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IMPROVING USABILITY OF PEDAGOGICAL

COMPUTER EMULATION INTERFACES
by

Stephen D. Williams (sdw@lig.net)

ABSTRACT

Computer emulations, simulating real or imagined computer systems, are a

valuable tool to quickly gain understanding of computer architecture and software.

Existing computer emulation systems offer useful but limited visualization and in-

teraction. This paper addresses improving usability of pedagogical computer em-

ulator interfaces with the application of published design principles informed by

research into visuospatial ability. The results include a survey of promising tech-

niques addressing similar problems and suggestions for application. Along with sup-

porting work extending a publicly available Java-based PC emulator to enable use

of the popular Processing visualization development environment, this provides a

well-developed design and implementation framework for future improvements by

interested parties.
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CHAPTER 1

INTRODUCTION

1.1 Purpose

The purpose of this effort is to enable widespread and informed participation

in the improvement of the Emumaker 86 and other computer emulators, both to

provide a better tool for users and also to efficiently enable worthwhile exploration.

In this document, a design, visuospatial, visualization, and functionally in-

formed critique of existing pedagogical computer architecture emulation systems is

described. This critique creates the context for developing a broad requirements def-

inition, anticipating powerful but currently unavailable visualization and interaction

capabilities. A variety of potentially relevant and highly successful design & visual-

ization techniques and technologies are described and characterized relative to this

problem. Next, a series of well known and newly derived design principles are ex-

plored relative to this problem, informed by these visualization techniques and novel

derivations. A number of interactive visualization solutions are described to fit these

constraints. In support of creating an open ecosystem of rapidly evolving visualiza-

tion, the transformation of the EmuMaker 86 simulator from a directly coded Java

Swing API to a set of plugin Processing sketches(Reas and Fry, 2007) is detailed.

Finally, next steps in both design and implementation of visualizations and evolution

of the EmuMaker 86 simulator are discussed.
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This work is related to the continued development of the EmuMaker 86 simu-

lator, described as follows, from the NSF proposal:

“ This proposal describes our plan to develop a web based, graphical micro-
processor simulator tool to teach modern computer architecture to undergrad-
uate students. Our simulator will allow students to view and experiment with
the flow of data through a multicore x86 processor pipeline without needing to
rewrite simulator source code. If granted, we plan to use this funding to develop
this simulator and write laboratory exercises for its use in computer architecture
courses.

Computer architecture, as currently taught at the undergraduate level,
presents a highly simplified and often outdated model of computers. More
current processor models, such as multicore and superscalar, are difficult for
students to visualize. Research simulators that accurately model processor ar-
chitectures are difficult to use, require edits to source code, and are poorly
documented. These tools, impractical for an undergraduate course, create a
barrier for students who wish to learn about modern processors.

We propose a new processor simulator intended specifically for undergrad-
uate education. Unlike existing pedagogical tools, this simulator will cycle ac-
curately model a full 32 bit x86 system, including processor and memory mi-
croarchitecture. Modern architectural concepts, such as multicore, a superscalar
pipeline, and branch prediction will be included. The simulator will also model
input/output and storage devices so that it can execute a simple real-world
operating system, such as Minix.

Our simulator will include a graphical user interface visually depicting mi-
croarchitecture components and the flow of data. It will model the architecture
at varying levels of abstraction, allowing students to work at their comfort level.
It will also allow students to use the graphical interface to make modifications
to the microarchitecture.” – Black (2011, 1)

Visualization in computer science education has long been employed and has

been evolving in various ways to assist instruction and learning.(Fouh et al., 2012)

Computer architecture simulators provide opportunities not only for understanding

computer organization, operation, and architecture, but also for thorough under-

standing of software algorithms and characteristics.

Building on the implementation of that system, this work identifies usability

requirements and explores gaps with what exists to enable identification of rational

constraints and design elements that characterize the most promising solutions.
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1.2 Research Questions

The key research questions addressed here were arrived at by first considering

the high-level goal of improving usability of a computer architecture simulator for a

series of specific tasks, including:

1. Uses of the simulator in the classroom for:

(a) For operating systems, computer organization, and computer architecture

classes: Running created operating systems.

(b) For computer organization: Assist in the process of learning assembly lan-

guage.

(c) For computer organization: Assist in the teaching of simple digital logic.

(d) For advanced computer architecture class: illustrating pipelining and com-

puter architecture.

2. Uses of the simulator for software and systems development:

(a) Understanding application, operating system, and device driver boundaries

and interaction.

(b) Understanding algorithms in concrete terms, including instruction and mem-

ory usage.

(c) Finding performance bottlenecks.

Then, data was gathered and analyzed about difficulties experienced by com-

puter science students using the EmuMaker 86 simulator for these purposes. Back-

ground for understanding perceptual limitations was gathered to inform the analysis

of this data. Existing solutions to similar problems and applicable system design

principles were used as a basis for synthesizing solutions. These results are closely
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related to and supported by Shaffer et al. (2013). The following summarizes the

research questions and the results obtained:

1. What are the problems, gaps, and limitations that users could be expected to

experience when using an existing computer emulator to understand machine in-

structions, registers, flags, processor state, memory and memory use patterns, I/O,

and specific implementation details of software and computer architecture?

(a) Answer: Student feedback has shown with existing emulators, users are only

able to observe and understand a handful of instructions, system changes, and

memory modifications at a time. There is no sense of flow, temporal variance,

or large granularity organization of software. Models of datapath definition of

processor architectures quickly become difficult to see in their entirety or to

reason holistically about connectivity.

2. While exploring the integration of the most popular interactive visualization en-

vironment into the research emulator, what conclusions were reached that informs

and enables future development?

(a) Answer: During this effort, it was found that emulators tend to be laid out

in a common architectural pattern and that the need to add flexible visualiza-

tion hooks is common to all of these emulators, if they even have visualization

of a particular area. The ability to see the value of registers is common to every

emulator pedagogical and debugging emulator. The value of a particular mem-

ory location is not available on every emulator, e.g. DosBox; this requires linear

memory model emulation rather than just compatible system calls. Visualizing

microcode can only be done in those emulators that model microcode at all.

Even for those that do, there may not be consistency in how this is done. Many
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just have a large if / switch statement for the instruction implementation rather

than instruction decoding to a microcode queue.

3. According to the literature, what human perceptual and cognitive limitations do

users tend to have and how does that affect the selection of solutions for computer

architecture simulator user interfaces?

(a) Answer: The human perceptual system has a number of strengths along with

weaknesses such as limited working memory, alternate mental model and reason-

ing systems that introduce systematic errors, body-space related metaphorical

reasoning about spatial, relational, connectedness, and controllable aspects of

both the real world and conceptual and virtual worlds.

4. What existing interactive visualization methods work well for somewhat prob-

lems analogous to simulator CPU, memory, and other simulator interfaces and what

principles can be derived from those methods?

(a) Answer: Visualizations utilizing icons, flow graphs, space filling proportions,

dynamic maps of color, visual vibration, motion, and field discontinuity are some

of the key solutions for allowing highlight or pattern recognition of important

information when size, complexity, and multivariate nature causes unbounded

complexity.

5. What published visualization methods and design principles can be rationally

applied to select potential solutions for this problem domain?

(a) Answer: A number of visualization methods have solved certain constraints

with improvement over then existing methods. These include sparklines, Sankey

Diagrams, Choropleth Maps, Treemaps, Table Lens, and Layer-Time graphs.

Many design principles can provide insight, constraint, and sources of innovative
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solutions. Some key principles include using, manipulating, or sensing “closure”,

consistency, contour bias, desire lines, figure-ground relationships, Fitts’s Law,

Forgiveness, Hick’s Law, proximity, wayfinding, and others.(Lidwell et al., 2003)

6. What are some new solutions for improving visualization?

(a) Answer: Several specific visualization solutions were designed to satisfy

these constraints, and several were implemented.

1.3 Significance of the Study

This study is important because it focuses on diagnosing and improving on

what is, after correctness, the most important aspect of computer architecture sim-

ulators: The user experience, including the effectiveness and quality of the emulator

experience. The effectiveness of an emulator is limited by both a lack of features and

a user interface that prevents or doesn’t actively support the full range of actions

a user may want to perform. By referencing key background material, perform-

ing analysis of emulation systems and user requirements, and synthesizing informed

solutions, this work advances emulator design and implementation.

This report, and the collected sources used, should also be useful as a template

for analysis of other, unrelated problems.

1.4 Concepts and Background

A computer emulator duplicates the function of one computer system on an-

other.(Wikipedia, 2013b) A pedagogical or debugging computer emulator, which will

be referred to here as a computer architecture simulator (CAS)1, provides exposed

simulation of the internal operations of a computer system, often allowing various

1“Computer simulator” is generally understood to describe a computer simulating anything,
while “computer emulator” is generally taken to mean a computer simulating another computer.
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views and forms of direct manipulation. A CAS allows direct observation of the

logical mechanics of operation of one or more aspects of a computer system. By

internalizing an effective, representative mental model as a framework for further

understanding, the user of an emulator may gain a more rapid and thorough un-

derstanding of many important computing concepts and their relationships. The

degree of understanding both in breadth of experience and qualitative development

of accurate intuition can enable rapid evolution of an explorer.

Unfortunately, this potential is only weakly realized to date. Existing com-

puter emulators provide minimal, literal visualization and very low-level emulator

and visualization controls. A small number of instructions, memory locations, and

machine state changes can be observed while a very small set of instructions executes.

Operations at the very small are difficult to understand in the context of an overall

system. Multi-scale aspects of systems are difficult to discern. Relationships between

applications, libraries, operating systems, device drivers, memory, and I/O are un-

clear. Additionally, adding interactive visualization to a CAS system is generally a

difficult, involved task.

Numerous advances in visualization methods, libraries, and subsystems, effi-

cient “big data” analysis, and new developments in human visuospatial performance

characteristics provide a basis for addressing these weaknesses. This gap between

what is conceived, implemented, and easily implementable, and what is clearly pos-

sible for interactive visualization in enhanced CAS systems is the central problem

set addressed.

1.4.1 Usability

Usability is a measure of how pleasant and easy an interactive system is to use

to achieve some useful goal. Here, we will consider pleasant and easy with respect

to goals that the user of a system may have and characterize the net benefit of a
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system as a measure of efficiency. A difficult and annoying system discourages and

otherwise minimizes or thwarts continued use by users. According to Cockton (2013),

the following are propositions about usability evaluation that describe the ideal the

Human-Computer Interaction field aspires to:

Things arent this simple at all though, but lets start by considering the
following propositions about usability evaluation:

1. Usability is an inherent measurable property of all interactive digital
technologies.

2. Human-Computer Interaction researchers and Interaction Design pro-
fessionals have developed evaluation methods that determine whether or
not an interactive system or device is usable.

3. Where a system or device is usable, usability evaluation methods also
determine the extent of its usability, through the use of robust, objective
and reliable metrics.

4. Evaluation methods and metrics are thoroughly documented in the
Human-Computer Interaction research and practitioner literature. Peo-
ple wishing to develop expertise in usability measurement and evaluation
can read about these methods, learn how to apply them, and become pro-
ficient in determining whether or not an interactive system or device is
usable, and if so, to what extent.

While these ideals may never be fully realized, significant progress has been

made, allowing rational comparative evaluation of methods and systems. The us-

ability of a system can be measured directly and indirectly and through formal and

informal methods. Often, there are specific metrics for performance of a task or

measurement of knowledge gained that can be related to alternative approaches.

1.4.2 Related Disciplines

The problems and solutions for CAS interactive visualization potentially in-

volve these disciplines:

1. Computer Engineering - Understanding how computers and computer elements

are designed, built, and function.
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2. Computer Science in general - Understanding computer science principles.

3. Software Engineering - Supporting good software engineering practices, methods,

and continuous improvement through better understanding of concrete results.

4. Computational Linguistics - Developing a more firm grounding in a bottom to

top understanding of function and layering.

5. Pedagogy - Using iterative, rich, and optimally responsive learning and teaching

techniques.

6. Social Sciences - Considering the social dynamics of effective learning, develop-

ment, and professions.

7. Graphics & Graphics Arts - Designing and creating iterative and useful graphics.

8. Cognition Sciences - Using our current understanding of cognition to improve

methods.

9. Machine Learning / Artificial Intelligence - Gaining automated assistance in un-

derstanding, interpretation, and interactive intent and feedback.

10. Human-Computer Interaction - Using our current knowledge of what works and

promising avenues to improve our interaction with computers.

11. Interaction Design - Specific study of the dynamics and characteristics of inter-

action with systems.

12. Neuro-Psychology - Taking into account our current knowledge of fundamental

and developmental mental abilities, strengths, tendencies, and weaknesses.

Attention to these aspects of problem solving design can help lead to more

useful and optimal results.
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1.4.3 Visuospatial Thinking & Mental Models

Visuospatial thinking research is an exploration of known knowledge, spatial,

perception, internal representation inference, and the resulting limitations, and char-

acteristics of the human thought. Many experiments have incrementally added to

knowledge about how people apparently learn, represent, and reason about knowl-

edge. These insights are characterized by commonality and variance. Working con-

clusions, continually challenged by new theories and experiments, have become useful

at some levels of design and problem solving involving human interaction. In many

cases, people may have no conceptual framework for making design choices, or they

may have their own model of how human perception and memory work. By con-

sidering current research results, designers can create and validate their working

assumptions to produce more effective designs.

The following are some conclusions that are likely to be salient in designing

rich user interfaces for computer architecture simulators and other similarly difficult

to solve design problems.

Cognitive Mental Spaces

People use more than one kind of mental space depending on the function they

serve.(Shah and Miyaka, 2005, 1) There are at least four well-studied spaces. These

include:

1. The space of the body, involving prioperception and action, divided by body

parts. This space is experienced volumetrically, mainly as a series of connected parts

and the space around them.(Shah and Miyaka, 2005, 2) It also intrinsically models

what is and is not possible in terms of movement, often constraining understanding

of observations.(Shah and Miyaka, 2005, 3)

2. The space around the body for perception and action. It is primarily divided into
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front/back, head/feet, left/right. Reasoning is often relative to these general vectors

and related rotations. Head/feet, and therefore up/down and high/low, are asym-

metric and have more perceived stability while the other axii are mostly symmetric

and equivalent.

3. The space of navigation, constructed in memory from different types of sources,

normally experienced as a plane. The collage of sources causes systematic errors.

This models the space of potential travel, which is often too large to observe or

consider at once.

4. The space of external representations, such as pictures, maps, charts, and di-

agrams, which act as aids to memory and cognition. These representations often

schematize2 and distort information. These external representations indirectly rep-

resent some other space, and are then represented internally in ways that depend on

how they are perceived.

Furthermore, attention tends to be focused on foreground objects: “For human

cognition, the void of space is treated as background, and the things in space as

foreground. They are located in space with respect to a reference frame or reference

objects that vary with the role of the space in thought or behavior.”(Shah and

Miyaka, 2005, 1) Careful consideration of foreground vs. background is needed to

avoid conflicting with natural assumptions.

These spaces are not exact representations, but rather are selective models,

evolved for particular purposes.(Shah and Miyaka, 2005, 2) Depending on context,

habit, input form, and even explicit suggestion, a person can switch representations

and interpretation, often substantially changing performance.(Shah and Miyaka,

2005, 9) These different spaces allow us to reason about our bodies in an envi-

2Schematize: to reduce to or arrange according to a scheme.(Random House, 2005)
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ronment with obstacles while accomplishing goals through possible actions. When

work to understand and interact with a virtual environment, such as that created in

a computer, we’re often operating metaphorically so as to utilize these mechanisms.

Extension of the Mind and Body Through Tools

At a certain point of proficiency and neuromotor integration, or the internal-

ized model equivalent, a tool becomes an extension of the body, and therefore the

prioperceptive mind. With experience, we adapt to the spatial presence, limitations

of movement, capabilities, and sensory feedback of a car to the extent that we have

little explicit perception between the desire and action of making something happen.

We become, to some extent, one with the vehicle. While this type of internal/exter-

nal modeling and extension happens frequently, it often is more subtle. A good way

to experience this gap acutely is to take begin aircraft pilot training: Adding con-

trol of altitude along with a new interface, new limbs with new rules essentially, and

new types of boundaries and simultaneous cognitive demands rapid cognitive growth.

Good examples of tool use, beyond actual tools, include musical instruments: “leads

to the exploration of designed artifacts as extensions of human cognition as scaf-

folding onto which we delegate parts of our cognitive processes. ... it is possible to

describe the digital instrument as an epistemic tool: a designed tool with such a high

degree of symbolic pertinence that it becomes a system of knowledge and thinking

in its own terms.”(Magnusson, 2009)

The same extension of the body and addition of new senses and limbs occurs

with coherent, well thought out interactive visualization and representational models.

3D game environments have experimented with a multitude of solutions here with

some being particularly effective:

“Black and White 2 (along with its predecessor, Black and White (2001))
is a much more (literally) hands-on game. The Black and White games turn
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a standard PC cursor into a hand with an extraordinary range of capabilities
and even expressions, which affects all kinds of interactions. Black and White
embodies the interaction with its super-cursor-hand, such that to move a unit of
troops, the player literally picks up the collection of soldiers in her or his divine
hand and drops (or throws) them at the desired location. The interaction is
strangely diegetic, because the hand is no longer merely a cursor, but a special
kind of avatar in the world. This fundamentally changes the relationships among
the player, the avatar, and in-world content. The meanings of the interactions
between player and in-world objects also change; often they take on a degree of
humor not seen in other strategy games...” (Olli et al., 2008, 205)

This depiction of a hand, with very hand- and arm-like interaction, albeit at

a god-like level, are almost immediately understood and used by users:

““Such behaviors, of course, lead to Black and Whites central mechanic, which

is the moral feedback the game provides, based on the ways the player, through the

hand avatar, interacts with her or his people.”(Olli et al., 2008, 205).”

The human mind can expand and extend the working model of limbs, segments,

joints, and capabilities. When properly trained, this allows users to accomplish

tasks as automatically and comfortably as throwing a ball or steering a vehicle. A

key design goal for many systems should be to replace the use of menus and other

artificial interaction with mechanisms that can be experienced as an extension of the

user’s body model.

Mental Models

A mental model is some representation of the world that is used to predict and

interact. There are a number of views of the different natures of this, including the

logical, syllogistic model(Johnson-Laird, 1983, 64) of propositions and models that

variously model the spatial and temporal aspects of the real world.

Mental models owe their origin to the evolution of perceptual ability in
organisms ... David Marr ... outlined a computational theory of vision that
largely accounts for the derivation of the perceptually based models of the world.
The theory postulates three principal forms of representation: first, the ’primal
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sketch’, which is a symbolic representation of the disposition ... local geome-
try, and the structure ...; second, the ’2.5-D sketch’, which is a viewer-centred
representation fo the depth and orientation of surfaces, including contours and
discontinuities; and third, the three-dimensional model of an object, which is
based on an object-centred set of coordinates and primitives that make the space-
filling shape of the object explicit. The account of 3-D models applies only to
certain classes of objects, but it is clear that the basic ideas should be extensible
to all objects and to scenes in which there are spatial relations between objects.
... It is therefore safe to assume that a primary source of mental models – three-
dimensional kinematic models of the world – is perception.(Johnson-Laird, 1983,
64)

It is clear that people employ a mosaic of mental models to understand, reason

about, and react to systems. When creating solutions, a designer should give explicit

thought to the form and structure of information so as to enable the most appropriate

mental model. In some cases, that will be logical constraints, rules, propositions, and

definition of logic of a system. In more advanced situations, this can be thought of

as an ’algebra’ or ’calculus’ of some kind, metaphorically consistent with algebra or

calculus.

A good example of this is Allen’s Interval Algebra(Allen, 1983), which defines

thirteen basic relations between time intervals that are “distinct, exhaustive, and

qualitative”.(Alspaugh, 2013) These relations are: precedes, meets, overlaps, finished

by, contains, starts, equals, started by, during, finishes, overlapped by, met by, and

preceded by. Note that this algebra can be interpreted spatially, temporally, and

logically or symbolically.

1.4.4 Successful Interactive Visualization Methods

These visualization methods elegantly solve key information density and repre-

sentation problems in ways that are generally applicable to a wide range of situations.

Each has a certain range of greatest success and each has limitations and problems.

Considering when they are useful and why they are limited provides both building
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blocks and the basis for surpassing those limitations for particular problem domains.

Treemap

Treemaps provide the ability to directly represent hierarchy and at least two

key scalar or categorical attributes about many items in a single graphical, navigable

and explorable display. For example, direct access to more than 100,000 directories

and files in a file system is not unusual, with large files being very apparent.

Figure 1.1. Kdirstat treemap

Figure 1.2. Voroni Treemap

(Balzer et al., 2005)
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Table Lens

A table lens is a technique where a two dimensional table uses variable width

columns and rows to highlight certain cells and compress other cells while keeping

fields in context.

Bubble Chart

Bubble charts fill available space with various sized bubbles, clustered together,

usually using a pseudo-phsyics collision algorithm.

Figure 1.3. NY Times Budget Proposal bubble chart, showing stratified grouping.

Figure 1.4. Bubble Chart Showing Group Membership and Relative Size.



17

Figure 1.5. Bubble Chart Letter-Pair Analysis of Document.

(Bereciatua, 2005)

1.4.5 Radial Bubble Tree

A radial bubble tree supports a local view into data that may be highly com-

plex showing variables like type and relative magnitude. The bubble tree supports

navigating up or down in a hierarchy.

Figure 1.6. Minimal BubbleTree Demo.

(Aisch, 2011)

Sparkline

A Sparkline provides an understandable graph, usually a line chart, in the

size and placement of about a word or two. It is a very effective way to embed or

aggregate knowledge about the nature of a trend or the position of a spike.
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Figure 1.7. Edward Tufte’s Sparklines.

Sankey Diagram

A Sankey Diagram shows proportional flows with multiple sources and sinks

through multiple phases, including feedback loops and closed or partially closed

systems. The direct proportions, ease in labeling and splitting streams proportionally

can be very clear and concise. Although named after Irish engineer M. H. P. R.

Sankey, this type of diagram was created by C.J. Minard who said about his creation:

“The aim of my carte figurative is less to express statistical results, better done by

numbers, than to convey promptly to the eye the relation not given quickly by

numbers requiring mental calculation.”(Riehmann et al., 2005) These diagrams can

be interactive, allowing zooming in and filtering for relevant data. A key feature is

the ability to do flow tracing by selecting an edge or node in a data graph which can

highlight contributing flows.

Hyperbolic Tree

A hyperbolic tree is one of several methods that map a uniform planar space to

a non-uniform, focused view somewhat like a fisheye lens. This is shown as circular

view of a tree mapped onto a hyperbolic plane. Elements gradually grow smaller as

the view is centered away from them.(Lamping et al., 2013)

Choropleth Map

Choropleth maps are extremely common, frequently being used at elections

and for illustrating census and survey data. “A choropleth map is a thematic map
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Figure 1.8. Hyperbolic Tree

in which areas are shaded or patterned in proportion to the measurement of the

statistical variable being displayed on the map, such as population density or per-

capita income.”(Wikipedia, 2008)

Figure 1.9. Choropleth Map

Cartogram

A cartogram transforms a standard map of some kind by adjusting the size

of each identified area according to some variable. The resulting map retains very
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similar relative positioning constraints among elements, but can be highly distorted

by the variable being illustrated. The following diagram displays GDP of countries.

Election results

Figure 1.10. Cartogram

Expand-Ahead

Expand-Ahead(McGuffin et al., 2009) uses unused whitespace on screen to

expand certain levels of a hierarchy to show as much information as possible while

maintaining context.

The animation scrubbing interactive visualization, attained by holding a con-

trol key down while moving the mouse, is a useful paradigm for replay and pause of

animations.

Layer-Time

The layer-oriented time-series data(Lopez-Hernandez et al., 2010) (layer-time)

iterative visualization method applies a powerful but rarely used method of simul-

taneously displaying many temporal instances while allowing the user to highlight

specific cases easily. As the user moves the pointer around, a single instance is clearly
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Figure 1.11. Expand-Ahead

highlighted while the background shows the aggregate paths of all passes.

MindMap

Mindmap software, such as FreeMind(Assorted, 2013b), implements interactive

editing of a hierarchical outline of arbitrary information, automatically laid out in a

two dimensional pattern. Mindmaps, a type of spider diagram, are meant to directly

map to a user’s schematic mental model for information. Modern mindmap software

allows direct manipulation and editing of nodes in the map. This representation of

knowledge, direct manipulation, and collapsible nature are all potential features of

an information tracking subsystem in a CAS.
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Figure 1.12. Expand-Ahead Animation Scrubbing

Kanji

Kanji, the Japanese and Chinese pictograph based writing system, is built

from a small number of radicals, arranged in a sometimes meaningful pattern. Each

radical has an original meaning as a word along with a number of usually related

sense that it can be used as part of a Kanji character. For instance, a radical that

is a stylized bow is used as part of the word for ’pull’ and contributes a ’pull’ sense

to other words. Kanji are usually taught by wrote learning. Japanese and Chinese

writing systems are very difficult to learn because Kanji are irregular, based mostly

on historical evolution rather than careful design. However, Kanji can be more

concise than an equivalent alphabetical writing system.

Emoji

Icons for types of people, places, objects, or actions, used as an abbreviated

language to communicate on Asian mobile networks. They can be used for small,
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Figure 1.13. Layer-Time visualization

highly dense messages or for whole conversations.

TiddlyWiki & TiddlyProcessing

TiddlyWiki is a one-page-application, written in Javascript and running in

a web browser. This application implements something like a full Wiki contained

within that one page. Newly created nodes, ’tiddlers’, are saved to memory and the

whole page is saved back into the HTML file that was originally loaded. The user

can open one or more tiddlers, shown consecutively on the web page. Everything is

searchable and the page actively manages certain data. This is meant for personal

note or record taking, editing and then publishing a web page, and similar capabili-

ties. This system has potential use as a knowledge / data capture, sharing, and note

taking mechanism.

TiddlyProcessing(Assorted, 2013d) (Assorted, 2013c) combines TiddlyWiki

with ProcessingJs, the Javascript implementation of the Processing environment.

This combination allows a user to create, edit, or run multiple processing sketches
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on a single web page. This is both an easy way to become productive quickly, and

an easy way to share and explain related concepts. This is useful for prototyping or

demonstrating visualization methods and ideas. It could also be used as an active

and interactive snapshot, program trace, or statistical summary of a segment of op-

eration of an emulator. In 1.14, both the running sketch and the source code are

visible at once. The user can edit and immediately see the result. Multiple sketches

can be open and in edit or run on the same page.

Figure 1.14. TiddlyProcessing
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Limitations

Each of these visualizations is a useful improvement, but with limited applica-

tion. Others have noted the limitations of these techniques:

Attack graphs are usually displayed as node-link graphs. An excellent re-
view of 15 different general approaches to displaying node-link graphs is avail-
able... We explored many of these ... Hand-drawn graphs are too time-consuming.
The Graphviz dot tool(Graphviz, 2013) and force-directed approaches lead to ex-
cessively complex displays unrelated to the underlying network structure. Tech-
niques to expand and collapse parts of large graphs such as space trees(Plaisant
et al., 2002) and hyperbolic trees(Lamping et al., 2013) cause global context
to be lost when part of a network is expended and, as a result, are difficult to
follow. Treemaps(Johnson and Schneiderman, 1991) are excellent when sum-
marizing data for a small set of hosts, but they do not represent a network’s
hierarchical structure well. Finally, multilevel cell matrices are difficult for sys-
tem administrators to interpret and relate to actual networks.(Goodall et al.,
2007)

Successful, optimal interfaces may combine elements and ideas from more than

one of these explorations to more optimally address a particular problem. This

recombination can be difficult to see, but through using these different visualization

methods, an algebra of design elements can be drived.

1.4.6 Node-Link Graphs

In addition to value quantification and classification, grouping and matrix /

field pattern recognition, and iconography, node-link graph structures provide a rich

mechanism to illustrate relationships, membership, temporal flow, and dependency.

Many types of visualization of graphs have been created to solve the representation

and interpretation needs for various applications. A wide-ranging and somewhat

comprehensive examination of node-link graph visualization methods and constraints

can be found in Munzner (2006a). These methods include:

1. Visual Channels - separable vs. integral, position or attribute.
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2. Traditional Graphs

(a) Visual External Representation - common node/link graph, offloads working

memory and cognition to visual system.

(b) Hand-drawn - high density, takes very long to create.

(c) Dot - automatically computed, low information density, tends to be difficult

to read labels.

(d) Graph Layout Criteria - minimize crossings, area, curves, maximize angular

resolution and symmetry.

(e) Force-Directed Placement - magnet/spring simulation, doesn’t scale.

(f) TopoLayout - detect topological features and layout by data or cluster type.

(g) Multilevel Hierarchies - scalable, not useful if features can’t be detected.

(h) Animated Radial Layouts - dynamic graphs for dynamic data, minimizes

visual changes, shows current state.(Yee et al., 2001)

(i) Animation - polar interpolation, maintaining neighbor order.

(j) Constellation - information density / visual salience tradeoff.

(k) Selective Emphasis - highlight sets, avoid misperception and hidden state.

3. Nontraditional Representations

(a) Treemaps - showing structure with containment, but not connection; good

for extreme values; poor for structure.

(b) Themescapes - cluster stability, noise for interpretation, spatial analysis of

non-visual information.

(c) Multilevel Call Matrices - link matrix vs. node-link.

4. Focus + Context - single detail view vs. multiple linked windows



27

(a) SpaceTree - supports expand/contract interaction, animated transitions,

only shows a small fraction of detail at once.

(b) 2D Hyperbolic Trees - shows a lot of data with focused information large,

other information progressively smaller, but in context.

(c) H3 - 3D fisheye from hyperbolic geometry - shows large amounts of data,

but the user can get lost.

(d) TreeJuxtaposer - landmarks visibile, stretch/collapse navigation, difficult for

some tasks, expensive.

(e) SequenceJuxtaposer - side-by-side comparison, accordion drawing

Of these, visual channel methods, Dot, force-directed placement, animation,

selective emphasis, cushion treemaps, themescapes, and sequencejuxtaposer are most

promising for application to a computer architecture simulator.

1.4.7 Taxonomies & Paradigms

Taxonomies provide a framework for understanding or spectrum of distinc-

tive points that highlight fundamentally different alternatives. They can be useful

in fully understanding a domain and particular instances and especially helpful in

boosting the creative process by directly enabling the consideration of all alternatives.

Paradigms illustrate a particular pattern or model of understanding or designing and

building something, sometimes enabling particular kinds or effectiveness of action.

Semiotics, Affordance, & Charles Peirce’s Theory of Signs

(Atkin, 2013)(Olli et al., 2008, 201) A sign is a combination of a signifier

(the image) and a signified(the concept).(Olli et al., 2008, 193) There is value in

establishing a consistent, widely or consistently understood shared context of signs.
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An affordance is an intrinsic property of an object or a design element that a

human perceives to be of potential use.(Olli et al., 2008, 194). A common example

is a push or pull door: If there is a handle or bar, the door should be able to be

pulled. If there is a push pad, it is clear that you should push the door. It is an error

in a sense for a door that must be pushed to have a handle associated with pulling,

which is only diminished by clear marking.

Charles Peirce’s Theory of Signs evolved to a trichotometric vocabulary of icon,

index, and symbol. The icon refers to a sign’s similarity to the object it signifies or

the object’s intended use. An index is when there is a representation of an effect,

indicating a particular cause. This involves an additional level of inference, which

could be an additional cognitive burden, although it could also reuse an existing

association. The symbol is an arbitrary association based on some association. This

arbitrary and potentially complex association requires further memory and inference,

however it can also be context free and without prior knowledge conflict.

Constraints on Affordances

In Norman (2002), three types of constraints on affordances are described:

physical, logical, and cultural. A physical affordance constraint simulates some

physical process with limits based on walls, weight, etc. A logical constraint in-

volves rules or some type or combination of deduction and inference. A cultural

constraint is related to cultural shared conventions or strong associations due to

everyday association. A well-known example is a science demonstration in San Fran-

cisco’s Exploratorium of a brand-new toilet that was turned into a drinking fountain,

challenging museum goers to overcome their cultural bias.

Constraints can help define the purpose of an element, but also prevent errors

or irrational operation.
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Selfconscious and Unselfconscious Cultures

(Olli et al., 2008, 253)(Alexander, 1979) Creators in an unselfconscious culture

follow tradition which dictates that there is a right and wrong way to do things.

Nothing related to design is written down, but new builders are actively corrected

so that they follow existing practice. This is observed not only in cultures that have

long-standing cultural practices, but even, in many ways, in the modern video game

industry.

A selfconscious culture engages in academic and industry general rules, princi-

ples, and best practices. Education is formalized, general rules allow rapid education,

and creativity is enabled rather than constrained.

“Alexander (ibid.) describes how as a self-conscious design culture devel-
ops further, change for its own sake becomes acceptable. Culture changes too
rapidly for adaptation to keep up with it and factors sustaining equilibrium drop
away. The master craftsman takes over the process of form-making and inven-
tiveness becomes valued as a way of distinguishing craftsmen/artists, leading to
the cultural perception of the designer as a star. Specialization underlies the
establishment of design academies, and the academies make principles explicit,
making them available for criticism and debate. Debate requires justification,
leading to the formulation of general theories, principles and rules. Questioning
leads to unrest, which leads to formal innovation and further self-consciousness.

Self-conscious design culture is concerned with both the design education
of novices and explicit, self-conscious debate among established and experienced
designers. One of the distinctions of experienced and expert designers (as with
all forms of expertise) is an increasing implicitness of knowledge, with ongoing
analytical processes oriented towards making that implicit knowledge more ex-
plicit. Hence explicit design knowledge accelerates and facilitates the ongoing
development of expertise, but it is always very far from fully representing that
expertise.”(Olli et al., 2008, 255)

1.4.8 Elements of Designed Form

These elements are derived from the Elements of Designed Game Form.(Olli

et al., 2008, 252) This layered taxonomy helps separate conceptual forms from im-

plementation strategy and embodiment, showing how they are separate but can be
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used together in various combinations.

1. System Interaction

2. Logical Elements & Semantics

(a) Objects

(b) Space

(c) System

(d) Rules

3. Media

(a) Infrastructure

(b) Technology

(c) Interfaces

(d) Modes or sequences

(e) Skins or symbol styles

(f) Lighting and highlighting

(g) Audio

(h) Video

(i) Animations

(j) 2D Graphics

(k) 3D Graphics
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1.4.9 Characteristics of Interaction Cues

(Olli et al., 2008, 195) In considering the nature of a possibly interactive vi-

sual element, these measures are one type of categorization that may be useful in

considering usability with users. These were developed to evaluate video games, so

some adjustment may be necessary.

Table 1.1: Characteristics of Interaction Cues Docu-

mented in the Study. Quoted from: (Olli et al., 2008,

195)

Artifact-Centered Characteristics Human-Centered Characteristics

The time and sequence (order, dura-

tion, iteration)

What the human has to do to perceive

it as a cue?

Space and setting (location, environ-

ment)

What types of audience is the cue

aimed at?

Occasion What knowledge does the cue take for

granted?

Medium What kind of response does the cue ex-

pect the player to have?

Physical attributes What are the consequences for not re-

sponding to the cue in desired ways?

Function

Diegetic vs. non-diegetic nature
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1.4.10 A Taxonomy of Game Cues

(Olli et al., 2008, 195) While a successful CAS innovation may or may not

involve gamification or game-like features, the taxonomy taken from Olli et al. (2008)

provides an informed summary of techniques in a field which has the most competitive

pressure for innovative interfaces.

Interactivity

Are elements interactive or non-interactive?

Markedness

Is an element marked as interactive? Is it clear to a user what is active vs.

passive? Are conventions and expectations, possibly intrinsic in some way, followed

or violated?

Diegesis

A diegetic form is an element that has an in-environment representation and

action, such as an unlocked door allowing access. A non-diegetic form might be

control of speed or reset of the environment. This is a difference of indirect vs.

direct communication and control.

Medium

What is the medium of the cue? Is it print, icons, video, flashing, audio tones,

music, vibration?

Diegetic forms: Wholes versus parts

Is the diegetic form an “object whole” or an “object part”? The latter can

be a subpart that is interactive. The interaction is often a form of direct control.

The objects, actions, and the object states may appear natural and intuitive. The
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sense of a part might be both concrete, such as a simulation of a physical element,

or temporal or situational. The same signal may indicate different things in different

contexts.

Non-diegetic forms: 3D in-world overlays

These are cues in a 3D environment, such as flashing surface decals or columns

of light or movement such as something floating, that indicate something to which

attention is being drawn.

Non-diegetic forms: 2D window overlays

These are 2D overlays, possibly on a 2D or 3D environment, such as cursors,

dialog boxes, mini-maps, etc. They are external to the main environment or world

but may directly affect it.

1.4.11 Published Principles of Design

Listed in the following sections are selected principles from the Universal Prin-

ciples of Design(Lidwell et al., 2003). These are principles that have been found to

apply in a wide range of situations. These guide choices in design, both affecting

designs and moderating the process of choosing a design element. Many of these prin-

ciples provide proven observations on human nature and human limitations. Here,

the principles are interpreted from the perspective of properly solving and optimizing

for the interactive visualization problem set.

80/20 Rule

Frequently, 80% of the use of something will be spent in 20% of the features,

area, or time period. This tends to indicate that the most used features and controls

should be visible with less effort. It also means that the 20% of the system that will

get most used should be optimized the most.
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Affordance

Affordance describes the degree to which the design of a physical or virtual

object indicates, agrees with, and facilitates its function. Poor affordance, such as

a pull handle on a push door, cause confusion, extra cognitive load, and delay in

concentration on useful areas.

Alignment

Proper visual alignment of elements can be a very important signal as to

grouping and sequencing. While poor alignment can slow the eye down, aligning

elements which are not related can also have a negative effect as users spend extra

time disambiguating meaning.

Archetypes

Universal patterns of style, elements, and theme that tend to resonate with

a wide range of people due to innate sensitivities or biases. Archetypes often refer

to particular cultural elements which, while generally influenced by innate taste, are

often highly evolved and differentiated by cultural Darwinism.

Chunking

Rather than a stream of details or large forests of areas to focus attention on,

chunking elements into a group represented by a single, larger element tends to make

the overall information easier to process and recall.

Closure

Visually, a set of individual elements placed in a pattern will tend to be per-

ceived as part of a continuos shape at a certain distance.
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Common Fate

Visual elements that are moving in the same direction, to roughly the same

degree, are perceived as being part of the same item or same group. In a running

emulator, if several memory locations were increasing in value in sync, a visualization

of that by movement, color, or pulsing in sync would naturally be very apparent.

Comparison

Representing one or more variables in an organized and deliberate fashion al-

lows comparison that may reveal relationships and patterns. Different representation

methods have varying strengths and weaknesses. Good diagrams, matched to the

problem and latent patterns at hand, can immediately reveal salient points. A num-

ber of popular methods have well-known problems with cognitive fidelity. Pie charts

for instance are perceived less accurately than other methods such as bar graphs. Yet

variations on a pie chart can effectively illustrate the change in multiple variables

over the passage of time.(Lidwell et al., 2003, 53).

Consistency

Consistency in placement, meaning, and structure of systems and information

can enhance usability. Style guidelines for placement of ’OK’ and ’Cancel’ in dialog

boxes is a common case. Different kinds of consistency can allow both efficient

understanding and flexibility and increase power of expression.

Constancy

Constancy describes the effects of perceptual compensation mechanisms that

can provide misleading estimation of shade, color, size, or other characteristics. De-

signs should avoid using certain types of complex pattern and color combination

while relying on the user to sense an absolute brightness or other feature.
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Fitts’s Law

Fitts’s Law says that the time and effort needed to reach a target is function

of the target size and distance to a target.(Göktürk, 2010) A pop-up menu can be

much more efficient than a menu far away. A large drag-and-drop area can speed

operations.

Figure 1.15. Fitts’s Law, Shannon-Hartley Formulation(community, 2013a)

T = a + b log2

(
1 +

2D

W

)

Gutenberg Diagram

A Gutenberg Diagram describes the general pattern followed by a user’s eyes

when observing evenly distributed information. Placement of certain elements can

be rationalized and optimized according to this common pattern, see: 1.16.(Bradley,

2011)

Figure 1.16. Gutenberg Diagram
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Mimicry / Skeuomorph

Designing elements to mimic other things, especially real-world objects, tex-

tures, and forms, and their action when interacted with, is a technique for which

the output is called a skeuomorph. This technique is expected to make users feel

immediately comfortable.(community, 2013c) This establishes an immediate shared

context and mental model of what something is and how it can be used. An example

of this for a software emulation of an analog audio compressor is shown in 1.17.

Critics of this method decry the constraints this places on use of space, ability

to add features, and improving on real-world objects in general.

Figure 1.17. Skeuomorph for Audio Compressor(Göttling, 2013)

1.4.12 Taxonomy of Interactive Dynamics

”Meaningful analysis consists of repeated explorations as users develop in-
sights about significant relationships, domain-specific contextual influences, and
causal patterns. Confusing widgets, complex dialog boxes, hidden operations,
incomprehensible displays, or slow response times can limit the range and depth
of topics considered and may curtail thorough deliberation and introduce errors.
To be most effective, visual analytics tools must support the fluent and flexible
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use of visualizations at rates resonant with the pace of human thought.”(Heer
and Schneiderman, 2012)

Taxonomy of interactive dynamics for visual analysis, from (Heer and Schnei-

derman, 2012), applied to CAS:

1. Data & View Specification

(a) Visualize data such as memory, code, state, and events by showing in con-

text, in bulk when necessary, in compact understandable ways.

(b) Filter data interactively through flexible controls that allow users to focus

on one or more areas.

(c) Sort data and metadata derived from data in multiple ways to allow high-

light of important patterns.

(d) Derive metadata to summarize at different granularity, by different perspec-

tives, and at different times.

2. View Manipulation

(a) Select items such as memory ranges, code points, and thresholds easily to

highlight or filter.

(b) Navigate in a multi-level granularity fashion to the points in code and data

that are interesting.

(c) Coordinate multiple views, such as CPU, memory, and system analysis, so

that the overall picture can be assimilated.

(d) Organize multiple views, such as CPU, memory, and peripheral views, to

allow optimal use for a particular task.

3. Process & Provenance
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(a) Record history, state, and results of emulation for later comparison, review,

sharing, and testing.

(b) Annotate patterns to record user analysis for later use.

(c) Share results to leverage value and use of system.

(d) Guide users through setup, next steps, and tasks, both generically and for

pedagogical purposes.

1.4.13 Gamification and Flow

In “Distinguishing Games and Simulation Games from Simulators”(Narayanasamy

et al., 2006), the authors identify key features distinguishing a game, a simulation

game, and a simulator. They also discuss the subtle difference between a game and a

serious game. This exploration is potentially very useful for developing gamification

strategies of formal or enthusiast learning activities, contests, or problem solving.

Closely related to the what the authors discuss as game-play gestalt(Narayanasamy

et al., 2006, 3) is the psychological phenomena of flow(Wikipedia, 2013c)(Csikszentmihalyi,

2013)(Csikszentmihalyi and Csikszentmihalyi, 1988). These related phenomina re-

fer to hyper focused, optimal states of interaction with a system or activity. Good

designs foster and enhance the ability for an interested user to achieve these states

while a poor system disrupts a user’s focus with broken paradigms, tedious inter-

faces, and the inability to present information at the right granularity in an optimal

way.
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Figure 1.18. Flow: Challenge vs. Skill

Figure 1.19. Flow Chart

Programming and users of a CAS will likely have a lot of overlap in their

tasks, thinking, and concentration. It is well documented that interrupting a task

that requires a large amount of concentration and working memory can cause a large

amount of lost time and effort. In Parnin (2013), this working memory is described
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in terms of a number of distinct types:

1. Prospective memory - holds reminders to perform future actions in certain situ-

ations.

2. Attentive memory - holds conscious memories that are randomly accessible.

3. Associative memory - holds a set of implicit links between co-occuring elements.

4. Episodic memory - memory of past events.

5. Conceptual memory - range of memory between perceptions and abstractions.

A system that specifically supports and assists the user in offloading or rein-

forcing these types of memory would greatly improve the efficiency and capability

of a user. Existing examples of these include a debugger remembering breakpoints

and a programming editor automatically showing all of the lines where a ’todo’ com-

ment was inserted. Prospective examples might be ’painting’ memory with a certain

type or purpose or marking certain code as interesting or uninteresting to filter and

remind in future passes.

1.4.14 Universal Application

It is well-known that novel application of a technique in one field or area

originally discovered in another is one of the most common forms of innovation. Yet

there continues to remain many cases where a core idea, well known in one field,

is only much later applied to others. Often, even realizing there is an opportunity

for a much better solution prevents timely realization of such solutions. Often,

successful ideas can be somewhat universally applied to many other fields, although

often with transformation or mapping that may not be immediately obvious. A

field may be said to be analogous if a significant number of the subproblems can
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be mapped to each other as having similar form, elemental components, and some

existing commonality in solutions. While transferable ideas and paradigms may be

noticed serindipidously upon occasion, leveraging systematic summaries of the best

ideas in somewhat analogous fields is often a way to produce candidate methods.

These candidate methods and attempts to creatively apply them can lead not only

to successful reapplication, but also to derivative, analogous, or even unrelated ideas.

1.4.15 Code and Algorithm Understanding

A user of a computer architecture simulator will likely find that they need to

interpret the actions of some range of code and understand how associated memory

is used. An inexperienced user will likely not immediately or easily understand any

significant sequence of operations. An experienced developer may quickly recognize

a pattern that matches well-known structures, practices, and algorithms. However,

even in the latter case, correlating different sequences of code with associated data

to reach a conclusion, and then remembering these results for later reuse, is some-

thing not widely available or yet fully evolved. An ideal system would allow layered,

side-by-side review and annotation. While some support is available in special use

commercial packages such as IDA Pro(Eagle, 2011), this capability can be greatly

expanded to support exploratory investigation and capturing of knowledge and con-

clusions for operating systems and applications running in an emulator.

In addition to enabling human investigation and analysis of running systems,

automated filtering, transformation, and recognition methods could be developed

or adapted. This would allow greatly accelerated understanding and navigation

of an existing system while enabling more advanced meta-analysis. An example

of a useful meta-analysis is determining which programs employed similar overall

structure, algorithms, data flow, and data formats. There exist a number of systems

that statically or dynamically trace systems structure, data flow, and algorithmic
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nature. In Taherkhani et al. (2012), freshman sorting algorithms are recognized by

their characteristics at an overall accuracy of 81% using a system called Aari.

Daikon(Group et al., 2013)(Ernst et al., 2007) detects program invariants in

C/C++, Eiffel, Java, and Perl programs. A program invariant is a property that

holds at certain points in a program; i.e. a relationship or state that is detected which

likely explains what a program is doing. Examples would include the relationship

between variables or the fact that a certain array of integers has become sorted. The

Daikon system is extensible and adaptable, suitable for integration into a CAS for

analysis of the effect of code segments on memory.

1.4.16 Processing

Processing(Reas and Fry, 2007), created by Ben Fry and Casey Reas in 2001

(Maeda, 2009) while in the MIT Media Lab Aesthetics and Computation Group to

improve upon the Design by Numbers(DBN) system by John Maeda. Both sys-

tems were created to enabled artists and designers to learn and use programming in

their work to create innovative interactive visualizations. Processing has since grown

in capability and popularity so that it is used for a variety of purposes on many

platforms. While originally only Java-based, Processing currently supports running

’sketches’ (a complete Processing program) in Javascript, in an environment that is

similar. Until the most recent versions, the Processing IDE supported export of the

sketch as a Java applet. Now, Processing supports export of packaged Java-based

executables for Linux, MacOSX, and Windows and a separate Javascript-based mode

for browsers. Unfortunately, not all useful libraries have been ported from Java to

Javascript and developers will have to maintain two versions of their own libraries

to support all platforms. An additional export mode to Android, being Java-based,

is similar to the desktop environment.

For this work, Processing is an ideal environment to rapidly prototype ideas.
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This is due to popularity which provides both widely available familiarity and widespread

documentation and examples, concise power, ease of development, and ability to in-

tegrate into Java-based or Javascript-based applications. Processing supports both

2D and 3D visualization, including OpenGL shader programs. It also provides sim-

ple integration of mouse and keyboard input and integration with other external

devices, such as lab instruments, through various publicly available libraries. Once

an interactive visualization method is working in isolation, it can be integrated with

the emulator efficiently.

Other somewhat related work includes FreeStyler(of Engineering University of

Dulsburg-Essen, 2013) and JeLSIM(Milligan and Thomas, 2009).

Characteristics of Adaptable Design

The key components of an adaptable design include maintaining separation of

concerns, employing a flexible, modular architecture, supporting temporal models

that include consideration of timing, sequencing, and speed of emulation. A key

aspect of Java platform is the ability of the just in time (JIT) compiler to perform

optimizations about how the system is currently running. If properly controlled

through the injection patter, to virtual machine is free to optimize for the current

configuration. Therefore, if a particular visualization is disabled or minimized, this

minimal path can be highly optimized, allowing the emulator to run much faster.

1.4.17 Personas

A computer architecture emulation system, such as the EmuMaker 86 simu-

lator (aka Graphical PC Simulator) (EmuMaker 86 simulator)(Black and Komala,

2011), provides emulation of an entire computer, a 386 PC with standard peripher-

als in this case. A pedagogical computer emulator provides multiple views into the

operation of this simulated computer. In the case of the EmuMaker 86 simulator,
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this includes a text-mode and graphics mode screen, keyboard, memory, int erupts,

timers, floppy drives, hard drives, IO ports, and the CPU including registers, ALUs,

and flags. The EmuMaker 86 simulator provides separate panes, implemented in

Java Swing, to allow viewing and interaction for each of these components. A menu

is provided to allow configuration, initialization, and control of the running of the

system. An extended ability is present to allow definition of datapaths for a custom

CPU architecture which can be run directly. The following diagrams illustrate the

user interface for these components. Other computer emulators exist for various sim-

ilar and disparate purposes. Some other emulators useful for pedagogical purposes

are listed in (Black and Komala, 2011). These systems share a certain range of literal

representation of block diagrams of CPU components, grid layout of memory sum-

mary cells, and lists of actual machine instructions represented as assembly language

statements.

Users of a CAS can be summarized by a small set of “personas”. 3 The main

personas considered here include: Computer science (CS) students, computer archi-

tecture (CA) students, computer science/architecture professors (PROF), learning

software developers (LSWD), and professional-level software developers (PSWD).

These personas have a large degree of overlap in needs from a system, but differ-

ing in significant ways including interest in: areas of the system, levels of detail of

operation and data, and importance of different types of patterns and statistics.

Computer science and computer architecture professors need a system that

allows rapid proficiency to allow focusing on specific concepts and problems along

with a wide range of features and operation flexibility. Students generally will have an

interest in learning new concepts, becoming progressively more proficient at reasoning

3A persona is “A technique that employs fictitious users to guide decision making regarding
features, interactions, and aesthetics.” (Lidwell et al., 2003)
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about computer systems and software development, and avoiding expenditure of

uninteresting, unrewarding effort. Progress will begin at some layer and progress

incrementally. Software developers are generally working to solve specific problems.

They may use a CAS to provide insight about performance, bugs, or to understand

the structure and operational characteristics of a hardware or software system. Any

of these may be working to extend the emulator or interactive visualizations for the

emulator.

1.5 Specific Accomplishments

These accomplishments illustrate contributions which may enable further re-

search and development of: computer architecture simulator (CAS) improvements,

emulator related research projects, and methodology of constraining and developing

innovative interactive visualizations.

1. Created a curated, core set of design constraints and concerns relevant to CAS

visualization.

2. Created a catalog of relevant design elements, paradigms, and existing methods,

relating these to CAS visualization.

3. Placed some of the most key relevant literature in the context of solving CAS

visualization, providing a framework for many types of further exploration.

4. Developed sense of missing features, inefficiencies, and user requirements needed

to move significantly toward optimal CAS use.

5. Reviewed and critiqued existing CAS and CAS-like systems with respect to us-

ability, features, and modifiability.
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6. Modified Emumaker 86 structure and visualization implementation method to

support pluggable Processing modules, completely separating emulator engine and

visualization components.

7. Designed several methods for further emulator development and debugging through

integration with a reference emulator.

8. With constraints, concerns, and existing methods in mind, developed a set of new

CAS related design elements.

9. Implemented interactive visualization elements in Processing sketches to demon-

strate usability features and implementation method.

10. Developed user scenarios with postulated interactive visualization assistance to

demonstrate the need, utility, and context for these features.

11. Summarized the most promising future research opportunities.
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CHAPTER 2

REVIEW OF EXISTING

EMULATORS

2.1 Existing Computer Emulators

This research incorporates insight from long experience managing and run-

ning VMWare(VMWare, 2013), VirtualBox(Oracle, 2013), Parallels(GmbH, 2013),

Xen(Foundation, 2013a), KVM(Foundation, 2013b), UML(Dike, 2013)(Dike, 2006),

OpenVZ(Project, 2013), QEMU(Bellard et al., 2013), SoftPC, and other virtualiza-

tion systems.

Pedagogical emulators considered, as noted in Black and Komala (2011, 2):

Table 2.1: Pedagogical Computer Emulators considered

Emumaker 86 2013

WebMIPS 2004

ProcSim 2005

SimuProc 2004

K Scalar 2001

WinMips64 1992
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WinDLX 1997

PCSpim 1990

Microprocessor Simulator 2003

Simulator 2003

MiniMIPS 2004

HDLDLX 2004

IECS 2000

p88110 2009

IASSim(Fagin and Skrien, 2013) 2012

These pedagogical emulators were examined directly by running and examining

source code or indirectly through screen shots and published literature. There were

major differences in which peripherals and computer features were supported, and

in what could be effectively visualized. EmuMaker 86 simulator goes further in

supporting a wide range of peripherals and supporting visualization of each of these

components.

2.1.1 Emumaker 86

Emumaker 86(Black and Waggoner, 2013) is a PC emulator, able to run DOS

and Windows 3.1, that includes fairly full emulation of an Intel 8086 processor, in-

cluding microcode breakdown of each instruction. It also includes objected oriented

implementation of each major subsystem and peripheral, including memory, CPU,

segment registers, graphics card, keyboard, interrupts, floppy drives, hard drives,

serial ports, parallel ports, and timer. Each subsystem has a representative visual-

ization that can be enabled or disabled.
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Emumaker 86 is highly unusual not only for providing implementation and

visualization of all standard (early) PC peripherals, but also because it includes a

hardware simulator for CPU design. An object-based graphic data path builder

interface allows placement and connection of the datapath of logic units. A table

interface implementing a control path builder allows definition of the control logic.

The resulting CPU can then be run by the emulator user. This CPU logic also can

have access to the main PC emulator which results in a co-processor relationship.

Figure 2.1. Emumaker 86 2013 Main Interface.



51

Figure 2.2. Representation of the CPU in Emumaker 86.

2.1.2 WebMIPS

WebMIPSPereira (2013)(Branovic et al., 2003) is a web-based MIPS CPU

emulator, implementing only the CPU, memory, and registers. This emulator takes

assembly as input and then allows a user to step through the CPU to see the effects.
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Figure 2.3. WebMIPS Program Entry

Figure 2.4. WebMIPS CPU

Figure 2.5. WebMIPS Memory
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Figure 2.6. WebMIPS Registers

2.1.3 ProcSim

ProcSim is a visual MIPS R2000 processor simulator. The main features in-

clude input assembly, controllable animation, different datapaths, memory reading

and writing, and defining your own processor datapaths in XML and via a diagram

editor.
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Figure 2.7. ProcSim Animation Screen

2.1.4 SimuProc

SimuProc is a “hypothetical processor simulator”, showing how each assembly

instruction executes internally. SimuProc supports about 50 instructions.
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Figure 2.8. SimuProc

2.1.5 KScalar

KScalar(Moure et al., 2002) is a graphical simulation tool intended to support

study of processors using the Alpha AXP instruction set. It supports examination

of CPUS “from a very simple in-order, scalar pipeline, to a detailed out-of-order,

superscalar pipeline with non-blocking caches, speculative execution, and complex

branch prediction”.
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Figure 2.9. KScalar CPU Simulation

Figure 2.10. KScalar Pipeline Cycle Diagram

2.1.6 WinMips64

WinMIPS64 is an instruction set simulator, designed as a replacement for

WinDLX.(Scott, 2012)
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Figure 2.11. WinMips64 Main Emulation Window

2.1.7 WinDLX

WinDLX is a RISC processor architecture emulator created in the mid-1990’s

to simulate a simplified MIPS CPU.

Figure 2.12. WinDLX Clock Cycle Diagram

2.1.8 Spim

Spim was created in 1990 to emulate a MIPS processor. The current version

implements almost the entire MIPS32 assembler-extended instruction set.
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Figure 2.13. Spim Emulator

2.1.9 p88110

p88110 is a graphical RISC simulator, used since 1996 by students in computer

architecture and organization.(Garcia et al., 2009)

2.1.10 IASSim

IASSim(Fagin and Skrien, 2013) is a programmable emulator for the Princeton

IAS/Von Neumann Machine. IASSim is implemented in Java and
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Figure 2.14. IASSim Emulator

2.2 Computer Architecture Emulator Components

A user of one of these systems is presented with interfaces that will be foreign

at first to students, but functional and usable for a certain range of exploration.

However, the effectiveness and types of exploration are severely limited. They are

limited by the presentation and visualization methods available, by the user inter-

action model, and by the range of operations that a user can invoke. The following

provides critiques and raw requirements for each subsystem as an illustration in

context of the need for better solutions.
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Computer Emulator

Figure 2.15. Emumaker 86(Black and Komala, 2011)

2.2.1 CPU

The simulation of the computer CPU is crucial to understanding the operation

of the computer and associated software. The execution of instructions directly

manipulates the registers, status flags, and current addresses being read and written.

A typical depiction involves symbolic representation of the registers, lines, and flags,

sometimes with animation of trace activation. Often, the CPU representation is

paired with some type of instruction trace listing and a memory view.

For single stepping through instructions, the representation in 2.16 provides

insight into what the current state is. These are aspects that could be improved:

1. The space taken is not used efficiently or effectively. About 30 items are using

significant screen real estate while the labels are difficult to read.

2. Once an instruction has executed, while the current state is visible, it is difficult

to notice all transitions involved such as the state that the flags were in a moment
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ago. A better solution would visibly indicate what the last transition was, and it

would support running backwards and forwards at will to clarify.

3. What does a sequence of instructions accomplish? What is the pattern of those

instructions?

4. What algorithms are executing?

5. When is the operating system / application boundary crossed? When are device

drivers running?

6. What instructions and instruction types are used frequently and which are seldom

used?

7. How much time is each instruction taking? What are the statistics for processor

/ memory efficiency for a segment of code?

8. What are the data dependencies and data flows through a system?

9. What is the type and use of data being processed? Are they scalars, strings, or

pointers?

10. What was learned from a previous run of the same program that is running now?

What does it know about what the user is interested in?
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Figure 2.16. Emumaker 86(Black and Komala, 2011)

2.2.2 Pipeline

Pipeline representation for a processor is key to understanding instruction and

CPU performance and the full mechanics of instruction execution. If pipelining in-

formation is shown, it is usually shown using the cascading stage table as in 2.17.

This is useful for a small number of instructions on a single core, but doesn’t pro-

vide a scalable, multi-core mechanism that gives aggregate or as efficient as possible

summary of execution.

Figure 2.17. Arcis Instruction Pipeline Representation(Black and Komala, 2011)
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2.2.3 Memory

Memory is perhaps the most important visualization element: It contains in-

puts, current state, outputs, and all evidence of useful computation. There are an

unlimited number of possible ways to view and interpret memory; handling all of

them in a tailored fashion is infeasible. However, a large set of commonly needed

interpretations are known and many data visualization and organization techniques

can be applied directly or indirectly through preprocessing. A few of these include:

representing many scalars visually (described below), zooming, lensing, or filtering

data to highlight active or interesting data among very large sets, and temporal pro-

cessing for statistics, trends, vector fields, and multidimensional analysis for hotspots

and correlation.

In a typical operating system and application environment, data structures

and convention determine the high-level use of each area of memory. This can be

used to provide a first-pass segmentation of use and type, which also bounds further

interpretation. In CAS systems, this is seldom exploited and not yet to the level

possible. A good guide here is the capabilities inside and outside a Linux kernel to

determine what type memory is and what it is being used for. The Linux kernel,

for instance, uses a type tag as a first field in every kernel data structure to prevent

crashes due to corruption and for general debugging. In an emulator, memory usage

could also be tracked and typed by an advanced system.
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Figure 2.18. Graphical PC Simulator Memory(Black and Komala, 2011)

2.2.4 Storage

External storage, such as floppy or hard drives, represents a memory-like in-

terface with expensive and important latency, sequencing, and reliability concerns.

Memory visualization methods apply to this data, along with knowledge of specific

filesystem formats which further constrain the overall structure.
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Figure 2.19. Graphical PC Simulator Hard Drive(Black and Komala, 2011)

2.2.5 Data Path / Control Path

In a CPU architecture simulator, the data path and control path definitions of

a CPU or CPU-like device often take the form of a node-link graph and a table of

activation lists, respectively. The former has all of the problems of a node-link graph,

namely difficulty of understanding and navigation as soon as a graph reaches even

moderate size. Similarly, a large control path definition set will have the problems

of a large spreadsheet: seemingly endless scrolling and difficulty in seeing patterns.

Both of these can be improved by a number of graph, lens, and auto-arranging

relational and grouping mechanisms. Probably several methods should be usable

simultaneously to support different views and purposes.
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Figure 2.20. Graphical PC Simulator Data Path Definition(Black and Komala, 2011)

2.3 Interactive Visualization Design

Every emulator examined had hard coded, directly wired visualization im-

plementations. None had alternate or pluggable visualizations and none could be

easily modified or upgraded without invasive development. Most emulators other

than EmuMaker 86 simulator were severely lacking support for many common and

important peripherals and key subsystems.

Few developers are going to have the time and effort available to spend on

modifying a poorly architected emulator interface, especially if there is a probability

that a new version will obsolete their changes. A properly architected emulator

engine delegates visualization to an implementation of an interface. This interface is
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provided with emulation events such as reading and writing memory, register changes,

and I/O port events. There could be a null implementation to allow for maximum

speed or a complex implementation that maps into a 3D OpenGL environment.

Each major emulator engine module, for each device type for instance, has

an independent event interface. These could be satisfied with many independent

emulation class instances, or just one class that implements all interfaces.

2.4 Visualization Integration Architecture

When emulators did include visualization mechanisms, they were generally

found to be integrated into the engine in a monolithic, non-replaceable fashion. This

greatly limits the flexibility of these emulators and places an almost insurmountable

burdon on an academic researcher that may only have a short timeframe to focus on

a key problem. The pluggable Processing interactive visualization approach solves

this and supports open, lightweight development of CAS visualizations.
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CHAPTER 3

METHODS

The methods used in this research are grounded in concrete development of

a pluggable emulation framework by modification of a computer architecture sim-

ulator, using that emulator and examining other existing emulators to develop a

critique, considering related problems and well-known human abilities and suitable

methods, and synthesizing solutions. These solutions answer the requirements and

critiques while leveraging proven solutions to efficiently enable and empower users

with effective interaction and visual design models.

3.1 Curating Constraints and Concerns

Visuospatial thinking research has provided some valuable insight into hu-

man capabilities, identifying both a commonly shared baseline and characterizing

variability. While often pointing to areas where further research is needed, current

knowledge includes some immediately usable principles that help to constrain solu-

tions in certain ways. This helps avoid exploration that conflicts with these known

limitations and abilities.

Users have a number of learned mental models that can be applied metaphor-

ically, and they may have a preconceived notion of how these should combine in a

particular system. Conversely, they may have no substantial mental models for a
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particular situation. A system needs to indicate some degree of implicit and explicit

information that helps a user determine what mental models to use when interacting

with system. When possible or necessary, a system should educate the user about

useful mental models. Ideally, this includes externally representing a construct that

can readily map to an internal mental model through the use of stable, attractive,

tunably dense representations that have logical, consistent, and powerful interaction

models.

3.2 Cataloging Relevant Design Elements

Through emulation and simulation product, project, and literature search,

and analysis and investigation of analogous fields, a range of successful interactive

visualization methods were identified. These were filtered for estimated likelihood of

applicability and rationalized into a progressive thread.

3.3 Identifying Key Literature

Key literature was identified and filtered through several methods: frequent

citations, original source of widely used methods, exceptional explanations of key

points and/or comprehensive compendium of alternative views, methods, or aspects

of an area.

3.4 Determining Requirements & Missing Features

Through use of available emulators or consideration of published but not avail-

able emulators, required and desired actions were noted, visible data was observed,

and experience was gained about desired but unavailable information. Interviews

with some emulator users was also used. By considering both the visually available

information and interfaces, and working back from a range of expected user goals,
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gaps in information and missing features were identified. Examples of information

gaps and features to resolve them include lack of different granularities, temporal

statistics, or interpretation type of data.

3.5 Critiquing Computer Emulation Systems

The EmuMaker 86 simulator emulator was used to boot an operating system,

run programs, and access the virtual floppy and hard drive. Memory can be ex-

amined, instructions run interactively, and the virtual monitor and keyboard allow

interaction with the running system. New logic, including defining processor ar-

chitecture, can be defined by the use of datapath definitions and rulesets. Other

emulators, including JSLinux, JavaPC, and QEmu, were booted, run, and examined

at the source code level. Based on this experience, user interfaces for a broader range

of emulators was interpreted based on published documentation and screen shots to

determine behavior and visualization capabilities.

3.6 Modifying Emulator for Pluggable Visualization

The Java applet-based EmuMaker 86 simulator was modified to support plug-

gable visualization classes written for the Java-based Processing(Reas and Fry, 2007)

“sketch” environment. This was a difficult process as the visualization integration

architecture did not anticipate pluggable visualizations or multiple visualizations

switching or running in parallel. After all emulator classes were modified to use an

injection-pattern interface class for all visualization-relevant events, the engine and

UI classes could be separated. Next, support for multiple simultaneous Processing

sketches, with one using OpenGL and 3D potentially, was integrated and wired into

the emulator module structure.
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3.6.1 Designing Reference Emulator Integration

Debugging the emulator itself without a reference emulator is very difficult.

A number of techniques were designed to facilitate the use of an existing reference

emulator to facilitate debugging and evolution. These techniques require significant

effort to implement but they allow efficient iterative development of the emulator

where solving each problem can be exceedingly time consuming.

3.7 Developing New Design Elements

Based on analysis of the problem, existing practice, and considered methods,

the requirements and components of potential designs are detailed. This provides

a rich source of research and development opportunities within a broad conceptual

framework. By considering this background and the identified problems,

3.8 Implementing Interactive Visualization Elements

An existing Java sort algorithm visualization system(Gosling et al., 2002),

originally targeting Java AWT environments, was used as the basis for a Processing-

based visualization development testbed. Little effort was required to modify the

sorting test harness code to use Processing graphics and text output and keyboard

and mouse input. The sort algorithm’s integer array is analogous to memory while

instrumenting each instruction is similar to tracing each machine instruction in an

emulator. The resulting visualization routines are suitable for use as initial imple-

mentations of emulator visualization plugins, although optimization for selectivity,

speed, and memory usage may be required. The code for some of these visualization

explorations can be found in Appendix B and the resulting output can be seen in

4.6.
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3.9 Developing Emulator Scenarios

Developing emulator usage scenarios is a process of considering the user goals,

anticipating their mental state and active mental models, and envisioning interactive

visualization solutions that are feasible and meet the user need at each point.

3.10 Evaluating Usability

The evaluation of usability of existing systems was performed through an exam-

ination of the utility and range of features compared to the gathered and synthesized

requirements and based on estimation of cognitive load and support of a particular

interface. First, systems had to have an interface to show or allow interaction with

an area. Second, these interfaces were evaluated based on efficient support for the

expected range of user actions. For instance, for many tasks, a direct manipulation

interface with clear meaning and feedback scores better than a form-based text entry

approach. The resulting work product, consisting of many pedantic, repetitive, and

mostly obvious observations, was mostly an intermediate result that is represented

here by the chosen design solutions. These design solutions are described partially

in terms of the problem they are addressing.

The improvement in usability of new design solutions was estimated through

a combination of a similar evaluation process and through likely benefit analysis of

the application of previously documented successful design strategies and elements.

Scenarios were examined for sequences of likely intent, apparent information given

certain mechanisms, hypothesized efficiency of certain methods, and new capabilities

not present in most or any existing systems. A number of visualization experiments

were isolated and tested with a small number of users to confirm novelty and im-

provements in usability and usefulness.
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3.11 Determining Research Opportunities

Considering user requirements, gaps in information and missing features, and

the many possible avenues for exploration, recommendations were made for the most

interesting and the most enabling for future use.
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CHAPTER 4

RESULTS

Each of these results feeds later research activities. Understanding the re-

quirements of the system and the user perspectives involved, considering cognitive

insights and successful design solutions, both implementation and solution design

can be performed.

4.0.1 Constraints, Concerns, & Design Elements

Review of the literature for constraints, concerns, and relevant design elements

is embodied by Section 1.4 Concepts and Background. This includes consideration

of human cognition and perception, solutions for analogous problems, and related

topics.

4.1 Requirements & Missing Features

Existing computer emulators have been used for computer architecture instruc-

tion and, in certain narrow cases, for software development. The user interfaces for

these emulators are mostly directly functional, screen emulation and a basic repre-

sentation of a running CPU, registers, memory, and peripherals. A critique of these

existing technologies allows contextual description of shortcomings and opportuni-

ties. In support of that, a description of personas provides a framework for reasoning
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about features based on user role and experience.

4.1.1 User Requirements & Motivations

Users of computer architecture simulators typically have certain direct goals.

They may also be aware of certain indirect goals, although some of these may not

be apparent or understood initially. The following describes requirements from a

top-down perspective:

1. A professor wants to impart computer architecture knowledge to a user. The most

important computer architecture (Blanchet and Dupouy, 2012)(Comer, 2004)(Parhami,

2005)(Hennessy and Patterson, 1990) topics vary somewhat based on time and au-

thor emphasis, but include many shared core concepts.

“Computer architecture is an area of study dealing with digital computers
at the interface between hardware and software. It is more hardware-oriented
than “computer systems,” an area typicall covered in courses by the same name
in computer science or engineering, and more concerned with software than
fields known as “computer design” and “computer organization.” The subject
matter, nevertheless, is quite fluid and varies greatly from one textbook or course
to another in its orientation and coverage.”

(Parhami, 2011)

(a) Basic Architecture: modules, representation of information.

(b) Programming model and operation: instructions and microinstructions, pro-

cessor, I/O.

(c) Memory hierarchy: memory, caches, virtual memory.

(d) Performance and parallelism: pipeline, multi-processor caches, superscalar.

(e) Programming models.

(f) Storage and peripherals
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(g) Interconnection networks

2. Users want to understand a computer system.

(a) Computers involve massive spatial (memory) and temporal (instruction se-

quence) detail.

(b) Obvious representations are not understandable beyond very small windows.

(c) Views are usually very high level or very low level, usually without the ability

to smoothly adjust granularity.

(d) There are few available, successful, and usable implementations of complex

information display, navigation, and interaction.

(e) Existing implementations are custom, narrow, and usually not flexible.

3. Users want to understand software. Visualization of systems and algorithm vi-

sualizations (AVs) is highly desirable by both educators and students for this pur-

pose.““An important conclusion from the literature is that to make AVs pedagog-

ically useful, they must support student interaction and active learning.””(Shaffer

et al., 2010, 2)

(a) How does software work?

i. Applications, of all types

ii. Operating systems, in various aspects

iii. Device drivers, different types and patterns of usage

(b) What does it look like at different scales?

(c) What are the loops and sequences of instructions?

(d) What does an algorithm look like when executing from various viewpoints?

(e) How is data flowing through a system?
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(f) Is software as efficient as it can be?

4. Users want to debug a problem.

(a) Where is it happening? What memory and code is involved?

(b) When is it happening? After how many instructions? Repeatable? Related

to I/O?

(c) Need to isolate what is involved and important.

(d) Need to understand what algorithms are involved.

5. Users want a system that is easy and efficient to use.(Norman, 2002)(Alexander,

1979)(Lidwell et al., 2003)

(a) A system should remember their preferences and their place.

(b) A system should have easy to understand and operate controls.

(c) Displayed information should be concise and as complete as possible without

being overwhelming.

(d) Sequences of operations should be able to be recorded and replayed easily.

(e) A system should remember what a user needs help remembering.

(f) A system should be easy to extend and should evolve easily so that it con-

tinually improves without undue effort.

4.1.2 Mental Models

Mental models describe how someone conceptualizes some aspect or aspects of

the system in a way that allows them to understand, reason about, and effectively

interact with the system. Some example mental models include:
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1. Understanding processor architecture in the form of datapath & control state

machine rules or as instructions made up of microcode supports an intuitive under-

standing of the range of possible implementations and their implications.

2. Memory as a 2D spatial field, changing through individual instructions or via

DMA, with tiered cache memory. This is the basic memory model.

3. Memory as typed data, changing over time, with dependency on prior operations

and other memory locations and having some cost to access. This is the somewhat

higher level view.

4.2 Pluggable Visualization

The Java-based EmuMaker 86 simulator emulator was first built with a Java

Swing user interface. Each major subsystem, such as memory, the CPU, display,

keyboard, hard drive, timers, etc. was implemented as a Java class that directly

collaborated with a GUI implementation class. Each visualization could be enabled

by the user, arranged in a scroll view. This provided a fairly traditional, although

unusually comprehensive user interface. The problem with this approach is that the

visualization and interaction was tied directly to the emulation engine component

that it was modeling, making evolution and alternate visualizations difficult.

4.2.1 Adapted Application architecture

This architecture was modified to first separate all user interface and inter-

action mechanisms from the emulation engine components. This was done by im-

plementing an injection pattern callback which implements methods to receive all

of the key events each component can produce. This allows the engine to have no

UI dependency, allowing it to support zero or more visualization and interaction

implementations, even including a web-based front end or a scripting interface.
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This pluggable interactive visualization capability was implemented through

the use of the Processing(Reas and Fry, 2007) visualization system by integrating

the Processing library into the applet-based EmuMaker 86 simulator. To support

multiple simultaneous sketches, the giCentreUtils(Wood et al., 2013) library is used

to support multiple simultaneous visualization sketches. A notable current limitation

of Processing and current systems is that only one sketch at a time can make use of

OpenGL for 3D modeling.

“Pluggable” means that the application could enable/disable, change, or chain

visualizations easily at any time while the emulator is running. This supports direct

control by the user of the current mode while remaining as efficient as possible.

This method of pluggable visualization injection was not found in the computer

emulators examined. A substantially similar mechanism would need to be present to

meet the requirements of this problem, namely: flexible compile or runtime switching

or simultaneous use of a visualization event interface by an emulation engine.

Figures 4.1 and 4.2 illustrate the before and after for simulator.Computer, the

top emulation controller. Implementing the engine module interface and a matching

visualization implementation of that interface is relatively straightforward, as illus-

trated in Appendix A. Modifying an existing emulator with intertwined visualization

using Java Swing to a model that strictly separates engine from visualization, and

supporting multiple Processing visualizations simultaneously is more involved. The

resulting system, which is an adaptation of EmuMaker 86, is available as AmeriSim

as noted in the appendices.
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Figure 4.1. Collaboration Diagram for simulator.Computer, Before Adapting to

Pluggable Visualization.

Note that in 4.2 the class structure is much less complex and engine and

visualization classes have minimized interconnections.
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Figure 4.2. Collaboration Diagram for simulator.Computer, After Adapting to Plug-

gable Visualization.
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4.2.2 Reference Emulator Integration Design

These are the main design elements that would be created to provide a high-

quality, effective capability for rapidly evolving an emulator to match the emulation

engine capabilities of an existing emulator. Absent this integration and these fea-

tures, such evolution is slow and painstaking.

1. Integration of a high-functioning emulator. The chosen candidate was JSLinux(Bellard,

2013), which is a Javascript PC emulator, normally running in a web browser, which

can boot Linux by retrieving device blocks over HTTP. Also provided is an ANSI

C compiler, a full terminal emulator in Javascript, and a custom mini-Emacs clone.

While the source is readily available in public, the author has not agreed to distri-

bution by others, so beyond debugging and observation, utility is limited. Other

options include QEMU(Bellard et al., 2013) and BOCHS(Assorted, 2013a). These

are advanced enough to boot and run Linux, and they are open source. JSLinux

may be an interesting choice as it is compact, efficient, runs in web browsers, and is

paired with a minimized Linux, C compiler, etc.

2. Fast, lightweight tracking and summarization of memory, register, and state con-

tent through the use of hierarchical hashes, such as a Merkle tree(community, 2013b)

and delta compression.(Sayood, 2002)(Suel and Memon, 2002)

3. Visualization of memory values by summaries, including identicons(Wikipedia,

2013d), and indication of change over time and change since a certain point through

the use of areas of color, animated glow, and similar.

4. Visualizing memory type and change age based on whether memory was written

recently, whether it was stored as a byte, short, int, float, or double.
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5. Implementing an efficient multi-checkpoint mechanism for both emulators, allow-

ing fast switching to a previous state. Since some types of instructions and situa-

tions may not occur for perhaps millions of instructions, a checkpoint is a crucial

mechanism for thorough debugging. Checkpoints are widely used in supercomputing

simulations for a similar reason: allowing restart while avoiding long waits to get to

a certain point.

6. Automatic execution of the EmuMaker 86 simulator emulator and the compari-

son emulator, using an increasing resolution slow-start like sequence: If the first N

instructions cause matching state, then run N*2 instructions in fast, unmonitored

mode before causing a state comparison. When a mismatch is found, start from the

last checkpoint and run until the midpoint of the gap, then repeat on the upper side

if successful and the lower if not. This is a combination of Newton’s Method and

the slow start strategy, a widely known design element, notably used in the design

of TCP/IP.

7. Implement the emulator equivalent to the Unix ’make -k’, which continues compil-

ing remaining files even after receiving a compiler error. One way to apply that here

is to generate a patch for that instruction number that brings the state of the emula-

tor under debugging into alignment with the reference emulator. This allows finding

numerous deviations in a single pass, potentially improving the fix/compile/debug

cycle.

8. Determining what differences are notable and which are not. Emulators are well

known not to be totally accurate with respect to real world processors most of the

time. Security and other software can nearly always create a fingerprint of a partic-

ular processor or environment, detecting differences present but not normally relied

upon by published operating systems and applications. Even on actual hardware,
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crucial results can significantly vary due to differences in operating system, compiler,

and hardware implementation of round-off error and similar.(Hong et al., 2013)

It is also possible to create a self-monitoring bootstrap instance that, once at

least a small set of instructions run sufficiently, could provide similar state check-

ing to an external monitor such as the emulator under debugging. This bootstrap

state monitor could run in a virtual machine meant for production use or on actual

hardware, either directly or in an operating system container.(Brokmeier, 2010)

4.3 Solution Design Elements

For a CAS context, there are a number of fundamental functions, such as rep-

resenting scalar values, and some that are both fundamental and subject to many

possible features and permutations, such as memory and instruction interactive visu-

alization. These functions and features can be addressed by combinations of design

elements. A design element could consist of any aspect of the implementation, func-

tion, and look of a visualization implementation. The fundamental aspects of design

elements have been addressed in various ways with mixed results.(Saraiya et al.,

2004)

4.3.1 Representing Scalars

Scalar values, bits and bytes and sequences in memory, represent the fun-

damental data building blocks of a system. Everything that happens in a system

consists of data and action. Understanding the representation, value, meaning, and

effect that data has on other data and running software is a key part of helping users

to understand systems and software.

Typically, a scalar value such as an integer is represented as a hexadecimal or

decimal number string of characters. A float or double is represented as a scientific-
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notational number string. While this is precise and useful as one mode, it fails to

provide a visual representation that can clearly represent a rapidly changing value,

history, correlation with other values, or scalable compactness. This is a problem

when there is a need to rapidly understand approximate or exact values with limited

screen real estate, rapidly changing values, or large numbers of similar values. There

is presently a gap between character based representation and aggregate pixel-based

images. The following techniques, alone or in combination, can provide subsets of

these characteristics. The effectiveness of this approach will generally be apparent

and it is highly measurable by testing speed and accuracy of interpretation of values.

For instance, in the visualization detailed below, the angled line can be perceived to

have many more distinct values than an 8-pixel high bar graph.

Numbers can be represented as:

1. Color values on a pseudo-color spectrum.

2. Bar chart shape.

3. Line and dot pattern, indicating high/low bytes or similar.

4. Line at an angle, perhaps also with width or shape of endpoint. The human visual

system has high sensitivity to discontinuities in certain types of repeating patterns.

5. Motion according to value: higher value could be faster vibration. Angle, phase,

and oscillation could encode bits.

6. Value or history as points on a 3D surface.

7. Hashed to an image such as an Identicon. (Wikipedia, 2013d)

8. Sparklines(Tufte, 2013) of past values, and whether the value is cyclical or appar-

ently random. The latter can be done by alpha-blended value traces or animation

cycles.
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Many of these methods can be applied to fields of numbers are various levels

of area summary to support useful information when zoomed out. Key information

in this case includes distribution of values, average, mean, max, how many values

have changed recently, etc.

Animation is a key technique. There are many variations which can highlight

key information. Some of these are applicable when another algorithm has high-

lighted some values as noteworthy. Other methods allow the human visual system

to be the primary pattern detector. Some of these methods include:

1. Cycling through recent or total historical values to illustrate information visually.

This should normally be in sync with actual relative value changes of other memory

cells or areas, allowing relationships to be seen.

2. A/B onion skin animation. This and cycling are commonly used to augment still

photographs in a cinemagraph, while toggling between two stereo views provides a

3D effect with a 2D display system.

3. Vibration according to value.

4. Jiggling, vibrating values according to how recently changed.

5. Duty cycle based representation of number values.

6. Coordinated movement of multiple values associates them, even if they have

different size, shape, and color.

Relationships between numbers can be very important. When these are de-

duced directly, by tracking dataflow, or to show how values or change in values is

related, this can be shown graphically through similar representation, similar move-

ment, or lines or background shading connecting values.
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The user interface mechanism for switching between modes can take several

forms. One of the more powerfully interactive is the use of a pseudo-realistic lens

object. One or more lenses can be grabbed, stacked, and tuned, and then these can

be swept over values to instantly and temporarily reveal alternate values.

4.3.2 Representing Memory

Memory needs to be viewable by a user in a number of ways, sometimes simul-

taneously. The main problems are: memory is too large to see anything significant

in detail, most memory is uninteresting, important information may be widely scat-

tered. Past solutions have mostly involved text, character, and sometimes image

display of memory regions, usually only at the lowest level of granularity. A vari-

ety of solutions can be made available to the user to provide appropriate filtering,

highlight, tracing, and type or source tracking, as detailed below. The effectiveness

of these techniques can be measured by testing for comprehension of the state of

memory and recognition of known and new patterns in a variety of circumstances

and problems. These would include cases where a single value is watched, a series of

values which are changing and the user is able to discern linkages that cause change

patterns, and where whole fields of numbers are updated.

Key parts of the solution include:

1. Zoomable UI (ZUI) with appropriate level of detail summary

2. Filtering unused memory by default, with an easy toggle to view used memory

in context.

3. Indication, probably by color saturation, of how recently memory was read or

written.
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4. Typed memory based on how memory is used. This requires multiple runs with

the same program and inputs.

5. Pre-arranged used memory layout. This requires multiple runs with the same

program and inputs.

6. Clear separation, coloring, and filtering of memory from the system and other

processes.

7. Automatic and semi-auto (via dragging) typed memory display and rearrange-

ment appropriate to a particular granularity level and known algorithmic process,

probably based on an earlier run.

8. Dependency tracking can be added for particular memory, showing upstream or

downstream effects. This can be visualized in a number of ways: either temporal

heatmap changes or Sankey Diagrams are appropriate here.

Memory Visualization Experiments

A processing sketch was created based initially on a Java sort algorithm visu-

alization system(Gosling et al., 2002). This was rewritten in minor ways to run in

the Processing environment. The existing visualization, illustrating the actions of

the sort algorithms over a series of integers, was augmented to display a heat map

for recent read/write, to display the integers visually in two different ways, and to

show graphically the number of times each memory location is read or written. 4.3

is a screen shot of the running simulation. This was done while two different sort

routines run at the same time. This clearly illustrates the different memory alloca-

tion patterns, total speed of each algorithm, and vastly different number of reads and

writes required. Clicking anywhere will cause either or both finished sort routines

to be restarted. The up arrow key will add 1ms to the simulation delay while the
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down arrow key will do the opposite, allowing the user to control the speed of sim-

ulation. This simulation code can be moved to and integrated in the full emulator,

with optimization.

Both novice and experience computer programmers and computer science stu-

dents and professors provided positive feedback. They indicated that the heat map

and the angle-based scalar representation were beneficial in clarifying operation of

the example algorithms.
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Figure 4.3. Memory Visualization Experiments

4.3.3 Representing Instructions

In addition to understanding data and memory at all scales, a user needs to

observe instructions that actually cause changes in the system at a similar range of
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scales to fully understand a system.

There is a need for alternate representations of instructions for machine code

and microcode to support faster, more efficient understanding of instruction meaning,

effect, and overall flow of system and application code. Existing methods generally

consist of displaying assembly code mnemonics to the user who may not have the long

periods of training needed to immediately parse and grasp the meaning of particular

instructions. Although the number of basic operations is small, the permutations

for addressing modes and other variance tends to make instruction interpretation

difficult. There are a number of promising opportunities for experimentation around

improving this understanding.

KanjiCode

In an instruction set as complex as the Intel 386 and above, representing in-

structions only by their mnemonic, a typical existing practice, can be improved upon

for certain purposes, such as rapid scanning of running code. There are a variety

of alternatives which ought to be available for a user. One of the most promising

is a design that incorporates a specially arranged logical CPU “stage” where when

an instruction or set of instructions is plugged in, it is immediately clear what will

happen at a certain level of detail. This approach can be tested for effectiveness

by running code sequences by users of various experience and at various speeds and

lengths and measuring recognition and understanding. This can be done at both the

general instruction type level and for specific instructions and arguments.

At the lowest level of detail, instructions are represented by a Kanji(Tuttle,

1988) like set of radicals, where each radical may be a microcode instruction. By

carefully designing the radicals and their placement, and matching components of

the stage, a representation of the activation paths of the CPU is apparent.

For instance, if the instruction Kanji has a load area, a save area, an operations
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area, and operands, then a load instruction would be blank for the operations area.

Well known symbols could be used for +, -, *, etc. In 4.4, six different options

for display of instructions appear on the left. These range from the traditional

instruction style to increasingly stylized schematic representations. The assembly

instruction in that diagram might mean: “Add long from ax and bx, storing the

result in cx.” Each of the following representations have the same meaning but

increasingly simplified and stylized form. In the last four examples, the angle of the

line segment tail indications which register is involved.

At higher levels of granularity, this instruction Kanji can be summarized in a

variety of ways. The simplest is a weighted combination of the opcode microcode rad-

icals. Another would be a 3D representation of the temporal depth-stack of instruc-

tions something like a key in the CPU ALU stage. A third would be a representation

of the loops and sequences and memory interaction which could be symbolically

summarized in a way that could be drilled into.

A key visualization method for understanding how a system operates and what

it accomplishes is to create an animated sequence that shows data flow and transfor-

mation. These would be either steady state or storyboard sequences depending on

the code in question. The operating system would tend to be a steady state, cyclical

system.

In natural languages such as Japanese and Chinese, the Kanji system is some-

what of an anti-pattern as those languages tend to require far more effort to master

than alphabet-based languages. However, it is apparent that much of this is due to

the fact that natural language Kanji have been formed through various types of his-

torical evolution rather than a coherent design. In fact, native speakers of Japanese

are not regularly taught the etymology of Kanji which in some cases provides logical

support, but are rather taught mostly through rote memorization. Considering the
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proliferation and successful use of cross-cultural icons used for user interfaces, signs,

and other purposes, it seems likely that a well-designed Kanji-like system might be

efficient.

Figure 4.4. KanjiCode Example

ShapeCode

Another solution to instruction representation involves variations on 2D and

3D shapes to represent instructions, possibly including vibration or shape change or

other features. 4.5 illustrates examples of graphical relative branch, register add im-

mediate with store to memory, interrupt, and register to memory move instructions.

Instruction types, addressing modes, and any other important attributes could be

translated into a shape component language. Each instruction would be represented

by a combination of shapes in a particular, distinct way. This makes use of the

human object recognition capability and has the advantage of supporting abstract,

instruction class at low resolution and detailed, exact instruction and argument at

higher resolution. Using color or other themes, the structure of code could be visible
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at a glance. This approach can be tested for effectiveness of code and structural

understanding at different resolutions and different speed of presentation.

Figure 4.5. ShapeCode Example

Code Structure Visualization

The structure of code can be inferred statically or dynamically through in-

struction or data flow trace. This is usually done manually by users although there

exists some degree of automation, not widely available for the CAS context. Once

the structure of code has been determined, a variety of visualization techniques can

illustrate layering, functional relationships, commonality, actual and possible flow of

control, instruction type ranges (IO, privileged, etc.), and processing time hotspots.

Testing implementations of code structure visualization would involve measuring

how effective and complete the code representation is and how well users are able

to understand what is being conveyed. Ideally, this would work and be testable at

different levels of granularity.

Key visualization methods for this problem would include both 2D and 3D
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methods. A promising solution is to contrast linear sequences of instructions with

branches, subroutine calls, and system calls or interrupts. These could be drawn as

linear lines, arcs, lines to and from parallel instruction graph tiers, and call/return

’up’, respectively. An important feature would be to draw these traces with a partial

alpha channel so that repeated traces would tend to reinforce repeated traces while

showing alternate paths for unusual branches. This historical processing could fade

based on age to allow tunable ongoing representation of the current execution path

along with a certain degree of past history. In 4.6, the rightmost two columns show

these techniques, with and without subroutine call indenting. This clearly shows the

structure of branches, loops, function calls, and sequences of instructions, along with

color saturation and the width of lines indicating relative percentage of execution

time used. Being able to ’scrub’ this history in real-time by dragging the mouse or

touch pointer over the visual trace history is a very powerful technique, as in the

Layer-Time visualization technique, as shown in 1.13.

The code structure visualization in 4.6 grows gradually as the algorithm runs.

Here, the location of each branch, loop, or function call endpoint is fixed, allowing the

sequence of actions to be related to specific code areas as the algorithm progresses.

Many specializations of this can be made to highlight various aspects of an algorithm

or system, such as function call overhead, or code complexity. The implementation,

shown in Appendix B, shows how the visualization generically models statements,

branches, loops, and function calls. This module could be used for instrumented Java

or C/C++ code, or machine instructions could be mapped to it through the emulator

engine for showing similar software architecture: The visualization will look the same

for the same algorithm regardless of the language or level of instrumentation. In

this specific example, the simple nested loop nature of bubble sort is clear, along

with saturation and line width illustrating how many more instructions are needed
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compared to quicksort. The FastQSort implementation of quicksort shows additional

code complexity while illustrating the minimal number of instructions needed to

complete the sort much faster than bubble sort. Too-simple is not better when it

comes to sort algorithms.

Figure 4.6. Code Structure Visualization

4.4 Usability

The usability improvements of these methods are hypothesized to be significant

based on new features enabled, rational application of principles known to work for

analogous problems, scenario walk-through to validate need and utility, and visual-

ization experiment implementation and evaluation. These hypotheses are supported

by design principles, rational estimation given visuospatial background knowledge,
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and a small amount of experimentation. Coupled with the generative and constrain-

ing knowledge gathered here, a wide range of experimentation and experience is

supported which should lead to jumps in usability. Additionally, the enablement of

a highly modular, multi-author multi-sketch visualization environment in an emu-

lation context can be expected to provide the same general open evolution benefits

experienced by other highly open systems such as Android, Java, Linux, and the

Internet in general.
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CHAPTER 5

CONCLUSIONS

5.1 Summary of Findings

The overall conclusion is that many opportunities exist to greatly improve the

features, usability, and effectiveness of computer architecture simulators for pedagog-

ical and software development needs. Successful application of these findings may

lead to better educational and problem-solving efficiency. Both in relying on existing

experience that has shown successful application and through hypothesizing design

solutions to specific problems, implementing the best of these, and measuring early

results, progress has been shown toward better usability.

One of the best ways to quickly evolve software is to foster many independent

developers working to solve separate and overlapping problems. By moving from a

monolithic to a pluggable visualization architecture using a popular and capable visu-

alization environment, this open and parallel evolution becomes much more accessible

and manageable. The updated EmuMaker 86 simulator is freely available, providing

a base for open exploration among independent developers and students.(Black and

Williams, 2013)
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5.2 Conclusions Drawn

These scenarios represent the conclusions of analysis and design, providing

contextual views of possible features and characteristics of an effective system.

5.2.1 Solution Scenarios

The use of these solution design elements is described in the context of a

particular persona attempting to achieve their goals with respect to the CAS. This

illustrates how they are used by a system to enhance the user experience in particular

ways.

Persona: Professor

A computer science or architecture professor needs to impart knowledge and an

intuitive understanding of concepts at all levels of abstraction. Listing facts is easy

while imparting an internalized, intuitive, and useful understanding can be gradual

and difficult. Employing a visually appealing and revealing computer architecture

emulator can drastically accelerate this process by making the mechanics accessible

and transparent.

1. CAS setup, run, and observation - Distribution, parameterization, and use should

be simple and efficient.

2. Machine Instructions - microcode, parallelism, performance should be easily un-

derstood and accessible.

3. Memory - architecture, patterns of access, caching, alternate architectures, per-

formance should have effective visualization.

4. Application programming & debugging - should be supported through emulator

features such as single step, reverse, and snapshots.
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5. Operating system programming & debugging

6. Device driver development & debugging

7. Forensics - Requires features such as change monitoring of memory ranges and

stack and data segment corruption detection.

Persona: CS, CA &, LSWD

A computer science student or a learning software developer would come to a

CAS with goals of gaining a deeper understanding of computer architecture, including

hardware and software components, function, and how they work together. Such a

student would be expected to have some knowledge of programming, probably mostly

in a high level language. Knowledge of computer architecture, assembly language,

and computer internals would vary greatly. Each assignment supports progressive

proficiency with the CAS and concept understanding.

1. CAS is easy to access, run, and use. – Fast Java Applet, graphical window with

subwindows for each major component.

2. Input/Output devices, including virtual screen, keyboard, mouse, floppy/hard-

drive, and network devices, are obvious and have both physically inspired and sym-

bolically modeled modes.

3. When possible, the operating system, drivers, processes, and threads should be

identifiable in memory and with respect to what code is executing.

4. Instruction processing should be viewable from the instruction level down includ-

ing microcode, pipeline stages, hazards, and buffering.

5. Instruction processing should be viewable from the instruction level up, including

sequences, loops, jumps, functions, algorithms & idioms, and processes.
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6. Instruction processing over time should be supported, showing progress through

a sequence of instructions, variability should be apparent and scrubbable, and the

user should be able to zoom in and out, have a lens effect view into the current focus

in context, and have multiple focus areas to watch related function on different sides.

7. The system should support running forward and backward, using checkpoint-

ing plus bisection search rerun to a particular point, adaptive buffering, and trace

summaries that can be played forward and backward.

8. The current session should be able to be saved in an efficient and shareable way

so that it can be reloaded later or by others.

9. A sequence of actions should be able to be recorded, such as running with full

visualization for a certain sequence of instructions with certain traps and event pro-

cessing enabled.

5.3 Recommendations for Further Research

Many interesting problems, constraints, and solution ideas have been pre-

sented. Each of these can be explored within the context of a working computer

architecture simulator with a pluggable, easily adaptable interactive visualization

environment.

In addition to completing the reference emulator integration to support quickly

evolving the emulator’s capabilities, many visualization methods can be implemented

and run quickly. With proper integration architecture, this can be accomplished with

easily by modification of an existing visualization component. Some specific areas

for promising research include:



102

5.3.1 Memory Visualization

A variety of visualization methods should be available to a user to support

different application scenarios. These should include various scalar, image, temporal,

and relationship methods, often graphically represented to the user.

5.3.2 Instruction, Microcode, and Pipeline

Instructions, microcode, and pipeline and cache state are all important but

difficult to represent and understand in complex, high-volume situations. There are

a number of different problem areas that will likely require independent innovation.

5.3.3 Code Understanding & Machine Learning

Significant progress has been made in analyzing source code and machine code

in running systems to understand the organization and, in some cases, the underlying

algorithms. Combining this capability with a CAS system allows deeper insight at

various levels of granularity. This understanding can even be used to deemphasize

or allow collapse of uninteresting areas to enhance focus on the rest.

Detecting Patterns

A variety of classification, pattern recognition, and machine learning methods

could be applied to a CAS to provide insight into instruction and memory usage,

algorithm understanding, user action intent (especially repetitive action sequences),

data type inference, and identification of inefficient processing.

Gesture Sensing & Input Methods

In addition to mice, touch pads, touch screens, pens, and 6 degree of freedom

input devices, several ways of tracking precise hand movement are becoming avail-

able. Face recognition and now eye tracking are becoming standard, which is about
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to provide simulated 3D views, based on your viewing angle. Additionally, head-

tracking virtual reality displays such as the Occulus Rift provide an opportunity for

360 degree interactive and navigable space.
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APPENDIX A

PLUGIN CODE

The following source code illustrates example visualization plugins for the com-

puter architecture simulator. The emulator engine module interface determines what

emulation events can be delivered while avoiding any knowledge of visualization in

the engine. The visualization plugin implements this interface to store, display, or

otherwise react to these emulation events.

This code will be available at https://github.com/sdwlig/AmeriSim (Black and

Williams, 2013) and http://sdw.st/amerisim .

First, the Video.IVideoUI interface is defined:

1 pub l i c c l a s s Video extends IODevice {

pub l i c i n t e r f a c e IVideoUI {

3 pub l i c void r e c t ( i n t c , i n t x , i n t y , i n t width , i n t he ight ) ;

pub l i c void drawText ( i n t c , S t r ing text , i n t x , i n t y ) ;

5 pub l i c void r epa in t ( ) ;

}

src/Video.java

Then, that interface is implemented by the Video visualization, in Processing Java

calls here.

package s imu la tor . gu i ;
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2

import java . awt . ∗ ;

4 import java . awt . event . KeyEvent ;

import java . awt . event . KeyListener ;

6

import org . g i c e n t r e . u t i l s . mul t i ske tch . EmbeddedSketch ;

8

import p r o c e s s i n g . core . PFont ;

10 import contro lP5 . ControlP5 ;

12 import s imu la tor . Computer ;

import s imu la tor . eng ine . Video ;

14 import s imu la tor . eng ine . Video . IVideoUI ;

16 pub l i c c l a s s VideoGui extends EmbeddedSketch implements IVideoUI {

s t a t i c f i n a l long ser ia lVers ionUID = 557 ;

18 // −−−−−−−−−−−−−−−−−−−− Sketch−wide v a r i a b l e s −−−−−−−−−−−−−−−−−−−−−−−

Computer computer = n u l l ;

20 f l o a t t e x t S c a l e ;

s t a t i c i n t XSIZE = 640 , YSIZE = 480 ;

22 s t a t i c i n t MAXCOMPONENTS = 20 , COMPONENTHEIGHT = YSIZE / 2 − 20 ;

ControlP5 cp5 ;

24

// −−−−−−−−−−−−−−−−−−−−−−− I n i t i a l i z a t i o n −−−−−−−−−−−−−−−−−−−−−−−−−−−

26 pub l i c void setup ( ) {

s i z e (XSIZE , YSIZE) ;

28 frameRate (10) ;

}

30 pub l i c void draw ( ) {

computer . v ideo . pa intScreen ( ) ;

32 }



106

pub l i c VideoGui ( Computer computer ) {

34 t h i s . computer = computer ;

}

36 // −−−−−−−−−−−−−−−−−−−−−−− Proce s s ing draw −−−−−−−−−−−−−−−−−−−−−−−−−−

38 pub l i c i n t width ( ) {

re turn Video .VWIDTH;

40 }

42 pub l i c i n t he ight ( ) {

re turn Video .VHEIGHT;

44 }

46 @Override

pub l i c void r e c t ( i n t c , i n t x , i n t y , i n t width , i n t he ight ) {

48 s t r oke ( c ) ; // c . getRed ( ) , c . getGreen ( ) , c . getBlue ( ) ) ;

f i l l ( c ) ;

50 r e c t (x , y , width , he ight ) ;

}

52 PFont mono = n u l l ;

pub l i c void drawText ( i n t c , S t r ing text , i n t x , i n t y ) {

54 s t r oke ( c ) ; // . getRed ( ) , c . getGreen ( ) , c . getBlue ( ) ) ;

f i l l ( c ) ;

56 i f (mono == n u l l ) {

mono = loadFont ( ”AndaleMono−12.vlw” ) ;

58 }

textFont (mono) ;

60 t ex t ( text , x , y ) ;

}

62

}
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src/VideoGui.java
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APPENDIX B

VISUALIZATION MODELS

Some explored visualization models are shown in the following source code.

The resulting visualization is shown and described in 4.3.3. Included here are bubble

sort and fast quick sort. Additional sort algorithm visualizations can be found in

(Gosling et al., 2002). These could be added to this visualization with minimal effort

by a similar transformation.

This code will be available at https://github.com/sdwlig/AmeriSim (Black and

Williams, 2013) and http://sdw.st/amerisim .

This is the Gosling BubbleSort2 algorithm, modified to fit in a Processing,

multi-algorithm visualization environment. Key lines have been augmented with

calls to sw.statement(), sw.branch(), etc. to support structure visualization.

1 package sdw ;

3 /∗

∗ @(#) BubbleSortAlgorithm . java 1 .6 95/01/31 James Gos l ing Copyright

5 ∗ ( c ) 1994 Sun Microsystems , Inc . Al l Rights Reserved . Permiss ion to

∗ use , copy , modify , and d i s t r i b u t e t h i s so f tware and i t s

7 ∗ documentation f o r NON−COMMERCIAL purposes and without f e e i s hereby

∗ granted provided that t h i s copyr ight n o t i c e appears in a l l

9 ∗ c o p i e s . P lease r e f e r to the f i l e ” copyr ight . html” f o r f u r t h e r

∗ important copyr ight and l i c e n s i n g in fo rmat ion . SUN MAKES NO
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11 ∗ REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE

∗ SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO

13 ∗ THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

∗ PURPOSE, OR NON−INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY

15 ∗ DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR

∗ DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

17 ∗/

/∗

19 ∗ Changes Copyright 2013 Stephen D. Wil l iams sdw@lig . net

∗/

21

/∗∗

23 ∗ A bubble s o r t demonstrat ion a lgor i thm SortAlgorithm . java , Thu Oct 27

10 : 32 : 35 1994

∗

25 ∗ @author James Gos l ing

∗ @version 1 . 6 , 31 Jan 1995

27 ∗

∗ Modif ied 23 Jun 1995 by Jason Harrison@cs . ubc . ca : Algorithm

completes e a r l y when no

29 ∗ i tems have been swapped in the l a s t pass .

∗/

31 c l a s s BubbleSort2Algorithm extends SortAlgorithm {

void s o r t ( SortItemP5 . MemInts a , Sw sw) throws Exception {

33 sw . c a l l e d (1 ) ;

f o r ( i n t i = a . l ength ; −− i >= 0 && sw . loop (2 ) ; ) {

35 boolean f l i p p e d = f a l s e ;

sw . statement (3 ) ;

37 f o r ( i n t j = 0 ; j < i && sw . loop (4 ) ; j++) {

i f ( stopRequested && sw . branch (5 ) ) { sw . r e t rn (6 ) ; r e turn ; }

39 i f ( a . get ( j ) > a . get ( j + 1) && sw . branch (7 ) ) {
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i n t T = a . get ( j ) ;

41 sw . statement (8 ) ;

a . s e t ( j , a . get ( j + 1) ) ;

43 sw . statement (9 ) ;

a . s e t ( j + 1 , T) ;

45 sw . statement (10) ;

f l i p p e d = true ;

47 sw . statement (11) ;

}

49 pause ( i , j ) ;

}

51 i f ( ! f l i p p e d && sw . branch (12) ) { sw . r e t rn (13) ; r e turn ; }

}

53 }

}

src/p5/sdw2/src/sdw/BubbleSort2Algorithm.java

Color bridges the differences between the AWT style of color type and the Processing

method.

package sdw ;

2 /∗

∗ Copyright 2013 Stephen D. Wil l iams sdw@lig . net

4 ∗/

6 pub l i c c l a s s Color {

pub l i c s t a t i c i n t s c o l o r ( i n t red , i n t green , i n t blue ) {

8 re turn (255 << 24) | ( red << 16) | ( green << 8) | blue ;

}

10

pub l i c s t a t i c i n t s c o l o r ( i n t red , i n t green , i n t blue , i n t alpha ) {

12 re turn ( alpha << 24) | ( red << 16) | ( green << 8) | blue ;



111

}

14

pub l i c s t a t i c f i n a l i n t b lack = s c o l o r (0 , 0 , 0 , 255) ;

16 pub l i c s t a t i c f i n a l i n t white = s c o l o r (255 , 255 , 255 , 255) ;

pub l i c s t a t i c f i n a l i n t red = s c o l o r (255 , 0 , 0 , 255) ;

18 pub l i c s t a t i c f i n a l i n t green = s c o l o r (0 , 255 , 0 , 255) ;

pub l i c s t a t i c f i n a l i n t blue = s c o l o r (0 , 0 , 255 , 255) ;

20 pub l i c s t a t i c f i n a l i n t ye l low = s c o l o r (0 , 255 , 255 , 255) ;

pub l i c s t a t i c f i n a l i n t l ightGray = s c o l o r (20 , 20 , 20 , 255) ;

22 }

src/p5/sdw2/src/sdw/Color.java

This is the Gosling FastQSort algorithm, modified to fit in a Processing, multi-

algorithm visualization environment. Key lines have been augmented with calls to

sw.statement(), sw.branch(), etc. to support structure visualization.

1 package sdw ;

3 /∗

∗ @(#)QSortAlgorithm . java 1 .3 29 Feb 1996 James Gosl ing Copyright ( c )

5 ∗ 1994−1996 Sun Microsystems , Inc . Al l Rights Reserved . Permiss ion to

∗ use , copy , modify , and d i s t r i b u t e t h i s so f tware and i t s

7 ∗ documentation f o r NON−COMMERCIAL or COMMERCIAL purposes and without

∗ f e e i s hereby granted . P lease r e f e r to the f i l e

9 ∗ http ://www. j a v a s o f t . com/ copy trademarks . html f o r f u r t h e r important

∗ copyr ight and trademark in fo rmat ion and to

11 ∗ http ://www. j a v a s o f t . com/ l i c e n s i n g . html f o r f u r t h e r important

∗ l i c e n s i n g in fo rmat ion f o r the Java (tm) Technology . SUN MAKES NO

13 ∗ REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE

∗ SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO

15 ∗ THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

∗ PURPOSE, OR NON−INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY
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17 ∗ DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR

∗ DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. THIS SOFTWARE IS NOT

19 ∗ DESIGNED OR INTENDED FOR USE OR RESALE AS ON−LINE CONTROL EQUIPMENT

∗ IN HAZARDOUS ENVIRONMENTS REQUIRING FAIL−SAFE PERFORMANCE, SUCH AS

21 ∗ IN THE OPERATION OF NUCLEAR FACILITIES , AIRCRAFT NAVIGATION OR

∗ COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL, DIRECT LIFE SUPPORT

23 ∗ MACHINES, OR WEAPONS SYSTEMS, IN WHICH THE FAILURE OF THE SOFTWARE

∗ COULD LEAD DIRECTLY TO DEATH, PERSONAL INJURY, OR SEVERE PHYSICAL

25 ∗ OR ENVIRONMENTAL DAMAGE (”HIGH RISK ACTIVITIES”) . SUN SPECIFICALLY

∗ DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR HIGH RISK

27 ∗ ACTIVITIES .

∗/

29 /∗

∗ Changes Copyright 2013 Stephen D. Wil l iams sdw@lig . net

31 ∗/

33 /∗∗

∗ A quick s o r t demonstrat ion a lgor i thm SortAlgorithm . java

35 ∗

∗ @author James Gos l ing

37 ∗ @author Kevin A. Smith

∗ @version @(#)QSortAlgorithm . java 1 . 3 , 29 Feb 1996 extended with

39 ∗ TriMedian and I n s e r t i o n S o r t by Denis Ahrens with a l l the

∗ t i p s from Robert Sedgewick ( Algorithms in C++). I t uses

41 ∗ TriMedian and I n s e r t i o n S o r t f o r l i s t s s h o r t s than

∗ 4 . <fuhrmann@cs . tu−b e r l i n . de>

43 ∗/

pub l i c c l a s s FastQSortAlgorithm extends SortAlgorithm {

45 /∗∗

∗ This i s a g e n e r i c v e r s i on o f C.A.R Hoare ’ s Quick Sort

47 ∗ a lgor i thm . This w i l l handle ar rays that are a l r eady sorted , and
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∗ ar rays with d u p l i c a t e keys .<BR>

49 ∗

∗ I f you think o f a one dimens iona l array as going from the lowest

51 ∗ index on the l e f t to the h i ghe s t index on the r i g h t then the

∗ parameters to t h i s func t i on are lowest index or l e f t and h ighe s t

53 ∗ index or r i g h t . The f i r s t time you c a l l t h i s f unc t i on i t w i l l be

∗ with the parameters 0 , a . l ength − 1 .

55 ∗

∗ @param a an i n t e g e r array

57 ∗ @param lo0 l e f t boundary o f array p a r t i t i o n

∗ @param hi0 r i g h t boundary o f array p a r t i t i o n

59 ∗/

p r i v a t e void QuickSort ( SortItemP5 . MemInts a , i n t l , i n t r , Sw sw)

throws Exception {

61 sw . c a l l e d (1 ) ;

i n t M = 4 ;

63 i n t i ;

i n t j ;

65 i n t v ;

sw . statement (2 ) ;

67 i f ( ( r − l ) > M && sw . branch (3 ) ) {

sw . statement (4 ) ;

69 i = ( r + l ) / 2 ;

i f ( a . get ( l ) > a . get ( i ) && sw . branch (5 ) ) swap ( a , l , i , sw) ; //

Tri−Median Methode !

71 i f ( a . get ( l ) > a . get ( r ) && sw . branch (6 ) ) swap ( a , l , r , sw) ;

i f ( a . get ( i ) > a . get ( r ) && sw . branch (7 ) ) swap ( a , i , r , sw) ;

73

sw . statement (8 ) ;

75 j = r − 1 ;

swap ( a , i , j , sw) ;
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77 sw . statement (9 ) ;

i = l ;

79 sw . statement (10) ;

v = a . get ( j ) ;

81 f o r ( ; sw . loop (11) ; ) {

whi le ( a . get(++i ) < v ) {

83 sw . statement (12) ;

sw . loop (13) ;

85 }

whi le ( a . get(−− j ) > v ) {

87 sw . statement (14) ;

sw . loop (15) ;

89 }

i f ( j < i && sw . branch (16) ) break ;

91 swap ( a , i , j , sw) ;

pause ( i , j ) ;

93 i f ( stopRequested ) {

sw . r e t rn (17) ;

95 re turn ;

}

97 }

sw . statement (18) ;

99 swap ( a , i , r − 1 , sw) ;

pause ( i ) ;

101 sw . statement (19) ;

QuickSort ( a , l , j , sw) ;

103 sw . statement (20) ;

QuickSort ( a , i + 1 , r , sw) ;

105 }

sw . r e t rn (21) ;

107 }



115

109 p r i v a t e void swap ( SortItemP5 . MemInts a , i n t i , i n t j , Sw sw) {

i n t T;

111 sw . c a l l e d (22) ;

T = a . get ( i ) ;

113 sw . statement (23) ;

a . s e t ( i , a . get ( j ) ) ;

115 sw . statement (24) ;

a . s e t ( j , T) ;

117 sw . r e t rn (25) ;

}

119

p r i v a t e void I n s e r t i o n S o r t ( SortItemP5 . MemInts a , i n t lo0 , i n t hi0 , Sw

sw) throws Exception {

121 sw . c a l l e d (26) ;

i n t i ;

123 i n t j ;

i n t v ;

125

f o r ( i = lo0 + 1 ; i <= hi0 && sw . loop (27) ; i++) {

127 sw . statement (28) ;

v = a . get ( i ) ;

129 j = i ;

whi l e ( ( j > l o0 ) && ( a . get ( j − 1) > v ) && sw . loop (29) ) {

131 sw . statement (30) ;

a . s e t ( j , a . get ( j − 1) ) ;

133 sw . statement (31) ;

pause ( i , j ) ;

135 j−−;

}

137 sw . statement (32) ;
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a . s e t ( j , v ) ;

139 }

sw . r e t rn (33) ;

141 }

143 pub l i c void s o r t ( SortItemP5 . MemInts a , Sw sw) throws Exception {

sw . c a l l e d (34) ;

145 QuickSort ( a , 0 , a . l ength − 1 , sw) ;

sw . statement (35) ;

147 I n s e r t i o n S o r t ( a , 0 , a . l ength − 1 , sw) ;

sw . statement (36) ;

149 pause (−1 , −1) ;

sw . r e t rn (37) ;

151 }

}

src/p5/sdw2/src/sdw/FastQSortAlgorithm.java

This is the applet main which initializes the two sort modules and starts the threads

and visualization. It also handles keypresses and mouse clicks to control simulation

speed and restart of any sort routine that finishes.

package sdw ;

2 /∗

∗ Copyright 2013 Stephen D. Wil l iams sdw@lig . net

4 ∗/

6 import p r o c e s s i n g . core . ∗ ;

8 pub l i c c l a s s Sdw2 extends PApplet {

pub l i c Sdw2 ( ) {}

10 i n t DSIZE = 100 ;

i n t data [ ] = new i n t [ DSIZE ] ;
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12 SortItemP5 item = n u l l ;

SortItemP5 item2 = n u l l ;

14 // BubbleSort2Algorithm bs = n u l l ;

16 pub l i c void setup ( ) {

s i z e (640 , 480) ;

18 smooth ( ) ;

// noStroke ( ) ;

20 f o r ( i n t x = 0 ; x < DSIZE ; x++)

data [ x ] = ( i n t ) random (100) ;

22 item = new SortItemP5 ( th i s , 0 , 0 , 100 , 200 , . 0 5 , . 0 5 ) ;

item2 = new SortItemP5 ( th i s , 0 , 250 , 100 , 200 , . 0 5 , . 0 5 ) ;

24 item . i n i t ( ”sdw . FastQSort” ) ;

item . s t a r t S o r t ( ) ;

26 item2 . i n i t ( ”sdw . BubbleSort2 ” ) ;

item2 . s t a r t S o r t ( ) ;

28

// bs = new BubbleSort2Algorithm ( ) ;

30 // FastQSortAlgorithm f q s = new FastQSortAlgorithm ( ) ;

}

32

pub l i c void draw ( ) {

34 background (255) ;

f i l l (0 xFF333366 ) ;

36 // e l l ip seMode (RADIUS) ;

// e l l i p s e (200 , 200 , 20 , 20) ;

38 item . pa int ( ) ;

item2 . pa int ( ) ;

40 }

42 pub l i c s t a t i c void main ( St r ing args [ ] ) {
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PApplet . main (new St r ing [ ] { ”sdw . Sdw2” }) ;

44 // PApplet . main (new St r ing [ ] { ”−−present ” , ”sdw . Sdw2” }) ;

}

46

pub l i c void mouseClicked ( ) {

48 item . s t a r t S o r t ( ) ;

item2 . s t a r t S o r t ( ) ;

50 }

pub l i c void keyPressed ( ) {

52 i f ( key == CODED)

switch ( keyCode ) {

54 case UP:

item . s lower ( ) ;

56 break ;

case DOWN:

58 item . f a s t e r ( ) ;

break ;

60 }

}

62 }

src/p5/sdw2/src/sdw/Sdw2.java

This is the base class for sort algorithms, especially the sort() method.

package sdw ;

2

/∗

4 ∗ @(#) SortAlgorithm . java 1 .6 f 95/01/31 James Gosl ing Copyright ( c )

∗ 1994−1995 Sun Microsystems , Inc . Al l Rights Reserved . Permiss ion

6 ∗ to use , copy , modify , and d i s t r i b u t e t h i s so f tware and i t s

∗ documentation f o r NON−COMMERCIAL or COMMERCIAL purposes and without

8 ∗ f e e i s hereby granted . P lease r e f e r to the f i l e
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∗ http :// java . sun . com/ copy trademarks . html f o r f u r t h e r important

10 ∗ copyr ight and trademark in fo rmat ion and to

∗ http :// java . sun . com/ l i c e n s i n g . html f o r f u r t h e r important l i c e n s i n g

12 ∗ i n fo rmat ion f o r the Java (tm) Technology . SUN MAKES NO

∗ REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE

14 ∗ SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO

∗ THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

16 ∗ PURPOSE, OR NON−INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY

∗ DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR

18 ∗ DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. THIS SOFTWARE IS NOT

∗ DESIGNED OR INTENDED FOR USE OR RESALE AS ON−LINE CONTROL EQUIPMENT

20 ∗ IN HAZARDOUS ENVIRONMENTS REQUIRING FAIL−SAFE PERFORMANCE, SUCH AS

∗ IN THE OPERATION OF NUCLEAR FACILITIES , AIRCRAFT NAVIGATION OR

22 ∗ COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL, DIRECT LIFE SUPPORT

∗ MACHINES, OR WEAPONS SYSTEMS, IN WHICH THE FAILURE OF THE SOFTWARE

24 ∗ COULD LEAD DIRECTLY TO DEATH, PERSONAL INJURY, OR SEVERE PHYSICAL

∗ OR ENVIRONMENTAL DAMAGE (”HIGH RISK ACTIVITIES”) . SUN SPECIFICALLY

26 ∗ DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR HIGH RISK

∗ ACTIVITIES .

28 ∗/

// import SortItemP5 ;

30 /∗∗

∗ A g e n e r i c s o r t demonstrat ion a lgor i thm SortAlgorithm . java , Thu Oct

32 ∗ 27 10 : 3 2 : 3 5 1994

∗

34 ∗ @author James Gos l ing

∗ @version 1 .6 f , 31 Jan 1995

36 ∗/

/∗

38 ∗ Changes Copyright 2013 Stephen D. Wil l iams sdw@lig . net

∗/
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40

c l a s s SortAlgorithm {

42 /∗∗

∗ The s o r t item .

44 ∗/

p r i v a t e SortItemP5 parent ;

46

/∗∗

48 ∗ When true stop s o r t i n g .

∗/

50 protec ted boolean stopRequested = f a l s e ;

52 /∗∗

∗ Set the parent .

54 ∗/

pub l i c void setParent ( SortItemP5 p) {

56 parent = p ;

}

58

/∗∗

60 ∗ Pause f o r a whi l e .

∗/

62 protec ted void pause ( ) throws Exception {

i f ( stopRequested ) { throw new Exception ( ” Sort Algorithm ” ) ; }

64 parent . pause ( parent . h1 , parent . h2 ) ;

}

66

/∗∗

68 ∗ Pause f o r a whi l e and mark item 1 .

∗/

70 protec ted void pause ( i n t H1) throws Exception {
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i f ( stopRequested ) { throw new Exception ( ” Sort Algorithm ” ) ; }

72 parent . pause (H1 , parent . h2 ) ;

}

74

/∗∗

76 ∗ Pause f o r a whi l e and mark item 1 & 2 .

∗/

78 protec ted void pause ( i n t H1 , i n t H2) throws Exception {

i f ( stopRequested ) { throw new Exception ( ” Sort Algorithm ” ) ; }

80 parent . pause (H1 , H2) ;

}

82

/∗∗

84 ∗ Stop s o r t i n g .

∗/

86 pub l i c void stop ( ) {

stopRequested = true ;

88 }

90 /∗∗

∗ I n i t i a l i z e

92 ∗/

pub l i c void i n i t ( ) {

94 stopRequested = f a l s e ;

}

96

/∗∗

98 ∗ This method w i l l be c a l l e d to s o r t an array o f i n t e g e r s .

∗/

100 void s o r t ( SortItemP5 . MemInts a , Sw sw) throws Exception {}

}
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src/p5/sdw2/src/sdw/SortAlgorithm.java

Sets up the data to be sorted and directly manages the sort objects.

1 package sdw ;

3 /∗

∗ @(#) SortItem . java 1 .17 f 95/04/10 James Gos l ing Copyright ( c )

5 ∗ 1994−1995 Sun Microsystems , Inc . Al l Rights Reserved . Permiss ion to

∗ use , copy , modify , and d i s t r i b u t e t h i s so f tware and i t s

7 ∗ documentation f o r NON−COMMERCIAL or COMMERCIAL purposes and without

∗ f e e i s hereby granted . P lease r e f e r to the f i l e

9 ∗ http :// java . sun . com/ copy trademarks . html f o r f u r t h e r important

∗ copyr ight and trademark in fo rmat ion and to

11 ∗ http :// java . sun . com/ l i c e n s i n g . html f o r f u r t h e r important l i c e n s i n g

∗ i n fo rmat ion f o r the Java (tm) Technology . SUN MAKES NO

13 ∗ REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE

∗ SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO

15 ∗ THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

∗ PURPOSE, OR NON−INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY

17 ∗ DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR

∗ DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. THIS SOFTWARE IS NOT

19 ∗ DESIGNED OR INTENDED FOR USE OR RESALE AS ON−LINE CONTROL EQUIPMENT

∗ IN HAZARDOUS ENVIRONMENTS REQUIRING FAIL−SAFE PERFORMANCE, SUCH AS

21 ∗ IN THE OPERATION OF NUCLEAR FACILITIES , AIRCRAFT NAVIGATION OR

∗ COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL, DIRECT LIFE SUPPORT

23 ∗ MACHINES, OR WEAPONS SYSTEMS, IN WHICH THE FAILURE OF THE SOFTWARE

∗ COULD LEAD DIRECTLY TO DEATH, PERSONAL INJURY, OR SEVERE PHYSICAL

25 ∗ OR ENVIRONMENTAL DAMAGE (”HIGH RISK ACTIVITIES”) . SUN SPECIFICALLY

∗ DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR HIGH RISK

27 ∗ ACTIVITIES .
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∗/

29 /∗

∗ Changes Copyright 2013 Stephen D. Wil l iams sdw@lig . net

31 ∗/

import java . awt . ∗ ;

33 import java . i o . InputStream ;

import java . u t i l . Hashtable ;

35 import java . net . ∗ ;

import p r o c e s s i n g . core . ∗ ;

37

/∗∗

39 ∗ A simple app le t c l a s s to demonstrate a s o r t a lgor i thm . You can

∗ s p e c i f y a s o r t i n g a lgor i thm us ing the ” a lg ” a t t r i b u t e . When you

41 ∗ c l i c k on the applet , a thread i s fo rked which animates the s o r t i n g

∗ a lgor i thm .

43 ∗

∗ @author James Gos l ing

45 ∗ @version 1 .17 f , 10 Apr 1995

∗/

47 pub l i c c l a s s SortItemP5 implements Runnable {

PApplet p = n u l l ;

49 i n t naplen = 40 ; // ms to s l e e p f o r redraw / animation speed .

i n t fontHe ight = 10 ;

51

pub l i c void f a s t e r ( ) {

53 naplen++;

i f ( naplen > 100) naplen = 100 ;

55 }

57 pub l i c void s lower ( ) {

naplen−−;
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59 i f ( naplen < 0) naplen = 0 ;

}

61

i n t rea lx , rea ly , wx , wy , ww, wh ;

63 double fader , fadew ;

pub l i c SortItemP5 ( PApplet p , i n t ax , i n t ay , i n t aw , i n t ah , double

faderp , double fadewp ) {

65 t h i s . p = p ;

r e a l x = ax ;

67 r e a l y = ay ;

wx = ax ;

69 wy = ay+fontHe ight +1;

ww = aw ;

71 wh = ah ;

f ade r = faderp ;

73 fadew = fadewp ;

}

75 void l i n e ( i n t ax , i n t ay , i n t x2 , i n t y2 ) {

p . l i n e (wx+ax , wy+ay , wx+x2 , wy+y2 ) ;

77 }

79 void r e c t ( i n t ax , i n t ay , i n t x2 , i n t y2 ) {

p . noStroke ( ) ;

81 p . r e c t (wx+ax , wy+ay , x2 , y2 ) ;

}

83

void r e c t O f f s e t ( i n t o f fx , i n t o f fy , i n t ax , i n t ay , i n t x2 , i n t y2 ) {

85 p . noStroke ( ) ;

p . r e c t ( o f f x+wx+ax , o f f y+wy+ay , x2 , y2 ) ;

87 }
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89 /∗∗

∗ The thread that i s s o r t i n g ( or n u l l ) .

91 ∗/

p r i v a t e Thread k i c k e r ;

93

/∗∗

95 ∗ The array that i s be ing so r t ed .

∗/

97 // i n t a r r [ ] ;

MemInts a r r ;

99

/∗∗

101 ∗ The high water mark .

∗/

103 i n t h1 = −1;

105 /∗∗

∗ The low water mark .

107 ∗/

i n t h2 = −1;

109

/∗∗

111 ∗ The name o f the a lgor i thm .

∗/

113 St r ing algName , minAlgName ;

115 /∗∗

∗ The s o r t i n g a lgor i thm ( or n u l l ) .

117 ∗/

SortAlgorithm algor i thm ;

119
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MemInts mi = n u l l ; // Tracking memory

121 Sw sw = n u l l ; // Tracking code f low

123 i n t s i z e ;

/∗∗

125 ∗ F i l l the array with random numbers from 0 . . n−1.

∗/

127 void scramble ( ) {

s i z e = wh/2 ;

129 sw = new Sw( ) ;

mi = new MemInts ( s i z e ) ;

131 double f = ww / ( double ) mi . s i z e ( ) ;

f o r ( i n t i = s i z e ; −− i >= 0 ; ) {

133 mi . s e t ( i , ( i n t ) ( s i z e ∗ f ∗ Math . random ( ) ) ) ;

/∗

135 ∗ jh : f i l l the array with numbers from 0 . . n−1, not a scrambled s e t o f

0 . . n−1 unique numbers . So

∗ d u p l i c a t e s w i l l occur in in most ca s e s

137 ∗/

/∗ a [ i ] = ( i n t ) ( i ∗ f ) ; ∗/

139 }

141 /∗ jh : we don ’ t s h u f f l e the array anymore ∗/

/∗

143 ∗ f o r ( i n t i = a . l ength ; −− i >= 0 ; ) { i n t j = ( i n t ) ( i ∗ Math . random ( ) )

; i n t t = a [ i ] ; a [ i ] = a [ j ] ;

∗ a [ j ] = t ; }

145 ∗/

ar r = mi ;

147 mi . resetAge ( ) ;

}
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149

/∗∗

151 ∗ Pause a whi l e .

∗

153 ∗ @see SortAlgorithm

∗/

155 void pause ( ) {

pause (−1 , −1) ;

157 }

159 /∗∗

∗ Pause a while , and draw the high water mark .

161 ∗

∗ @see SortAlgorithm

163 ∗/

void pause ( i n t H1) {

165 pause (H1 , −1) ;

}

167

/∗∗

169 ∗ Pause a while , and draw the low&high water marks .

∗

171 ∗ @see SortAlgorithm

∗/

173 void pause ( i n t H1 , i n t H2) {

h1 = H1 ;

175 h2 = H2 ;

i f ( k i c k e r != n u l l ) {

177 p . redraw ( ) ;

}

179 t ry {
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Thread . s l e e p ( naplen ) ;

181 } catch ( Inter ruptedExcept ion e ) {}

}

183

/∗∗

185 ∗ I n i t i a l i z e the app le t .

∗/

187 pub l i c void i n i t ( ) {

St r ing at = p . getParameter ( ” a lg ” ) ;

189 i n i t ( at ) ;

}

191 PFont font ;

pub l i c void i n i t ( S t r ing at ) {

193 f ont = p . loadFont ( ”ArialNarrow −12.vlw” ) ;

i f ( at == n u l l ) {

195 at = ” BubbleSort ” ;

}

197

algName = at + ” Algorithm ” ;

199 minAlgName = at ;

scramble ( ) ;

201

// r e s i z e (100 , 100) ;

203 }

205 i n t l i m i t ( i n t val , i n t age , i n t range ) {

i n t r = age−va l ;

207 i f ( r > range ) re turn 0 ;

re turn r ;

209 }
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211 /∗∗

∗ Paint the array o f numbers as a l i s t o f h o r i z o n t a l l i n e s o f

vary ing l eng th s .

213 ∗/

pub l i c void pa int ( ) {

215 i n t y = wh − 1 ;

217 // Draw new l i n e s

y = wh − 1 ;

219 p . s t r oke ( Color . b lack ) ;

f o r ( i n t i = s i z e ; −− i >= 0 ; y −= 2) {

221 l i n e (0 , y , a r r . getNoTrack ( i ) , y ) ;

}

223

i f ( h1 >= 0) {

225 y = h1 ∗ 2 + 1 ;

p . s t r oke ( Color . red ) ;

227 l i n e (0 , y , ww, y ) ;

}

229 i f ( h2 >= 0) {

y = h2 ∗ 2 + 1 ;

231 p . s t r oke ( Color . b lue ) ;

l i n e (0 , y , ww, y ) ;

233 }

235 // Labels

p . textFont ( f ont ) ;

237 p . t ex t (minAlgName , rea lx , r e a l y+fontHe ight ) ;

p . t ex t ( ”R/W heatmap” , r e a l x+ww, r e a l y+fontHe ight ) ;

239 p . t ex t ( ” Sca la r s , 2 ways” , r e a l x+ww∗2 , r e a l y+fontHe ight ) ;

p . t ex t ( ” Total R/W” , r e a l x+ww∗3 , r e a l y+fontHe ight ) ;
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241

// Viz2

243 i n t s c a l e = 7 ;

i n t row = 0 ;

245 i n t over = ww/( s c a l e +1) ;

f o r ( i n t i =0; i < s i z e ; i++) {

247 i n t l i = i−(row∗ over ) ;

i f ( l i >= over ) { // Wrap

249 row++;

l i = 0 ;

251 }

// Read/ wr i t e recency / pattern : This f ade s too qu i ck ly .

253 // i n t red = (128− l i m i t (mi . ager [ i ] , mi . age , 128) ) ∗2 ;

// i n t red = ( i n t ) ( ( 1 . 0 / ( mi . rage−mi . ager [ i ]+1) ) ∗255) ;

255 // i n t green = (128− l i m i t (mi . agew [ i ] , mi . age , 128) ) ∗2 ;

// i n t green = ( i n t ) ( ( 1 . 0 / ( mi . wage−mi . agew [ i ]+1) ) ∗255) ;

257

// This works we l l and i s tunable :

259 i n t b r i gh t = ( i n t )mi . agerm [ i ] ;

p . f i l l ( Color . s c o l o r (0 , br ight , 0) ) ;

261 r e c t (ww+l i ∗( s c a l e +1) , row ∗( s c a l e +1) , s ca l e , s c a l e ) ;

b r i gh t = ( i n t )mi . agewm [ i ] ;

263 p . f i l l ( Color . s c o l o r ( br ight , 0 , 0) ) ;

r e c t (ww+l i ∗( s c a l e +1) ,wh/2+row ∗( s c a l e +1) , s ca l e , s c a l e ) ;

265 i f ( ! done ) mi . fade ( fader , fadew ) ;

267 // s c a l a r ang l e s = ang le == magnitude

i n t dx = wx+2∗ww+l i ∗( s c a l e +1) ;

269 i n t dy = wy+row ∗( s c a l e +1) ;

f l o a t h a l f S c a l e = ( f l o a t ) ( s c a l e /2 . 0 ) ;

271 p . pushMatrix ( ) ;
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p . t r a n s l a t e ( dx+h a l f S c a l e , dy+s c a l e ) ;

273 p . r o t a t e ( PApplet . rad ians (p . map(mi . a [ i ] , 0 , 255 , 0 , 180) ) ) ;

p . s t r oke ( Color . red ) ;

275 p . l i n e (0 ,0 ,0 ,− s c a l e ) ;

p . s t r oke ( Color . b lack ) ;

277 p . l i n e (0 , 0 , 0 , 0) ;

p . popMatrix ( ) ;

279

// s c a l a r b locks : s i z e == magnitude

281 dx = wx+2∗ww+l i ∗( s c a l e +1) ;

dy = wy+wh/2+row ∗( s c a l e +1) ;

283 f l o a t f s c a l e d = p . map(mi . a [ i ] , 0 , 255 , 0 , s c a l e +2) ;

p . f i l l (255 ,255 ,255) ;

285 p . r e c t (dx , dy+sca l e−f s c a l e d , s ca l e −1, f s c a l e d ) ;

287 // s c a l a r b locks = s i z e == number o f t imes read

dx = wx+3∗ww+l i ∗( s c a l e +1) ;

289 dy = wy+row ∗( s c a l e +1) ;

i n t va l = p . c o n s t r a i n (mi . reads [ i ] , 0 , 255) ;

291 f s c a l e d = p . map( val , 0 , 255 , 0 , s c a l e +2) ;

p . f i l l ( Color . s c o l o r (0 , val , 0) ) ;

293 p . r e c t (dx , dy+sca l e−f s c a l e d , s ca l e , f s c a l e d ) ;

295 // s c a l a r b locks = s i z e == number o f t imes wr i t t en

dx = wx+3∗ww+l i ∗( s c a l e +1) ;

297 dy = wy+wh/2+row ∗( s c a l e +1) ;

va l = p . c o n s t r a i n (mi . w r i t e s [ i ] , 0 , 255) ;

299 f s c a l e d = p . map( val , 0 , 255 , 0 , s c a l e +2) ;

p . f i l l ( Color . s c o l o r ( val , 0 , 0) ) ;

301 p . r e c t (dx , dy+sca l e−f s c a l e d , s ca l e , f s c a l e d ) ;
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303 }

i n t dx = wx+4∗ww;

305 sw . draw (p , dx , wy , ww, wh, f a l s e ) ;

sw . draw (p , dx+ww, wy , ww, wh, t rue ) ;

307 }

309 /∗∗

∗ Update without e r a s i n g the background .

311 ∗/

pub l i c void update ( ) {

313 p . redraw ( ) ;

}

315 boolean done = f a l s e ;

/∗∗

317 ∗ Run the s o r t i n g a lgor i thm . This method i s c a l l e d by c l a s s Thread

once the s o r t i n g a lgor i thm i s

∗ s t a r t e d .

319 ∗

∗ @see java . lang . Thread#run

321 ∗ @see SortItem#mouseUp

∗/

323 pub l i c void run ( ) {

done = f a l s e ;

325 t ry {

i f ( a lgor i thm == n u l l ) {

327 a lgor i thm = ( SortAlgorithm ) Class . forName ( algName ) . newInstance

( ) ;

a lgor i thm . setParent ( t h i s ) ;

329 }

a lgor i thm . i n i t ( ) ;

331 a lgor i thm . s o r t ( arr , sw) ;
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done = true ;

333 } catch ( Exception e ) {

System . out . p r i n t l n ( e . t oS t r i ng ( ) ) ;

335 e . pr intStackTrace ( ) ;

}

337 }

339 /∗∗

∗ Stop the app le t . K i l l any s o r t i n g a lgor i thm that i s s t i l l s o r t i n g .

341 ∗/

pub l i c synchron ized void stop ( ) {

343 i f ( k i c k e r != n u l l ) {

t ry {

345 k i c k e r . stop ( ) ;

} catch ( I l l e ga lThreadSta t eExcept i on e ) {

347 // ignore t h i s except ion

}

349 k i c k e r = n u l l ;

}

351 i f ( a lgor i thm != n u l l ) {

t ry {

353 a lgor i thm . stop ( ) ;

} catch ( I l l e ga lThreadSta t eExcept i on e ) {

355 // ignore t h i s except ion

}

357 }

}

359

361 /∗∗

∗ For a Thread to a c t u a l l y do the s o r t i n g . This r ou t in e makes sure
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we do not s imu l taneous ly s t a r t

363 ∗ s e v e r a l s o r t s i f the user r epea t ed ly c l i c k s on the s o r t item . I t

needs to be synchron ized with

∗ the stop ( ) method because they both manipulate the common k i c k e r

v a r i a b l e .

365 ∗/

pub l i c synchron ized void s t a r t S o r t ( ) {

367 i f ( k i c k e r == n u l l | | ! k i c k e r . i s A l i v e ( ) ) {

scramble ( ) ;

369 p . r epa in t ( ) ;

k i c k e r = new Thread ( t h i s ) ;

371 k i c k e r . s t a r t ( ) ;

}

373 }

375

/∗∗

377 ∗ The user c l i c k e d in the app le t . S ta r t the c l o ck !

∗/

379 pub l i c boolean mouseUp( java . awt . Event evt , i n t x , i n t y ) {

s t a r t S o r t ( ) ;

381 re turn true ;

}

383

/∗∗

385 ∗ This t r a ck s memory a c c e s s e s .

∗ I t should be r e w r i t t e n to do aging without updating each element

at each step .

387 ∗ @author sdw

∗

389 ∗/



135

pub l i c c l a s s MemInts {

391 pub l i c i n t wage , rage , l ength ;

pub l i c i n t a [ ] ;

393 pub l i c i n t ager [ ] ;

pub l i c i n t agew [ ] ;

395 pub l i c i n t reads [ ] ;

pub l i c i n t w r i t e s [ ] ;

397 pub l i c f l o a t agerm [ ] ;

pub l i c f l o a t agewm [ ] ;

399 pub l i c MemInts ( i n t n) {

l ength = n ;

401 wage = rage = 0 ;

a = new i n t [ n ] ;

403 ager = new i n t [ n ] ;

agew = new i n t [ n ] ;

405 reads = new i n t [ n ] ;

w r i t e s = new i n t [ n ] ;

407 agerm = new f l o a t [ n ] ;

agewm = new f l o a t [ n ] ;

409 }

pub l i c void resetAge ( ) {

411 f o r ( i n t x = 0 ; x < l ength ; x++) {

ager [ x ] = 0 ;

413 agew [ x ] = 0 ;

reads [ x ] = 0 ;

415 w r i t e s [ x ] = 0 ;

agerm [ x ] = 0 ;

417 agewm [ x ] = 0 ;

}

419 }

pub l i c i n t get ( i n t n) {
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421 reads [ n]++;

ager [ n ] = rage++;

423 agerm [ n ] = 255 ;

re turn a [ n ] ;

425 }

pub l i c i n t getNoTrack ( i n t n) {

427 re turn a [ n ] ;

}

429 pub l i c void s e t ( i n t n , i n t i ) {

w r i t e s [ n]++;

431 agew [ n ] = wage++;

agewm [ n ] = 255 ;

433 a [ n ] = i ;

}

435 pub l i c void fade ( double r , double w) {

f o r ( i n t i =0; i < l ength ; i++) {

437 agerm [ i ] = agerm [ i ]> r ? agerm [ i ]−( f l o a t ) r : 0 ;

agewm [ i ] = agewm [ i ]>w ? agewm [ i ]−( f l o a t )w : 0 ;

439 }

}

441 pub l i c i n t s i z e ( ) { re turn l ength ; }

}

443 }

src/p5/sdw2/src/sdw/SortItemP5.java

Sw.java contains the software structure, control flow visualization module. The al-

gorithm used maintains a data structure that only has as many entries as there are

distinct linenumber calls, plus any alternative paths from each statement. Additional

calls increment the count for statement.

1 package sdw ;
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/∗

3 ∗ Copyright 2013 Stephen D. Wil l iams sdw@lig . net

∗/

5

import java . u t i l . ArrayList ;

7 import java . u t i l .Map;

import java . u t i l . TreeMap ;

9

import p r o c e s s i n g . core . PApplet ;

11

/∗∗

13 ∗ This c l a s s a l l ows t rack ing o f so f tware statement types and graphing

o f the r e s u l t i n g s t r u c t u r e .

∗ The prev ious statement i s remembered f o r each new t ra c e so that

l i n e s can be drawn back to i t .

15 ∗

∗ @author sdw

17 ∗

∗/

19 pub l i c c l a s s Sw {

i n t s t e p i = 0 ;

21 i n t max = 0 ;

i n t gdepth = 0 ;

23

c l a s s Trace {

25 pub l i c i n t s tep ;

pub l i c i n t next ;

27 pub l i c char type ;

pub l i c i n t f r e q ;

29 pub l i c i n t depth ;

pub l i c Trace ( i n t s , i n t n , char t ) {
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31 f r e q = 1 ;

s tep = s ;

33 next = n ;

type = t ;

35 i f ( s > max) max = s ;

s tep ( ) ;

37 }

pub l i c void updateDepth ( char t ) {

39 i f ( t == ’ c ’ ) gdepth++;

i f ( t == ’ r ’ ) gdepth−−;

41 t h i s . depth = gdepth ;

}

43 pub l i c void bump( ) {

f r e q++;

45 }

}

47

i n t l a s t S t e p = 0 ;

49 char lastType = ’ ’ ;

Trace l a s tTrace = n u l l ;

51 TreeMap<Integer , TreeMap<Integer , Trace>> code = new TreeMap<Integer ,

TreeMap<Integer , Trace>>() ;

53 i n t s tep ( ) {

re turn s t e p i ++;

55 }

57 pub l i c i n t s i z e ( ) {

re turn code . s i z e ( ) ;

59 }
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61 pub l i c void add ( i n t step , char c ) {

synchronized ( t h i s ) {

63 i f ( s t e p i == 0) {

l a s t S t e p = step ;

65 lastType = c ;

s tep ( ) ;

67 re turn ;

}

69 // We have cur rent and l a s t . Process l a s t .

TreeMap<Integer , Trace> t r a c e s = n u l l ;

71 t ry {

t r a c e s = code . get ( l a s t S t e p ) ;

73 } catch ( Exception ex ) {}

i f ( t r a c e s == n u l l ) {

75 t r a c e s = new TreeMap<Integer , Trace >() ;

code . put ( l a s tStep , t r a c e s ) ;

77 }

Trace t r a c e = t r a c e s . get ( s tep ) ;

79 i f ( t r a c e == n u l l ) {

t r a c e = new Trace ( l a s tStep , step , lastType ) ;

81 t r a c e s . put ( step , t r a c e ) ;

} e l s e t r a c e . bump( ) ;

83 t r a c e . updateDepth ( c ) ;

l a s t S t e p = step ;

85 lastType = c ;

s tep ( ) ;

87 }

}

89

pub l i c i n t e r f a c e TraceApply {

91 pub l i c void perTrace ( Trace t r ) ;
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}

93

pub l i c void apply ( TraceApply ta ) {

95 synchronized ( t h i s ) {

i n t codes = code . s i z e ( ) ;

97 f o r (Map. Entry<Integer , TreeMap<Integer , Trace>> codeEntry : code

. entrySet ( ) ) {

TreeMap<Integer , Trace> t r a c e s = codeEntry . getValue ( ) ;

99 i f ( t r a c e s != n u l l ) {

f o r (Map. Entry<Integer , Trace> traceEntry : t r a c e s . entrySet ( )

) {

101 ta . perTrace ( traceEntry . getValue ( ) ) ;

}

103 }

}

105 }

}

107

pub l i c Sw( ) {}

109

pub l i c void c a l l e d ( i n t l i n e ) {

111 add ( l i n e , ’ c ’ ) ;

}

113

pub l i c void r e t rn ( i n t l i n e ) {

115 add ( l i n e , ’ r ’ ) ;

}

117

pub l i c boolean branch ( i n t l i n e ) {

119 add ( l i n e , ’b ’ ) ;

r e turn true ;
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121 }

123 pub l i c void statement ( i n t l i n e ) {

add ( l i n e , ’ s ’ ) ;

125 }

127 pub l i c boolean loop ( i n t l i n e ) {

add ( l i n e , ’ l ’ ) ;

129 re turn true ;

}

131

pub l i c void draw ( f i n a l PApplet p , f i n a l i n t ax , f i n a l i n t ay , f i n a l

i n t aw , f i n a l i n t ah , f i n a l boolean l e v e l s ) {

133 f i n a l i n t cs = s t e p i /4 ;

f i n a l f l o a t s c a l e = ( 1 . 0 f ∗ ah ) / max ;

135 p . pushStyle ( ) ;

p . t ex t ( ” St ruc ture ”+( l e v e l s ?” w/ c a l l indent ” : ”” ) , ax+3, ay ) ;

137 // p . f i l l ( Color . s c o l o r (0 , 0 , 0) ) ;

// p . noStroke ( ) ;

139 apply (new TraceApply ( ) {

pub l i c void perTrace ( Trace t r a c e ) {

141 i n t maxStroke = 20 ;

f l o a t x = ax + ( l e v e l s ? t r a c e . depth ∗ ( 1 . 0 f ∗ ah ) /20 : 0) ;

143 f l o a t y = ay + t r ac e . s tep ∗ s c a l e ;

f l o a t x2 = ax + ( l e v e l s ? t r a c e . depth ∗ ( 1 . 0 f ∗ ah ) /20 : 0) ;

145 f l o a t y2 = ay + t r ac e . next ∗ s c a l e ;

f l o a t wq = Math . abs ( t r a c e . next − t r a c e . s tep ∗ 1 .0 f +1) / max ∗

aw ;

147 i n t f r e q i = t r a c e . f r e q ;

switch ( t r a c e . type ) {

149 case ’b ’ :
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p . n o F i l l ( ) ;

151 p . s t r oke (10 , 128 , 255 , 128) ;

p . strokeWeight (p . map( f r e q i , 0 , cs , 1 , maxStroke ) ) ;

153 p . b e z i e r (x , y , x + wq , y , x2 + wq , y2 , x2 , y2 ) ;

break ;

155 case ’ c ’ :

p . n o F i l l ( ) ;

157 p . s t r oke (10 , 128 , 128 , 255) ;

p . strokeWeight (p . map( f r e q i , 0 , cs , 1 , maxStroke ) ) ;

159 p . b e z i e r (x , y , x + wq , y , x2 + wq , y2 , x2 , y2 ) ;

break ;

161 case ’ r ’ :

p . n o F i l l ( ) ;

163 p . s t r oke (10 , 128 , 128 , 255) ;

p . strokeWeight (p . map( f r e q i , 0 , cs , 1 , maxStroke ) ) ;

165 p . b e z i e r (x , y , x + wq , y , x2 + wq , y2 , x2 , y2 ) ;

break ;

167 case ’ l ’ :

p . n o F i l l ( ) ;

169 p . s t r oke (10 , 128 , 255 , 255) ;

p . strokeWeight (p . map( f r e q i , 0 , cs , 1 , maxStroke ) ) ;

171 p . b e z i e r (x , y , x + wq , y , x2 + wq , y2 , x2 , y2 ) ;

break ;

173 d e f a u l t :

case ’ s ’ :

175 p . s t r oke (10 , 255 , 128 , 128) ;

p . strokeWeight (p . map( f r e q i , 0 , cs , 1 , maxStroke ) ) ;

177 p . l i n e (x , y , x2 , y2 ) ;

break ;

179 }

}
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181 }) ;

p . popStyle ( ) ;

183 }

}

src/p5/sdw2/src/sdw/Sw.java
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