*v^2)/sigma))* 
((LD20-mu-b*v)/sigma)+ ((LD20-mu)/sigma))*((3/4)*(1-v**2))},  
-1,1)$integral 
 
ob220 <- (1/sqrt(2 * pi)) * (1/sigma^2) *o1int20*b^2/2 
 
 
# compute )(),( 12 −nOho  for LD80 

f80 <- function(u){i felse(abs((LD80-u)/b)<=1,3/4* 
 (1-abs((LD80-u)/b)^2),0)} 
 
ff80 <- function(u){i felse(abs((LD80-u)/b)<=1,3/4* 
 (1-abs((LD80-u)/b)^2),0) * pnorm((u-mu)/sigma)} 
 
ag80 <- rep(0,n) 
ah80 <- rep(0,n) 
for (i in 1:n){ 
 ag80[i]  <- pxi[ i]*integrate(f80,lower=si0[i] ,upper=si[ i] ,  
 LD80=LD80,b=b)$integral 
 ah80[i]  <- integrate(ff80,lower=si0[i] ,upper=si[ i] ,  
 LD80=LD80,b=b,mu=mu,sigma=sigma)$integral 
} 
O1overn80 <- sum(ag80-ah80)/b 
 
o1int80  <-  integrate(function(v){v^2 * exp(-0.5 * ((LD80 - 
mu)/sigma)^2)*(-exp(-0.5*((-2*(LD80-mu)*b*v+b^2*v^2)/sigma))* 
((LD80-mu-b*v)/sigma)+((LD80-mu)/sigma))*((3/4)*(1-v**2))},  
-1,1)$integral 
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ob280 <- (1/sqrt(2 * pi)) * (1/sigma^2) *o1int80*b^2/2 
 
sig2k <- 2*B 
bias20 <- b^2*p2LD20*sig2k/2+O1overn20+ob220 
bias80 <- b^2*p2LD80*sig2k/2+O1overn80+ob280  

Covariance of LD20 and LD80 for the Kernel 
 Estimator 

The following codes compute Cov(.2θ , .8θ ) and .2 .8ˆ ˆcov( ( ), ( ))p pθ θ . 

 
# compute expected value and variance of )(ˆ 20LDp  

 
a20 <- rep(0,n) 
ag20 <- rep(0,n) 
for (i in 1:n){ 
 a20[i]  <- 

integrate(f20,lower=si0[i] ,upper=si[ i] ,LD20=LD20,b=b)$integral 
 ag20[i]  <- pxi[ i]*a20[i] 
} 
EpLD20 <- sum(ag20)/b 
VpLD20 <- alpha20*(1-alpha20)*sum(a20^2)/(b^2) 
 
# compute expected value and variance of )(ˆ 80LDp  

 
a80 <- rep(0,n) 
ag80 <- rep(0,n) 
for (i in 1:n){ 
 a80[i]  <- 

integrate(f80,lower=si0[i] ,upper=si[ i] ,LD80=LD80,b=b)$integral 
 ag80[i]  <- pxi[ i]*a80[i] 
} 
EpLD80 <- sum(ag80)/b 
VpLD80 <- alpha80*(1-alpha80)*sum(a80^2)/(b^2) 
 
# compute expected value of p(LD20) and p(LD80) 
eg2080 <- rep(0,n) 
for (i in 1:n){ 
 eg2080[i]  <- (pxi[ i]*(1-pxi[ i])+(pxi[ i]^2))*(integrate(f20,lower=si0[i] ,  
 upper=si[ i] ,LD20=LD20,b=b)$integral)*

 (integrate(f80,lower=si0[i] ,upper=si[ i] , 
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 LD80=LD80,b=b)$integral) 
} 
 
cg2080 <- matrix(0,n,n) 
for (i in 1:n){ 
 for (j in 1:n){ 
 cg2080[i , j ]  <- 

ifelse(i==j,0,(pxi[ i]*pxi[ j]*(integrate(f20,lower=si0[i] ,upper=si[ i] , 
 LD20=LD20,b=b)$integral)*(integrate(f80,lower=si0[j] ,  
 upper=si[ j] ,LD80=LD80,b=b)$integral))) 
} 
 } 
    
Ep20p80 <- (1/b^2)*(sum(eg2080) + sum(cg2080)) 
Covp20p80 <- Ep20p80 - EpLD20 * EpLD80 
 
# compute cov(LD20,LD80) 
covLD20LD80 <- Covp20p80/(p1LD20*p1LD80) 
 
# compute var(LD20) and var(LD80) 
varLD20 <- VpLD20/(p1LD20^2) 
varLD80 <- VpLD80/(p1LD80^2) 
 
# compute correlation of LD20 and LD80 
corLD20LD80 <- covLD20LD80/(sqrt(varLD20)*sqrt(varLD80)) 

Replicate Samples 

The following codes generate 1,000 replicate samples and compute the kernel 

estimators. 

m2 <- 1000 
b1 <- 0.123 
  
phat <-  matrix(0,nw,m2) 
   
xk <-  -t(outer(x,c(0,si),"-")/b1) 
int <- t(matrix(0,nw,n+1)) 
 wint <- matrix(0,n,nw) 
 
 for (j in 1:nw){ 
    xk <- ifelse(xk<=(-1),-1,xk) 
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    xk <- ifelse(xk>=1,1,xk) 
    int[, j ]  <- 3/4*((xk[,j]-(xk[,j]^3)/3)-((-1)-((-1)^3)/3)) 
    wint[, j ]  <- di ff(int[, j ]) 
      } 
 
# generate replicate samples  
for(k in 1:m2) { 
 yi  <- NULL 
 phat <- matrix(0,nw,m2) 
 
 yi  <- c(yi ,rbinom(1*n,1,probit)) 
 wint <- sweep(wint,2,apply(wint,2,sum),"/") 
 phat[,k] <- as.vector(yi%*%wint) 
  } 

Confidence Intervals 

The following codes compute 95% confidence intervals using Müller and Schmitt 

methods and Hart methods and compute coverage probability. 

 
n <- 100 
m <- 4000 
sigma <- 0.1 
mu <- 0.5 
alpha20 <- 0.2 
alpha80 <- 0.8 
 
LD20 <- qnorm(alpha20)*sigma+mu  
pLD20 <- pnorm((LD20 - mu)/sigma) 
p1LD20 <- dnorm(LD20,mu,sigma) 
p2LD20 <-  -(1/sqrt(2 * pi)) * (1/sigma^2) *  
exp(-0.5 * ((LD20 - mu)/sigma)^2) * ((LD20 - mu)/sigma) 
 
LD80 <- qnorm(alpha80)*sigma+mu 
pLD80 <- pnorm((LD80 - mu)/sigma) 
p1LD80 <-- dnorm(LD80,mu,sigma) 
p2LD80 <-  -(1/sqrt(2 * pi)) * (1/sigma^2) *  
exp(-0.5 * ((LD80 - mu)/sigma)^2) * ((LD80 - mu)/sigma) 
 
# Kernel K21: 3/4*(1-x^2)   
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B <- integrate(function(x){((3/4) * (1 - x^2) * x^2)}/2, -1, 1)$integral 
V <- integrate(function(x){((3/4)*(1-x**2))**2},-1,1)$integral 
   
beta <- 0.05 
 
C1 <- ((alpha20*(1-alpha20)*V)/(4*p2LD20^2*B^2))^.2 
 
b <- C1/n^.2 
 
 f20 <- rep(0,m) 
 v20 <- rep(0,m) 
 LD20 <- rep(0,m) 
 LD20plus <- rep(0,m) 
 LD20minus <- rep(0,m) 
 LD20plusH <- rep(0,m) 
 LD20minusH <- rep(0,m) 
  
 f80 <- rep(0,m) 
 v80 <- rep(0,m) 
 LD80 <- rep(0,m) 
 
 LD80plus <- rep(0,m) 
 LD80minus <- rep(0,m) 
 LD80plusH <- rep(0,m) 
 LD80minusH <- rep(0,m) 
 
 i  <- 1:n 
 xi <- (i-1)/(n-1) 
 xi1 <- xi[2:n] 
 xi1 <- c(xi1,1) 
 
 si <- (xi+xi1)/2 
 si0 <- c(0,si[1:n-1]) 
 
 quanti le <- (xi-mu)/sigma 
 probit <- pnorm(quanti le) 
 
 x <- seq(0,1,0.01) 
 
 px <- pnorm((x-mu)/sigma) 
 
 nx <- length(xi) 
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 phat <- matrix(0,nx,m) 
 xk <-  -t(outer(xi,c(0,si),"-")/b) 
 k <- abs(xk)<=1 
 int <- t(matrix(0,nx,n+1)) 
 wint <- matrix(0,n,nx) 
  
  
# compute kernel estimator for LD20 and LD80 
  
 for (j in 1:nx){ 
    xk <- ifelse(xk<=(-1),-1,xk) 
    xk <- ifelse(xk>=1,1,xk) 
    int[, j ]  <- (3/4)*((xk[,j]-(xk[,j]^3)/3)-((-1)-((-1)^3)/3)) 
    wint[, j ]  <- di ff(int[, j ]) 
  } 
  
 phat <- matrix(0,nx,m) 
 yi  <- matrix(0,n,m) 
 p1hatx <- matrix(0,nx-1,m) 
 p2hatx <- matrix(0,nx-2,m) 
 p1hat20 <- rep(0,m) 
 p2hat20 <- rep(0,m) 
  
 p1hat80 <- rep(0,m) 
 p2hat80 <- rep(0,m) 
   
 for(k in 1:m) { 
  yi [ ,k] < - rbinom(1*n,1,probit) 
  wint <- sweep(wint,2,apply(wint,2,sum),"/") 
  phat[,k] <- as.vector(yi[,k]%*%wint) 
  LD20[k] <- approx(phat[,k],xi,alpha20)$y 
  p1hatx[,k] <- diff(phat[,k])/max(diff(xi)) 
  LD80[k] <- approx(phat[,k],xi,alpha80)$y 
} 
for(k in 1:m) { 
 p1hat20[k] <- approx(xi[-1],p1hatx[,k],LD20[k])$y 
 p2hatx[,k] <- diff(p1hatx[,k])/max(diff(xi)) 
 p2hat20[k] <- approx(xi[-c(1, length(xi))],  p2hatx[,k],LD20[k])$y 
 
 f20[k] <- approx(xi,phat[,k],qnorm(alpha20,.5,sigma))$y 
 v20[k] <- f20[k]*(1-f20[k])*sum(wint[,kk]^2) 
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 v120 <- alpha20*(1-alpha20)*sum(wint[,kk]^2) 
 LD20plus[k] <- approx(phat[,k],xi,alpha20+sqrt(v120))$y 
 LD20minus[k] <- approx(phat[,k],xi,alpha20-sqrt(v120))$y 
 LD20plusH[k] <- approx(phat[,k],xi,alpha20+sqrt(v20[k]))$y 
 LD20minusH[k] <- approx(phat[,k],xi,alpha20-sqrt(v20[k]))$y 
  
 p1hat80[k] <- approx(xi[-1],p1hatx[,k],LD80[k])$y 
 p2hat80[k] <- approx(xi[-c(1, length(xi))],  p2hatx[,k],LD80[k])$y 
  
 f80[k] <- approx(xi,phat[,k],qnorm(alpha80,.5,sigma))$y 
 v80[k] <- f80[k]*(1-f80[k])*sum(wint[,kk]^2) 
 v180 <- alpha80*(1-alpha80)*sum(wint[,kk]^2) 
 LD80plus[k] <- approx(phat[,k],xi,alpha80+sqrt(v180))$y 
 LD80minus[k] <- approx(phat[,k],xi,alpha80-sqrt(v180))$y 
 LD80plusH[k] <- approx(phat[,k],xi,alpha80+sqrt(v80[k]))$y 

LD80minusH[k] <- approx(phat[,k],xi,alpha80-sqrt(v80[k]))$y 
 } 
  
HLD20 <- rep(0,m) 
HloLD20 <- rep(0,m) 
HupLD20 <- rep(0,m) 
Hbcn2LD20 <- rep(0,m) 
Hbcn2loLD20 <- rep(0,m) 
Hbcn2upLD20 <- rep(0,m) 
 
HbnhLD20 <- rep(0,m) 
HbnhloLD20 <- rep(0,m) 
HbnhupLD20 <- rep(0,m) 
HbnhaLD20 <- rep(0,m) 
HbnhaloLD20 <- rep(0,m) 
HbnhaupLD20 <- rep(0,m) 
 
v220 <- rep(0,m) 
v280 <- rep(0,m) 
 
loLD20 <- rep(0,m) 
upLD20 <- rep(0,m) 
bcLD20 <- rep(0,m) 
lobcLD20 <- rep(0,m) 
upbcLD20 <- rep(0,m) 
DQloLD20 <- rep(0,m) 
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DQupLD20 <- rep(0,m) 
 
HLD80 <- rep(0,m) 
HloLD80 <- rep(0,m) 
HupLD80 <- rep(0,m) 
Hbcn2LD80 <- rep(0,m) 
Hbcn2loLD80 <- rep(0,m) 
Hbcn2upLD80 <- rep(0,m) 
 
HbnhLD80 <- rep(0,m) 
HbnhloLD80 <- rep(0,m) 
HbnhupLD80 <- rep(0,m) 
HbnhaLD80 <- rep(0,m) 
HbnhaloLD80 <- rep(0,m) 
HbnhaupLD80 <- rep(0,m) 
 
loLD80 <- rep(0,m) 
upLD80 <- rep(0,m) 
bcLD80 <- rep(0,m) 
lobcLD80 <- rep(0,m) 
upbcLD80 <- rep(0,m) 
DQloLD80 <- rep(0,m) 
DQupLD80 <- rep(0,m) 
 
Hcl ine <- rep(0,m) 
Hlocline <- rep(0,m) 
Hupcline <- rep(0,m) 
 
Hbcn2cline <- rep(0,m) 
Hbcn2locline <- rep(0,m) 
Hbcn2upcline <- rep(0,m) 
Hbnhcl ine <- rep(0,m) 
Hbnhlocline <- rep(0,m) 
Hbnhupcline <- rep(0,m) 
 
Hbnhacline <- rep(0,m) 
Hbnhalocline <- rep(0,m) 
Hbnhaupcline <- rep(0,m) 
 
locline <- rep(0,m) 
upcline <- rep(0,m) 
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bccline <- rep(0,m) 
lobccline <- rep(0,m) 
upbccline <- rep(0,m) 
 
DQlocl ine <- rep(0,m) 
DQupcline <- rep(0,m) 
 
# Hart 
HLD20 <- LD20 + hz220*sqrt(v20)/p1LD20 
HloLD20 <- HLD20 - qnorm(1-beta/2)*(sqrt(v20)/p1LD20) 
HupLD20 <- HLD20 + qnorm(1-beta/2)*(sqrt(v20)/p1LD20) 
lenHLD20 <- HupLD20 - HloLD20 
HLD80 <- LD80 + hz280*sqrt(v80)/p1LD80 
HloLD80 <- HLD80 - qnorm(1-beta/2)*(sqrt(v80)/p1LD80) 
HupLD80 <- HLD80 + qnorm(1-beta/2)*(sqrt(v80)/p1LD80) 
 
Hcl ine <- HLD80 - HLD20 
Hlocline <- Hcl ine - qnorm(1-beta/2)* 
 sqrt(v20/p1LD20^2+v80/p1LD80^2-2*CovLD20LD80) 
Hupcline <- Hcline + qnorm(1-beta/2)* 
 sqrt(v20/p1LD20^2+v80/p1LD80^2-2*CovLD20LD80) 
 
# Müller and Schmitt 
v220 <- v120/(p1hat20^2) 
loLD20 <- LD20 - qnorm(1-beta/2)*sqrt(v220) 
upLD20 <- LD20 + qnorm(1-beta/2)*sqrt(v220) 
v280 <- v180/(p1hat80^2) 
 
loLD80 <- LD80 - qnorm(1-beta/2)*sqrt(v280) 
upLD80 <- LD80 + qnorm(1-beta/2)*sqrt(v280) 
 
v2cline <- v120/(p1hat20^2)+v180/(p1hat80^2)-2*CovLD20LD80 
locline <- (LD80 - LD20)- qnorm(1-beta/2)*sqrt(v2cline) 
upcline <- (LD80 - LD20)+ qnorm(1-beta/2)*sqrt(v2cline) 
 
# Müller and Schmitt (Difference Quotient method) 
DQloLD20 <- LD20 - qnorm(1-beta/2)*(LD20-LD20minus) 
DQupLD20 <- LD20 + qnorm(1-beta/2)*(LD20plus-LD20) 
 
DQloLD80 <- LD80 - qnorm(1-beta/2)*(LD80-LD80minus) 
DQupLD80 <- LD80 + qnorm(1-beta/2)*(LD80plus-LD80) 
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DQlocl ine <- (LD80-LD20) - qnorm(1-beta/2)*sqrt((LD20-

LD20minus)^2+(LD80-LD80minus)^2-2*CovLD20LD80) 
DQupcline <- (LD80-LD20) + qnorm(1-beta/2)*sqrt((LD20plus-

LD20)^2+(LD80plus-LD80)^2-2*CovLD20LD80) 
 
# bias-corrected CI (Müller and Schmitt Theorem 4) 
bcLD20 <- (LD20+(b^2*B*mu)/sigma^2)/(1+b^2*B/sigma^2) 
bcsdLD20 <- (sqrt((alpha20*(1-alpha20)*V)/(n*b*p1LD20^2)))/  
 (1+b^2*B/sigma^2) 
lobcLD20 <- bcLD20 - (qnorm(1-beta/2))*bcsdLD20 
upbcLD20 <- bcLD20 + (qnorm(1-beta/2))*bcsdLD20 
 
bcLD80 <- (a$LD80+(b^2*B*mu)/sigma^2)/(1+b^2*B/sigma^2) 
bcsdLD80 <- (sqrt((alpha80*(1-alpha80)*V)/(n*b*p1LD80^2)))/  
 (1+b^2*B/sigma^2) 
lobcLD80 <- bcLD80 - (qnorm(1-beta/2))*bcsdLD80 
upbcLD80 <- bcLD80 + (qnorm(1-beta/2))*bcsdLD80 
 
bccline <- bcLD80 - bcLD20 
bcsdcl ine <- sqrt((alpha20*(1-alpha20)*V)/ 
 (n*b*p1LD20^2)/(1+b^2*B/sigma^2)^2 +(alpha80* 
 (1-alpha80)*V)/(n*b*p1LD80^2)/(1+b^2*B/sigma^2)^2-

2*CovLD20LD80) 
lobccline <- bccl ine - (qnorm(1-beta/2))*bcsdcl ine 
upbccline <- bccline + (qnorm(1-beta/2))*bcsdcl ine 
 
# Hart (Bcn) 
Hbcn2LD20 <- LD20 + Bcn220*sqrt(v20)/p1LD20 
Hbcn2loLD20 <- Hbcn2LD20-qnorm(1-beta/2)*(sqrt(v20)/p1LD20) 
Hbcn2upLD20 <- Hbcn2LD20+qnorm(1-beta/2)*(sqrt(v20)/p1LD20) 
 
Hbcn2LD80 <- LD80 + Bcn280*sqrt(v80)/p1LD80 
Hbcn2loLD80 <- Hbcn2LD80-qnorm(1-beta/2)*(sqrt(v80)/p1LD80) 
Hbcn2upLD80 <- Hbcn2LD80+qnorm(1-beta/2)*(sqrt(v80)/p1LD80) 
 
Hbcn2cline <- Hbcn2LD80 - Hbcn2LD20  
Hbcn2locline <- Hbcn2cline - qnorm(1-beta/2)* sqrt(v20/p1LD20^2 + 

v80/p1LD80^2-2*CovLD20LD80) 
Hbcn2upcline <- Hbcn2cline + qnorm(1-beta/2)* sqrt(v20/p1LD20^2 + 

v80/p1LD80^2-2*CovLD20LD80) 
 
# Hart (Bnh) asymptotic 
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vxh20 <- alpha20*(1-alpha20)/(n*b)*V 
Bnyasy20 <- (sum(ag20)/b-pLD20)/sqrt(vxh20) 
HbnhaLD20 <- LD20 + Bnhasy20*sqrt(v20)/p1LD20 
HbnhaloLD20 <- HbnhaLD20 - qnorm(1-beta/2)*(sqrt(v20)/p1LD20) 
HbnhaupLD20 <- HbnhaLD20 + qnorm(1-beta/2)*(sqrt(v20)/p1LD20) 
 
Vxh80 <- alpha80*(1-alpha80)/(n*b)*V 
Bnyasy80 <- (sum(ag80)/b-pLD80)/sqrt(vxh80) 
HbnhaLD80 <- LD80 + Bnhasy80*sqrt(v80)/p1LD80 
HbnhaloLD80 <- HbnhaLD80 - qnorm(1-beta/2)*(sqrt(v80)/p1LD80) 
HbnhaupLD80 <- HbnhaLD80 + qnorm(1-beta/2)*(sqrt(v80)/p1LD80) 
 
Hbnhacline <- HbnhaLD80 - HbnhaLD20 
Hbnhalocline <- Hbnhacline - qnorm(1-beta/2)* sqrt(v20/p1LD20^2 + 

v80/p1LD80^2 - 2*CovLD20LD80) 
Hbnhaupcline <- Hbnhacline + qnorm(1-beta/2)* sqrt(v20/p1LD20^2 + 

v80/p1LD80^2 - 2*CovLD20LD80) 
 
# Hart (Bnh) 
Bnh20 <- (C1^3*n^(-.6)*p2LD20*2*B+O1overn20+ob220)/(2*sqrt(v320)) 
HbnhLD20 <- LD20 + Bnh20*sqrt(v20)/p1LD20 
HbnhloLD20 <- HbnhLD20 - qnorm(1-beta/2)*(sqrt(v20)/p1LD20) 
HbnhupLD20 <- HbnhLD20 + qnorm(1-beta/2)*(sqrt(v20)/p1LD20) 
 
Bnh80 <- (C1^3*n^(-.6)*p2LD80*2*B+O1overn80+ob280)/(2*sqrt(v380)) 
HbnhLD80 <- LD80 + Bnh80*sqrt(v80)/p1LD80 
HbnhloLD80 <- HbnhLD80 - qnorm(1-beta/2)*(sqrt(v80)/p1LD80) 
HbnhupLD80 <- HbnhLD80 + qnorm(1-beta/2)*(sqrt(v80)/p1LD80) 
 
Hbnhcl ine <-HbnhLD80 - HbnhLD20 
Hbnhlocline <- Hbnhcline - qnorm(1-beta/2)* sqrt(v20/p1LD20^2 + 

a$v80/p1LD80^2 - 2*CovLD20LD80)  
Hbnhupcline <- Hbnhcline + qnorm(1-beta/2)* sqrt(a$v20/p1LD20^2 + 

v80/p1LD80^2 - 2*CovLD20LD80) 
 

qcline <- qnorm(alpha80,.5,sigma) - qnorm(alpha20,.5,sigma)  
 
# LD20 coverage probability, M&S (5.4) 
covLD20 <- sum(loLD20 < qnorm(alpha20,.5,sigma) & 

qnorm(alpha20,.5,sigma) < upLD20)/m 
 
# LD20 coverage probability, M&S (5.7) 
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covDQLD20 <- sum(DQloLD20 < qnorm(alpha20,.5,sigma) & 
qnorm(alpha20,.5,sigma) < DQupLD20)/m 

 
# LD20 coverage probability bias-correction, M&S Theorem 4" 
covbcLD20 <- sum(lobcLD20 < qnorm(alpha20,.5,sigma) & 

qnorm(alpha20,.5,sigma) < upbcLD20)/m 
 
# LD20 coverage probability, Hart (top of p.79) 
covHLD20 <- sum(HloLD20 < qnorm(alpha20,.5,sigma) & 

qnorm(alpha20,.5,sigma) < HupLD20)/m 
 
# LD20 coverage probability, Hart Bcn2 
covHbcn2LD20 <- sum(Hbcn2loLD20 < qnorm(alpha20,.5,sigma) & 

qnorm(alpha20,.5,sigma) < Hbcn2upLD20)/m 
 
# LD20 coverage probability, Hart Bnh  
covHbnhLD20 <- sum(HbnhloLD20 < qnorm(alpha20,.5,sigma) & 

qnorm(alpha20,.5,sigma) < HbnhupLD20)/m 
 
# LD20 coverage probability, Hart Bnh asymptotic 
covHbnhaLD20 <- sum(HbnhaloLD20 < qnorm(alpha20,.5,sigma) & 

qnorm(alpha20,.5,sigma) < HbnhaupLD20)/m 
 
# LD80 coverage probability M&S (5.4) 
covLD80 <- sum(loLD80 < qnorm(alpha80,.5,sigma) & 

qnorm(alpha80,.5,sigma) < upLD80)/m 
 
# LD80 coverage probability M&S (5.7) 
covDQLD80 <- sum(DQloLD80 < qnorm(alpha80,.5,sigma) & 

qnorm(alpha80,.5,sigma) < DQupLD80)/m 
 
# LD80 coverage probability bias-correction, M&S Theorem 4 
covbcLD80 <- sum(lobcLD80 < qnorm(alpha80,.5,sigma) & 

qnorm(alpha80,.5,sigma) < upbcLD80)/m 
 
# LD80 coverage probability, Hart 
covHLD80 <- sum(HloLD80 < qnorm(alpha80,.5,sigma) & 

qnorm(alpha80,.5,sigma) < HupLD80)/m 
 
#LD80 coverage probability, Hart Bcn 
covHbcn2LD80 <- sum(Hbcn2loLD80 < qnorm(alpha80,.5,sigma) & 

qnorm(alpha80,.5,sigma) < Hbcn2upLD80)/m 
 
#LD80 coverage probability, Hart Bnh 
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covHbnhLD80 <- sum(HbnhloLD80 < qnorm(alpha80,.5,sigma) & 
qnorm(alpha80,.5,sigma) < HbnhupLD80)/m 

 
# LD80 coverage probability, Hart Bnh asymptotic 
covHbnhaLD80 <- sum(HbnhaloLD80 < qnorm(alpha80,.5,sigma) & 

qnorm(alpha80,.5,sigma) < HbnhaupLD80)/m 
 
# cline coverage probability, M&S (5.4) 
covcline <- sum(locl ine < qcline & qcline < upcline)/m 
 
# cline coverage probability, M&S (5.7) 
covDQcline <- sum(DQlocl ine < qcline & qcline < DQupcline)/m 
 
# cline coverage probability bias-correction,M&S Theorem 4 
covbccline <- sum(lobccline < qcline & qcline < upbccline)/m 
 
# cline coverage probability, Hart 
covHcline <- sum(Hlocline < qcline & qcl ine < Hupcline)/m 
 
# cline coverage probability, Hart Bcn 
covHbcn2cline <- sum(Hbcn2locline < qcline & qcline < Hbcn2upcline)/m 
 
# cline coverage probability, Hart Bnh  
covHbnhcline <- sum(Hbnhlocline < qcl ine & qcline < Hbnhupcline)/m 
 
# cline coverage probability, Hart Bnh asymptotic 
covHbnhacline <- sum(Hbnhalocline < qcline & qcline < Hbnhaupcline)/m 
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APPENDIX B 

S-PLUS PROGRAMS FOR lumt DATA 

This Appendix shows the codes for computing LD20, LD80, the cline width, and 

the corresponding confidence intervals for the lumt distances using the Bcn method and 

the Müller and Schmitt (bias-corrected) method. The confidence intervals require the 

knowledge of the first and second derivatives of the kernel estimator. Our approach for 

estimating the derivatives is to use some reasonable bandwidth to compute )(ˆ xp  first. 

With )(ˆ xp , we then estimate )(" xp . Using )(" xp , we estimate the optimal h. Finally, 

using the optimal h, we recalculate )(ˆ xp , )(' xp , and )(" xp .  

Computing an Initial Kernel Estimator and Second 
 Derivative of the Kernel Estimator 

This program uses a reasonable bandwidth (0.12) to compute )(ˆ xp  first. 

n <- length(lumtdata$outcome) 
b <- 0.12 
 
# use this bandwidth b to estimate )(" xp , then use estimated )(" xp  to find optimal b for 

lumt data 
 
yi  <- lumtdata$outcome 
 
# transform dist to [0,1] range  
lumtdist01 <- lumtdata$dist/max(lumtdata$dist) 
 
den <- density(lumtdist01,n=n,from=0, to=1) 
x <- den$x
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f1x <- den$y 
 
mx <- max(diff(x)) 
 
gx <- sum(f1x)*mx 
 
fx <- f1x/gx 
 
 xi <- sort( lumtdist01) 
 xi1  <-  xi[2:n] 
 xi1  <-  c(xi1,1) 
 
 si  <-  (xi+xi1)/2 
 si0  <-  c(0,si[1:n-1]) 
  
 nx  <-  length(x) 
 
 xk <- -t(outer(x,c(0,si),"-")/b) 
 k <- abs(xk)<=1 
 int <- t(matrix(0,nx,n+1)) 
 wint <- matrix(0,n,nx) 
  
 for (j in 1:nx){ 
    xk <- ifelse(xk<=(-1),-1,xk) 
    xk <- ifelse(xk>=1,1,xk) 
    int[, j ]  <- 3/4*((xk[,j]-(xk[,j]^3)/3)-((-1)-((-1)^3)/3)) 
    wint[, j ]  <- di ff(int[, j ]) 
      } 
   
lumtld20 <- NULL 
lumtld80 <- NULL 
 
lumtphat <- rep(0,nx) 
lumtp1hatx <- rep(0,nx-1) 
lumtp2hatx <- rep(0,nx-2) 
  
lumtpld20 <- NULL 
lumtpld80 <- NULL 
  
lumtp1hat20 <- NULL 
lumtp2hat20 <- NULL 
lumtp1hat80 <- NULL 
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lumtp2hat80 <- NULL 
 
  wint <- sweep(wint,2,apply(wint,2,sum),"/") 
   
  lumtphat <- as.vector(yi%*%wint) 
  lumtld20 <- approx(lumtphat,x,alpha20)$y 
  lumtp1hatx <- diff(lumtphat)/max(diff(x)) 
  lumtp1hat20 <- approx(x[-1],lumtp1hatx,lumtld20)$y 
  lumtp2hatx <- diff(lumtp1hatx)/max(diff(x)) 
  lumtp2hat20 <- approx(x[-c(1,length(x))] , lumtp2hatx,lumtld20)$y 
 
  lumtpld20 <- approx(x,lumtphat,lumtld20)$y 
   
  lumtld80 <- approx(lumtphat,x,alpha80)$y 
  lumtp1hat80 <- approx(x[-1],lumtp1hatx,lumtld80)$y 
  lumtp2hat80 <- approx(x[-c(1,length(x))] , lumtp2hatx,lumtld80)$y 
 
  lumtpld80 <- approx(x,lumtphat,lumtld80)$y 
  
d20 <- approx(x,fx,lumtld20)$y 
d80 <- approx(x,fx,lumtld80)$y 

Estimating First and Second Derivatives of the 
 Kernel Estimator 

The following codes compute an optimal bandwidth. Using the optimal 

bandwidth, we recalculate )(ˆ xp , )(' xp , and )(" xp . 

 
# Compute optimal bandwidth 
alpha20 <- 0.2 
alpha80 <- 0.8 

 
B <- integrate(function(x){((3/4) * (1 - x^2) * x^2)}/2, -1, 1)$integral 
V <- integrate(function(x){((3/4)*(1-x**2))**2}, -1,1)$integral 
  
C120 <- ((alpha20*(1-alpha20)*V)/(d20*4*lumtp2hat20^2*B^2))^.2 
b20 <- C120/n^.2 
 
C180 <- ((alpha80*(1-alpha80)*V)/(d80*4*lumtp2hat80^2*B^2))^.2 
b80 <- C180/n^.2 



 
 

94 

  

 
b <- sum(b20,b80)/2 
 
# Recalculate )(ˆ xp , )(' xp , and )(" xp  

 
 lumtld20 <- NULL 
 lumtld80 <- NULL 
  
 xi <- sort( lumtdist01) 
 
 xi1 <- xi[2:n] 
 xi1 <- c(xi1,1) 
 
 si <- (xi+xi1)/2 
 si0 <- c(0,si[1:n-1]) 
  
 nx <- length(x) 
 
 xk <- -t(outer(x,c(0,si),"-")/b) 
 k <- abs(xk)<=1 
 int <- t(matrix(0,nx,n+1)) 
 wint <- matrix(0,n,nx) 
  
 for (j in 1:nx){ 
    xk <- ifelse(xk<=(-1),-1,xk) 
    xk <- ifelse(xk>=1,1,xk) 
    int[, j ]  <- 3/4*((xk[,j]-(xk[,j]^3)/3)-((-1)-((-1)^3)/3)) 
    wint[, j ]  <- di ff(int[, j ]) 
  } 
  
 lumtphat <- rep(0,nx) 
 lumtphatr <- rep(0,nx) 
 lumtp1hatx <- rep(0,nx-1) 
 lumtp2hatx <- rep(0,nx-2) 
  
 lumtpld20 <- NULL 
 lumtpld80 <- NULL 
  
 lumtp1hat20 <- NULL 
 lumtp2hat20 <- NULL 
   
 lumtp1hat80 <- NULL 
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 lumtp2hat80 <- NULL 
 
  wint <- sweep(wint,2,apply(wint,2,sum),"/") 
   
  lumtphat <- as.vector(yi%*%wint) 
  
  lumtld20 <- approx(lumtphat,x,alpha20)$y 
  lumtp1hatx <- diff(lumtphat)/max(diff(x)) 
  lumtp1hat20 <- approx(x[-1],lumtp1hatx,lumtld20)$y 
  lumtp2hatx <- diff(lumtp1hatx)/max(diff(x)) 
  lumtp2hat20 <- approx(x[-c(1,length(x))] , lumtp2hatx,lumtld20)$y 
 
  lumtpld20 <- approx(x,lumtphat,lumtld20)$y 
   
  lumtld80 <- approx(lumtphat,x,alpha80)$y 
  lumtp1hat80 <- approx(x[-1],lumtp1hatx,lumtld80)$y 
  lumtp2hat80 <- approx(x[-c(1,length(x))] , lumtp2hatx,lumtld80)$y 
 
  lumtpld80 <- approx(x,lumtphat,lumtld80)$y 
 
# computing O(1/n) in var(p(x)) 
  
d20 <- approx(x,fx,lumtld20)$y 
d80 <- approx(x,fx,lumtld80)$y 
 
w1 <- seq(-1,1,.01) 
den20 <- density(lumtld20-b20*w1,n=length(w1)) 
 
fO20 <- ((3/4)*(1-w1^2))^2/(den20$y) 
int120 <- sum(fO20[2:(length(fO20)-1)])*max(diff(w1)) 
int220 <- V/d20 
 
den80 <- density(lumtld80-b80*w1,n=length(w1)) 
 
fO80 <- ((3/4)*(1-w1^2))^2/(den80$y) 
int180 <- sum(fO80[2:(length(fO80)-1)])*max(diff(w1)) 
int280 <- V/d80 
 
lumtf20 <- NULL 
lumtO1overnvar20 <- NULL 
lumtv20 <- NULL 
lumtf80 <- NULL 
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lumtO1overnvar80 <- NULL 
lumtv80 <- NULL 
 
 lumtf20 <- approx(x, lumtphat,lumtld20)$y 
 lumtO1overnvar20 <- (lumtf20*(1-umtf20)/(n*b20))*(int120-int220) 
 lumtv20 <- lumtf20*(1-lumtf20)*V/(n*b20*d20) + lumtO1overnvar20 
   
 lumtf80 <- approx(x, lumtphat,lumtld80)$y 
 lumtO1overnvar80 <- (lumtf80*(1-umtf80)/(n*b80))*(int180-int280) 
 lumtv80 <- lumtf80*(1-lumtf80)*V/(n*b80*d80) + lumtO1overnvar80 

Computing Bcn 

 Bcn220 <- NULL 
 Bcn280 <- NULL 
  
 n <- length(lumtdata$outcome) 
 lumtdist01 <- lumtdata$dist/max(lumtdata$dist) 
 
 xi <- sort( lumtdist01) 
 xi1 <- xi[2:n] 
 xi1 <- c(xi1,1) 
 
 si <- (xi+xi1)/2 
 si0 <- c(0,si[1:n-1]) 
  
 sig2k <- 2*B 
   
# compute Bcn for LD20 
   
  xk120 <- -(lumtld20-c(0, si))/b20 
  xk120 <- ifelse(xk120 <= (-1), -1, xk120) 
  xk120 <- ifelse(xk120 >= 1, 1, xk120) 
  int120 <- (3/4) * ((xk120 - (xk120^3)/3) - ((-1) -  ((-1)^3)/3)) 
  wint120 <- diff(int120) 
  wint1220 <- sum((b20*wint120)^2) 
   
  wh20 <- lumtpld20*(1-lumtpld20)/sum(wint120^2) 
   
  v320 <- lumtpld20*(1-lumtpld20)*wint1220 
  Bcn220 <- (C120^3 * n^(-0.6) * 2 * B * lumtp2hat20)/ 
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   (2 * sqrt(wint1220 * alpha20 * (1-alpha20))) 
   
# compute Bcn for LD80 
   
  xk180 <- -(lumtld80-c(0, si))/b80 
  xk180 <- ifelse(xk180 <= (-1), -1, xk180) 
  xk180 <- ifelse(xk180 >= 1, 1, xk180) 
  int180 <- (3/4) * ((xk180 - (xk180^3)/3) - ((-1) -  ((-1)^3)/3)) 
  wint180 <- diff(int180) 
  wint1280 <- sum((b80*wint180)^2) 
   
  wh80 <- lumtpld80*(1-lumtpld80)/sum(wint180^2) 
   
  v380 <- lumtpld80*(1-lumtpld80)*wint1280 
  Bcn280 <- (C180^3 * n^(-0.6) * 2 * B * lumtp2hat80)/ 
   (2 * sqrt(wint1280 * lumtpld80 * (1-lumtpld80))) 

Computing Covariance of LD20 and LD80 for the 
 lumt Distances 

 xi <- sort( lumtdist01) 
 
 xi1 <- xi[2:n] 
 xi1 <- c(xi1,1) 
 
 si <- (xi+xi1)/2 
 si0 <- c(0,si[1:n-1]) 
  
 nx <- length(x) 
 pxi <- lumtphat 
 
 LD20 <- lumtld20 
 LD80 <-  lumtld80 
 
# compute expected value of p(LD20) 
pLD20 <- lumtpld20 
p1LD20 <- lumtp1hat20 
p2LD20 <- lumtp2hat20 
 
f20 <- function(u){i felse(abs((LD20-u)/b)<=1,3/4*(1-abs((LD20-

u)/b)^2),0)} 
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a20 <- rep(0,n) 
ag20 <- rep(0,n) 
for (i in 1:n){ 
 a20[i]  <- 

integrate(f20,lower=si0[i] ,upper=si[ i] ,LD20=LD20,b=b)$integral 
 ag20[i]  <-- pxi[ i]*a20[i]  
} 
EpLD20 <- sum(ag20)/b 
VpLD20 <- alpha20*(1-alpha20)*sum(a20^2)/(b^2) 
 
# compute expected value of p(LD80) 
 
pLD80 <- lumtpld80 
p1LD80 <- lumtp1hat80 
p2LD80 <- lumtp2hat80 
 
# K21: 3/4*(1-x^2) 
f80 <- function(u){i felse(abs((LD80-u)/b)<=1,3/4*(1-abs((LD80-

u)/b)^2),0)} 
 
a80 <-- rep(0,n) 
ag80 <- rep(0,n) 
for (i in 1:n){ 
 a80[i]  <- integrate(f80,lower=si0[i] ,upper=si[ i] , 
 LD80=LD80,b=b)$integral 
 ag80[i]  <- pxi[ i]*a80[i] 
} 
EpLD80 <- sum(ag80)/b 
VpLD80 <- alpha80*(1-alpha80)*sum(a80^2)/(b^2) 
 
# compute expected value of p(LD20) and p(LD80) 
eg2080 <- rep(0,n) 
 
for (i in 1:n){ 
 eg2080[i]  <- (pxi[ i]*(1-pxi[ i])+(pxi[ i]^2))*(integrate(f20,lower=si0[i] ,  
 upper=si[ i] ,LD20=LD20,b=b)$integral)*(integrate(f80, 
 lower=si0[i] ,upper=si[ i] ,LD80=LD80,b=b)$integral) 
} 
 
cg2080 <- matrix(0,n,n) 
for (i in 1:n){ 
 for (j in 1:n){ 
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 cg2080[i , j ]  <- i felse(i==j,0,(pxi[ i]*pxi[ j]*(integrate(f20,lower=si0[i] ,  
 upper=si[ i] ,LD20=LD20,b=b)$integral)*(integrate(f80,lower=si0[j] ,  
 upper=si[ j] ,LD80=LD80,b=b)$integral))) 
} 
 } 
Ep20p80 <- (1/b^2)*(sum(eg2080) + sum(cg2080)) 
Covp20p80 <- Ep20p80 - EpLD20 * EpLD80 
 
# compute cov(LD20,LD80) 
covLD20LD80 <- Covp20p80/(p1LD20*p1LD80) 
 
# compute var(LD20) and var(LD80) 
varLD20 <- VpLD20/(p1LD20^2) 
varLD80 <- VpLD80/(p1LD80^2) 
 
# compute correlation of LD20 and LD80 
corLD20LD80 <- covLD20LD80/(sqrt(varLD20)*sqrt(varLD80)) 

Computing 95% Confidence Interval Using Bcn 
 Method and M & S (Bias-Corrected) Method 

beta<-0.5 
 
# compute estimates and CI for lumt using Bcn method 
lumtHbcn2LD20 <- NULL 
lumtHbcn2loLD20 <- NULL 
lumtHbcn2upLD20 <- NULL 
lumtlenHbcn2LD20 <- NULL 
lumtmpHbcn2LD20 <- NULL 
 
lumtHbcn2LD80 <- NULL 
lumtHbcn2loLD80 <- NULL 
lumtHbcn2upLD80 <- NULL 
lumtlenHbcn2LD80 <- NULL 
lumtmpHbcn2LD80 <- NULL 
 
lumtHbcn2cline <- NULL 
lumtHbcn2locline <- NULL 
lumtHbcn2upcline <- NULL 
lumtlenHbcn2cline <- NULL 
lumtmpHbcn2cline <- NULL 
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# Hart (Bcn) 
lumtHbcn2LD20 <- lumtld20 + bcn220*sqrt(lumtv20)/lumtp1hat20 
lumtHbcn2loLD20 <- lumtHbcn2LD20 - qnorm(1-beta/2)* 
 (sqrt(lumtv20)/sqrt(lumtp1hat20^2)) 
lumtHbcn2upLD20 <- lumtHbcn2LD20 + qnorm(1-beta/2)* 
 (sqrt(lumtv20)/sqrt(lumtp1hat20^2)) 
lumtlenHbcn2LD20 <- lumtHbcn2upLD20 - lumtHbcn2loLD20 
lumtmpHbcn2LD20 <- (lumtHbcn2upLD20 + lumtHbcn2loLD20)/2 
lumtHbcn2LD80 <- lumtld80 + bcn280*sqrt(lumtv80)/lumtp1hat80 
lumtHbcn2loLD80 <- lumtHbcn2LD80 - qnorm(1-beta/2)* 
 (sqrt(lumtv80)/sqrt(lumtp1hat80^2)) 
lumtHbcn2upLD80 <- lumtHbcn2LD80 + qnorm(1-beta/2)* 
 (sqrt(lumtv80)/sqrt(lumtp1hat80^2)) 
lumtlenHbcn2LD80 <- lumtHbcn2upLD80 - lumtHbcn2loLD80 
lumtmpHbcn2LD80 <- (lumtHbcn2upLD80 + lumtHbcn2loLD80)/2 
 
lumtcline <- lumtld20 - lumtld80 
lumtHbcn2cline <- lumtHbcn2LD20 - lumtHbcn2LD80  
lumtHbcn2locline <- lumtHbcn2cline - qnorm(1-beta/2)* 
 sqrt(lumtv20/lumtp1hat20^2 + lumtv80/lumtp1hat80^2 – 
 2 *CovLD20LD880) 
lumtHbcn2upcline <- lumtHbcn2cline + qnorm(1-beta/2)* 
 sqrt(lumtv20/lumtp1hat20^2 + lumtv80/lumtp1hat80^2 – 
 2 *CovLD20LD880) 
lumtlenHbcn2cline <- lumtHbcn2upcl ine - lumtHbcn2locline 
lumtmpHbcn2cline <- (lumtHbcn2upcline + lumtHbcn2locline)/2 
 
# compute estimates and CI for lumt using M & S bias-corrected method 
lumtMSLD20 <- NULL 
lumtMSloLD20 <- NULL 
lumtMSupLD20 <- NULL 
lumtlenMSLD20 <- NULL 
lumtmpMSLD20 <- NULL 
 
lumtMSLD80 <- NULL 
lumtMSloLD80 <- NULL 
lumtMSupLD80 <- NULL 
lumtlenMSLD80 <- NULL 
lumtmpMSLD80 <- NULL 
 
lumtMScline <- NULL 
lumtMSlocline <- NULL 
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lumtMSupcl ine <- NULL 
lumtlenMScline <- NULL 
lumtmpMScline <- NULL 
 
# bias-corrected CI (Muller and Schmitt Theorem 4) 
lumtMSLD20 <- lumtld20 + (b^2*lumtp2hat20*2*B) /(2*lumtp1hat20) 
lumtMSsdLD20 <- sqrt((alpha20*(1-alpha20)*V)/(n*b*lumtp1hat20^2)) 
 
lumtMSloLD20 <- lumtMSLD20 - qnorm(1-beta/2)*lumtMSsdLD20 
lumtMSupLD20 <- lumtMSLD20 + qnorm(1-beta/2)*lumtMSsdLD20 
lumtlenMSLD20 <- lumtMSupLD20 - lumtMSloLD20 
lumtmpMSLD20 <- ( lumtMSupLD20 + lumtMSloLD20)/2 
 
lumtMSLD80 <- lumtld80 + (b^2*lumtp2hat80*2*B) /(2*lumtp1hat80) 
lumtMSsdLD80 <-- sqrt((alpha80*(1-alpha80)*V)/(n*b*lumtp1hat80^2)) 
 
lumtMSloLD80 <- lumtMSLD80 - qnorm(1-beta/2)*lumtMSsdLD80 
lumtMSupLD80 <- lumtMSLD80 + qnorm(1-beta/2)*lumtMSsdLD80 
lumtlenMSLD80 <- lumtMSupLD80 - lumtMSloLD80 
lumtmpMSLD80 <- ( lumtMSupLD80 + lumtMSloLD80)/2 
 
lumtcline <- lumtld20 - lumtld80 
lumtMScline <- lumtMSLD20 - lumtMSLD80  
lumtMSlocline <- lumtMScline - qnorm(1-beta/2)* 
 sqrt((alpha20*(1-alpha20)*V)/(n*b)* 
 (1/lumtp1hat80^2+1/lumtp1hat20^2) - 2 * CovLD20LD80) 
lumtMSupcl ine <- lumtMScline + qnorm(1-beta/2)* 
 sqrt((alpha20*(1-alpha20)*V)/(n*b)* 
 (1/lumtp1hat80^2+1/lumtp1hat20^2) - 2 * CovLD20LD80) 
lumtlenMScline <- lumtMSupcline - lumtMSlocline 
lumtmpMScline <- (lumtMSupcline + lumtMSlocline)/2
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