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ABSTRACT 

Selection bias occurs when samples are self-selected rather than randomly 

selected from the target population. This is a well-known problem and has been 

extensively studied in research studies in statistics and economics. In this work, I adopt a 

Bayesian approach to correct sample selection bias under the self-selection setup 

proposed in Heckman model. Bayesian methods treat the population parameters of 

interest as random variables instead of unknown constants. The distributions of these 

random parameters are called prior distributions. Statistical inference is based on the 

posterior distribution, which combines information from the data and the prior. Markov 

Chain Monte Carlo (MCMC) methods are used for Bayesian computation of the posterior 

distributions. The results from the proposed Bayesian method are compared to that of 

Heckman‟s two-step estimation via various simulation studies. A comprehensive 

simulation study is conducted where various scenarios are considered for the simulation 

setup and design. Furthermore, in addition to the most common self-selection setup, the 

new approach is extended to handle self-selection with Binary outcome model.
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CHAPTER 1 

INTRODUCTION 

The Problem of Sample Selection Bias 

 In some sociology and economics studies, samples are self-selected rather than 

randomly selected from the target population.  Bias can occur when using self-selected 

samples, because the selection criteria are often correlated with the variables of interest.  

Such bias is often called the Sample Selection Bias.   

 For example, Manski & Wise (1983) studied the relationship between SAT scores 

and potential college achievement.  The researchers could only sample from students who 

were already admitted to college, but not from all students who could potentially go to 

college.  In this case, students who scored well in the SAT were more likely to attend 

college, and hence are more likely to be selected into the sample.  Another example is the 

study of women‟s education background and their earnings (Heckman 1979).  Samples 

were selected from women with labor force participation. However, individuals only join 

the labor force if their potential earnings or occupational status meet some criteria.  As a 

result, sampling from women in labor force ignored the women who had low potential 

earnings. 

Heckman’s Two-Step Method 

Heckman (1976) raised the issue of sample selection bias when a dependent 
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variable in the regression has values that are missing not at random. He proposed to 

estimate the full information maximum likelihood (FIML) by way of a two-step method. 

This method is called a Limited Information Maximum Likelihood (LIML).  

 FIML is a well-known econometric technique for estimating equation models in 

which the parameters of all equations are estimated simultaneously, with all the 

information in the model (Maddala 1977). Similar to FIML, LIML is a maximum 

likelihood basis for estimating one structural equation, or a proper subset of structural 

equations from a system of equations (Anderson and Rubin in 1949).  

 Heckman (1976) discussed the common structure of statistical models of limited 

dependent variable as well as a simple estimator for this model.  He presented a unified 

summary of statistical model selection and limited dependent variables. Heckman (1979) 

proposed a solution to sample selection bias using the two-step estimator method.  

According to this method, in the first step, we use probit regression to model the sample 

selection process.  A new variable called the Inverse Mills Ratio is calculated based on 

the probit regression results.  In the second step, we add the Inverse Mills ratio to the 

regression analysis as an independent variable and simply use Ordinary Least Squares 

(OLS) to estimate the regression coefficients.  Heckman‟s two-step estimation procedure 

is easy to implement.  It has been well recognized in the applied fields, such as 

economics and sociology, as a correction for sample selection bias.  Examples of the 

application of Heckman‟s two-step estimation can be found in, for example, (Mroz 

1987), (Nawata 1994), and (Leung and Yu 1996). 
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Limitations of Heckman’s Method  

and Known Alternatives 

Discussions of Heckman‟s two-step estimation and other approaches to sample 

selection bias present themselves readily in the literature in the last two decades. Winship 

and Mare (1992) discussed the difficulties and limitation of several sample selection bias 

correction techniques. They show how self-selection leads to biased estimates in 

regression, review models that have been proposed, discuss Heckman's estimator and its 

limitations, and discuss other approaches to selection such as nonparametric approaches 

to estimating selection models. They suggest that, when selection is an issue, researchers 

should present estimates using a variety of methods, because the results may depend on 

the method used.   

 Nawata (1993) analyzes methods for estimating models with selection bias by 

comparing Maximum Likelihood Estimation (MLE) and Heckman's two-step estimator 

with Monte Carlo experiments.  The results show that Heckman's two-step estimator can 

perform well when there is no multicollinearity between the Inverse Mills Ratio and the 

explanatory variables. However, it will perform relatively poorly when multicollineartiy 

exists and MLE becomes more efficient.  

Stolzenberg and Relles (1997) provide mathematical tools to assist intuition about 

selection bias in concrete empirical analysis. They indicate that there is no general 

solution to the selection bias problem, but they present a new decomposition of selection 

bias. In this decomposition, the analyst should be able to develop intuition and make 

reasonable judgments about the source, severity, and direction of sample selection bias in 

a particular analysis. The authors also list several bias correction procedures that are 
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available. They suggest that the safest approach to sample selection bias problem is first 

to understand how nonrandom selection occurs in the data. If the data seem to be selected 

as described by Heckman, then it is appropriate to use Heckman's two-step model. 

 Pahni (2000) discusses Monte Carlo studies of Heckman‟s correction and 

illustrates a critique of Heckman's estimator. He indicates that the explanatory variables 

in Heckman‟s two-step model may have a large set of variables in common which causes 

collinearity with the Inverse Mills Ratio. Pahni concludes that we should diagnose 

collinearity problems before deciding which estimator to use. If there is no collinearity 

between the regressors and the Inverse Mills Ratio, the Heckman two-part model is the 

most robust approach. On the other hand, if collinearity problems exist, the MLE 

approach is preferable to Heckman‟s two-step method. 

Bayesian Approach 

In this study, we propose a Bayesian approach to correct sample selection bias 

under the self-selection setup proposed in Heckman (1979).  Bayesian methods treat the 

population parameters of interest as random variables instead of unknown constants. The 

distributions of these random parameters are called prior distributions. Often both expert 

knowledge and mathematical convenience play a role in selecting a particular type of 

prior distribution. Statistical inference is based on the posterior distribution, which 

combines information from the data and the prior. We use Markov Chain Monte Carlo 

(MCMC) methods for Bayesian computation of the posterior distributions in this study. 

We also compare the performance of the proposed Bayesian method and that of 

Heckman‟s two-step estimation via simulation study. 
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 In the next chapter, we give a more detailed introduction to the sample selection 

problem and Heckman's two-step estimation.  Using the same assumption on the data 

collection as used by Heckman, a Bayesian model to correct the selection bias is 

introduced in chapter three.  A simulation study is presented in chapter four, where we 

demonstrate the proposed Bayesian method and compare the estimates from various 

approaches using the Women Wage data example and also by using a comprehensive 

simulation study where various scenarios will be considered for the simulation setup and 

design. In chapter five, we will apply the Bayesian model to a real-world data example by 

using AU students‟ placement exam data. In chapter six, we will extend the proposed 

Bayesian method to the Generalized Linear Model (GLM).     
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CHAPTER 2 

SELF-SELECTED SAMPLING MODEL AND BIAS 

Self-Selected Sampling Model 

 A famous example of sample selection bias is the estimation of the wage equation 

(Pahni 2000). When trying to estimate the results of schooling on the wage rate, the 

researcher faces the problem that some individuals who have received schooling do not 

work. These individuals have not received an offer that meets their reservation wage. If 

we assume a positive relationship between schooling and wages, people with little 

schooling will on average have a lower offered wage and therefore a lower employment 

rate than those with more years of schooling. But we only observe the wage offers which 

exceed an individual‟s reservation wage.  As a consequence, we only observe the wages 

of those people with few years of schooling that receive comparatively high wage offers. 

In this case, there is self-selected sampling, and the OLS estimate is biased. 

In this example, simple OLS regression of wages on years of schooling will lead to bias 

estimates, because the sample (working people) is unrepresentative of the population one 

is interested in (all people who have received schooling). The selection problem can be 

viewed as a problem of missing observations, except that they are not missing at random. 

    A linear regression model with self-selection samples can be presented using 

the following two-equation model:    
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iii XY   11                      (1) 

iii uXZ  22            (2) 

     We call Equation 1 the observation equation and Equation 2 the selection 

equation. In the previous example, individuals who are only able to achieve low wage 

rate given their level of schooling will decide not to work. Therefore, the probability that 

their offered wage is below their reservation wage is highest. In other words, i and iu

can be expected to be positively correlated which causes sample selections bias.  

When observations are missing at random, Equation 1 can still be estimated by 

OLS. Typically there are three causes of non-randomly missing observations: censoring, 

truncation or self-selected sampling. A sample is censored when observations on iY  are 

not available in some range and are reported at a cutoff value, but, the explanatory 

variables iX 1  are all available. When observation on the iX 1  are also unavailable, the 

sample is said to be truncated. When self-selected sampling occurs, observations on iY  

are recorded only if another variable iZ  takes on a value above or below some cutoff 

value.  In this article, we discuss self-selected sampling. 

iY  is observed only if iZ  is greater than a cutoff value C, meaning the ith  subject 

is selected. Without loss of generality, we can assume the cutoff C  to be 0. From 

equation (1), the population regression function is     

111 ]|[ iii XXYE           (3) 
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The regression function for the incomplete sample is

]|[]|[],|[ 2211111  iiiiiiii XuEXruleselectionEXruleselectionXYE      (4) 

The last term in Equation 4 is equal 0 if i and iu  are uncorrelated and not equal 0 

otherwise.   

     Depending on whether iZ  is directly observed or not, we consider the following 

two scenarios:  

Scenario A 

Assuming iZ  is fully observed, we have  

iii uXZ  22       (5) 



 


Otherwise

ZifX
Y

iii

i
missing

011 
    (6) 

Scenario B 

Assuming iZ  is not fully observed, then we observe a dummy iD  where 



 


Otherwise

Zif
D

i

i
0

01
     (7) 

 Hence, we can write the observation equation as:    



 


Otherwise

DifX
Y

iii

i
missing

111 
     (8) 

    In practice, model B is used more often than model A. We describe the bias that 

arises from each model in the next section. 
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Self-Selected Sampling Bias 

 Consider scenario A.  The regression function for the subsample where the data 

are available can be written as: 

   

 

 2211

2211

1111

|

|

,|,|







iiiii

iiii

iiiiiii

XZuEX

uXEX

ZXXEZXYE







    (9) 

 Assuming ),( ii u has a bivariate normal distribution, 
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
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










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
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


2

222211
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2

11

22

11
,~









i

i

i

i

X

X
N

u
    (10) 

hence, 

.
2

)1(2

1
exp

12

1
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2211

2
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2

2

11

2

22

2211













































 iiii

ii

zz
uf  (11) 

 Then the correction will have the following form 

)(),|( 222

22

2

11
111 




 iiiiii XZXZXYE      (12) 

 Now consider scenario B.  The regression function for the subsample where the 

data are available can be written as: 

 

)|(

)0|(

)0,|(1,|

2211

2211

1111







iiii

iiii

iiiiiii

XuEX

uXEX

ZXXEDXYE




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   (13) 

then the correction will have the following form 





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
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
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i

i

iiii

X

X

XDXYE     (14) 

where   and   are the standardized normal density and distribution functions 

respectively. 
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We can write Equation 14 as: 

iiiii wXDXYE   111 )1,|(     (15) 

equation 15 highlights the omitted variable i  that causes OLS estimation of Equation 1 

to be biased. The variable i  is the hazard ratio or the Inverse Mills Ratio. For both 

scenarios (A and B), Equations 12 and 14 show that the estimated 
1  will be unbiased 

when i  is uncorrelated with iu  )0(  , so that the data are missing randomly, or the 

selection process is "ignorable".  

In general, assume that i  and iu  follow a joint distribution function ),( ii uf 
 

where θ is a finite set of parameters. Applying the Bayes rule, we can write:     

),(

),,(

),,(

]|[ 22

2

2

22

2

22 











i

X

iiii

X

iiiii

iii X

duduf

duduf

XuE

i

i 

 

 















  (16) 

     Here ),( 22  iX  could be a nonlinear function of 22 iX  and the parameters θ. 

This means that the conditional expectation of iY  given iX 1  and the probability that iY  is 

observed will be equal to the usual regression function 11 ,iX  plus a nonlinear function 

of the selection equation regressors iX 2  that has non-zero mean as we showed in 

Equation 4. 

     Therefore, when estimating
1 , we can conclude that the estimated intercept will 

be biased because the mean of the residuals is not zero. Also, if iX 1 and iX 2  are not 

completely uncorrelated (i.e. they have variables in common or they are correlated), the 

estimated slope coefficient will be biased because there is an omitted variable in the 

regression, namely ),( 22  iX , that is correlated with the included variable iX 1 . We can 

see that even if iX 1 and iX 2  are independent, the fact that the data is nonrandomly 

missing will introduce heteroskedasticity to the error term, so OLS is not fully efficient. 
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MLE and Heckman Correction 

 There are two major existing approaches for estimating the self-selected sample 

model under the assumption of bivariate normal. The first method is FIML and the 

second is Heckman's well-known two-step procedure. We discuss each of these methods 

and adopt Heckman‟s method as a benchmark for simulation comparisons because of its 

popularity. We will consider scenario B in the selection stage for both methods. In 

practice, it is more common to assume that iZ  is not fully observed.  

     In the maximum likelihood approach, we specify a complete model setup as in 

Equations 1 and 2, and we assume the following joint distribution for ),( ii u  
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
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
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



1
,

0

0
~

1

1

2

1




N

ui

i
     (17) 

 We typically assume a bivariate normal distribution with zero and means and 

correlation  . There is no generally accepted name for this model. The restriction 12

2   

is used to simplify the calculations of the likelihood function.  

 We divide the observations into groups according to the type of data observed. 

Each group of observations will have a different form for the likelihood. For example, for 

the sample selection model, there are two types of observations: (1) those where Z>0 and, 

(2) those where iY  is not observed and we know that 0iZ . 

     For those where 0Z . For these observations, the likelihood function is the 

probability of the joint event Y  and 0Z . We can write this probability for the ith  

observation as the following:  
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 Thus, the probability of an observation for which we see the data is the density 

function at the point iY  multiplied by the conditional probability distribution for iZ  given 

the value of iY  that was observed. 

For those where iY  is not observed and we know that 0iZ . For these 

observations, the likelihood function is just the marginal probability that 0iZ . We  

have no independent information on iY . This probability is written as  

)(1)()()0( 222222  iiiii XXXuPZP    (19) 

therefore, if we assume the first 1N  observations have 0iZ and the rest have 0iZ , 

then the log likelihood for the complete sample of observations is the following: 
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 In the above log likelihood, there are 0N  observations where we do not observe 

Y , and there are 1N  observations where we do observe Y .  Then NNN  10 .  The 

parameter estimates for the sample selection model can be obtained by maximizing this 

likelihood function with respect to its arguments. 

     As an alternative to MLE, Heckman (1979) developed a two-step model that is 

widely used for sample selection bias.  Heckman‟s model is based on two latent 

dependent variables. The steps of Heckman's estimation are: 

     (a) Estimate 2  in Equation 2 using a probit model; 

     (b) Use the estimated 22 iX  to calculate 
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     (c) Estimate 
1  in equation (5) by replacing )|( 222  iii XuE   with )( 22  iX . 

Estimation of Equation 15 by OLS gives consistent parameter estimates, but special 

formulas are needed to get correct standard errors because the errors iV  are correlated. 
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     If 0 , the usual formula provides a consistent estimate of the covariance 

matrix of the parameters in the second-stage regression. Heckman suggests that we use 

the t-test of the coefficient on the   variable as a test of sample selection bias. Melino 

(1982) shows that this represents the optimal test of selectivity bias, under the maintained 

distributional assumptions, as it is based on the same moment as the Lagrange multiplier 

test. That is, both the Lagrange multiplier test and the t-test for the coefficient on i  are 

based on the correlation between the errors in the primary equation and the errors from 

the selection equation. Note that the Inverse Mills Ratio is the error from the probit 

equation explaining selection. 

     In other words, Heckman‟s proposal is to estimate the Inverse Mills Ratio 
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in a probit model and then estimate Equation 15 by OLS to obtain consistent estimates of 

1   and i , 

     Although Heckman‟s two-step procedure gives a consistent estimator, various 

papers criticize its small sample properties. Many claims were that the predictive power 

of subsample OLS or the two-step model is at least as good as the one of Heckman‟s 

procedure or MLE. Here the two-step model gives the conditional expectation of wages. 

Daun (1984) contends that the conditional expectation is of interest to us. In addition, we 

interpret the coefficient of the two part model with the same way that we estimate the 
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wage equation by subsample OLS. Stolzenberg and Relles (1990) provide evidence that 

the higher the correlation between the error terms, the greater the superiority of the 

maximum likelihood (and maybe OLS) estimator over Heckman procedure in terms of 

efficiency. 

 The most important line of criticism of Heckman‟s procedure is based on practical 

rather than theoretical grounds. If the set of iX 1  variables that affect the wage in the wage 

equation are almost identical with the set of iX 2  variables that affect labor force 

participation in selection equation, then the second step of Heckman's method is only 

identified through the nonlinearity of the Inverse Mills Ratio. In many practical cases, we 

only observe values within the quasi-linear (not completely linear) range of the inverse 

mills ratio. Then we need iX 2  variables that are good predictors of labor force 

participation and do not appear in iX 1  which are difficult to find in practice. 

     Most studies find that the two-step approach can be unreliable in the absence of 

exclusion restrictions. Generally, an exclusion restriction is required to generate credible 

estimates: there must be at least one variable which appears with a non-zero coefficient in 

the selection equation but does not appear in the equation of interest. If no such variable 

is available, it may be difficult to correct for sampling selectivity. Leung and Yu (1996) 

conclude that this result is due to experimental design. They find that Heckman‟s two-

step estimator is effective, provided that at least one iX  displays sufficient variation to 

induce tail behavior in the Inverse Mills Ratio. Under certain circumstances, even when 

its assumptions and formal requirements are satisfied, the two-step selection bias 
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correction is known to produce estimates that are farther from true parameter values than 

estimates obtained by uncorrected OLS. Puhani (2000) strongly recommends exploratory 

work to check for collinearity problems before deciding on which estimator to apply. If 

there is no collinearity between the iX 1  regressors and the Inverse Mills Ratio, the 

Heckman two-part model is the most robust approach. On the other hand, if collinearity 

problems exist, the MLE approach is preferable to Heckman‟s two-step method. 

     In the next chapter, we propose a Bayesian method to estimate sample selection 

bias.  We study its behavior by comparing our estimates to Heckman's estimates. 
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CHAPTER 3 

MODEL DEVELOPMENT 

Brief Introduction to Bayesian Methods and MCMC  

 The Bayesian approach is fundamentally different from the conventional 

approach.  In the conventional approach a sample nXX ,........1  is drawn from a population 

with an unknown but fixed parameter θ.  Knowledge about θ is obtained from the 

observed random sample.  In the Bayesian approach, θ is considered to be a random 

variable and its variation can be described by a probability distribution called the prior 

distribution. This is a subjective distribution, based on the researcher's belief, and is 

formulated before the data are seen (hence “prior”).  When a sample  from a population 

indexed by θ is observed, the prior distribution is updated with the information in the 

sample. The updated prior is called the posterior distribution. The Bayesian approach is 

concerned with generating the posterior distribution of the parameters and provides a 

more complete picture of the uncertainty in the estimation of unknown parameters, 

especially after the confounding effects of nuisance parameters are removed. A complete 

introduction to Bayesian analysis can be found in Lee (1997) and Draper (2000). 

 The foundation of Bayesian statistics is Bayes' Theorem which is used to update 

the posterior distribution. Bayes‟ Theorem is named after Thomas Bayes (1702-1761). 

He calculated the probability of a new event on the basis of earlier probability estimates
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that have been derived from empirical data. Bayes‟ work became the basis of a statistical 

technique, which is now called Bayesian statistics or Bayes‟ method. 

The basic principle of Bayes theorem is as follows.  If event A occurred, the probability 

that event iE  also occurred is  
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     In structured modeling and analysis, Bayes‟ method can be written in the 

following equation. Assume we observe data y from distribution with parameter of θ and 

we wish to make inference about another random variable θ, where θ is drawn from some 

distribution π(θ).  Then  









dypyp

yp

yp

yp
yp

)|()(

)|()(

)(

)|()(
)|(  

where y is a vector of the observed data and θ is the unknown parameters. The posterior 

probability conditional on y is p(θ|y). The prior distribution is π(θ) and it can be 

informative or non-informative. (An informative prior expresses specific, definite 

information about a variable). The likelihood function is p(y|θ) when it is regarded as a 

function of θ for a fixed *y . The prior predictive distribution, also called the marginal 

distribution of y, is p(y). 

With Bayes‟ model, we can estimate the posterior distribution, p(θ|y), by 

integrating the full Bayes equation (the likelihood and prior probability functions). For 

example, if y represents a random sample from ),( 2N , then we have:  
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under the non-informative prior:   
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the posterior distribution is:  
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     Another approach is to use MCMC simulation to obtain the posterior distribution.  

Metropolis (1953) showed how this method helps in constructing a Markov Chain with 

stationary distribution.  The method was generalized by Hastings (1970) and is now 

widely used to sample from analytically intractable probability distributions arising in 

statistics (Gilks 1996; Robert and Casella, 1999).  The efficiency of MCMC methods is 

of significant practical importance, and loosely speaking, is determined by the 

convergence rate of the chain.  In contrast to the maximum likelihood method, the 

MCMC Bayesian method is useful and reliable even for finite sample sizes, since 

convergence results depend only on the number of iterations. 

 The main advantage of Bayesian methodology is that in the absence of much data, 

the prior distribution carries a lot of weight; but the more data that are observed, the less 

influence the prior distribution has on the posterior distribution. The most common 

criticism of Bayesian methodology is that since there is no single correct prior 

distribution, then all conclusions drawn from the posterior distribution are suspect. 

     We develop a Bayesian method for estimating the parameters of the self-selected 

sampling model. We implement MCMC methods and Gibbs sampling to facilitate 
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computation for the posterior estimates. We also conduct a simulation study to determine 

the performance of the MCMC algorithm for various prior distributions. 

Missing Values and Latent Variables 

Recall scenario B in section 2.1, and latent variable iii uXZ  22  , where  

)1,(~ 22 ii xNZ and )1,0(~ N  

One can show that )()0()1( 2 iii xZPDP  , where  is the cumulative density 

function (cdf) of )1,0(N . 

The priors for other parameters remain the same: 













































1
,~

1

1

2

1

22

11









i

i

i

i

x

x
BVN

Z

Y
 

note that iZ is a latent variable and it needs to be sampled. Also, ),......,1( nmiYi   are 

missing and they will be sampled as well. The below steps show how to sample iZ  

i) If 1iD , then iy  is observed for mi ,........1  given initial or 

sampled values (MCMC) of 2

21 ,,,  and , we can show that iZ is 

normally distributed with following conditional mean and conditional 

variance: 

))1(),(
1

(~)1,;,,,|( 2

11

1

22

2

121 


  iiiiii xYxNDyZ  

and 0iZ  

We can sample iZ from truncated Normal by the above equation and

0iZ . 
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ii) If 0iD , then iy  is observed for nmi ,........1  hence, sample 
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with the restriction 0iZ  (since 0iD ). One way to do this is to 

generate ),( ii ZY jointly until we get a sample with 0iZ . 

Now recall scenario B, iZ  is fully observed and iY is not. The joint distribution is: 
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for missing iY  ),.......1( nmi  , one can sample  
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Prior Distribution of Linear Component 

 Consider the multivariate regression model niforXY iii ,.....1   

where iY  is an m-vector of dependent variables for unit i; iX  is an pm  matrix of 

independent variables for unit i , β is a p-vector of regression coefficients; and i  is the 

error term. The error terms are mutually independent random variables from a 

multivariate normal distribution with mean zero and covariance matrix Σ ,  ),0(~ mN .

 A well-accepted Bayesian approach is to consider the normal distribution as the 

prior of β is because it is quite flexible. We will consider the prior distributions: 

),(~  pN      

),(~ HdfIWm      
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Where ),( HdfIWm  is the m -dimensional, inverted Wishart distribution with df  prior 

degrees of freedom and scale parameters H  with density function: 
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 Now, recall Heckman's sample selection model Equations 1 and 2: 

iii XY   11        

iii uXZ  22        

for the Bayesian analysis of the above model, we assume the joint distribution of i  and 

iu  is bivariate normal: 
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where ρ is the correlation coefficient. To compute this model we need to provide the prior 

distribution using β 

),(~
11  pN

     

),(~
22  qpN      

since ρ is unknown, we use the Inverse Wishart distribution: 

),(~ HdfIWm       
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Sampling Scheme of Linear Component 

Considering the multivariate normal distribution ),(~ XNY , where

),(~  N  And )(~    

the conditional posterior of β can be calculated using  
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the conditional posterior is proportional to the exponent part, so we can write: 
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taking the first and second derivatives with respect to β, we can find the conditional 

precision matrix Ω.  Thus the first derivative:  
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and the second derivative:  
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therefore, the variance or the conditional precision matrix is:  

.111   XX T
 

setting the first derivative equal to zero, we can calculate the mean  
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we can write:  
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and  
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therefore,  
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the above posterior mean is a weighted average of the data Y  and the prior mean )(  , 

with weights given by the data prior precision matrices )( 11   and . 

The conditional posterior of )( 1  can be calculated using  

)()|(),|( 11    yfYf  

thus, the conditional posterior can be written as: 
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the above can be expressed as: 
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also, we can write: 
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where,  
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this leads to 
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The model developed in this section will be used to analyze data examples and 

simulated data in the next chapter. We show the results of MCMC simulations carried out 

and evaluate sampling properties of the estimators discussed in this section.  
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CHAPTER 4 

SIMULATION STUDY 

In this chapter we apply the proposed Bayesian approach by conducting two 

simulations studies using MCMC methods and Gibbs sampling to facilitate computation 

of posterior estimates. The first simulation study uses an artificial data example to 

determine the performance of MCMC using various priors.  The second simulation is a 

comprehensive simulation study using a generated data with the ability to test various 

data scenarios such as: sample missing rate, residuals correlation, multicollinearity, and 

sample size. 

Women Wage Example 

Discussions in the context of labor economics concerning labor force population, 

wages, and earnings highlight the importance of sample selection.  One representative 

example is the estimation of women‟s wages.  Since we only observe the wages of 

women who enter the workforce, our sample represents only one part of the wage offer 

distribution.  Other secondary wage groups, such as married women and teenagers, are 

not represented. Therefore, estimation procedures may involve certain bias when applied 

to the secondary wage groups. This is an example of self-selected sampling bias.  

 We propose a Bayesian MCMC algorithm to estimate parameters of a self-

selected sampling model. We consider the labor force example in the STATA user 

manual. This data is used to illustrate Heckman‟s approach by predicting women's wages  

from their education and age. To evaluate the performance of the proposed Bayesian 

approach and compare with other methods, we simulate sample selection as it was 
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specified in the example, and perform the MCMC algorithm using different Wishart prior 

specifications. 

 MCMC methods use simulation of Markov chains in the parameter space. The 

Markov chains are defined in such a way that the posterior distribution in the gives 

statistical inference problem is asymptotic distribution. This allows using averages to 

approximate the desired posteriors expectations. Several standard algorithms to define 

such Markov chains exist, including Gibbs sampling and Metropolis-Hasting. Using these 

algorithms it is possible to implement posterior simulation in essentially any problem 

which allows pointwise evaluation of prior distribution and likelihood functions.  

 The data contain a sample of 2,000 observations of 15 variables. A brief 

description of the variables that are relevant for our analysis is shown in Table 1 From 

among the 2,000 observations; we observe wage data for only 1,343. The remaining 657 

women were not in the paid work force and so did not receive wages. We are interested 

in modeling two things: (1) the decision of the women to enter the labor force and (2) 

predicting women‟s hourly wage. We will consider a reasonable assumption that the 

women‟s decision to enter the labor force is a function of age, marital status, the number 

of children, and her level of education. Also, the wage rate a woman earns is a function of 

her age and education. 
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Table 1 

Women Wage Data Variable Description 

Variable 

Name Definition 
  

Age Age of the woman 

Education Number of years of education of the woman 

Married Dummy variable equal to 1 if the woman is 

married 0 otherwise 

Children Number of children that the woman has in 

her household 

Wage Hourly wage of the woman 

 

 We begin with OLS estimation of the regression model using only the 

observations that have wage data. The estimates can be found in Table 2 (see `OLS- 

Selected Wage' row). This analysis would be fine if, in fact, the missing wage data were 

missing completely at random. However, the decision to work or not work was made by 

the individual woman. Thus, those who were not working constitute a self-selected 

sample and not a random sample. It is likely that some of the women who would have 

earned low wages chose not to work.  If so, this would account for much of the missing 

wage data. Thus, it is likely that we will over-estimate the wages of the women in the 

population. So, somehow, we need to account for information that we have on the non-

working women. We attempt to do this by replacing the missing values with zeros for 

wage variable. The estimates can be found in Table 2 (see „OLS- Non-missing Wage‟ 

row). 
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Table 2 

Estimation Using OLS and Heckman Models  

 

 This analysis is also troubling. It is true that we are using data from all 2,000 

women but zero is not a fair estimate of what the women would have earned if they had 

chosen to work. It is likely that this model will under-estimate the wages of women in the 

population. The solution to our quandary is to use the Heckman selection model 

(Heckman 1979). 

 The Heckman selection model allows us to use information from non-working 

women to improve the estimates of the parameters in the regression model. The Heckman 

selection model provides consistent, asymptotically efficient estimates for all parameters 

in the model. In our example, we have one model predicting wages and one model 

predicting whether a woman will be working. We will use marital status, children, 

Method 

 

Parameter 

Parameter 

Estimate 

Standard 

Error Bias 
      

OLS – Full Wage  Intercept 1.381 0.743 NA 

OLS – Selected Wage  Intercept 6.085 0.890 -4.704 

OLS – Non-Missing Wage  Intercept -12.168 1.398 13.550 

Heckman  Intercept 0.734 1.166 0.647 

OLS – Full Wage  Education 1.004 0.045 NA 

OLS – Selected Wage  Education 0.897 0.050 0.108 

OLS – Non-Missing Wage  Education 1.065 0.084 -0.060 

Heckman  Education 0.983 0.051 0.022 

OLS – Full Wage  Age 0.187 0.016 NA 

OLS – Selected Wage  Age 0.147 0.019 0.041 

OLS – Non-Missing Wage  Age 0.391 0.031 -0.203 

Heckman  Age 0.212 0.021 -0.024 

OLS – Full Wage  Inverse Mills NA NA NA 

OLS – Selected Wage  Inverse Mills NA NA NA 

OLS – Non-Missing Wage  Inverse Mills NA NA NA 

Heckman  Inverse Mills 4.002 0.577 NA 
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education and age to predict selection. In addition to the two equations, Heckman 

estimates ρ (actually the inverse hyperbolic tangent of ρ), the correlation of the residuals 

in the two equations and Σ (actually the log of Σ), the standard error of the residuals of 

the wage equation. Then λ = ρΣ. The estimates can be found in Table 2 (see „Heckman‟ 

row). 

 Recall that we do have full wage information on all 2,000 women. We can 

therefore run a regression using the full wage information to use as a comparison. The 

estimates can be found in Table 2 (see „OLS- Full Wage‟ row). The „Selected Wage‟ 

model tends to over-estimate wages; the „Non-Missing Wage‟ model tends to severely 

under-estimate wages; and the Heckman model does the best job in predicting wages. 

 Finally, we consider the Bayesian approach to predicting women's wage from 

their education and age. In this approach, the posterior distributions are too complicated 

to evaluate analytically. However, by using MCMC methods and Gibbs sampling, this 

posterior distribution can be sampled indirectly by generating a sample of parameter 

values from the conditional distribution of interest. Posterior Bayes estimates are then 

obtained from the generated samples. We estimate the parameters using the MCMC 

algorithm as the following:  

1. Use Bayesian approach using many loops for Gibbs sampling / MCMC to 

repeatedly sample from the conditional distribution   

 Sample latent variable in selection stage 

 Update missing y1‟s and mean prediction of y1‟s 

 Update 1  and 2  jointly 

 Update   using Wishart prior which leads to Wishart posterior 
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2. Repeat the above steps 1,500 times  

 The goal is to see how this method performs when we use different priors and 

different correlations of the error terms in the two-model equation. We run the algorithm 

for 1,500 iterations after convergence, discarding the first 500 iterations. The estimates 

are in Table 3. Comparing the results in Table 2 and Table 3 we find that the Bayesian 

approach is providing estimates that are at least as effective as the Heckman‟s estimates 

and are better than the OLS using selected wage. 

 The Wishart distribution is an objective prior because the posterior mean will be 

affected by the prior choice. We perform our analysis under two instances of a Wishart 

prior: Wish(3,H) & Wish(4,H). Also, we change the inverse scale matrix in the Wishart 

prior in using different values of σ: (0.01,0.1,1,5,10,100). The results in Table 3 show 

that the parameters did not change much compared with the results in Table 2.  This 

indicates that the Bayesian approach is performing as well as the Heckman approach or 

even better in some scenarios. We can see good estimates for 
1  under Wishart(3,H) 

with Sigma(10,0,0,10).  The standard error and bias are low compared to other estimates.     
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 Table  3 

Estimation Using Bayesian Methods  

  Intercept Education  

Wishart 

Prior 

Inverse Scale 

Matrix  

Parameter 

Estimate 

Standard 

Error Bias 

Parameter 

Estimate 

Standard 

Error Bias 

 

         

(3, H) (.01,0,0,.01) 0.5157 1.1578 0.8654 0.9920 0.0544 0.0124  

(3, H) (.1,0,0,.1) 0.4286 1.0115 0.9525 0.9914 0.0526 0.0130  

(3, H) (1,0,0,1) 0.7894 1.0293 0.5917 0.9867 0.0531 0.0177  

(3, H) (5,0,0,5) 0.9148 1.0784 0.4663 0.9788 0.0513 0.0256  

(3, H) (10,0,0,10) 1.0153 1.0484 0.3658 0.9816 0.0542 0.0228  

(3, H) (100,0,0,100) 3.3957 0.9819 -2.0146     

  Age   

Wishart 

Prior 

Inverse Scale 

Matrix  

Parameter 

Estimate 

Standard 

Error Bias    

 

         

(3, H) (.01,0,0,.01) 0.2116 0.0212 -0.0242     

(3, H) (.1,0,0,.1) 0.2135 0.0200 -0.0261     

(3, H) (1,0,0,1) 0.2095 0.0202 -0.0221     

(3, H) (5,0,0,5) 0.2089 0.0210 -0.0215     

(3, H) (10,0,0,10) 0.2067 0.0203 -0.0193     

(3, H) (100,0,0,100) 0.1786 0.0196 0.0088     

  Intercept Education  

Wishart 

Prior 

Inverse Scale 

Matrix  

Parameter 

Estimate 

Standar

d Error Bias 

Parameter 

Estimate 

Standard 

Error Bias 

 

         

(4, H) (.01,0,0,.01) 0.3787 1.0783 1.0024 0.9901 0.0547 0.0143  

(4, H) (.1,0,0,.1) 0.2861 1.0329 1.0950 0.9952 0.0530 0.0092  

(4, H) (1,0,0,1) 0.1410 1.0890 1.2401 1.0003 0.0544 0.0041  

(4, H) (5,0,0,5) 0.7795 1.0366 0.6016 0.9865 0.0556 0.0179  

(4, H) (10,0,0,10) 0.9294 1.1339 0.4517 0.9831 0.0538 0.0213  

(4, H) (100,0,0,100) 3.5064 1.0478 -2.1253 0.9375 0.0493 00669  

  Age   

Wishart 

Prior 

Inverse Scale 

Matrix  

Parameter 

Estimate 

Standar

d Error Bias    

 

         

(3, H) (.01,0,0,.01) 02151 0.0201 -0.0277     

(3, H) (.1,0,0,.1) 0.2149 0.0211 -0.0275     

(3, H) (1,0,0,1) 0.2160 0.0202 -0.0286     

(3, H) (5,0,0,5) 0.2090 0.0196 -0.0216     

(3, H) (10,0,0,10) 0.2079 0.0216 -0.0205     

(3, H) (100,0,0,100) 0.1780 0.0204 0.0094     
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Comprehensive Simulation Study 

Here we conduct a more comprehensive simulation study to further investigate 

the effect of prior distributions and the robustness of the Bayesian approach. Unlike the 

work in the previous section, the data sets here will be generated from several specific 

conditions. More specifically, I consider the effects of the fraction of selection, 

correlation between selection of regression models, sample sizes, and the fraction of the 

independent variables that appear in both selection and regression model. The simulated 

data will be analyzed by both Heckman‟s two-stage estimator and the Bayesian methods 

proposed above. The estimates from both methods will be evaluated and compared in 

terms of Bias and RMSE (Root Mean Square Error).  

The Bias of an estimator is the difference between the estimator‟s expected value 

and the true parameter value of the parameter being estimated. An estimator or decision 

rule with zero bias is called unbiased. Otherwise the estimator is said to be biased. RMSE 

is based on two sums of squares: Sum of Squares Total (SST) and Sum of Squares Error 

(SSE). SST measures how far the data are from the mean and SSE measures how far the 

data are from the model‟s predicted vales.   

The data set will be generated using the two model equation with the below self-

selected samples.  

Observation stage: iii XY   11   

Selection stage: iii uXZ  22   

Where 

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Note that iY  is the observation stage and iZ  is the selection stage. Without loss of 

generality, we will observe )(,......., 21 mnyyy n  where nzzz ,......., 21  are greater than the 

selection cutoff value c . Hence, mnn yyy ,......., )2()1(   will be considered missing at the 

analysis step. We consider the following scenarios at the data generation step: 

 Change the level or percentage of missing values 

 Change the value of   to control the level of correlation 

 Change the two scalars ix1 and ix2 to control the level of multicollinearity 

 Change the sample size 

The data are simulated as follows: we generate design matrices iX 1  and iX 2  in 

observation and screening stage with 3   1 vector for each with their first rows fixed as 

one to make constant terms for each equation. The two other rows in iX 1  and iX 2  are 

independently generated from a uniform distribution on [0,1]. I set the true parameter 

value for 210 ,,   as 1,2,3 respectively and I generate random error i  and iu  from a 

bivariate normal density with zero mean and variance-covariance matrix (1  ,   1).  

In each case 1,500 Gibbs samples were drawn, the first 500 were discarded, and 

the remaining 1,000 were used for posterior inference. I tried multiple runs to ensure 

convergence of the results.  The main simulation didn‟t include „Thinning‟ (strategy of 

reducing autocorrelation by storing only every m th point after the burn-in period), 

however, we are confident with the results because we use different settings with 

different starting points and the results are obtained from 100 replications to avoid 

systematic mistakes. Since 1,500 might not be long enough for MCMC to converge, I 
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selected one simulation scenario from one chain and ran 11,000 MCMC samples using 

two different starting values. The first 1,000 were discarded as burn-in, and we applied 

thinning of 5, leaving 2,000 effective posterior samples to show plot behavior and how 

the distribution converges. Convergence refers to the idea that eventually the MCMC and 

Gibbs Sampler that we choose did eventually reach a stationary distribution, which is also 

our target distribution.  

To test the results, we generated the following diagnosis plots: trace plots to show 

the sampling path, kernel density to show the posterior density function, and moving 

averages of posterior samples to show that samples are converging to similar values. One 

way to see if our chain has converged is to see how well our chain is mixing, or moving 

around the parameter space. If our chain is taking a long time to move around the 

parameter space, then it will take longer to converge. We can see how well our chain is 

mixing through visual inspection. We will discuss these inspections for every parameter. 

Figure 1 shows the sampling paths for 210 ,,   from two different starting 

chains. This figure contains plots known as trace plots of the iteration number against the 

value of the draw of the parameters at each iteration. These plots are useful to show 

whether our chain is converging to the same value or gets stuck in certain areas of the 

parameter space, which indicate bad mixing. Our results show that all samples converge 

to the same distribution and there seems to be large spread for 
2  estimates.  

 

 

 

 

 



35 

 

 

 

 

 

 

 

 

 

 

Figure 1. Sample Path for Comprehensive Simulation  

 

  



36 

 

 

 

Figure 2 shows the posterior density plots for the estimates from the two MCMC 

chains with the normal density curve. The plots show strong evidence for convergence 

for 0  and 
1  which is reflected in the distributions. Usually, non-convergence is 

reflected in multimodal distribution and this is especially true if the kernel density is not 

just multi-modal, but lumpy.   

Figure 3 shows the plots of the moving averages of 210 ,,  from the two 

MCMC chains. The x-axis represents the number of iterations and the y-axis shows the 

posterior mean from these iterations. As a result, all the paths are believed to be 

stationary in an acceptable rang. When comparing the two settings, 0  and 
1  seem to 

converge to the same value fairly quickly, however, 
2  convergence does not seem to be 

apparent which is consistent with the results in previous studies.  

The following sections summarize the simulation results for the various set-ups 

we mentioned earlier. For each sample of data generated, we obtain MCMC estimates by 

calculating the mean of the conditional posterior densities for the simulated samples, 

RMSE, and Bias. We also include the estimates from Heckman‟s method and from OLS 

using „all‟ data and „subset‟ data.  
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Figure 2. Density Plots for Comprehensive Simulation 
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Figure 3. Moving Averages for Comprehensive Simulation 
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Selection Rate 

 Table 4  shows the simulation results for the regression coefficients using  

different „selection rate‟ scenarios. To test the effect of the missing rate level, we use the 

following two levels: 50% and 20%. In both scenarios we notice reduction in RMSE and 

in bias in most coefficients when using a Bayesian approach. By comparing the Bayesian 

method to Heckman‟s method we can see 64% (0.14 versus 0.05) reduction in bias for 

0   in the first scenario and 93% reduction in Bias in the second scenario. This shows 

significant improvement in 0  estimates using Bayesian methods comparing to 

Heckman‟s method when the missing rate is low. We also notice 20% reduction in 

RMSE in the second scenario for both 
1  and

2 . The RMSE for 
1  in Bayesian is 0.72 

versus 0.83 in Heckman. There is also a slight reduction in RMSE for
2  in the second 

scenario - RMSE of 0.79 in Bayesian versus 0.82 in Heckman. The results of both 

scenarios indicate that the Bayesian approach is performing as well as the Heckman 

approach or even better.  
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Table 4 

Simulation Results for Selection Rate   

 
Note. Sample size = 80, correlation level = 0.50, and multicollinearity COR(X12, X21) < 0.1. 

 

  

Selection 

Rate 

Method Parameter Mean RMSE Bias  

       

50% OLS – all data β0 1.009 0.305 0.009  

50% OLS – subset β0 1.291 0.532 0.291  

50% Heckman β0 1.142 0.482 0.142  

50% Bayesian β0 1.051 0.418 0.051  

50% OLS – all data β1 2.016 0.405 0.016  

50% OLS – subset β1 2.083 0.569 0.083  

50% Heckman β1 2.009 0.584 0.009  

50% Bayesian β1 1.977 0.526 -0.023  

50% OLS – all data β2 2.969 0.358 -0.031  

50% OLS – subset β2 2.922 0.542 -0.078  

50% Heckman β2 2.940 0.546 -0.060  

50% Bayesian β2 2.939 0.511 -0.061  

20% OLS – all data β0 1.027 0.289 0.027  

20% OLS – subset β0 1.519 0.705 0.519  

20% Heckman β0 1.293 0.603 0.293  

20% Bayesian β0 1.019 0.606 0.019  

20% OLS – all data β1 1.990 0.365 -0.010  

20% OLS – subset β1 1.992 0.778 -0.008  

20% Heckman β1 1.981 0.834 -0.019  

20% Bayesian β1 2.031 0.717 0.031  

20% OLS – all data β2 2.939 0.363 -0.061  

20% OLS – subset β2 3.038 0.820 0.038  

20% Heckman β2 3.005 0.820 0.005  

20% Bayesian β2 3.043 0.787 0.043  
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Correlation Level 

 Table 5  shows the simulation results for the regression coefficients using 

different correlation levels. The correlation level is controlled by the value of correlation 

between the error terms ),( ii ucor  .  To check the Bayesian approach‟s performance, we 

assign the following three correlation values: 0.3, 0.5, and 0.75. The overall results show 

that the Bayesian approach provides a significant reduction in RMSE and in bias when 

correlation level is high.  We see reduction in bias in the first two scenarios (0.3 and 0.5) 

and less reduction for 
1  and 2  bias when the correlation level is high ( ),( ii ucor 

=0.75). The results for the lowest correlation level ( ),( ii ucor  =0.3) show slight 

reduction in Bias for all coefficients with no significant improvement in RMSE. 

However, significant reduction in RMSE seems to exist in the high correlation scenarios.  
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Table 5 

Simulation Results for Correlation Level  

 

Note. Sample size = 80, selection rate = 20%, and multicollinearity COR(X12, X21) < 0.1.  

Correlation Method Parameter Mean RMSE Bias  
       

0.30 OLS – all data β0 1.007 0.339 0.007  
0.30 OLS – subset β0 1.433 0.888 0.433  
0.30 Heckman β0 1.144 0.906 0.144  
0.30 Bayesian β0 1.129 0.935 0.129  
0.30 OLS – all data β1 1.991 0.441 -0.009  
0.30 OLS – subset β1 1.864 0.963 -0.136  
0.30 Heckman β1 1.860 0.998 -0.140  
0.30 Bayesian β1 1.882 0.970 -0.118  
0.30 OLS – all data β2 2.984 0.403 -0.016  
0.30 OLS – subset β2 2.922 0.965 -0.078  
0.30 Heckman β2 3.119 1.038 0.119  
0.30 Bayesian β2 3.013 1.002 0.013  
0.50 OLS – all data β0 1.027 0.289 0.027  
0.50 OLS – subset β0 1.519 0.705 0.519  
0.50 Heckman β0 1.293 0.603 0.293  
0.50 Bayesian β0 1.019 0.606 0.019  
0.50 OLS – all data β1 1.990 0.365 -0.010  
0.50 OLS – subset β1 1.992 0.778 -0.008  
0.50 Heckman β1 1.981 0.834 -0.019  
0.50 Bayesian β1 2.031 0.717 0.031  
0.50 OLS – all data β2 2.939 0.363 -0.061  
0.50 OLS – subset β2 3.038 0.820 0.038  
0.50 Heckman β2 3.005 0.820 0.005  
0.50 Bayesian β2 3.043 0.787 0.043  
0.75 OLS – all data β0 1.027 0.289 0.027  
0.75 OLS – subset β0 1.519 0.705 0.519  
0.75 Heckman β0 1.293 0.603 0.293  
0.75 Bayesian β0 1.019 0.606 0.019  
0.75 OLS – all data β1 1.990 0.365 -0.010  
0.75 OLS – subset β1 1.992 0.778 -0.008  
0.75 Heckman β1 1.981 0.834 -0.019  
0.75 Bayesian β1 2.031 0.717 0.031  
0.75 OLS – all data β2 2.939 0.363 -0.061  
0.75 OLS – subset β2 3.038 0.820 0.038  
0.75 Heckman β2 3.005 0.820 0.005  
0.75 Bayesian β2 3.043 0.787 0.043  
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Multicollinearity 

 The results in Table 6 show the simulation results for the regression coefficients 

using three different multicollinearity levels. This level is controlled by the level of 

correlation between two explanatory variables in observation and screening stages [

),( 2112 xxcor ]. To test the effect of multicollinearity, we use the following levels: 0.06, 

0.67, and 1.00. The third scenario [ ),( 2112 xxcor =1] refers to the case where the screening 

stage and the observation stage contain one common explanatory variable. The Bayesian 

method seems to provide best results for all coefficients when the multicollinearity level 

is high. The third case show large decrease in RMSE and bias with a Bayesian approach 

comparing to Heckman. The Bias for 0  dropped 63% and the RMSE for 
1  dropped 

25% in Bayesian estimation when comparing to Heckman method. There seems to be no 

significant improvement with the Bayesian approach in the first scenario where the 

multicollinearity level is very low. In this case, Heckman‟s approach seems to be a good 

choice for estimation but definitely not when a high level of multicollinearity exists.  
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Table 6 

Simulation Results for Multicollinearity  

 

Note. Sample size = 80, selection rate = 20%, and correlation level = 0.50. 

 

 

Multicollinearity Method Parameter Mean RMSE Bias  
       

0.06 OLS – all data β0 1.027 0.289 0.027  

0.06 OLS – subset β0 1.519 0.705 0.519  

0.06 Heckman β0 1.293 0.603 0.293  

0.06 Bayesian β0 1.019 0.606 0.019  

0.06 OLS – all data β1 1.990 0.365 -0.010  

0.06 OLS – subset β1 1.992 0.778 -0.008  

0.06 Heckman β1 1.981 0.834 -0.019  

0.06 Bayesian β1 2.031 0.717 0.031  

0.06 OLS – all data β2 2.939 0.363 -0.061  

0.06 OLS – subset β2 3.038 0.820 0.038  

0.06 Heckman β2 3.005 0.820 0.005  

0.06 Bayesian β2 3.043 0.787 0.043  

0.67 OLS – all data β0 1.011 0.288 0.011  

0.67 OLS – subset β0 1.728 0.982 0.728  

0.67 Heckman β0 1.452 0.837 0.452  

0.67 Bayesian β0 1.119 0.777 0.119  

0.67 OLS – all data β1 2.004 0.353 0.004  

0.67 OLS – subset β1 1.708 0.914 -0.292  

0.67 Heckman β1 1.993 0.931 -0.007  

0.67 Bayesian β1 2.021 0.902 0.021  

0.67 OLS – all data β2 2.928 0.364 -0.072  

0.67 OLS – subset β2 2.870 0.866 -0.130  

0.67 Heckman β2 2.789 0.918 -0.211  

0.67 Bayesian β2 2.825 0.889 -0.175  

1 OLS – all data β0 1.014 0.343 0.014  

1 OLS – subset β0 1.952 1.317 0.952  

1 Heckman β0 1.566 1.592 0.566  

1 Bayesian β0 1.213 1.283 0.213  

1 OLS – all data β1 1.984 0.429 -0.016  

1 OLS – subset β1 1.470 1.179 -0.530  

1 Heckman β1 1.862 1.610 -0.138  

1 Bayesian β1 1.916 1.205 -0.084  

1 OLS – all data β2 3.006 0.385 0.006  

1 OLS – subset β2 2.967 0.790 -0.033  

1 Heckman β2 2.958 0.815 -0.042  

1 Bayesian β2 3.008 0.769 0.008  
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Sample Size 

 Finally, Table 7, shows the simulation results for the regression coefficients using 

three different sample sizes (N=80, 120, 160). This is another situation where the results 

of both scenarios indicate that the Bayesian approach is performing as well as the 

Heckman approach or even better. The results for various sample size show similar slight 

reduction of less than 10% in RMSE average for Bayesian method comparing to 

Heckman for all coefficients. However, we see significant improvement in Bias for 

Bayesian method for 0 . The Bias reduction in Bayesian method comparing to Heckman 

for 0  exceeds 50% in all scenarios.  

 This comprehensive simulation study used various scenarios that a researcher 

could face when dealing with a real data. The results proved the effectiveness of the 

Bayesian approach and showed the limitations of Heckman‟s approach, particularly when 

faced with a high level of multicollinearity. A detailed investigation of the 

multicollinearity issue can be found in Leung and Yu (1996). They show that the degree 

of multicollinearity is the main decision driver to judge the appropriateness of the LIML 

and FIML estimates in relation to the two-part model. In empirical analysis, in wage 

equations for example, the standard procedure to solve the multicollinearity problem, is 

to find variables that determine the probability to work (selection equation), but not the 

wage rate (observation equation) directly. Practical examples for these variables could be 

the income of the spouse, household income, etc. However, these variables are not 

always available in practical situations.   
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Table 7 

Simulation Results for Sample Size  

 

Note. Selection rate = 20%, selection level = 0.50, and multicollinearity COR(X12,X21) < 0.1.

Sample 

Size 

Method Parameter Mean RMSE Bias  

       

N=80 OLS – all data β0 1.027 0.289 0.027  

N=80 OLS – subset β0 1.519 0.705 0.519  

N=80 Heckman β0 1.293 0.603 0.293  

N=80 Bayesian β0 1.019 0.606 0.019  

N=80 OLS – all data β1 1.990 0.365 -0.010  

N=80 OLS – subset β1 1.992 0.778 -0.008  

N=80 Heckman β1 1.981 0.834 -0.019  

N=80 Bayesian β1 2.031 0.717 0.031  

N=80 OLS – all data β2 2.939 0.363 -0.061  

N=80 OLS – subset β2 3.038 0.820 0.038  

N=80 Heckman β2 3.005 0.820 0.005  

N=80 Bayesian β2 3.043 0.787 0.043  

N=120 OLS – all data β0 0.996 0.257 -0.004  

N=120 OLS – subset β0 1.672 0.886 0.672  

N=120 Heckman β0 1.396 0.745 0.396  

N=120 Bayesian β0 1.113 0.629 0.113  

N=120 OLS – all data β1 1.988 0.288 -0.012  

N=120 OLS – subset β1 1.884 0.681 -0.116  

N=120 Heckman β1 1.912 0.663 -0.088  

N=120 Bayesian β1 1.895 0.630 -0.105  

N=120 OLS – all data β2 3.037 0.354 0.037  

N=120 OLS – subset β2 2.883 0.723 -0.117  

N=120 Heckman β2 2.965 0.762 -0.035  

N=120 Bayesian β2 2.958 0.687 -0.042  

N=160 OLS – all data β0 0.977 0.197 -0.023  

N=160 OLS – subset β0 1.550 0.741 0.550  

N=160 Heckman β0 1.325 0.602 0.325  

N=160 Bayesian β0 0.981 0.530 -0.019  

N=160 OLS – all data β1 2.043 0.281 0.043  

N=160 OLS – subset β1 1.950 0.628 -0.050  

N=160 Heckman β1 2.000 0.636 0.000  

N=160 Bayesian β1 2.056 0.604 0.056  

N=160 OLS – all data β2 3.015 0.277 0.015  

N=160 OLS – subset β2 3.026 0.0543 0.026  

N=160 Heckman β2 3.041 0.550 0.041  

N=160 Bayesian β2 3.004 0.581 0.004  
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CHAPTER 5 

CASE STUDY: PLACEMENT EXAM 

 AND MATH ACHIEVEMENT 

 In this chapter we apply the Bayesian model to a real-world data example by 

using AU students‟ placement exam data. The goal is to investigate how the students‟ 

placement exam scores are associated with their first year math achievement. All AU 

students are supposed to take the math placement exam and register for appropriate 

math/stat courses accordingly. The problem is that information about the students first 

year math achievements (grades) is only available for those who actually take and 

complete their first year math courses. We wish to forecast outcomes in the whole pool of 

freshmen but are forced to rely on a subset chosen non-randomly. 

 The data contain 1,012 freshmen students with 4 variables. A brief description of 

the variables that are relevant for our analysis is shown in Table 8. From among the 1,012 

students, we observe students grades for only 752. The remaining 260 students did not 

register or complete a math class in fall 2010 and so did not receive a grade. We are 

interested to see how placement exam score are related to the student‟s math grade. Due 

to the self-selection, we need to perform accurate estimation by correcting for sample 

selection bias. The student grade is a function of his placement score and the 

recommended class. A dummy variable called „Basic Level‟ was created to determine the 

type of recommended math class (e.g. Basic Algebra, Applied Calculus, etc.). If the 

recommended class type is classified as basic, the new dummy variable value is equal to 

1; otherwise, the value is equal to zero. This new dummy variable was included in the 

observation stage as an explanatory variable.  
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Table 8 

Variable Descriptions for Placement Exam Data  

Variable 

Name Definition 
  

Placement Recommended class based on placement 

exam score 

Score Student‟s placement exam score 

Basic Level Dummy variable equal to 1 if the 

recommended class type is classified as a 

basic level; otherwise, the value is equal 

to zero 

Grade Student‟s grade for the class 

 

 

 We begin with OLS estimation of the regression model using only the 

observations that have grade data. The estimates can be found in Table 9 in `OLS- subset' 

row. The estimated coefficient shows a very small effect of placement exam score on the 

student‟s math achievement ( 1 =0.0326). This analysis would be fine if, in fact, the 

missing grade data were missing completely at random. However, the decision to register 

for a math class or not was made by the individual student. Thus, those who were not 

registered constitute a self-selected sample and not a random sample. It is likely that 

some of the students who had low placement scores chose not to register for any math 

class.  If so, this would account for much of the missing grade data. Thus, it is likely that 

we will over-estimate the grade of the student in the population.  

 On the other hand, the Heckman‟s method is supposed to allow us to use 

information from non-registered students to improve the estimates of the parameters in 

the regression model. However, Heckman‟s method shows negative estimates and low 
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negative effect of placement exam score on the student‟s math achievement (
1 =-

0.0312).  

 

Table 9 

Case Study Results for Placement Exam Data 

 

 Finally, we consider the Bayesian approach using MCMC methods and Gibbs 

sampling, where the posterior distribution can be sampled indirectly by generating a 

sample of parameter values from the conditional distribution of interest. Posterior Bayes 

estimates are then obtained from the generated samples. In the 20,000 samples the first 

1,000 are discarded, and we use thinning of 2, leaving 9,000 effective posterior samples. 

 Figure 4 shows the sample path for 210 ,,   using two different starting points. 

The plots show that all values converge to the same distribution. Figure 5 shows the 

posterior density plot for 210 ,,   and the two settings show normal distributions. 

Figure 6 shows the moving averages for 210 ,,  from the two MCMC chains. The plots 

indicate that the two MCMC chains are converging to the same value for 0  and 1 . The 

Moving Averages for 2 (Basic Level) from the two settings seem not to converge to the 

 Intercept (β0) Score (β1) Basic Level (β2)  

 Mean Std. Error Mean Std. Error Mean Std. Error  
        

OLS – subset 2.6557 0.1887 0.0326 0.0008 -0.1025 0.1109  

Heckman -0.6127 11.2704 -0.0312 0.2206 -0.1196 0.1256  

Bayesian 1.0768 4.9429 0.0130 0.2432 -0.1038 0.4510  
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same value. The Bayesian estimate for
2  in Table 9 seem to support this result. This 

indicates low effect of Basic Level on student‟s math achievement.  

Table 9 shows that the estimated effect of placement score on student‟s grade is 

positive when applying the Bayesian model. Such relationship of placement score is not 

identified in estimates using Heckman‟s method. However, Basic Level seems to have 

less effect in the Bayesian method compared with Heckman‟s method. There seems to be 

no improvement in the standard errors using the Bayesian approach for all coefficients. 

The Bayesian standard errors seem to be larger than those of the other two estimation 

methods (Heckman and OLS). 
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Figure 4. Sample Paths for Placement Exam Example 
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Figure 5.  Density Plots for Placement Exam Example 
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Figure 6.  Moving Averages for Placement Exam Example 
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CHAPTER 6 

BINARY SELECTIVITY MODEL 

 In this chapter, the proposed Bayesian method is extended to the Generalized 

Linear Model (GLM). The GLM extends the linear regression model in order to 

accommodate non-normal responses (e.g. binomial data, frequency data, etc.) to linear 

equation via a link function. Examples of GLM include well-known models such as 

logistic regression and log-linear models (Poisson regression) for frequency tables, etc. 

Conceptually the Bayesian specification is straightforward. We need to assign a prior for 

regression coefficients, as in the previous regression examples. There is no closed form 

solution available, but it is simple to obtain samples from posteriors via MCMC. 

Generalized Linear Model 

 Let nyy ,......1  denote n  independent observations on a response variable and treat 

iy as a realization of a random variable iY . In GLM, we assume that iy  that is part of the 

exponential family with three main components (random, systematic, and link).  The 

random part is the distribution of the observations, the systematic component is the linear 

combination of explanatory variables, and the link function is the link between the 

random part and the systematic component. The exponential family is defined as  the 

following: 












 ),(
)(

)(
exp),;( 




 i

iii
ii yc

a

by
yf  (41) 

where i  
 and   are location and scale parameters respectively.  The mean and variance 

are:      
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ii byE   and )()()( ''  abyV ii   

and we assume that the expected value i is a linear function of ix . 

 iii xg ')( 
     (42)

 

where  i is the linear predictor, (.)g is the link function, ix are the predictors and   is a 

vector of unknown parameters (regression coefficients).   

 Our current model employs a linear regression in the observed stage and a 

probit/logistic regression in the selection stage.  Let us consider )1,(~ 'xNU which 

follows 

)()|1( ' iii xxYP   

where  




 

t

dzzt )
2

1
exp()2()( 22/1  

The relation is linearized by the inverse normal transformation 
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The cutoff value of U is fixed and the mean of U  is changing with .x  

 The goal is to have probit (or GLM) in the observed as in the selection stage. We 

will obtain this by using two latent variables in each stage, and we will be able to allow 

correlation between these two variables. This is similar to Heckman‟s selection model 

except that now we have a binary outcomes in the observation stage.  

 Assume the following selection setup: 
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and )1,(~ 22 ii xNZ  is a latent variable.  
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 The probit regression model  can expressed as: )()1( 11

*

1 ixYP 

)1,(~ 1 ii xNY is also a latent variable. Therefore, the latent variables can be expressed as 

the following Bivariate Normal: 
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Bayesian Estimation 

 The Bayesian setup for the GLM is an extension of the framework we have used 

for regression models. Suppose we have  Xg ii  )( , we need to choose a prior 

density for the parameters ),(),,(  . The posterior density is then expressed as: 
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where )(y  is the marginal likelihood of the data, obtained by integrating the likelihood 

conditional on the unknown regression coefficient  and dispersion parameter  across 

the prior density. 

 The joint posterior density of unobserved   and Z given Y is  
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 Let ][ '

2

'

1  , from the above joint posterior, we now infer conditional 

posteriors and implement Gibbs sampler. We start with sampling the conditional 

posterior of  iZ  from  
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therefore,  

)1,(~,,,| *

ziii NYDYZ   - - Truncated at left by 0 if 1iD  

)1,(~,,,| *

ziii NYDYZ  - - Truncated at right by 0 if 0iD  

where )( 2212  iiiz xYx   

in a similar way, we calculate the conditional posterior of  iY . We can get a result for iY  

when 1iD and 1* Y , which also truncated normal.  

)1,(~,,,| *

Yiii NYDZY  - - Truncated at left by 0 if 1iD  and 1* Y  

)1,(~,,,| *

Yiii NYDZY  - - Truncated at left by 0 otherwise                   

where )( 1121  iiiY xZx   

To sample   , we use the following prior 
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let ),0,0,( '

2

'

1 ii xxX   and '),( ii ZYW   and we can get the conditional posterior function of 

  which is normal density, 

),(~,,| 1BNZY   

where )( '1 WXB    and XXBB  '
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 We can sample   and Z iteratively, by drawing   given Z  and vice versa. We 

can sample iZ  and iY from the posterior marginal distribution at each iteration. This 

marginal distribution is conditional only on the data and not on any parameters. And then 

we can sample   from the same posterior full conditional distribution as the following: 

 Sample iZ  and iY from its posterior marginal distribution. 

 Sample   from the same posterior full conditional distribution as described 

previously. 
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Data Example 

 The previous model is applied to the same data example we used in Chapter 5 

(AU Students Replacement Exam Score Data) except that the response variable is now 

binary. For each student I assigned a new variable called „Pass‟ that takes the value of 1 if 

Grade>3.0 (Pass) and otherwise 0 (Fail).  

 I begin with MLE estimation for the bivariate probit model using only the 

observations that have grade data. The estimates can be found in this first row in Table 

10. As discussed in previous examples, it is likely that we will over-estimate proportion 

of „Passed‟ students in the population. Bayesian method is applied after running 10,000 

of iterations MCMC using Gibbs Sampler with 1,000 as burn-in. The results of this 

method can be found in this first row in Table 10.  

 

Table 10 

Model Results for Binary Selectivity  

  

Intercept Score Basic Level 

  

Mean  

Std. 

Error Mean 

Std. 

Error Mean 

Std. 

Error 

MLE   0.8599 0.2555 -0.0112 0.0112 0.0309 0.1541 

Bayesian   0.5020 0.2327 0.0095 0.0103 -0.0643 0.1404 

 

 Figure 7 shows the sample path for 210 ,,   using two different starting points. 

The plots show that all values converge to the same distribution. Figure 8 shows the 

posterior density plot for 210 ,,   and the two settings show normal distribution. Figure 
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9 shows the Moving Averages for 210 ,,  from the two MCMC chains. The graph 

indicates that the two MCMC chains are converging to the same value.    

The results in Table 10 indicates that the Bayesian approach is performing at least 

as well as the MLE approach. The Score coefficient seems to indicate positive 

relationship with Grade. This relationship was reversed with negative coefficient for 

Score in MLE method. Another advantage in the Bayesian approach seems to be in the 

slight reduction of the standard error for all coefficients. 

In general, we would expect strong positive relationship between the placement 

exam score and the final outcome whether the student passed or failed math class in the 

first semester. Similarly, we would expect larger correlation between Basic Level which 

is based on the student‟s placement exam score and whether the student passed or failed 

math class. However, these strong correlations are not present in the data. This is mainly 

due to the limitation of the available variables that we have to use in our model. The 

variable „Score‟ is used in both stages (selection and observation) which leads to high 

multicollinearity. These results confirm that the parameters estimates are not very 

effective when multicollinearity exists in the model.   
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Figure 7. Sample Paths for Binary Selectivity  
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Figure 8. Density Plots for Binary Selectivity 
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Figure 9.  Moving Averages for Binary Selectivity 
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CHAPTER 7 

DISCUSSION 

 This study has provided a Bayesian approach for the sample selection model. We 

investigate the effect of prior distributions and the robustness of Bayesian approach. A 

simulation study using generated data and a real data example are conducted using 

MCMC methods and Gibbs sampling. The results of the MCMC method are compared to 

OLS estimation and Heckman estimation. The results indicate that the Bayesian approach 

is performing at least as well as the Heckman approach, and outperforms the Heckman‟s 

approach in some scenarios such as when multicollinearity exists.  

 A comprehensive simulation study is conducted to investigate the Bayesian 

approach by applying several specific conditions. These conditions reflect various 

scenarios which the researcher might face when dealing with the problem of self-

selection bias. The results proved the effectiveness of the Bayesian estimates and showed 

the limitation of the Heckman method. The results show that Heckman estimator can 

perform well when there is no multicollinearity between the Inverse Mills Ratio and the 

explanatory variables.     

 In the real data example, a Bayesian approach is applied to measure the effect of 

placement exam score on students‟ math achievement. With the spirit of posterior 

distributions, it is not surprising that Bayesian methods provided improvement in the 

parameters estimates. OLS and Heckman methods showed very small effect of placement  
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exam score on student‟s math achievement with slight effect of Basic Level. However, 

the Bayesian method is showing larger estimates for the same variable with less effect of 

Basic Level.  

 Finally, a Bayesian approach with Binary selection model is provided. This 

approach is applied to our real data example using MCMC and Gibbs sampling. The 

results of both MCMC method and MLE estimation are compared. It shows that both 

outcomes are so close that the Bayesian approach is as reliable as MLE.  

This Bayesian approach can be extended to handle other models with sample 

selectivity problem such as multilevel models. Multilevel data are structures that consist 

of multiple units of analysis, one nested within the other. These models are used 

frequently in political science where clustering or multilevel such as various groups of 

people (e.g. gender, ethnic background) is important for data analysis purposes.  

Furthermore, this approach can be extended to handle multinomial and ordinal 

probit models as well. In these models, the latent variables are divided to multiple 

intervals. The extension to a response consisting of a mixture of binary and continuous 

data could be interesting and useful in many applications.  
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