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ABSTRACT

Compositional data are non-negative proportions that sum to one. Under the
unit-sum constraint, the standard statistical techniques devised for unconstrained
variables can not be applied to analyze compositional data. Aitchison (1986) de-
veloped a method based on logratio transformations of compositional data that is
widely used. This method is limited by the assumption of strictly positive compo-
nents or the use of special treatments to accommodate possible zero components.
We propose a new data analytic measure of compositional data variability based on
the Sum of Coefficients of Variation to address a common objective in compositional
data analysis to identify a subset of the variables that retains most of the variability
of the full composition. In selecting these subcompositions, this new method re-
solves the difficulty of zeros in compositional data avoiding any special consideration
of zeros. The new technique is investigated analytically and illustrated with real and

simulated data sets.
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CHAPTER 1

INTRODUCTION

Many multivariate data sets of interest are compositional, consisting essentially
of relative proportions summing to one. For instant, in finance an important aspect
of the study of consumer demand is the analysis of household budgets in which
attention often focuses on the expenditures of a sample of households on a number
of mutually exclusive and exhaustive commodity groups (housing, foodstuffs, other
goods, and services) and their relations to total expenditure, income, type of housing,
household composition, and so on (Aitchison 1986). In geology the composition of
rocks is often studied by classifying each rock according to the relative percentage
by weight of chemical oxides (Aitchison 1986). In geochemistry, compositions can
be expressed as molar concentrations of each component (Valls 2008). In ecology,
ecologists often choose to use proportional or percentage type data to study the

relative representation of a species in a particular ecosystem (Jackson 1997).

Definition 1. Compositional data are vectors of proportions describing the relative
contributions of each of D categories to the whole. Mathematically, compositional

data with n observations of a D-part composition are of the form

Zij, t=1,...,m, 3=1,...,D,



where

0<zy <1 Vij

and
D
Z Tij = 1 V¢
j=1

are the constraints induced by being a composition.

Compositional data have particular and important numerical properties that
have major consequences for any statistical analysis. These have been discussed by a
number of authors since Karl Pearson (1897) first highlighted problems in the analysis
of compositions (Sarmanov and Vistelius 1959 ; Chayes 1971 ; Butler 1979; Aitchison
1986 ; Davis 1986 ; and Rock 1988). The properties perculiar to compositional data
arise from the fact that they represent parts of some whole; therefore, they convey
only relative information. They are always positive and usually constrained to a
constant sum. The constant sum constraint in definition (1) forces at least one
covariance to be negative. Hence correlations are not free to range over the usual
interval (-1 , +1). Thus, spurious correlations are induced by the fact that the data
sum to a constant and there is bias towards negative correlation. Consider the trivial
case of a two-part composition summing to a constant: the correlation between the
two elements in this composition must be -1.

The essential consequence of these properties is that standard statistical tech-
niques devised for unconstrained random variables, cannot be used to analyze com-
positional data. The summation constraint and bounded support require special
techniques for compositional data. Aitchison (1986) introduced a range of statistical
techniques to handle the special problems and questions of inference in analyzing
compositional data. These techniques are based on logratio transformed data, rec-

ognizing that it is the relative magnitudes and variations of components, rather



than their absolute values, that provide the key to analyzing compositional data.
The inference tools developed for multivariate normal data are often applied to the
transformed compositions.

Aitchison considered the additional restrictions that x;; > 0, V4, j, then used
the logratio transformation to remove the constraints. This involves choosing one

component as a divisor and looking at

yi = log(zi/xp), i=1,...,D—1

Clearly, the constraint is removed and y can take any real value. Aitchison (1986)

suggested that many problems can be analyzed under the assumption that

y ~ MVN(u,X)

or, equivalently, the D-part composition x follows an Additive Logistic Normal Dis-
tribution.
Although Aitchison’s method of logratio transformation of compositional data

is widely used in various settings, it suffers from the following limitations:

1. Interpretation of parameter estimates on the multivariate log-odds scale is dif-
ficult, specifically, the location parameters p; = E(log(z;/zp)) and elements of the
covariance matrix, o;; = cov(log(zi/rp),log(z;/zp)). It is often challenging to inter-
pret these parameters (or their estimates) in terms of a motivating scientific problem

(Billheimer, Guttorp, and Fagan (1998)).

2. Logratio analysis and normality do not always model data adequately, thus
leading to a need for alternative transformations, such as the Box-Cox family (Carles

Barcel6, Vera Pawlowsky, and Eric Grunsky (1996)).



3. Some common forms of logratio analysis will sometimes produce results with no
substantive meaning, even when substantively interpretable structure exists. Specif-
ically, the high relative variation of some variables emphasized in a logratio analysis
may derive, in part, from their low absolute levels, and the variation may be of lim-
ited practical interest (Baxter, Beardah, Cool, and Jackson (2005), Baxter, Cool, and
Jackson (2005), and Hijazi and Jernigan (2009)). For example, Beardah and others
(2003) suggested that for compositional data for glass production, bivariate analy-
sis and the crude principal component analysis of standardized data often produced
more interpretable results than principal component analysis of logratio transformed
data. The reason appears to be that log-ratio analysis emphasizes those variables
with a high relative variation and in glass compositional data sets such variables
often have a low absolute presence and variation. Baxter and others (2005) and
Baxter and Freestone (2006) described using both simulated and real data where
crude principal component analysis produces archaeologically interpretable results

much more readily than logcontrast principal component analysis

4. Logratio analysis does not produce good predictions for edge cases when some
proportions are close to zero. As z; approach zero, logratios approach negative or

positive infinity.

5. Logratio transformations of compositional data are limited by the assumption
of strictly positive components and require special treatments for zero components.
Aitchison (1986) devised several special treatments to handle zero components of
compositional data, and lamented that the problem of zeros is unlikely ever to be

satisfactory and generally resolved.

6. The major remaining disadvantage of the logratio models is the complexity of

their structure.



We propose a new data analytic tool for measuring compositional data variabil-
ity that does not involve the use of logratio transformations introduced by Aitchison.
The approach is based on the use of the Sum of Coefficients of Variation (SCV) of the
components of the compositional data set. Coefficients of Variation are calculated
for each component and the sum of these coefficients is computed. The approach is
simple, based on a well-known measure of variation, non-parametric, and identifies a
set of subcompositions that retains as much of the variability in the full composition
as possible. Further, the approach doesn’t require any special treatment, of zeros and
allows much more useful information to be extracted from compositions, in situations
where zeros may contain potentiality important information.

This study is organized as follows. Chapter 2 introduces compositional data
and their analysis. Chapter 3 reviews the two approaches to measuring composi-
tional data variability, Aitchison’s approach based on the logratio transformations
and the Sum of Coeflicients of Variation approach. For special cases we examine dis-
tributional properties of the two measures and the theoretical relationship between
them as well as applications using simulated and real data sets. In Chapter 4 we
compare the Sum of Coefficients of Variation approach and Aitchison’s approach in
the presence of zeros using a real data set. Aitchison’s approach based on the logra-
tio transformations is considered after employing different existing zero treatment
techniques. We examined the changes in the two approaches with different percent-
ages of zeros and using different variables in the data. In Chapter 5 we evaluate
the performance of the new method based on the Sum of Coefficients of Variation
and Aitchison method using two real compositional data sets with zero observations.
Finally, conclusions and further research are presented in Chapter 6. We discuss pos-
sible ways for improving the Sum of Coefficients of Variation technique. Research

directions and possible extensions are given.



CHAPTER 2
COMPOSITIONAL DATA AND THEIR ANALYSIS

Compositional Data : The Sample Space

Compositional data are non-negative proportions summing to one. As such
compositional data occupy a restricted space where variables can vary only from 0
to 1. A composition of D proportions is completely specified by the components of
a d-part subvector (z,...,%4), where d = D — 1, and the remaining component has
the value

Th= L= B =g

This means that a D-part composition is essentially a d-dimensional vector and so
can be represented in some convenient d-dimensional set. This restricted space is

known as a simplex.

Definition 2. The d-dimensional simplex is the set defined by S¢ = {(z1,...,2a) :

1 >0,...,24 > 0521+ ...+ x4 < 1}.

Definition 3. The d-dimensional simplex embedded in D-dimensional real space is

the set defined by S% = {(@1,...,2p) : 21 >0,...,2p > 0;z; +... +zp = 1}.



Graphical Representation of Compositional Data

A convenient way of displaying the variability of 3-part compositions is with
what is variously termed a ternary diagram, a reference triangle, or barycentric
coordinate space. The diagram relies on the geometry of an equilateral triangle to
plot each component’s proportion of the total composition. Plotting several composi-
tions on the same diagram makes it simple to compare them to each other (Aitchison
1986).

The triangle of Figure (1) with vertices 1, 2, and 3 is equilateral and has unit
altitude. For any point P in triangle 123 the perpendiculars z;, z2, z3 from P to the

sides opposite 1, 2, 3 satisfy

z; >0 (3= 1,2,3), T+ 22+ 23 = 1. (21)

Moreover, corresponding to any vector (zi, 2, x3) satisfying (2.1), there is a
unique point in triangle 123 with perpendicular lengths 1,2, and x3. There is
therefore a one-to-one correspondence between 3-part compositions and points in
triangle 123, and so we have a simple means of representing 3-part compositions. In
such a representation we may note that the three inequalities in (2.1) are strict if and
only if the representative point lies in the interior of triangle 123. The percentage of
component 1 could range from 0, if the point is on the base of the triangle, to 100 if
the point is at vertex 1.

Although such 3-dimensional displays have a useful expository role in describ-
ing the structure of a problem, they have a limited part to play in data analysis,
since it is much more difficult to extend this form to a composition that has more
than four parts.

Example 1. The triangle of Figure (2) with vertices A, B, and C is for a 3-part

subcomposition of a mineral composition of 25 rock specimens of the type hongite.



Figure 1. Graphical representation of a 3-part composition (&, s, x3) in the refer-
ence triangle 123.

The full data set is given in Aitchison (1986) . Each composition consists of the
percentages by weight of five minerals, Albite, Blandite, Cornite, Daubite, and Endite.
As we can see from the graph there is an extensive and widely scattered variation in
the ratio of B to C compare to the other two ratios. This nonlinear ”curvature”

pattern is common in compositional data.

Compositional Covariance Structure

Aitchison (1986) argues that a composition x can be completely determined by

d ratios such as z;/zp(i = 1,...,d). This realization that the study of compositions



Figure 2. Graphical representation of a 3-part subcomposition for 25 hongite speci-
mens

is essentially concerned with the relative values of the compositional parts and not
the absolute values of the individual parts leads to logratios analysis. Aitchison

(1986) adopts a new concept of correlation based on covariances of the form

oijm = cov(log(zi/xi), log(z;/z1)).

and logratio means

§j = E(log(zi/z;)) (i=1,....dij=1+1,....,D).
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Definition 4. The covariance structure of a D-part composition x is the set of all

Tijkl = COU(IOQ(.T@/LE;;), !og(xj/:r;))

as i, j, k, 1 run through the values 1,...,D.

Using this definition, there are %dD covariances to be specified for which all
the others can then be determined. Aitchison (1986) introduced three ways in which
this general compositional covariance structure can be specified. These ways are

summarized in the following definitions:

Definition 5. For a D-part composition x the D X D matriz
T = [r;;] = [var{log(z:/z;)} : 4,7 =1,..., D]
is termed the variation matriz and determines the covariance structure by the rela-
tionships
1
Tijkl = 5(7}‘; + Tjk — Tij — Tht)-
7;; in definition (5) satisfies:

Tii = (i=1,...,D),

Tij = Tji (i=1,...,d;j=i+1,...,D),

and so are determined by the 3dD values 7;; (i=1,...,d;j=i+1,...,D).

Definition 6. For a D-part composition = the d x d matriz

¥ = [oy] = [cov{log(zi/xp),log(z;/xp)} : 4,5 =1,....d]
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is termed the logratio covariance matriz and determines the covariance structure by
the relationships

Oijkl = Tij + Okl — Oit — Ojk.

Definition 7. For a D-part composition x the D x D covariance matrizc

T = [y;5] = [covllog(z:/g(x)), log(x;/g(x))] : 4,5 = 1,..., D]

where g(z) is the geometric mean (1 .. .zp)D, is termed the centered logratio co-

variance matriz and determines the covariance structure by the relationships
Tijkl = Yij + Vel — Vit — Vik-

However, Aitchison (1986) describes that the analysis of any particular problem
may be simpler in terms of one of the specifications than the others and that each
specification has some apparent disadvantage relative to the others: T is not a
covariance matrix, 3 is not symmetric in the compositional parts, I is singular; there
is no specification which is free from all of these three disadvantageous features.

Finally, Aitchison (1986) introduces a measure of Total Variability of a com-

position x as :

Totvar(x) = tr(T) = % Z Tij = %Z var(log E). (2.2)

— AT Zj
1< 1<

Reducing the Dimensionality of Compositional
Data Sets

Aitchison (1984) considers two dimension-reducing procedures for composi-

tional data, subcompositional analysis and Logcontrast Principal Components.



L2

Subcompositional Analysis

Data reduction is most easily accomplished by considering smaller decom-
positions. For example, in a household expenditure enquiry we may start with a
budget-share composition (z,...,2q) of proportions of total expenditure spent on
nine commodity groups: foodstuffs, housing, fuel and light, tobacco and alcohol,
clothing and footwear, durable goods, miscellaneous goods, transport and vehicles,
and services. We may wish to identify subcompositions that retain as much of the
total variability in the entire composition as possible. For example, we may ask the
extent to which the subcompositions based on the components (foodstuffs, housing,
and fuel and light) and (foodstuffs, clothing and footwear, and services) retain the
variability of the complete nine compositions. We can form a subcomposition sim-
ply by rescaling the original proportions of these selected groups so that the scaled
proportions sum to 1.

The purpose of the analysis is to identify subcompositions that retain as much
of the total variability in the entire composition as possible.

If (z1,...,2p) is a complete D-part composition with the constraint

T +...+zp=1

then any subvector with its elements rescaled so that their sum is 1 is a sub-

composition. For example, the subvector (zy,...,Z¢) gives a subcomposition

XZ(Xl,,XC)=$%/($1++3}C) (321,10) (23)

Such a subcomposition is technically a composition with dimension ¢ = C'—1, smaller
than the dimension d of the original composition. It can be completely represented

by the logratio vector Y = log(X_¢/Xc¢). In any subcomposition, the ratio of any
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pair of components is identical to their ratio in the full composition. It follows that
the logratio means &; and variances 7;; are the same for the subcomposition as for
the composition. Moreover, we can obtain the variation array for any subcomposi-
tion by selection of the appropriate entries from the full array (Aitchison (1986)).
With such a covariance structure any relevant information which we have about a
subcomposition provides direct and exact information about the full composition.
Additionally, Aitchison (1986) explains that the covariance structure of a composi-
tion is completely determined by knowledge of the covariance structure of the logratio

variances of all of its 2-part subcompositions.

Definition 8. A selection matriz S is any matriz of order C x D (C < D), with
C elements equal to 1, one in each row and at most one in each column, and the

remaining C(D — 1) elements 0.

The measure of variability of the subcomposition X is simply the Total Vari-
ability of X regarded as C-part composition or of Y regarded as a c-dimensional

logratio vector. For a particular subcomposition this is
tr(T's) = tr(GcSTSGe) (2.4)

where S is € x D selection matrix, I' is the centered logratio covariance matrix of
the full composition, and G¢ =Ic — C™1J¢ with J¢ the C x C matrix of units and
Ic identity matrix. Hence the proportion of the Total Variability of a composition

retained by a subcomposition with selection matrix S is
tr(I's)/tr(T). (2.5)

and Aitchison finds a much simpler computation form which involves only simple
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summation of subsets of the variation matrix T and avoids the complicated con-

struction of I'g.

tr(rs)=%zﬁj i,j=1,...,C

i<j

1
tr(P):EZT@ i,j=1,...,D

1<j

tr(Ts)/tr(T') = (DjcSTS'jc)/(CipTip)- (2.6)
where j is a column vector of units. This is simply the average of all entries in the
variation matrix T that contribute to the C-part subcomposition divided by the
average of all the entries in T, this is

cC
D7y

D
C Ei:l Tij

Logcontrast Principal Component Analysis

A common technique for reducing the dimensionality in multivariate studies
is principal component analysis. Aitchison (1983) describes that a principal compo-
nent analysis which regards a data set in S as embedded in R¢ or R%", and finds
lines and hyperplanes of closest fit using Euclidean distance and orthogonality may
seem geometrically attractive but suffers from the curvature problem resulting from
nonlinear patterns and variation about curved lines in the compositional data set,
sce Figure (2) for an example (where the crude principal component analysis would
result in a linear reduction technique with straight line principal axes). Like so many
other statistical procedures for compositional data, principal component analysis is
subject to all the difficulties of interpretation associated with the use of crude covari-

ance structures. Moreover, such a procedure is mathematically linear in nature and
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so cannot hope to capture patterns of curved variability which are commonly present
in many compositional data sets. Aitchison (1983) has reviewed the unsatisfactory
nature of the versions of principal component analysis and proposed a different ap-
proach which has the capability of capturing the structure of the variability of the
data set. His method, referred to as logcontrast principal component, is to study the
dependence structure of compositions through the covariance matrix of logarithms
of the ratios of components. For a composition x in S¢, the counterpart of a linear
combination in R¢ is a linear combination of the logratio vector y or equivalently a
logcontrast a'logx where a’j = 0.

Although the loglinear-contrast approach to principal-component and sub-
compositional analysis has undoubtedly attractive features and appears successful
in application, it is far from being a complete answer to dimension-reducing prob-
lems in compositional data analysis Aitchison (1984) . One draw back is that we
cannot take logarithms of zero proportions. Moreover, the logcontrast approach is
not a general solution for all curved data sets. While it may succeed in straightening

out curved sets where the linear approach fails, it can prove just as inadequate.

Compositional Data Analysis and Zeros

As we mentioned earlier, one of the troublesome problems in compositional
data analysis using the logratio models is the presence of zeros in the data. In the
statistical literature, two explanations for the occurrence of zero observations are
proposed. These are rounding (or trace elements) and essential (or true) zeros. The
first explanation rationalizes that zero observation is an artifact of the measurement
process. Basically, if we had a more accurate measurement instrument we would
record a non-zero observation. Thus the observed zero is a proxy for a very small
number. The second rationalization argues that the observation should be zero as the

true generating process leads to the occurrence of zeros. The proposed modifications
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to deal with zero observations can then be derived by considering the causes of the

zero (Fry and others 1996). The following possible strategies have been investigated.

Amalgamation
Amalgamation is the reduction of the number of components in the composi-
tion by the grouping together of certain components. This is a simple approach and
it avoids the potential problems of the other options. In particular, spurious clusters
associated with any replaced zeros may occur (Fry and others 1996). However, this
is not an appropriate technique to deal with the zero observations when the omitted

variables are important for the analysis.

Zero Replacement
The zero replacement techniques assumes that a composition has C' zero and
D — C non-zero components. It is recommended that the zeros to be replaced by

small values. The possible strategies for the replacements are:

1. The additive replacement strategy of Aitchison (1986) (AA) suggested a proce-
dure which replaces any composition with C' zero and D — C non-zero components
by another composition in which the zeros become r = §(C + 1)(D — C)/D? and
the positive components are reduced by 6C(C + 1)/D?, where ¢ is the maximum

rounding-off error.

2. The alternative zero replacement (AZR) procedure modified Aitchison of Fry
and others (1996) suggested that we replace the zeros by r = 6(C + 1)(D — C)/D?,
but to reduce each non-zero by w; x 6C(C + 1)/D?, where w; is the share ratio of
the component ¢. This both retains the share ratios for the non-zero components
and makes an appropriate zero replacement. Fry and others (1996) suggested that

we can get a sensible minimum value of r; by dividing the minimum possible value
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any observation can be by the maximum value in the data.

3. Replace zero values with some value r, less than 0.01%, and recalculate the
variable ”Other” by differencing (RZRO). Example of this approach is presented in
Beardah, Baxter, Cool, and Jackson (2003) .

4. Replace zeros with some small value, 7, and other elements by (z;; — rz;;/100).
This is the multiplicative replacement strategy (MR), proposed by Martin-Fernandez,
Barceld-Vidal and Pawlowsky-Glahn (2003). It is a particular case of what they call
the simple replacement strategy, in which zeros are replaced with a small constant

and then all elements rescaled so that the sum is 1.

The difficulty in general with zero replacement approach is to decide how
much to add while retaining as much of the original structure in the data as possible.
Moreover, the constant-sum-constraint of compositional data forces modification of
the zero and the non-zero values and the imputed value depends not only on ¢ but
also on the dimension D and the number C of zeros. Note also that a different ¢;
could be considered for every component z; leading to a slightly more complicated
expression. Finally, Tauber (1999) illustrated that Aitchison’s distance between two

replaced observations defined by:

D

A(X,z) = 4| (log

Z;
—~" " g(z)

X;
—log—=)2,
QQ(X))

where g(.) is the geometric mean of the composition, is extremely sensitive to the

change in 6.

Ranking Methods for zeros in Compositional Data
When ranking is applied to multivariate data, it is usually applied separately

to each variable, across cases. This avoids the problem that the variables may be
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of very different scales. It would, however, be possible to rank each case across
variables, or even to rank across all variables and cases. The type of ranking used will
depend on the analysis to be undertaken. Bacon-Shone (1991) introduced ranking
methods of handling zeros in compositional data analysis. In his method, Bacon-
Shone suggested that ranking across both cases and components retains most of the
useful information in a robust way that does not require optimizing over a parameter
as in the zero replacement methods and thus seems a potentially useful alternative
for handling zeros in compositional data. He also suggested that the greater the
number of variables and cases, the more effective ranking will be in retaining the
structure of the data. Furthermore, a weakness of ranking is that the transform will
depend on the set of components chosen. This suggests ranking data at the highest

level of disaggregation, and doing any aggregation after the rank transformation.



CHAPTER 3

MEASURING TOTAL VARIABILITY OF COMPOSITIONAL DATA
SETS USING SUM OF COEFFICIENTS OF VARIATION

Cocfficient of Variation (CV) is a normalized measure of dispersion of a prob-

ability distribution. It is defined as the ratio of the standard deviation to the mean:

CV = Standard Deviation/Mean

This is only defined for non-zero mean, and is most useful for variables that
are always non-negative and for data measured on a ratio scale. Coefficient of varia-
tion is useful because the standard deviation of the data must always be understood
in the context of the mean of the data. It is a dimensionless number and when
comparing data sets with different units or wildly different means, it can be more in-
formative than the standard deviation. C'V has been found useful in many scientific
areas. Reed et al. (2002) developed a simple procedure to determine the probability
that an assay will accurately discern whether two samples have the same analytic
concentration or not based on a knowledge of the assay variability as measured by
the Coefficient of Variation. The Coefficient of Variation has been used by organiza-
tional rescarchers to index and compare the internal variability of top management
teams, task groups, boards of directors, departments, and other social aggregates on

numerous dimensions (Bedeian and Mossholder 2000). The CV has also seen some

19
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applications in compositional data. In laboratory medicine the CV is widely used
measure in External Quality Assessment to assess and compare the reproducibility
of techniques and equipments. Zhang and others (2010) proposed a multivariate C'V
for comparing the performance of the electrophoretic techniques in External Quality
Assessment based on the logratio transformed compositional electrophoretic data.
Graf (2006) introduced a global C'V to assess precision of compositional data in a
stratified two-stage sample using the Swiss Earnings Structure Survey. The global
CV he introduced is the square root of the average squared C'V for all possible ratios

of components.

Finally, archaeologists who were aware of the statistical literature on compo-
sitional data analysis expressed concern about the unsatisfactory experience in ap-
plying the logratio transformation to pottery and glass compositional data. Baxter
and others (2005) and Baxter and Freestone (2006) described using both simulated
and real data where crude principal component analysis and absolute differences in
composition can convey archaeological interpretable results much more readily than
logcontrast principal component analysis. Baxter and Freestone (2006) noted that
”One problem for logratio analysis is that results can be overly influenced by minor
oxides, present at low absolute levels and not structure-carrying, that dominate the

logratio analysis to no good effect because of their high relative variance.”

Sum of Coefficients of Variation and
Subcompositional Analysis

We discussed in Chapter 2 measures of Total Variability and dimension-reduction
techniques introduced by Aitchison. His approach can prove inadequate for some
data producing uninterpretable parameters and limited by the assumption of strictly
positive components as well as the requirement of special treatments in practice of

the zero components.
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We introduce an alternative technique of measuring compositional data vari-
ability and variables selection based on the Sum of Coefficients of Variation (SCV) of
the components. We simply sum up the Coefficients of Variation of the components
of a C-part subcomposition. A high SCV is associated with sets of components that
retain most of the variability of the full composition.

For example, if X¢ is the C-part subcomposition formed from the leading sub-
vector (zy,...,z¢) of the full composition (1, ...,zp), then the Sum of Coefficients

of Variation of the C-part subcomposition would be

SCV = CV(z1) + ...+ CV(zc) (3.1)

Sum of Coefficients of Variation and Total
Variability

In this section we investigate the relationship between Sum of Coefficients of

Variation and Aitchison Total Variability based on logratio transformations. First we
study the distributional properties for each measure and from the derived distribu-
tions we examine the relationship between them. We consider D-part compositional

data generated from D independent random variables from a Gamma distribution.

Estimation of Sum of Coefficients of Variation
Let Wy,...,Wp be independent random variables from Gamma(a;, 3). Re-
call that the probability density function (pdf) of a random variable W following a

Gamma distribution is defined as follows:

1 = w
w* exp ——

I'(a)Be g’

flw;a,8) =

with 0 < w < 00, @, f > 0. The mean and variance are defined by:
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E(W) =af
Var(W) = af?
The theoretical coefficient of variation under the Gamma distribution is thus

given by

VVar(W)  op® 1
- EW)  af e

CV (W) (3.2)

Lt a, = f&”i—_, then X = (z1,...,2p) has a Dirichlet distribution DP~Y(ay,...,ap)
i=1 Wi

with @, ...,ap > 0. The probability density function of X is given by
., b
f(:ﬁ,...,mg;cel,...,ap):__ x?i—l’
5 L1

for all z,...,xp_1 > 0 satisfying ; + ...+ zp_1 < 1, where zp is 1 — z; —
... —zp_1. The density is zero outside the open (D — 1)-dimensional simplex. The

normalizing constant is the multinomial Beta function, which can be expressed in

l'lle T(ei)

m’ Q= (al;!-..,O.‘D)_

terms of the Gamma function: B(a) =
Define ay = Zil oy, then
E(.’I.'l) - %,
Va?"(:ci) _ ailay—oi)

af (ay+1)?

and the coefficient of variation is given by

[ Qg — Oy
CV(&Z}) = m (33)

and if a; = «
D-1

= A
Vi) Da+1 a4)

and the Sum of the Coefficients of Variation
scv = Dy 2=1 (3.5)

Da+1"
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Figure 3. Sum of Coefficients of Variation computed using the standard formula for
3-part compositional data (D=3) simulated from Gamma and Sum of Coefficients of
variation using equation (3.5)

Figure (3) shows a scatter plot of the Sum of Coefficients of Variation com-
puted using Equation (3.5) for different values of & (@ = 10,...,40) and the Sum of
Coefficients of Variation computed using the standard formula SCV = Zil CV (z;),
where CV(X) = ESE%! for 3-part compositional data sets generated from Gamma
distributions with 100 observations and different values of o (o = 10,...,40). Fig-

ure (4) shows the two sums against a. It can be seen clearly from the graph that

the two measures are nearly the same and decreasing with a.
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Figure 4. Sum of Coefficients of Variation computed using the standard formula for
3-part compositional data (D=3) simulated from Gamma and Sum of Coeflicients of

variation using equation (3.5) against the corresponding values of o

Estimation of Compositional Total Variability

Recall that the Total Variation of a random composition x is given by

1 1 T;
Totvar = ) Zf,;j =5 Z Var(log m—j).
i<j i<j
From the closure operation, x = (z1,...,2Zp) = %B?T”J and W = (wy,...
=1 N

are compositionally equivalent and that

(3.6)

,'LUD)
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Var(log —) = Var(l wl“‘) Var(l )
Tij = aro——aro ‘*‘—a’ro—
E gZ—lwz .

First we will derive the distribution of ($*). Let v = L and u = wy +w ,
J

then the jacobian is |J| =

= {+0)?
S —— = ap—1 U ap—1 U
0(0) = Frir SR ) ()
s B exp(—uju®r T2 g1 4 g) T2
I'(0n) ()

The ratio % therefore has the distribution

ee 1
h(v =f u,v)du = ——v*1 (1 +0v)" 72 v > 0,1, > 0 3T
@)= | ol v)du = g (140 o (37)

which is a Beta Prime Distribution with parameters (aj,as) (Johnson, Kotz and
Balakrishnan 1995).

Now let Z = —log(v) = —log(%*), then

v = exp(—2) and | £ exp(—z)| = exp(—2)

hence,

f(z) = m exp(—z(a1 — 1))(1 + exp(—2)) "2 exp(—2)

1 exp(—a;2)

Blay, 05) (L4 sxp(—z))mtea’ 0 ~# =00 Q.o >0. (3.8)

f(z) =

which is a Generalized Logistic Distribution (GLD) with moment generating
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function (Balakrishnan 1992) :

F(Oﬂl = t)F(CYQ + t)

M(t) — F(al)r(ag) , —Cg < L. (39)
When a; = as = @, then (3.8) equals
1 exp(—az)

flz)== —0<z<o00, a>0. (3.10)

B(a, a) (1 + exp(—z2))2e’

which is a Generalized Logistic Distribution with moment generating function

given by
I'a—t)['(a+t)
M(t) = ,—a<t<a. 3.11)
K ) :
and for the special case when a =1
f(z) = SHCR) . o, (3.12)

which is Logistic distribution with E(Z) =0 and Var(Z) = 2.

Using the moment generating function in (3.9), the mean and variance of Z

can be written as (Balakrishnan 1992 and Wu et al. 2000):
E(Z) = ¥(a2) — ¥(ca)

and

Var(Z) =¢'(oq) + ¥’ (02)

where ¥(.) and ¥{.) are the the first and the second derivatives of the of the

logarithm of the Gamma function, digamma and trigamma functions, respectively



(Balakrishnan 1992). Hence,

and

i = VGT(lOg..:_;) =Var(Z) = ¢'() + ¢'(a )

and the Total Variability defined in (3.6)

. D-1
Totvar(x) = ——

D P (cu).

D
=1

5

When o;; =0 =

Tij = 2¢' (o)

Totvar(x) = (D — 1)¢'(a).
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(3.13)

(3.14)

Figure (5) is a scatter plot of the Total Variability computed using Aitchison

logratio transformation for 3-part compositional data generated from gamma distri-

butions with 100 observations and different values of & (o = 10,...,40) and the

derived Total Variability in Equation (3.14) for each value of «. Figure (6) shows

the two measures of Total Variability against «. It is clear that the two measures

are nearly the same and decreasing with a.

Relationship between Total Variability and
Sum of Coefficients of Variation

For a Dirichlet distribution with a; = a, from equation (3.5), the SCV is given

bD—1

SCV =D Dati
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Figure 5. Total Variability computed using Aitchison logratio transformation for 3-
part compositional data (D=3) simulated from Gamma and Total Variability using
Trigamma Function

Solving for & we have

D-1-

Dy

o

Then an estimate for the Total Variability is

=1 ey

Dy

Totvar(x) = (D — 1)¢/'(&) = (D — 1)¢'(D ). (3.15)

To illustrate the above findings we simulate 1000 3-part compositional data
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Figure 6. Total Variability computed using Aitchison logratio transformation for 3-
part compositional data (D=3) simulated from Gamma and Total Variability using
Trigamma Function against the corresponding values of «

sets from three independent random Gammas with 100 observations and a = 10,
then apply the closure operation which divides each component by the sum of the
components, thus scaling the data to the constant sum 1. Figure (7) shows Triangle
plot for one such data set. Table (1) presents summary statistics of Coefficients of
Variation, Sum of Coefficients of Variation and Total Variability using both Aitchsi-
son logratio and Total Variability defined in equation (3.15) for the simulated data.
The estimates of the means of Aitchsion Total Variability and Total Variability using

Trigamma as a function of the Sum of Coefficients of Variation are the same to three
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CV(X1) | CV(X2) | CV(X3) Sum of Aitchison | Total Variability
Coefficients Total using Trigamma
of Variation | Variability | Function and SCV

Mean | 0.254 0.254 0.253 0.761 0.211 0.211

Table 1. Summary Statistics of 1000 simulated Coefficients of Variation, Sum of
Coefficients of Variation and Total Variability for 3-part simulated compositional
dataset of size n=100

CV(X;) Sum of Aitchison | Total Variability
Coefficients Total using Trigamma
of Variation | Variability | Function and SCV

Mean | 0.279 1.40 0.420 0.419

Table 2. Summary Statistics of 1000 simulated Coefficients of Variation, Sum of
Coefficients of Variation and Total Variability for 5-part simulated compositional
dataset of size n=100

decimal places.

Figure (8) is a scatter plot of Aitchison’s Total Variability and the derived Total
Variability using the Trigamma as a function of the Sum of Coefficients of Variation.
It is clear that the two measures of Total Variability are very similar. Figure (9) shows
the scatter plot of the derived Total Variability using the Trigamma function and
the Sum of Coefficients of Variation. The plot indicates a strong positive correlation
between the two measures.

Tables (2) and (3) and Figure (10) show similar findings for 5-part and 7-part

compositional data sets generated from a Gamma distribution with & = 10 and
n = 100. Furthermore, tables (4) and (5) and Figure (11) show similar findings for
3-part compositional data sets generated from a Gamma distribution with smaller

sizes, n = 50 and n = 30.
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Figure 7. Triangle plot of 3-part compositional data set simulated from Gamma
distribution with o = 10

CV(X;) Sum of Aitchison | Total Variability
Coefficients Total using Trigamma
of Variation | Variability | Function and SCV

Mean | 0.290 2.030 0.631 0.629

Table 3. Summary Statistics of 1000 simulated Coefficients of Variation, Sum of
Coefficients of Variation and Total Variability for 7-part simulated compositional
dataset of size n=100



32

018 020 022 024 026 028
1 1 1 1 1 1

Total Variability using Trigamma Function

0.16
1

T T T T T T T
016 018 020 022 024 026 028

Total Variability using Aitchison Logratio Transformation

Figure 8. Aitchison’s Total Variability and derived Total Variability using Trigamma
function for 3-part Simulated Data

CV(X;) Sum of Aitchison | Total Variability
Coefficients Total using Trigamma
of Variation | Variability | Function and SCV

Mean | 0.253 0.760 0.211 0.211

Table 4. Summary Statistics of 1000 simulated Coefficients of Variation, Sum of
Coefficients of Variation and Total Variability for 3-part simulated compositional
dataset of size n=>50
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Figure 9. Derived Total Variability using Trigamma function and Sum of Coefficients
of Variation for 3-part Simulated Data

CV(X;) Sum of Aitchison | Total Variability
Coefficients Total using Trigamma
of Variation | Variability | Function and SCV

Mean | 0.253 0.758 0.211 0.211

Table 5. Summary Statistics of 1000 simulated Coefficients of Variation, Sum of
Coefficients of Variation and Total Variability for 3-part simulated compositional

dataset of size n=30
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Relationship between Total Variability and Sum of
Coefficients of Variation for smaller values of «

In this section we investigate the relationship between Total Variability and
Sum of Coefficients of Variation for smaller values of a. Figure (12) below shows
triangle plots of 3-part compositional data sets generated from Gamma distribution
with a = 5,2,1,0.5,0.3, and 0.1. The findings for @ > 1 are similar to what we
found previously. Tables (6-8) present summary statistics of Sum of Coefficients of
Variation, Aitchison Total Variability and Total Variability using the derived formula
of Trigamma as a function of Sum of Coefficients of Variation for 3-part composi-
tional data sets generated from Gamma distributions with @« = 5, @ = 2 and a = 1.
Figure (13) shows plots of the derived Total Variability against Aitchison Total Vari-
ability and Sum of Coefficients of Variation computed for these data sets. The plots
reveal strong correlations between the derived Total Variability and Aitchison Total
Variability as well as between the derived Total Variability and Sum of Coefficients of
Variation. However, the relationship between Aitchison Total Variability and Sum of
Coefficients of Variation as well as relationship between Aitchison Total Variability
and the derived Total Variability using the Trigamma function change when o < 1.
Tables (9-11) present summary statistics for these measures. Clearly when a < 1,
the Trigamma as a function of the Sum of Coefficients of Variation is not a good
estimate of Aitchison Total Variability and the relationship between Aitchison Total
Variability and Sum of Coefficients of Variation is not strong as it appears from Fig-
ure (14). Furthermore, the relationship between the derived Total Variability and

Sum of Coeflicients of Variation is not linear like what we saw before when a > 1.
One explanation of these results is that Logratio analysis and Aitchison Total
Variability do not produce good predictions for edge cases when some proportions
are close to zero. As z; approach zero, logratios approach negative or positive infinity

and this is the case when o < 1.
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Figure 12. Triangle plots of 3-part compositional data sets simulated from Gamma
distributions witha =5, a=2,a=1,a=0.5, a=0.3, and a = 0.1

CV(X;) Sum of Aitchison Total Variability
Coefficients Total using Trigamma
of Variation | Variability | Function and SCV

Mean | 0.353 1.058 0.441 0.442

Table 6. Summary Statistics of 1000 simulated Coefficients of Variation, Sum of
Coefficients of Variation and Total Variability for 3-part simulated compositional
dataset of size n=100 and a = 5
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CV(X;) Sum of Aitchison | Total Variability
Coefficients Total using Trigamma
of Variation | Variability | Function and SCV

Mean | 0.534 1.601 1.290 1.300

Table 7. Summary Statistics of 1000 simulated Coefficients of Variation, Sum of
Coeflicients of Variation and Total Variability for 3-part simulated compositional
dataset of size n=100 and a = 2

CV(X;) Sum of Aitchison | Total Variability
Coefficients Total using Trigamma
of Variation | Variability | Function and SCV

Mean | 0.708 2.123 3.280 3.343

Table 8. Summary Statistics of 1000 simulated Coefficients of Variation, Sum of
Coefficients of Variation and Total Variability for 3-part simulated compositional
dataset of size n=100 and a =1

CV(X;) Sum of Aitchison | Total Variability
Coefficients Total using Trigamma,
of Variation | Variability | Function and SCV

Mean | 0.897 2.693 9.816 10.285

Table 9. Summary Statistics of 1000 simulated Coefficients of Variation, Sum of
Coecfficients of Variation and Total Variability for 3-part simulated compositional
dataset of size n=100 and a = 0.5

CV(X;) Sum of Aitchison | Total Variability
Coefficients Total using Trigamma
of Variation | Variability | Function and SCV

Mean | 1.033 3.095 24.661 26.367

Table 10. Summary Statistics of 1000 simulated Coefficients of Variation, Sum of
Coefficients of Variation and Total Variability for 3-part simulated compositional
dataset of size n=100 and a = 0.3
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Figure 13. Aitchison’s Total Variability, derived Total Variability using Trigamma
function, and Sum of Coefficients of Variation for 3-part Simulated Data sets for

=5 a=2anda=1

CV(X:) Sum of Aitchison | Total Variability
Coefficients Total using Trigamma
of Variation | Variability | Function and SCV

Mean | 1.253 3.759 202.550 270.019

Table 11. Summary Statistics of 1000 simulated Coefficients of Variation, Sum of
Coefficients of Variation and Total Variability for 3-part simulated compositional
dataset of size n=100 and o = 0.1
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Figure 14. Aitchison’s Total Variability, Total Variability using Trigamma as a func-
tion of SCV and Sum of Coefficients of Variation for 3-part Simulated Data sets with
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Relationship between Total Variability and Sum of
Coefficients of Variation for different as

Consider W1, ..., Wp be independent distributed random variables from Gamma(ia, 3)

with ¢ =1,..., D. Recall from equation (3.3),

Of.i__oﬁi

Vo= St 1

when o; = ia,

_ <D _ _ D ,_ DD+
Q=i s@=0)  i=0"

and

DWW+ _ Bl
CV :I?) = 2 = 3
2 io(@BEH) 4 1)\ i(@BBH) 4 1)

fori=1,...,D. Hence,

D(D-H)

—1
SCV = Z J D(D+l) e 1)

and

1 D(D+1)
SCV? = D(D+1) + 1(2 2 1)*

hence,

(2, /2220 — 12 - 5Cv
D(D
—Q'HlSCV2

&=

Recall from equation (3.15)

Totvar(x) = —— Zv (o) = — 1 Zﬂ’ (id)
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CV(X,) | CV(X,) | CV(X3) Sum of Aitchison | Total Variability
Coefficients Total using Trigamma
of Variation | Variability | Function and SCV

Mean | 0.286 0.181 0.128 0.595 0.127 0127

Table 12. Summary Statistics of 1000 simulated Coefficients of Variation, Sum of
Coefficients of Variation and Total Variability for 3-part simulated compositional
dataset of size n=100 and a; = 10, ay = 20 and a3 = 30

then
. D-1& , Fo, 2 —1)2-80v?
Totvar(x) = 5 E Y (i DQIZH)SCA'VQ 1. (3.16)

i=1

To illustrate the above findings numerically we simulate 1000 3-part composi-
tional data sets from three independent random Gammas with 100 observations and
with parameters a; = 10,22 = 20 and a3 = 30 , then apply the closure operation
so the sum of components add to 1. Figure (15) is a Triangle plot for one data set.
Table (12) presents the summary statistics of Coefficients of Variation, Sum of Co-
efficients of Variation, Aitchison Total Variability, and the derived Total Variability
in equation (3.16) for the simulated data.

Figure (16) shows a scatter plot of Aitchison’s Total Variability and the de-
rived Total Variability using the Trigamma as a function of the Sum of Coefficients
of Variation. It is clear that the estimated Total Variability using the Trigamma
function is a good estimate of Aitchson Total Variability. Figure (17) shows a scat-
ter plot of the derived Total Variability using Trigamma function and the Sum of
Coefficients of Variation. The plot reveals a strong correlation between derived Total
Variability and Sum of Coeflicients of Variation.

We repeated similar analysis in the cases where Wy, ..., Wp are independent

distributed random variables from Gamma with parameters «, 5a and 10« and again
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Figure 15. Triangle plot of 3-part compositional data set simulated from gamma
distribution with a; = 10, @ = 20 and a5 = 30

with parameters «, 50c and 100c. Tables (13) and (14) as well as Figures (18) and
(19) show similar findings for data sets generated from Gamma distributions with
a1 = 10,2 = 50 and a3 = 100 and Gamma distributions with a; = 1, g = 50 and

g = 100
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Figure 16.  Aitchison’s Total Variability and derived Total Variability using
Trigamma function for 3-part Simulated Data with a; = 10, a3 = 20 and a3 = 30

CV(X1) | CV(X,) | CV(X3) Sum of Aitchison | Total Variability
Coefficients Total using Trigamma
of Variation | Variability | Function and SCV

Mean | 0.305 | 0.116 0.061 0.482 0.090 0.090

Table 13. Summary Statistics of 1000 simulated Coefficients of Variation, Sum of
Coefficients of Variation and Total Variability for 3-part simulated compositional
dataset of size n=100 and a; = 10, @y = 50 and a3 = 100
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Figure 17. Derived Total Variability using Trigamma function and Sum of Coeffi-
cients of Variation for 3-part Simulated Data with a; = 10, @y = 20 and a3 = 30

CV(Xy) | CV(Xy) | CV(X3) Sum of Aitchison | Total Variability
Coefficients Total using Trigamma
of Variation | Variability | Function and SCV

Mean | 0.985 0.115 0.058 1.158 1117 1307

Table 14. Summary Statistics of 1000 simulated Coefficients of Variation, Sum of
Cocfficients of Variation and Total Variability for 3-part simulated compositional
dataset of size n=100 and a; = 1, ap = 50 and a3 = 100
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Figure 18. Plots of 3-part compositional data set simulated from gamma distribution

with ¢q = 10, o = 50 and a3 = 100
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Figure 19. Plots of 3-part compositional data set simulated from gamma distribution

with ;= 1, Qg = 50 and Qg = 100
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Relationship between Total Variability and Sum of
Coefficients of Variation for Correlated Variables

In this section, we examine the relationship between the two measures for corre-

lated variables. To generate correlated Gamma variables, we first generate correlated
Multivariate Normal sample with known correlation matrix. This imposes a similar
rank correlation on the Normal sample. We then impose this same rank correlation
on randomly generated independent Gammas. We investigate the relationship using
three different data sets. For the first dataset, we simulate a Multivariate Normal

sample with three variables using the following correlation matrix:

1.00 0.70 0.70
0.70 1.00 0.70
0.70 0.70 1.00

From the simulated Multivariate Normal sample we impose its same rank cor-
relation on three independent random variables simulated from Gamma distribution.

The estimated Gamma correlation matrix for one dataset is:

1.00 071 071
0.71 1.00 0.72
0.71 0.72 1.00

Figure (20) is a triangle plot for one data set and Figure (21) displays a scatter
plot of Aitchison’s Total Variability and the derived Total Variability based on the
Trigamma function and Sum of Coefficients of Variation. The results are based on
1000 simulated 3-part compositional data sets from correlated Gamma variables with
100 observations and o = 5. Again a strong positive correlation is clear from the
plot.

The second dataset is a 5-part compositional data generated from five corre-
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Figure 20. Triangle plot for 3-part compositional data set simulated using correlated
Gammas with a = 5

lated Gamma variables. The correlation matrix used for this simulation derived from
Aitchison and Greenacre (2002). They investigated a 6-part colour compositions in
22 paintings. In each painting the artist used black, white, blue, red, yellow, and

other. The correlation matrix of the logratios is:
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Figure 21. Aitchison’s Total Variability and derived Total Variability using
Trigamma function and Sum of Coefficients of Variation for 3-part compositional
data sets simulated using correlated Gammas with a = 5

1.000 —0.069 0.005 0.188 0.213
—0.069 1.000 0.352 0.147  0.606
0.005 0.352 1.000 —0.845 0.883
0.188 0.147 —0.845 1.000 —0.561

0.213 0.606 0.883 —0.561 1.000

As an illustration, we use this correlation matrix to determine the multivariate

rank correlation of a Normal sample. We impose the rank correlations on independent
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Gamma random variables. The estimated Gamma correlation matrix for one such

sample is:

1.000 —-0.019 0.079 0.170 0.231
—0.019 1.000 0.264 0.207 0.563

0.079 0.264 1.000 —0.831 0.851

0.170 0.207 -—0.831 1.000 -0.538

0.231 0563 0.851 —0.538 1.000

Figure (22) is a triangle plot for three variables from one data set and Fig-
ure (23) displays a scatter plot of Aitchison’s Total Variability and the derived Total
Variability based on the Trigamma function and Sum of Coefficients of Variation.
The results were based on 1000 simulated 5-part compositional data sets from corre-
lated Gamma variables with 100 observations and a = 10. There is a strong positive
correlation between Aitchison Total Variability and Total Variability from Sum of

Coefficients of Variation consistent with findings from earlier.

The last dataset is 4-part compositional data where we used the correlation
matrix of the logratios of the hongite data presented in Chapter 2. The correlation

matrix of the logratios is:

1.00 088 —0.62 0.75
0.88 1.00 -0.89 041
-0.62 —0.89 1.00 0.03

0.75 041 0.03 1.00]

The estimated Gamma correlation matrix for one simulated dataset is:



Figure 22. Triangle plot for three variables from 5-part compositional data set sim-
ulated using correlated Gammas with o = 10

1.00 088 —0.64 0.70
0.88 1.00 -0.87 0.36
—-0.64 —0.87 1.00 0.03

| 0.70 036 0.03 1.00,

Figure (24) displays a scatter plot of Aitchison’s Total Variability and the
derived Total Variability based on the Trigamma function and Sum of Coefficients
of Variation. The results were based on 1000 simulated 4-part compositional data

sets from correlated Gamma variables with 100 observations and o = 10. Again
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Figure 23. Aitchison’s Total Variability and derived Total Variability using
Trigamma function and Sum of Coefficients of Variation for 5-part compositional
data sets simulated using correlated Gammas with a = 10

there is a strong positive correlation between Aitchison Total Variability and Total

Variability from Sum of Coefficients of Variation.

Finally, we close this section by generating 5-part compositional datasets from
Additive Logistic Normal Distribution simulated using correlated Multivariate Nor-
mal samples. For this simulation we used the covariance matrix of the logratios of
the hongite data. Figure (25) displays a scatter plot of Aitchison’s Total Variabil-
ity and the derived Total Variability based on the Trigamma function and Sum of

Coefficients of Variation. The results were based on 1000 simulated 5-part com-
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Figure 24.  Aitchison’s Total Variability and derived Total Variability using
Trigamma function and Sum of Coefficients of Variation for 4-part compositional
data sets simulated using correlated Gammas with o = 10

positional datasets from Additive Logistic Normal variables with 100 observations.
Again there is a strong positive correlation between Aitchison Total Variability and

Total Variability from Sum of Coefficients of Variation.
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Figure 25. Aitchison’s Total Variability and derived Total Variability using
Trigamma function and Sum of Coefficients of Variation for 5-part compositional
data sets simulated using Additive Logistic Normal
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Components | Mean | Standard Deviation | Coefficient of Variation
Paper 0.363 0.115 0.317
Food 0.177 0.089 0.504
Glass 0.141 0.094 0.666
Other 0.092 0.112 1.222
Metal 0.085 0.034 0.401
Plastic 0.070 0.024 0.347
Yard 0.052 0.080 1.549
Text 0.022 0.024 1.096

Table 15. Summary Statistics of Garbage Compositional Data

Illustrative Example using Real Compositional Data Set

Garbage Project

Between 1987 and 1995, a group of archaeologists directed by W.L.Rathje from
the University of Arizona’s Garbage Project systematically excavated, hand sorted,
measured, and recorded thirty tons of contents from fifteen landfills located across
North America (W.L.Rathje 2005). In contrast to all of the public concern about
fast food packaging and disposable diapers, the results demonstrated that both items
together accounted for less than two percent of landfill volume. In contrast, paper,
which received little public attention, was the largest proportion of landfill volume.

Proportions of weights of discarded garbage for one week for a sample of 62
households from the Garbage Project, University of Arizona are shown in Appendix
A. Table (15) presents summary statistics of the components and Tables (16-18)
show all 3-part, 4-part, and 5-part subcompositions formed from this data set and
the corresponding SCV, Aitchison’s Total Variability and the proportion of Total
Variability retained by the subcomposition (R?). The data in these tables have been
ordered in descending order by Total Variability.

Figure (26) shows scatter plots of the Total Variability of 3-part subcompo-

sitions and the corresponding Sum of Coefficients of Variation. The plot indicates
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a strong positive correlation between SCV and Aitchison’s Total Variability. Cor-
relation coefficient between the two measures is 0.95. It was this graph that first
suggested the usefulness of SCV. The top five 3-part subcompositions with largest
Total Variability sorted in descending order are: (Yard, Text, Other), (Glass, Yard,
Other), (Food, Yard, Other), (Paper, Yard, Other), and (Metal, Yard, Other) which
match four of the top five subcompositions with largest Sum of Coefficients of Varia-
tion. Moreover, the components in this graph fall into groups. The first group in the
left bottom of the graph consists of 3-part subcompositions that contain the variables
Metal, Plastic, or Paper. The second group consists of subcompositions that contain
variable Text and the third group consists of subcompositions that contain variable
Other. The last group at the right top of the graph consists of subcompositions
contain variables Yard and Other. The two boxplots in Figure (27) displays Sum
of Coefficients of Variation and Total Variability for all 3-part subcompositions that
contain each component. The graph shows a large agreement between the ordering

of the components for the two measures.

Figure (28) shows scatter plots of the Total Variability of all 4-part subcom-
positions and the corresponding Sum of Coefficients of Variation. The plot indicates
a strong correlation between the two measures with a correlation coefficient of 0.95.
The top five 4-part subcompositions with largest Total Variability sorted in descend-
ing order are: (Food, Yard, Text, Other), (Glass, Yard, Text, Other), (Paper, Yard,
Text, Other), (Metal, Yard, Text, Other), and (Plastic, Yard, Text, Other) which
match all the five top 4-part subcompositions with largest Sum of Coefficients of Vari-
ation but with different order. The two boxplots in Figure (29) displays the Sum
of Coefficients of Variation and Total Variability for all 4-part subcompositions that
contain each component. The graph shows a large agreement between the ordering

of the components for the two measures.
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Figure 26. SCV and compositional Total Variability of 3-part subcompositions of
the Garbage data. M: Metal, P: Paper, L: Plastic, G: Glass, F: Food, Y: Yard, T:
Text, O: Other

Figure (30) shows scatter plots of the Total Variability of 5-part subcompo-
sitions and the corresponding Sum of Coefficients of Variation. The plot indicates
a strong correlation between SCV and Aitchison’s total variability. Correlation co-
efficient between the two measures is 0.95. The top five 5-part subcompositions
with largest Total Variability sorted in descending order are: (Glass, Food, Yard,
Text, Other), (Paper, Glass, Yard, Text, Other), (Paper, Food, Yard, Text, Other),
(Metal, Plastic, Yard, Text, Other), and (Metal, Food, Yard, Text, Other) which

match four of the top five subcompositions with largest Sum of Coefficients of Vari-
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Figure 27. Distribution of the SCV and Total Variability of all 3-part subcomposi-

tions that contain each Garbage component

ations. The two boxplots in Figure (31) display the Sum of Coefficients of Variation

and Total Variability for all 5-part subcompositions that contain each component.

The graph shows a large agreement between the ordering of the components for the

two measures.
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Figure 28. SCV and compositional Total Variability of 4-part subcompositions of
the Garbage data. M: Metal, P: Paper, L: Plastic, G: Glass, F: Food, Y: Yard, T:
Text, O: Other
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Figure 30. SCV and compositional Total Variability of 5-part subcompositions of
the Garbage data.M: Metal, P: Paper, L: Plastic, G: Glass, F: Food, Y: Yard, T:
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Figure 31. Distribution of the SCV and Total Variability of all 5-part subcomposi-

tions that contain each Garbage component



Table 16. All 3-part subcompositions and the corresponding
SCV, Total Variability and R?

3-part Sum of Coefficients Total i
Subcomposition of Variation Variability
1 | Yard , Text , Other 3.868 6.704 0.640
2 | Glass, Yard , Other 3.438 6.224 0.594
3 | Food , Yard , Other 3.276 6.214 0.593
4 | Paper , Yard , Other 3.089 6.131 0.585
5 | Metal , Yard , Other 3.173 5.974 0.570
6 | Plastic , Yard , Other 3.118 5.835 0.557
7 | Food , Yard , Text 3.149 5.328 0.508
8 | Glass, Yard , Text 3012 5.105 0.487
9 | Paper , Yard , Text 2.963 5.105 0.487
10 | Metal , Yard , Text 3.047 5.046 0.481
11 | Plastic , Yard , Text 2.992 4.940 0.471
12 | Glass , Food , Yard 2.720 4.118 0.393
13 | Paper , Food , Yard 2371 4.002 0.382
14 | Paper , Glass , Yard 2.533 3.950 0.377
15 | Metal , Food , Yard 2.455 3.950 0.377
16 | Plastic , Food , Yard 2.400 3.939 0.376
17 | Plastic , Glass , Yard 2.562 3.827 0.365
18 | Metal , Glass , Yard 2.817 3.815 0.364
19 | Paper , Plastic , Yard 2.213 3.761 0.359
20 | Metal , Paper , Yard 2.268 3.739 0.357
21 | Metal , Plastic , Yard 2.297 3.679 0.351
22 | Glass , Text , Other 2.984 3.571 0.341
23 | Food , Text , Other 2.822 3.430 0.327
24 | Paper , Text , Other 2.636 3.324 0317
25 | Metal , Text , Other 2.719 3.310 0.316
26 | Glass , Food , Other 2.393 3.235 0.309
27 | Paper , Glass , Other 2.206 3.185 0.304
28 | Metal , Glass , Other 2.290 3.095 0.295
29 | Plastic , Text , Other 2.665 3.024 0.289
30 | Plastic , Glass , Other 2.235 2.927 0.279
31 | Paper , Food , Other 2.044 2.873 0.274
32 | Metal , Food , Other 2,127 2.865 0.273
33 | Metal , Paper , Other 1.941 2712 0.264
34 | Plastic , Food , Other 2.073 2.674 0.255
35 | Paper , Plastic , Other 1.886 2.614 0.249
36 | Metal , Plastic , Other 1.970 2.577 0.246
37 | Glass , Food , Text 2.266 1.857 0.178
38 | Metal , Food , Text 2.001 1.677 0.160
39 | Metal , Glass , Text 2.163 1.674 0.160
40 | Paper , Glass , Text 2.080 1.666 0.159

64



3-part Sum of Coefficients Total R?

Subcomposition of Variation Variability
41 | Paper , Food , Text 1.917 1.587 0.151
42 | Paper , Plastic , Text 1.760 1.539 0.126
43 | Plastic , Glass , Text 2.109 1.539 0.147
44 | Plastic , Food , Text 1.947 1.520 0.145
45 | Metal , Paper , Text 1.814 1.444 0.138
46 | Metal , Plastic , Text 1.844 1.380 0.132
47 | Metal , Glass , Food 1.571 0.732 0.070
48 | Paper , Glass , Food 1.488 Q71T 0.068
49 | Plastic , Glass , Food 1.517 0.693 0.066
50 | Metal , Paper , Glass 1.385 0.554 0.053
51 | Paper , Plastic , Glass 1.330 0.547 0.052
52 | Metal , Plastic , Glass 1.414 0.532 0.051
53 | Metal , Plastic , Food 1.252 0.421 0.040
54 | Metal , Paper , Food 1.223 0.386 0.037
55 | Paper , Plastic , Food 1.168 0.357 0.034
56 | Metal , Paper , Plastic 1.065 0.236 0.022
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Table 16. Garbage Compositional Data: All 3-part subcompositions and the corre-
sponding SCV, Total Variability and R?



SCV, Total Variability and R?

Table 17. All 4-part subcompositions and the corresponding

4-part Sum of Coefficients Total R?
Subcomposition of Variation Variability
1 | Food , Yard , Text , Other 4.372 8.128 0.776
2 | Glass , Yard , Text , Other 4.534 8.102 A
3 | Paper , Yard , Text , Other 4.185 7.974 0.761
4 | Metal , Yard , Text , Other 4.269 7.888 0.753
5 | Plastic , Yard , Text , Other 4.214 7.688 0.734
6 | Glass , Food , Yard , Other 3.942 7.421 0.708
7 | Paper , Glass , Yard , Other 3.755 7.309 0.697
8 | Paper , Food , Yard , Other 3.593 7.207 0.688
9 | Metal , Glass , Yard , Other 3.839 7.166 0.684
10 | Metal , Food , Yard , Other 3BTT i b 0.680
11 | Plastic , Glass , Yard , Other 3.785 7.055 0.673
12 | Plastic , Food , Yard , Other 3.622 6.998 0.668
13 | Metal , Paper , Yard , Other 3.490 6.981 0.666
14 | Paper , Plastic , Yard , Other 3.436 6.878 0.656
15 | Metal , Plastic , Yard , Other 3.519 6.774 0.646
16 | Glass , Food , Yard , Text 3.816 6.153 0.587
17 | Paper , Food , Yard , Text 3.467 6.008 0573
18 | Metal , Food , Yard , Text 3.551 6.000 0.572
19 | Paper , Glass , Yard , Text 3.629 5.935 0.566
20 | Plastic , Food , Yard , Text 3.496 5.898 0.563
21 | Metal , Glass , Yard , Text 3713 5.865 0.560
22 | Plastic , Glass , Yard , Text 3.658 5.779 0.551
23 | Metal , Paper , Yard , Text 3.364 5.750 0.549
24 | Paper , Plastic , Yard , Text 3.309 5.672 0.541
25 | Metal , Plastic , Yard , Text 3.393 5.642 0.538
26 | Paper , Glass , Food , Yard 3.037 4.795 0.458
27 | Metal , Glass , Food , Yard F121 4.730 0.451
28 | Plastic , Glass , Food , Yard 3.066 4.716 0.450
29 | Glass , Food , Text , Other 3.488 4.535 0.433
30 | Paper , Plastic , Glass , Yard 2.880 4.532 0.432
31 | Metal , Paper , Food , Yard 2772 4.529 0.432
32 | Paper , Plastic , Food , Yard 2.718 4.522 0.431
33 | Metal , Paper , Glass , Yard 2.934 4.522 0.431
34 | Metal , Plastic , Food , Yard 2.801 4.497 0.429
35 | Metal , Plastic , Glass , Yard 2.963 4.445 0.424
36 | Paper , Glass , Text , Other 3.302 4.405 0.420
37 | Metal , Glass , Text , Other 3.386 4.369 0.417
38 | Metal , Paper , Plastic , Yard 2.615 4.281 0.408
39 | Metal , Food , Text , Other 3.223 4.230 0.404
40 | Paper , Food , Text , Other 3.140 4.205 0.401
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4-part Sum of Coefficients Total R?
Subcomposition of Variation Variability
41 | Plastic , Glass , Text , Other 3.331 4.148 0.396
42 | Metal , Paper , Text , Other 3.037 4.068 0.388
43 | Plastic , Food , Text , Other 3.169 3.993 0.381
44 | Metal , Plastic , Text , Other 3.066 3.859 0.368
45 | Paper , Plastic , Text , Other 2.982 3.855 0.368
46 | Paper , Glass , Food , Other 2.710 3.753 0.358
47 | Metal , Glass , Food , Other 2.794 3.722 0.355
48 | Metal , Paper , Glass , Other 2.607 3.602 0.344
49 | Plastic , Glass , Food , Other 2.739 3.573 0.341
50 | Paper , Plastic , Glass , Other 2.552 3.477 0.332
51 | Metal , Plastic , Glass , Other 2.636 3.424 0.327
52 | Metal , Paper , Food , Other 2.445 3.336 0.318
53 | Metal , Plastic , Food , Other 2.474 3.202 0.306
54 | Paper , Plastic , Food , Other 2.390 3.194 0.305
55 | Metal , Paper , Plastic , Other 2.287 3.074 0.293
56 | Metal , Glass , Food , Text 2.667 2227 0.212
57 | Paper , Glass , Food , Text 2.585 2.185 0.208
58 | Plastic , Glass , Food , Text 2.613 2.103 0.201
59 | Metal , Paper , Glass , Text 2.481 2.001 0.191
60 | Metal , Plastic , Glass , Text 2.510 1.922 0.183
61 | Metal , Paper , Food , Text 2.319 1.910 0.182
62 | Paper , Plastic , Glass , Text 2.426 1.901 0.181
63 | Metal , Plastic , Food , Text 2.348 1.875 0.179
64 | Paper , Plastic , Food , Text 2.264 1.794 0.171
65 | Metal , Paper , Plastic , Text 2.161 1.642 0.157
66 | Metal , Paper , Glass , Food 1.889 0.896 0.085
67 | Metal , Plastic , Glass , Food 1.918 0.893 0.085
68 | Paper , Plastic , Glass , Food 1.834 0.867 0.083
69 | Metal , Paper , Plastic , Glass 1.73% 0.700 0.067
70 | Metal , Paper , Plastic , Food 1.569 0.526 0.050

Table 17. Garbage Compositional Data: All 4-part subcompositions and the corre-

sponding SCV, Total Variability and R?



Table 18. All 5-part subcompositions and the corresponding
SCV, Total Variability and R?

5-part Sum of Coefficients Total oo
Subcomposition of Variation Variability
1 | Glass,Food,Yard, Text,Other 5.038 9.157 0.874
2 | Paper,Glass, Yard, Text,Other 4.851 8.993 0.858
3 | Paper,Food,Yard, Text,Other 4.689 8.939 0.853
4 | Metal,Plastic,Yard, Text,Other 4.935 8.904 0.850
5 | Metal,Food,Yard, Text,Other 4.773 8.899 0.849
6 | Plastic,Glass, Yard, Text,Other 4.880 8.739 0.834
7 | Plastic,Food,Yard, Text,Other 4718 8.721 0.832
8 | Metal,Paper,Yard, Text,Other 4.586 8.710 0.831
9 | Paper,Plastic,Yard, Text,Other 4.532 8.551 0.816
10 | Metal,Plastic,Yard, Text,Other 4.615 8.493 0.810
11 | Paper,Glass,Food,Yard,Other 4.259 8.130 0.776
12 | Metal,Glass,Food, Yard,Other 4.343 8.044 0.768
13 | Plastic,Glass,Food,Yard,Other 4.289 7.937 0.757
14 | Metal,Paper,Glass, Yard,Other 4.157 7.888 0.753
15 | Paper,Plastic,Glass,Yard,Other 4.102 7.800 0.744
16 | Metal,Paper,Food,Yard,Other 3.994 7.781 0.742
17 | Metal,Plastic,Glass, Yard,Other 4.186 7.697 0.734
18 | Paper,Plastic,Food,Yard,Other 3.940 7.680 0.733
19 | Metal,Plastic,Food,Yard,Other 4.023 7.626 0.728
20 | Metal,Paper,Plastic,Yard,Other 3.837 7.463 |10.712
21 | Paper,Glass,Food,Yard, Text 4.133 6.687 0.638
22 | Metal,Glass,Food,Yard, Text 4.217 6.660 0.635
23 | Plastic,Glass,Food,Yard, Text 4.162 6.573 0.627
24 | Metal,Paper,Food,Yard, Text 3.868 6.453 0.616
25 | Metal,Paper,Glass, Yard, Text 4.030 6.419 0.612
26 | Metal,Plastic,Food, Yard,Text 3.897 6.376 0.608
27 | Paper,Plastic,Food, Yard, Text 3.813 6.372 0.608
28 | Paper,Plastic,Glass, Yard, Text 3.976 6.352 0.606
29 | Metal,Plastic,Glass, Yard, Text 4.059 6.307 0.602
30 | Metal Paper,Plastic,Yard, Text 3.710 6.129 0.585
31 | Metal,Paper,Glass,Food, Yard 3.438 5.193 0.495
32 | Paper,Plastic,Glass,Food,Yard 3.384 5.182 0.494
33 | Metal,Plastic,Glass,Food,Yard 3.468 5.142 0.491
34 | Metal,Glass,Food, Text,Other 3.890 5.089 0.486
35 | Paper,Glass,Food, Text,Other 3.806 5.089 0.486
36 | Metal, Paper,Plastic,Glass, Yard 3.281 4.928 0.470
37 | Metal, Paper,Glass, Text,Other 3.703 4.919 0.469
38 | Metal,Paper,Plastic,Food, Yard 3.119 4.895 0.467
39 | Plastic,Glass,Food, Text,Other 3.835 4.894 0.467
40 | Paper,Plastic,Glass, Text,Other 3.648 4.743 0.453
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5-part Sum of Coefficients Total R?

Subcomposition of Variation Variability
41 | Metal,Paper,Food, Text,Other 3.541 4.733 0.452
42 | Metal,Plastic,Glass, Text,Other 3.732 4.726 0.451
43 | Metal,Plastic,Food, Text,Other 3.570 4.576 0.437
44 | Paper,Plastic,Food,Text,Other 3.486 4.544 0.434
45 | Metal,Paper,Plastic, Text,Other 3.383 4.400 0.420
46 | Metal,Paper,Glass,Food,Other 3111 4.082 0.390
47 | Paper,Plastic,Glass,Food,Other 3.057 3.964 0.378
48 | Metal, Plastic,Glass,Food,Other 3.140 3.950 Q37T
49 | Metal,Paper,Plastic,Glass,Other 2.954 3.807 0.363
50 | Metal,Paper,Plastic,Food,Other 2.791 3.555 0.339
51 | Metal,Paper,Glass,Food, Text 2.985 2.458 0.235
52 | Metal,Plastic,Glass,Food, Text 3.014 2.405 0.229
53 | Paper,Plastic,Glass,Food, Text 2.930 2.360 0.225
54 | Metal,Paper,Plastic,Glass, Text 2.827 2.178 0.208
55 | Metal,Paper,Plastic,Food, Text 2.665 2.066 0.197
56 | Metal, Paper,Plastic,Glass,Food 2.235 1.035 0.099

Table 18. Garbage Compositional Data: All 5-part subcompositions and the corre-

sponding SCV, Total Variability and R?



CHAPTER 4

ZEROS IN COMPOSITIONAL DATA: A COMPARISON BETWEEN
SUM OF COEFFICIENTS OF VARIATION AND COMPOSITIONAL
TOTAL VARIABILITY

As we discussed earlier, logratio analysis of compositional data introduced by
Aitchison is limited by the assumption of strictly positive components. Therefore,
Total Variability and subcompositional analysis techniques based on the logratio
transformations require complete data matrices, thus calling for a strategy of impu-
tation of zeros. Different zero treatment strategies in compositional data and their
advanatges/disadvantage were discussed in Chapter 2. There is no agreement on
one best strategy to handle zeros and this problem is unlikely ever to be satisfactory
and generally resolved in analysis based on the logratio transformations (Aitchison
1986) . However, using the new approach of measuring compositional data variability
based on Sum of Coefficients of Variation finding informative subcompositions when
zero observations are present does not require any special treatment or imputation.
In this chapter we will examine the behavior of the Sum of Coefficients of Variation
approach introduced in Chapter 3 and compositional Total Variability introduced by

Aitchison (1986) in the existence of zeros.

We investigate the behavior of SCV method and Aitchison Total Variability in

the existence of zeros using the following procedure: we replace 10%, 20%, 30%, and
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40% of the observations in one variable with zeros at random and then we compare
the changes in the Sum of Coefficients of Variation and Aitchison Total Variability of
the subcompositions before and after zeros. Aitchison’s approach based on logratios
is applied after treating zeros with current zero treatment techniques introduced in
Chapter 2. We illustrate these analysis with the Garbage data first using the com-
ponent Food. We choose the variable Food because it has an intermediate variation
between the eight components. We repeat the analysis using the two most extremist

components in the data (with the smallest and largest variation), Paper and Yard.

Replacing 10% of the observations in the variable
Food with zeros

Table (19) presents Sum of Coefficients of Variation of all 3-part subcomposi-
tions and the corresponding Total Variability computed after employing the following

zero treatment techniques introduced in Chapter 2:
1. Multiplicative Replacement (MR) with r = 0.0001256881
2. Multiplicative Replacement (MR) with r = 0.001
3. Aitchison Additive (AA) with C =1, D =8, 6 = 0.005, and r = 0.001
4. Aitchison Additive (AA) with C =1, D = 8, § = 0.00005, and r = 0.00001
5. Alternative zero replacement (AZR) with r = 0.0004859086
6. Alternative zero replacement (AZR) with r = 0.0001256881
7. Replace zero and recalculate other (RZRO) with r = 0.0001256381
8. Rank across cases and variables (Rank)

As a result of the existence of zeros, the correlation coefficients between SCV

and total variability of all 3-part subcompositions dropped from 0.95 in the original
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data to 0.716, 0.886, 0.887, 0.452, 0.840, 0.716, 0.717, and 0.522 after replacing zeros
across the eight zero treatment techniques respectively. In addition, Table (19) shows
that order and the amount of Total Variability computed for all 3-part subcompo-
sitions change dramatically with 10% of zeros in the component Food. Correlation
coefficients between original compositional Total Variability for 3-part subcompo-
sitions and the new Total Variability after replacing zeros are 0.707, 0.909, 0.911,
0.410, 0.852, 0.707, 0.708, 0.506 across the eight zero treatment techniques. Figures
(32) and (33) show scatter plots of the original Total Variability and the new Total
Variability after replacing zeros. There are two separate lines in these plots, the
upper line represents all 3-part subcompositions that contain the component Food.
This indicates that Aitchison’s compositional Total Variability is extremely affected
by the existence of zeros in the compositional data. From Table (16) in Chapter
3, the top five 3-part subcompositions with largest Total Variability in the origi-
nal data with no zeros sorted in descending order are: (Yard, Text, Other), (Glass,
Yard, Other), (Food, Yard, Other), (Paper, Yard, Other), and (Metal, Yard, Other).
Out of these top five subcompositions, only one of them contains the variable Food.
However, Table (19) below shows that in the top five 3-part subcompositions with
largest Total Variability in the data after replacing zeros, the number of subcompo-
sitions that contain the replacement variable for Food increased to 5, 2, 2, 5, 3, 3, 5,
and 5 using Aitchison’s method across the eight zero treatment techniques respec-
tively. Finally, boxplots in Figure (34) show Sum of Coefficients of Variation and
Total Variability for all 3-part subcompositions that contain each Garbage compo-
nent after replacing zeros. We selected two zero-replacement techniques (MR) and
(AA). The graph shows that subcompositions that include the variable Food have
the largest Total Variability which is a dramatic change from what we saw before in

Figure (27) from chapter 3 where variable Food came in the fifth place.
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In contrast, we don’t see the same amount of change in the Sum of Coefficients
of Variation before and after zeros. Correlation coefficient between SCV of all 3-part
subcompositions of the original data and SCV of the new data after replacing zeros
is 0.995 (see Figure (35)). In addition, the top five 3-part subcompositions with
largest SCV in the original data with no zeros sorted in descending order are: (Yard,
Text, Other), (Glass, Yard, Other), (Glass, Yard, Text), (Food, Yard, Other), and
(Metal, Yard, Other) with only one subcomposition that includes the variable Food.
The new top five subcompositions with largest SCV after replacing zeros are: (Yard,
Text, Other), (Glass, Yard, Other), (Food, Yard, Other), (Glass, Yard, Text), and
(Food, Yard, Text) with only two subcompositions that contains the variable Food.
Boxplot in Figure (34) shows that even after replacing Food with 10% zeros, it stayed

in the fifth place.
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Figure 32. Changes in Total Variability after replacing 10% of the observations in
the variable Food with zeros. M: Metal, P: Paper, L: Plastic, G: Glass, F: Food, Y:

Yard, T: Text, O: Other
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Figure 33. Changes in Total Variability after replacing 10% of the observations in
the variable Food with zeros. M: Metal, P: Paper, L: Plastic, G: Glass, F: Food, Y:
Yard, T: Text, O: Other
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Figure 34. Distribution of the SCV and Total Variability of all 3-part subcomposi-
tions that contain each Garbage component after replacing 10% of the observations
in the variable Food with zeros.
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Replacing 10% of the observations in the variable
Paper with zeros

The component Paper has the largest mean and smallest Coefficient of Vari-
ation in the Garbage compositional data. After replacing 10% of the observations
in the variable Paper with zeros, correlation coefficients between Sum of Coefficients
of Variation and Total Variability of all 3-part subcompositions dropped to 0.451,
0.737, 0.745, 0.157, 0.643, 0.451, 0.451, and 0.272 across the eight zero treatment
techniques respectively. In addition, Table (20) shows that the amount and order of
Total Variability computed for all 3-part subcompositions changes dramatically with
10% of zeros in the data and even more than the changes occurred after replacing
10% of the observations in the variable Food with zeros. Correlation coefficients
between original compositional Total Variability for 3-part subcompositions and the
new Total Variability after replacing zeros ranged between 0.230 and 0.810 . In the
original data with no zeros, out of the top five subcompositions with largest To-
tal Variability, only one of them contains the variable Paper. However, Table (20)
below shows that of the top five 3-part subcompositions that retained most of the
variability in the data after replacing zeros, number of subcompositions that includes
the variable Paper increased to 5, 2, 2, 5, 4, 5, 5, and 5 across the eight techniques
respectively.

In contrast, we don’t see the same amount of change in the SCV before and
after zeros. The correlation coefficient between SCV of all 3-part subcompositions
of the original data and SCV of the new data after replacing zeros is 0.992. In
addition, None of the top five 3-part subcompositions with largest Sum of Coefficients
of Variation include the variable Paper which is comparable to the results in the

original data with no zeros.
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Replacing 10% of the observations in the variable
Yard with zeros

The variable Yard has the largest Coefficient of Variation. As expected, slight
changes happened in the Sum of Coefficients of Variation and the compositional To-
tal Variability after replacing 10% of the observations in the variable Yard with zeros.
Correlation coefficients between SCV and Total Variability of all 3-part subcompo-
sitions after replacing zeros are 0.959, 0.963, 0.964, 0.931, 0.964, 0.959, 0.959, and
0.922 across the eight zero treatment techniques respectively. In addition, correlation
coeflicients between the original Total Variability for 3-part subcomposition and the
new Total Variability after zeros ranged between 0.963 and 0.998 across the eight
methods. From Table (16) in Chapter 3, all top five subcompositions with largest
Sum of Coefficients of Variations or largest Total Variability contains the variable
Yard. Same results we found after replacing 10% of the observations in the variable

Yard with zeros as shown in Table (21)
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Replacing 20%, 30%, or 40% of the observations
with zeros

Replacing 20%, 30%, or 40% of the observations
in the variable Food with zeros

Table (22) presents the number of 3-part subcompositions out of the top five
with largest Sum of Coefficients of Variation and compositional Total Variability that
include the variable Food after replacing 10%, 20%, 30%, and 40% of the observa-
tions in the variable Food with zeros. At 20% zeros in the data, all top five 3-part
subcompositions with largest Total Variability include the variable Food. In con-
trast, using Sum of Coefficients of Variation technique, only two out of the top five
include the variable Food. The same results were found when we replaced 30% of the
observations with zeros. At 40%, Sum of Coefficients of Variations gave three out of
the top five that include the variable Food while all top five 3-part subcompositions
with largest Total Variability include the variable Food. Figure (36) summarizes
the number of 3-part subcompositions out of the original top five remain in the top
five subcompositions after replacing 10%, 20%, 30%, and 40% of the observations
in the variable Food with zeros using compositional Total Variability and Sum of
Coefficients of Variation. For example at 10% zeros, Sum of Coefficients of Variation
keeps four in the top five subcompositions compared to only one subcomposition re-
mains in the top five using the Total Variability in five of the eight techniques. The
only subcomposition that remains in the top five with largets Total Variability is the
one that includes the component Food. At 20% replacement, Sum of Coefficients
of Variation keeps four in top five subcompositions compared to only one subcom-
position using Total Variability in all zero replacement techniques and similarly at
30%. Finally, at 40% replacement Sum of Coefficients of Variation keeps three in

top five subcompositions compared to one subcomposition using Total Variability in
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Figure 36. Number of 3-part subcompositions remain in the top five after replacing
10%, 20%, 30%, and 40% of the observations in the variable Food with zeros

all zero replacement techniques. Figures (37) and (38) display scatter plots of the
original Total Variability and the new Total Variability after replacing 20% ﬁeros
and Figures (39) and (40) display scatter plots of the original Total Variability and
the new Total Variability after replacing 30% zeros. All the plots are given with the
same scale except for the Rank technique. Figures (41) and (42) display scatter plots
of the original Sum of Coeflicients of Variation and the new Sum of Coefficients of

Variation after replacing 20% and 30% zeros.
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Figure 37. Changes in Total Variability after replacing 20% of the observations in
the variable Food with zeros. M: Metal, P: Paper, L: Plastic, G: Glass, F: Food, Y:

Yard, T: Text, O: Other
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Figure 38. Changes in Total Variability after replacing 20% of the observations in
the variable Food with zeros. M: Metal, P: Paper, L: Plastic, G: Glass, F: Food, Y:

Yard, T: Text, O: Other
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Figure 39. Changes in Total Variability after replacing 30% of the observations in
the variable Food with zeros. M: Metal, P: Paper, L: Plastic, G: Glass, F: Food, Y:
Yard, T: Text, O: Other



§ AZR with r=0.0004859086

w

2

2

2

L]

£ w | R=0.44

£

g

£ 2 o
]

g M‘, Lﬂ‘ﬂﬁmﬂ

H

0 ™ Lo
:;: Mm‘r

& ey

o o=

z - - -
; 0 1 2 3 4 5

Total Variability with no Zeros

RZRO with r=0.0001256881

8

o

k-1

2

]

=

L]

£ w R=0.23

=

; o
M GREND

= 2 e 40

3 -~ !

£

H

= LT
= Y

3 WM

& ST

%‘ o |uwme

B - - - -

z ] 1 2 3 4 5
2

Total Variability with no Zeros

Mew Total Variability with 30% Zeros in the Variable Food

Mew Total Varisbility with 30% Zeros in the Varable Food

15

10

AZR with r=0.0001256881

Total Variability with no Zeros

R=0.23
o FYT B0
MFT a” O
el
LR 2
WW"
T
MPRES
0 1 2 3 4 5 6
Total Variability with no Zeros
Rank
R=0.10
FeT Yo
-4
e ARt
Lt Y10
;mmm" vesr
[ ;
0 1 2 3 4 5 6

94

Figure 40. Changes in Total Variability after replacing 30% of the observations in
the variable Food with zeros. M: Metal, P: Paper, L: Plastic, G: Glass, F: Food, Y:

Yard, T: Text, O: Other
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Figure 41. Changes in the Sum of Coeflicients of Variation after replacing 20% of
the observations in the variable Food with zeros. M: Metal, P: Paper, L: Plastic, G:
Glass, F: Food, Y: Yard, T: Text, O: Other
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Replacing 20%, 30%, or 40% of the observations
in the variable Paper with zeros

Table (23) presents number of 3-part subcompositions out of the top five with
largest Sum of Coefficients of Variation and compositional Total Variability that in-
clude the variable Paper after replacing 10%, 20%, 30%, and 40% of the observations
with zeros. The results are comparable to what we found using the variable Food.
Compositional Total Variability is strongly affected by zeros while we observe a slow
change in the Sum of Coefficients of Variation as the percentage of zeros increases in

the data.

Replacing 20%, 30%, or 40% of the observations
in the variable Yard with zeros

Table (24) presents number of 3-part subcompositions out of the top five with
largest Sum of Coefficients of Variation and compositional Total Variability that
include the variable Yard after replacing 10%, 20%, 30%, and 40% of the observations
in the variable with zeros. The results are comparable to what we found at 10%
of zeros. Small changes in both Sum of Coefficients of Variations and the Total
Variability occurred since all top five 3-part subcompositions in the original data

with no zeros include the variable Yard.
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% of Zeros | SCV | MR | MR | AA | AA | AZR | AZR | RZRO | Rank
10% 2 5 2 2 5 3 5 5] 5
20% 2 5 5 5 5 5 5 5 5
30% 2 5 5 5 5 ) b} 5 5
40% 3 5 5 ) 5 5 5 5 5

Table 22. Number of 3-part subcompositions of the top five with largest Sum of
Coefficients of Variation and largest Total Variability that include the variable Food
at different percentages of zeros in the variable Food.

% of Zeros | SCV | MR | MR | AA | AA | AZR | AZR | RZRO | Rank
10% 0 5 2 2 5 4 5 5 5
20% 1 5) 5 5 5 5 5 5 5]
30% 2 5 5 5 5 53 5) %) 5
40% 3 5 ) 5 5 5 5 5 5

Table 23. Number of 3-part subcompositions of the top five with largest Sum of
Coefficients of Variation and largest Total Variability that include the variable Paper
at different percentages of zeros in the variable Paper.

% of Zeros | SCV | MR | MR | AA | AA | AZR | AZR | RZRO | Rank
10% 5 5 5 5 5 5 5 5 5
20% 5 5 ) 5 ) 5 5 ) 5
30% 5 5 5 5 5 5 5 5 )
40% 5 5 5 5 5 5 ) 5 5

Table 24. Number of 3-part subcompositions of the top five with largest Sum of
Coefficients of Variation and largest Total Variability that include the variable Yard
at different percentages of zeros in the variable Yard.



CHAPTER 5
REAL COMPOSITIONAL DATA WITH ZERO OBSERVATIONS

In this chapter, we evaluate the performance of the new method based on
the Sum of Coefficients of Variation and Total Variability (based on the logratio
transformations) using two real compositional data sets with zero observations. Total
Variability is obtained after applying different zero treatment techniques presented

in chapter 2.

Glacial Data Set

Consider the Glacial data set included in Aitchison (1986) and discussed in
Martin-Ferndndez, Barcelé-Vidal and Pawlowsky-Glahn (2000). It has 92 samples
of pebbles of glacial tills sorted into four categories: red sandstone, gray sandstone,
crystalline, and miscellaneous. The components z1, Z2, 3 and z4 represent the cor-
responding percentages by weight of these four categories. There are 6 zero obser-
vations in zg, 30 zero observations in x4 and 6 zero observations in both 3 and z4.
The Sum of Coefficients of Variation was computed for all 2-part and 3-part subcom-
positions. The Total Variability was computed after employing three treatments (1)
Aitchison Additive approach with two different ¢ values §; = 0.001 and &, = 0.0005,
(2) Multiplicative Replacement approach with r; = 0.001 and 73 = 0.0005 and (3)
Rank across variables and cases. Table (25) presents summary statistics of the com-

ponents and Tables (26) and (27) present 2-part and 3-part subcompositions formed

99
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Components | Mean | Standard Deviation | Coefficient of Variation
T 0.585 0.314 0.536
Z 0.378 0.311 0.822
T3 0.016 0.020 1.267
T4 0.021 0.040 1.904

Table 25. Summary Statistics of the Glacial Compositional Data

from this data set and the corresponding Aitchison Total Variability. The results
in these Tables show that the amount and the order of the Total Variability change
when different strategies are employed as well as when the same strategy is em-
ployed with different replacements. For example, Total Variability for the 2-part
subcomposition (z;,zs) is computed after applying Aitchison Additive replacement
strategy with 6; = 0.001 is 1.920, putting this subcomposition in the third place.
With 6, = 0.0005, Total Variability is 1.896 which is now in the second place. For
the same subcomposition, Total Variability after applying Multiplicative Replace-
ment with r; = 0.001 is 1.878 in the fifth place and with 7, = 0.0005 is 1.878 but
in the third place. Figures (43) and (44) are scatter plots of Total Variability of all
2-part and 3-part subcompositions obtained after using Aitchison Additive replace-
ment strategy with two different Js, §; = 0.001 and d; = 0.0005. Clearly the amount
and the order of the Total Variability change with different replacements and that
Aitchsion Additive Strategy is sensitive to the changes in §. Similarly, Figures (45)
and (46) show the changes in the order and the amount of the Total Variability of the
2-part subcompositions and in the amount of the 3-part subcompositions obtained
after applying Multiplicative replacement strategy with two different replacements
r1 = 0.001 and r, = 0.0005.

In contrast, there is a small change in the amount and no change in the order of
the Sum of Coeflicients of Variation for all 2-part and 3-part subcompositions when

it was computed using the original data and the replaced data sets using different



2-part MR MR AA AA Rank
Subcomposition | r = 0.001 | 7 = 0.0005 | § = 0.001 | § = 0.0005

Z1, To 1.878 1.878 1.920 1.896 0.450
Ty, T3 1.023 1.206 1317 1.566 0.753
i W 1.980 2.512 2.787 3.469 1.660
To, T3 1.291 1.508 1.614 1.908 0.858
T, T4 1.652 2.160 2.404 3.076 1.486
T3, T4 1.619 2.292 2.604 3.504 1.837
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Table 26. Glacial Compositional Data: 2-part subcompositions and the correspond-

ing Total Variability

3-part MR MR AA AA Rank
Subcomposition | 7 = 0.001 | » = 0.0005 | § = 0.001 | § = 0.0005

1, %2, T3 2.795 3.061 3.234 3.580 2.061
Ty, Lo, Ty 3.673 4.366 4.740 5.628 3.596
21,3, Ty 3.082 4.007 4472 5.692 4.251
X9, T3, T4 3.042 3.973 4.415 5.659 4.182

Table 27. Glacial Compositional Data: 3-part subcompositions and the correspond-

ing Total Variability

zero replacement strategies and with different replaced values. Tables (28) and (29)

present Sum of Coefficients of Variation obtained using the original data with zeros

and the the replaced data sets using Aitchison Additive and Multiplicative strategies.

Figures (47 - 49) show the same findings graphically.
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Aitchison Additive with Delta=0.001

Figure 43. Plot of Total Variability for all 2-part subcompositions obtained after
employing Aitchison Additive Replacement Strategy with §; = 0.001 and J = 0.0005

2-part SCV SCV SCV SCV SCV
Subcomposition | Original MR MR AA AA
Data |r=0.001 [ 7 =0.0005 | 6 = 0.001 | § = 0.0005
Ty, To 1.358 1.358 1.358 1.358 1.358
1,3 1.803 1.786 1.795 1.800 1.802
By L4 2.440 2.396 2.418 2.424 2.432
T, T3 2.089 2.072 2.081 2.086 2.088
T, T4 2.726 2.682 2.704 2.710 2.718
T3, T4 3.171 3.110 3.141 3.152 3.162

Table 28. Glacial Compositional Data: 2-part subcompositions and the correspond-
ing Sum of Coeflicients of Variation obtained using the original and the replaced
data sets
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Figure 44. Plot of Total Variability for all 3-part subcompositions obtained after
employing Aitchison Additive Replacement Strategy with 6; = 0.001 and d, = 0.0005

3-part SCV SCV SCV SCV SCV
Subcomposition | Original MR MR AA AA
Data | r=0.001 | » =0.0005 | é = 0.001 | § = 0.0005
T1, T2, T3 2.625 2.608 2.617 2.622 2.624
T1,T2, Ty 3.262 3.218 3.240 3.246 3.254
Ty, T3, T3 3.707 3.646 3.677 3.688 3.698
T2, T3, Ty 3.993 3.932 3.963 3.975 3.984

Table 29. Glacial Compositional Data: 3-part subcompositions and the correspond-
ing Sum of Coefficients of Variation obtained using the original and the replaced

data sets



104

(6,6

24

(3.5)

(4.4)

2.0

(5.3)

1.8

1.6

(2.2)

Multiplicative Replacement with r=0.0005

1.4

1.2

1.1)

1.0 1.2 1.4 1.6 1.8 2.0
Multiplicative Replacement with r=0.001

Figure 45. Plot of Total Variability for all 2-part subcompositions obtained after
employing Multiplicative Replacement Strategy with r; = 0.001 and r, = 0.0005
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Figure 46. Plot of Total Variability for all 3-part subcompositions obtained after

employing Multiplicative Replacement Strategy with r; = 0.001 and r, = 0.0005
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Figure 48. Plot of Sum of Coeflicients of Variation for all 2-part subcompositions
obtained using the original data and the replaced data sets using Multiplicative
Replacement Strategy with r = 0.001
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Archaeological Glass

The second compositional data we investigate is a set of archaeological glass
compositions for a particular colorless Romano-British glass vessel type, facet-cut
beakers. The data consist of 12 major and minor oxides for 63 samples : AL,Os,
Fey03, MgO, CaO, NayO, K0, TiOy, P,Os, MnO, Sb,Os, PbO, and Other.
These data are given in Baxter, Cool and Jackson (2005), where the archaeological
background is discussed. The research was based on large samples from the four
typologically distinct groups of vessels, Type 1 is the cast colorless bowl, Type 2 is
the externally ground facet-cut beaker, Type 3 is the wheel-cut beaker, and Type 4

is the cylindrical cup.

Table (30) presents summary statistics of the 12 oxides for the facet-cut type.
The 11th oxide , PbO, contains 14 zero observations. The Sum of Coefficients of
Variation and Total Variability were computed for all 4-part subcompositions. To-
tal Variability computed after employing (1) Aitchison Additive approach with two
different values r; = 0.0000076 and ry = 0.0001 and (2) Multiplicative Replacement
approach with r; = 0.000055 and r, = 0.0001.

Figure (50) is a scatter plot of the top 20 4-part subcompositions with largest
Total Variability obtained after using Aitchison Additive replacement strategy with
ry = 0.0000076 and Total Variability for the same 20 subcompositions after em-
ploying Aitchison Additive replacement strategy with ro = 0.0001. Clearly the
amount and the order of the Total Variability of the top 20 4-part subcompositions
changed after using a different replacement value for the zero observations. Table
(31) presents the top 20 4-part subcomposition with largest Total Variability after
employing Aitchison’s Additive replacement Strategy with r; = 0.0000076 and the
top 20 4-part subcomposition with largest Total Variability after employing Aitchi-

son’s Additive replacement Strategy with vy = 0.0001. It is clear that the two zero
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Components | Mean | Standard Deviation | Coefficient of Variation
AL;O3 0.0184 0.0031 0.1664
FeyO4 0.0037 0.0008 0.2247
MgO 0.0038 0.0007 0.1773
CaO 0.0537 0.0098 0.1818
Nay,O 0.1794 0.0084 0.0468
K,0 0.0054 0.0010 0.1882
1710, 0.0006 0.0002 0.2659
P05 0.0004 0.0001 0.2549
MnO 0.0002 0.0002 0.8877
SbyOs 0.0145 0.0053 0.3682
PbO 0.0017 0.0019 1.0928
Other 0.7181 0.0156 0.0217

Table 30. Summary Statistics of the Archaeological Glass Compositional Data

replacement scenarios produce different groups of subcompositions. Similar results in
Figure(51) after employing Multiplicative replacement strategy with vy = 0.000055
and ry = 0.0001.

Consistent with what we found in the Glacial data, there was no change in
the order of the top 20 4-par subcompositions with largets Sum of Coecfficients of
Variation computed for the original data and for the replaced data using any of the

zero replacement strategies and with any replaced value as it appears in Figure (52).
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Top 20 4-part
Subcomposition
AA with r=0.0001

Top 20 4-part
Subcomposition
AA with r=0.0000076

1 (AL,Ca,Mn,Pb) Totvar= 4.620
2 (AL,Ca,Ti,Pb) Totvar= 4.568
3 (AL,Ca,P,Pb) Totvar= 4.566

4 (AL,Mg,Ca,Pb) Totvar= 4.564
5 (AL,Ca,K,Pb) Totvar= 4.561

6 | (AL,Ca,Pb,Other) Totvar= 4.588
7 (AL,Fe,Ca,Pb) Totvar= 4.557
8 (AL,Ca,Na,Pb) Totvar= 4.552
9 | (AL,Mn,Pb,Other) Totvar= 4.546
10 | (AL,Na,Mn,Pb) Totvar= 4.539
11 (AL,K,Mn,Pb) Totvar= 4.535
12 | (Ca,Mn,Pb,Other) Totvar= 4.531
13| (AL,Mg,Mn,Pb) Totvar= 4.525
14 (Ca,Na,Mn,Pb)Totvar= 4.522
15 (AL,Ca,Sb,Pb) Totvar= 4.520
16 (Ca,K,Mn,Pb) Totvar= 4.518
17|  (AL,TiMn,Pb)Totvar= 4.512
18 (AL,P,Mn,Pb)Totvar= 4.508
19 (AL,Mg ,K,Pb)Totvar= 4.504
20 | (AL,Mg,Pb,Other)Totvar= 4.504

(AL,Ca,Mn,Pb) Totvar= 1.909
(AL,Mn,Pb, Other) Totvar= 1.852
(AL,K,Mn,Pb) Totvar= 1.845
(AL,Na,Mn,Pb) Totvar= 1.844
(AL,Ca,P,Pb) Totvar= 1.839
(AL,Ca,Ti,Pb) Totvar= 1.836
(AL,Ca,K,Pb) Totvar= 1.835
(Ca,Mn,Pb, Other) Totvar= 1.834
(AL,Ca,Sb,Pb) Totvar= 1.832
(AL,Fe,Ca,Pb) Totvar= 1.832
(AL,Mg,Ca,Pb) Totvar= 1.827
(AL,Ca,Pb,Other) Totvar= 1.827
(Ca,K,Mn,Pb) Totvar= 1.826
(Ca,Na,Mn,Pb) Totvar= 1.825
(AL,Mg,Mn,Pb) Totvar= 1.824
(AL,Ca,Na,Pb) Totvar= 1.821
(AL,Ti,Mn,Pb) Totvar= 1.816
(AL,P,Mn,Pb) Totvar= 1.815
(AL,Fe,Mn,Pb) Totvar= 1.810
(AL,Mn,Sb,Pb) Totvar= 1.802

Table 31. Top 20 4-part subcompositions with largest Total Variability computed
after employing Aitchison Additive zero replacement strategy (AA) with two different

values r; = 0.0000076 and 7, = 0.0001
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Figure 50. Plot of the top 20 4-part subcompositions with largest Total Vari-
ability obtained after employing Aitchison Additive Replacement Strategy with
r1 = 0.0000076 and the Total Variability for the same subcompositions after us-

ing 2 = 0.0001
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CHAPTER 6
CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH

Conclusion

We have introduced a new and simple measure of compositional data variability
based on the Sum of Coefficients of Variation of the subcompositions. This is of-
fered as an alternative to Aitchison’s Total Variability measure based on the logratio
models. For Dirichlet distribution generated from similar independent Gamma ran-
dom variables, we demonstrated theoretically that the two measures are functionally
related.

In a wide range of both numerical simulations and real compositional datasets
we illustrate a strong correlation between the Sum of Coefficients of Variation and
compositional Total Variability computed using Aitchison’s logratio transformations.
However, the two approaches perform differently when applied to real data sets
with zeros. Total Variability varied in magnitude and subcompositional ordering
when different zero treatment techniques were employed. Accounting for zeros is
not necessary when using the new technique based on the Sum of Coefficients of
Variation. The new approach when applied to data where zeros were replaced using
different strategies, yielded nearly identical results to those without any special zero
treatment whatsoever. The new measure of compositional data variability avoids the

complicated construction of the logratio models and resolves many of the challenges
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in measuring variability in the subcompositions.

Future Research

Missing values and outliers in compositional data are active fields of research.
Hron et al. (2008) introduced two imputation methods for estimating missing values
in compositional data. The first method was the k-nearest neighbors procedure based
on Aitchison Distance. They indicated that such a method is not robust against
outliers. The second method is based on an iterative regression, accounting for the
whole multivariate data information. Martin-Fernandez et al. (2003) considered a
generalization of the multiplicative replacement strategy as a substitution method
for missing data sets. Filzmoser and Hron (2007) developed an outlier detection tool
using Mahalanobis distance of logratios of the compositional data. Applying the
Sum of Coefficients of Variation technique to compositional datasets with outliers or
missing values present is likely to find new results in many applications. We would
like to conduct a comparison between the performance of Sum of Coefficients of
Variation and compositional Total Variability in such data sets.

Hijazi and Jernigan (2009) introduced a Dirichlet regression technique to model
compositional data in the presence of a covariate. They demonstrated that the
Dirichlet regression is an informative alternative to logratio covariate models. We
would like to extend the application of Sum of Coefficients of Variation technique
to model compositional data in the presence of an observed covariate. For example,
a weighted Sum of Coefficients of Variation could be implemented to adjust for the
household size in modeling the Garbage compositional data.

There are some applications where components with low absolute percentages
can have a great importance. Small changes in the proportion of even low absolute
percentage components can lead to significant changes in the structure of a composi-

tion. Consider the example of salt as a compositional component in a bowl of soup.
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If salt is absent, the soup may be bland and unsatisfying. A small proportion of
salt can greatly enhance the taste of the soup. But an overuse of the salt can result
in soup that is unpalatable or even inedible. The Total Variability or the Sum of
Coefficients of Variation measures would be preferred in this setting.

But it is essential to understand the structure and setting of the data for
proper measurement of compositional variability. Aitchison’s Total Variability or the
Sum of Coefficients of Variation approach put greater emphasis on components with
high relative variation. These can be components with simultaneous low absolute
percentages that don’t contribute to a possible causal understanding of the data
and can therefore produce unsatisfactory results. This was illustrated by Baxter,
Beardah, Cool, and Jackson (2005) and Baxter, Cool, and Jackson (2005) with the
glass compositional dataset. Baxter et al. (2005) and Baxter and Freestone (2006)
illustrated that even bivariate analysis and crude principal component analysis can
produce more interpretable results than logratio analysis. Beardah et al. (2003)
and Greenacre (2002) suggested some form of weighted logratio analysis could down-
weight the influence of those components with low absolute percentages. For such
settings and data, measuring compositional variability by Total Variability or even
with the closely correlated Sum of Coefficients of Variation approach may not be

ideal. Other approaches need to be investigated.



APPENDIX A

GARBAGE COMPOSITIONAL DATA

Garbage Compositional Data

Metal

Paper

Plastic

Glass

Food

Yard

Text

Other
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0.1013
0.0521
0.0931
0.0792
0.0538
0.0959
0.0884
0.0725
0.0697
0.0532
0.0734
0.0883
0.0617
0.0957
0.0666
0.0622
0.0646
0.0762
0.0826
0.1139
0.1939
0.0493
0.0682
0.0998
0.0870
0.0761

0.2240
0.3791
0.3460
0.2314
0.3125
0.3178
0.3129
0.2318
0.4833
0.1795
0.2937
0.2515
0.4563
0.2705
0.1449
0.2429
0.2947
0.3190
0.3519
0.4306
0.3020
0.5200
0.4299
0.7956
0.2871
0.4106

0.0251
0.0706
0.0793
0.0743
0.0785
0.0826
0.0389
0.0619
0.1028
0.0591
0.0659
0.0540
0.0656
0.1362
0.0450
0.0385
0.0790
0.0524
0.0378
0.0674
0.0273
0.0555
0.1515
0.0365
0.0624
0.0623

0.0799
0.1733
0.1638
0.1291
0.2262
0.1137
0.0234
0.1179
0.0589
0.4972
0.0722
0.1094
0.0937
0.1343
0.1172
0.0841
0.0463
0.1024
0.3642
0.1114
0.0870
0.0802
0.0081
0.0219
0.2949
0.0542

0.0967
0.1843
0.1605
0.0782
0.2258
0.0667
0.4040
0.1953
0.1326
0.0768
0.2095
0.0795
0.1621
0.1420
0.1589
0.1044
0.0465
0.1448
0.1123
0.2044
0.2908
0.2090
0.3140
0.0389
0.2376
0.2773

0.0353
0.0005
0.0087
0.0165
0.0054
0.2091
0.0032
0.0966
0.0039
0.1086
0.0158
0.2978
0.0224
0.0792
0.1382
0.0568
0.3910
0.0056
0.0006
0.0003
0.0865
0.0210
0.0006
0.0024
0.0004
0.0193

0.0046
0.0230
0.0181
0.0593
0.0197
0.0164
0.0275
0.0043
0.0243
0.0186
0.0083
0.0941
0.0127
0.0425
0.0045
0.0112
0.0104
0.0634
0.0500
0.0304
0.0048
0.0062
0.0149
0.0024
0.0293
0.0065

0.4331
0.1172
0.1304
0.3319
0.0781
0.0977
0.1017
0.2198
0.1244
0.0070
0.2613
0.0255
0.1255
0.0995
0.3247
0.3999
0.0676
0.2361
0.0006
0.0418
0.0078
0.0588
0.0129
0.0024
0.0013
0.0937
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Metal

Paper

Plastic

Glass

Food

Yard

Text

Other

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
99
60
61
62

0.0954
0.0495
0.0421
0.0741
0.0680
0.0633
0.1469
0.0518
0.0747
0.1998
0.0855
0.0575
0.0904
0.0448
0.0628
0.0902
0.0836
0.0586
0.1777
0.1547
0.0721
0.1203
0.0996
0.1008
0.0850
0.1295
0.0719
0.0351
0.0859
0.0599
0.1039
0.0638
0.0755
0.0540
0.1228
0.1127

0.2452
0.4866
0.4454
0.3328
0.5956
0.4544
0.5552
0.2717
0.4075
0.4272
0.3536
0.3371
0.5039
0.3849
0.5186
0.4511
0.2179
0.3716
0.4029
0.4306
0.3667
0.4019
0.2907
0.4582
0.1942
0.4471
0.1918
0.3170
0.3298
0.3990
0.5060
0.3789
0.3064
0.3228
0.3306
0.2229

0.0680
0.0738
0.0628
0.0484
0.0577
0.0386
0.0423
0.0587
0.0885
0.0509
0.0804
0.0613
0.0878
0.0729
0.068
0.0496
0.0909
0.0856
0.0701
0.1129
0.0891
0.0779
0.1014
0.0784
0.0969
0.1127
0.0734
0.0813
0.0770
0.0574
0.0649
0.0604
0.1021
0.0455
0.0520
0.0632

0.1050
0.1010
0.1353
0.1861
0.0687
0.1304
0.0670
0.2699
0.1148
0.1345
0.2308
0.2725
0.0988
0.0848
0.1383
0.0626
0.1932
0.2230
0.0778
0.1735
0.0981
0.2570
0.0465
0.0972
0.2264
0.1363
0.0872
0.1276
0.2483
0.0779
0.0556
0.0607
0.0755
0.3150
0.3262
0.2588

0.0902
0.2356
0.2133
0.1525
0.1860
0.2458
0.1863
0.0529
0.2673
0.1146
0.2296
0.1804
0.0978
0.3873
0.1656
0.1449
0.2233
0.1734
0.0459
0.0697
0.2535
0.0629
0.1809
0.1689
0.0540
0.1081
0.2281
0.0862
0.1586
0.3259
0.2019
0.3804
0.3455
0.1715
0.1595
0.2878

0.0002
0.0208
0.0554
0.2024
0.0214
0.0309
0.0006
0.1735
0.0002
0.0376
0.0172
0.0008
0.0005
0.0172
0.0005
0.1628
0.1798
0.0766
0.0371
0.0005
0.0004
0.0766
0.1971
0.0394
0.0022
0.0008
0.0197
0.1236
0.0354
0.0091
0.0004
0.0050
0.0009
0.0004
0.0072
0.0145

0.0129
0.0267
0.0054
0.0016
0.0006
0.0024
0.0012
0.1043
0.0233
0.0349
0.0023
0.0051
0.0904
0.0057
0.0184
0.0220
0.0007
0.0090
0.0032
0.0043
0.0252
0.0007
0.0123
0.0151
0.0540
0.0206
0.0374
0.0561
0.0502
0.0295
0.0085
0.0076
0.0018
0.0337
0.0009
0.0009

0.3832
0.0059
0.0402
0.0021
0.0019
0.0343
0.0006
0.0172
0.0237
0.0006
0.0006
0.0853
0.0303
0.0024
0.0278
0.0169
0.0107
0.0023
0.1853
0.0538
0.0950
0.0027
0.0715
0.0420
0.2873
0.0449
0.2906
0.1730
0.0148
0.0413
0.0588
0.0432
0.0924
0.0572
0.0009
0.0393
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APPENDIX B
S-PLUS PROGRAMS

This chapter consists of major S-Plus codes used through the study.

Main Functions

# Compositional Total Variability

comp.var<-function(h)

1
m <- dim(h)
a <= matrix(0, m[2], m[2])
for(i in 1:m[2]) {
al[, i] <- apply(log(sweep(h, 1, h[, i, "/")), 2, var)
}
a
¥

comp.r2<-function(x, sc) {
n <- dim(x)
tt <- comp.var(x)
b <- sum(tt)
a <- sum(comp.var(x) [sc, sc])
r2 <- (a/length(sc))/(b/n[2])
c(a, r2)

# Closure Operation
closure<-function(x) {

sweep(x, 1, apply(x, 1, sum), "/")
i
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# The following S-plus code used to calculate different combinations

combinations<-function(n, k, set = 1:n) {
fun <- function(n, k, set)
{
if(k <= 0)
vector (mode(set), 0)
else if(k >= n)
set
else rbind(cbind(set[1], Recall(n - 1, k - 1, set[-1])), Recall(n - 1,
k, set[-1]))
}
fun(n, k, set)

# Triangle Plot

triangle_function(p, a = ¢(1, 2, 3), pch = 1, add = F, covar, r = 1,
cex = 1) {
q <- as.data.frame(p)
x <- sweep(pl, al, 1, apply(pl, al, 1, sum), "/")
at <- c(0, 2/sqrt(3), 1/sqrt(3), 0)
bt <- ¢(0, 0, 1, 0)
par(pty = "s")
if(ladd) {
plot(at, bt, type = "1", axes = F, xlab = "", ylab = "", xlim
= ofp, 1.2¥, ylim = €0, 1.2))
text(-0.02, 0, names(q)[a[2]])
text(2/sqrt(3) + 0.05, 0, names(q) [a[3]])
text(1/sqrt(3), 1.05, names(q) [a[1]])
}
if (missing(covar)) {
points((x[, 1] + 2 * x[, 3])/sqrt(3), x[, 1], pch = pch)

}
else {
if (is.numeric(covar)) {
cv <- round(covar, r)
}
else {
cv <- covar
}
text ((x[, 1] + 2 = x[, 3])/sqrt(3), x[, 1], cv, cex = cex)
¥
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# This function used to generate random samples from Additive Logistic Nor-

mal Distribution

radlognorm _function(m, d, mean = rep(0, d), cov = diag(d))
%

y <- rmvnorm(m, mean = mean, cCOV = COV)

x <- exp(y)/(apply(exp(y), 1, sum) + 1)

X <- cbind(x, 1 - apply(x, 1, sum))

X

# Additive logratio transformation

alr_ function(x) {
n <- dim(x)
y < log(sweep(x, 1, x[, n[211, "/"))
yl, 1: @21 - 1)]

}
Estimates of Sum of Coefficients of Variation
and Total Variability
# Computing CV using equation (3.4) for D=3 and different alphas (o =
10, . .., 40)

smry.alpha<-function(N){
out.smry<-matrix(0,ncol=1,nrow=N,byrow=F)

for(i in 1:N)

{ alph<-i out.smry[i]<-sqrt(2/(3xi+1))

!

return(out.smry)

}
smry.cv.out<-smry.alpha(40) [10:40]

# Computing Compositional Total Variability using equation (3.14) for D=3
and different alphas (a = 10, ..., 40)

Alpha<-(10:40)
2xtrigamma(alpha)
var.tiagamma<-c(0.21, 0.19, 0.174, 0.16, 0.148, 0.138, 0.129, 0.121,
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0.114, 0.108, 0.103, 0.098, 0.093, 0.089, 0.085, 0.082, 0.078,
0.075, 0.073, 0.07, 0.068, 0.066, 0.063, 0.062, 0.06, 0.058, 0.056,
0.055, 0.053, 0.052, 0.051)

# Computing Sum of Coeflicients of Variation and Compositional Total Vari-
ability using Simulated Data from random Gamma with D=3, n=100 and different
alphas (a = 10,...,40)

find.disti<-function(N,m,col.cnt){
find.out.mean<-matrix(0,ncol=col.cnt,nrow=m,byrow=F)

for(j in 10:m){

cat("g:", j, vYout of", m, fill = T)
matr.smry<-matrix(0,ncol=col.cnt,nrow=N,byrow=F) for(i in 1:N){
randomgaml_rgamma (100, j)

randomgam2_rgamma (100, j)

randomgam3_rgamma (100, j)
compgam123_cbind (randomgami ,, randomgam?2, randomgam3)
compgam2c_closure (compgam123)
dircv_apply(compgam2c,2,stdev) /apply (compgam2c,2,mean)
dirscv_sum(apply(compgam2c,?2,stdev)/apply(compgam2c,2,mean))
dirmcv_mean (apply (compgam2c,2,stdev) /apply (compgam2c,2,mean))
var.tot_comp.var (compgam2c)

atotvar_(sum(comp.var (compgam2c)))/6
smry.all<-cbind(dirscv,dirmcv, atotvar)
matr.smry[i,]<-smry.all

}

find.out.mean[j,]_apply(matr.smry,2,mean)

}

return(find.out.mean)

}

find.out1<-find.dist1(100,40,3)
find.out.finl<-find.out1[10:40,]
# Plots of Sum of Coefficients of Variation and Total Variability computed

using the derived formulas and the simulated data.

par (mfrow=c(1,1) ,pty="s")
plot(3*smry.cv.out,find.out.fin1[,1],x1lab="Sum of Coefficients of
Variation computed using Alpha", ylab="Sum of Coefficients of
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Variation computed using the Standard Formula" )

plot(Alpha, find.out.fin1[,1],ylab="Sum of Coefficients of
Variation" ,cex=0.8)

points(Alpha,3*smry.cv.out, pch=2,cex=0.8)

legend(22,0.7,c("SCV Computed using Standard Formula", "SCV computed
using Alpha"), marks =c(1,2),cex=0.8)

plot(var.tiagamma, find.out.fin1[,3], xlab="Total Variability using
Trigamma Function ", ylab="Total Variability using Aitchison
Logratio Transformation")

plot(Alpha, find.out.fin1[,3],ylab="Total Variability" ,cex=0.8)
points(Alpha,var.tiagamma, pch=2,cex=0.8)
legend(17,0.18,c("TOTVAR_Computed using Aitchison Logratio
Transformation", "TOTVAR_computed using the Trigamma Function"),
marks =c(1,2),cex=0.7)

Relationship between Total Variability and Sum of
Coefficients of Variation

# For D=3, N=100 and a=10

find.dist2<-function(N,col.cnt){
matr.smry<-matrix(0,ncol=col.cnt,nrow=N,byrow=F)

for(i in 1:N){

randomgam4_rgamma (100, 10)

randomgamb_rgamma (100, 10)

randomgam6_rgamma (100, 10)

gamcv4_stdev(randomgam4) /mean (randomgam4)

gamcv5_stdev(randomgamb) /mean (randomgam5)

gamcv6_stdev(randomgam6) /mean (randomgamé)

gamscv_sum(gamcv4, gamcvb, gamcv6)

compgam456_cbind (randomgam4 , randomgamb , randomgam6)

compgam3c_closure (compgam456)

dircv_apply(compgam3c,2,stdev) /apply(compgam3c,2,mean)

dirscv_sum(apply (compgam3c,2,stdev) /apply(compgam3c,2,mean))

var.tot_comp.var (compgam3c)

atotvar_(sum(comp.var (compgam3c)))/6

tot.cv2_2*trigamma((2-(dirscv/3)"2)/(3*(dirscv/3)"2))

smry.all<-cbind(dircv[1],dircv[2],dircv([3], dirscv,atotvar,tot.cv2)

matr.smry[i,]<-smry.all

iy



return(matr.smry)

}

find.out2<-find.dist2(1000,6)
apply(find.out2,2,mean)

plot(find.out2[,5] ,find.out2[,6], xlab="Total Variability using
Aitchison Logratio Transformation",ylab="Total Variability using
Trigamma Function")

plot(find.out2[,4],find.out2[,6], xlab="Sum of Coefficients of
Variation", ylab="Total Variability using Trigamma Function")

# For D=5, N=100 and Alpha=10

find.dist8<-function(N,col.cnt){
matr.smry<—matrix(0,ncol=col.cnt,nrow=N,byrow=F)

for(i in 1:N){

randomgam7_rgamma (100, 10)

randomgam8_rgamma (100, 10)

randomgam9_rgamma (100, 10)

randomgam10_rgamma(100,10)

randomgaml1_rgamma(100,10)

compgam4_cbind (randomgam?7 , randomgam8, randomgam9, randomgam10, randomgami1)

compgaméc_closure (compgam4)

dircv_apply(compgaméc,2,stdev)/apply(compgaméc,2,mean)

dirscv_sum(apply (compgaméc,2,stdev)/apply(compgaméc,2,mean))

var.tot_comp.var (compgaméc)

atotvar_(sum(comp.var (compgaméc)))/10

tot.cv2_4xtrigamma((4-(dirscv/5)~2)/(5*(dirscv/5)"2))

smry.all<-cbind(dircv[1] ,dircv[2],dircv[3],dircv[4], dircv[5],

dirscv,atotvar,tot.cv2)

matr.smry[i,]<-smry.all

}

return(matr.smry)

.

find.out8<-find.dist8(1000,8)
apply(find.out8,2,mean)

plot(find.out8[,7], find.out8[,8], xlab="Total Variability using
Aitchison Logratio Transformation", ylab="Total Variability using
Trigamma Function")



plot(find.out8[,6] ,find.out8[,8], xlab="Sum of Coefficients of
Variation", ylab="Total Variability using Trigamma Function")

# For D=7, N=100 and Alpha=10

find.dist9<-function(N,col.cnt){
matr.smry<—matrix(0,ncol=col.cnt,nrow=N,byr0w=F)

for(i in 1:N){

randomgam12_rgamma (100,10)

randomgam13_rgamma (100,10)

randomgam14_rgamma(100,10)

randomgam15_rgamma (100,10)

randomgam16_rgamma (100, 10)

randomgam17_rgamma (100,10)

randomgam18_rgamma (100,10)

compgamb_cbind (randomgam12, randomgam13, randomgami4,randomgami5,

randomgam16, randomgaml7, randomgaml8)

compgambc_closure (compgam5)

dircv_apply(compgam5c,2,stdev) /apply(compgambc,2,mean)

dirscv_sum(apply(compgambc,2,stdev) /apply(compgambc,2,mean))

var.tot_comp.var (compgambc)

atotvar_(sum(comp.var (compgambc)))/14

tot.cv2_6xtrigamma((6-(dirscv/7)"2)/(7*(dirscv/7)"2))

smry.all<-cbind(dircv([1],dircv([2],dircv([3],dircv[4], dircv[5],

dircv[6], dircv[7], dirscv,atotvar,tot.cv2)

matr.smry[i,]<-smry.all
}

return(matr.smry)

T

find.out9<-find.dist9(1000,10)

Relationship between Total Variability and Sum of
Coefficients of Variation for different as

# For D=3, N=100, a;=10, a»=20, and a3=30 using equation (3.16)

# (sqrt(5)+sqrt(2)+sqrt(1))~2 =21.62512
find.dist20<-function(N,col.cnt){
matr.smry<—matrix(0,nc01=col.cnt,nrow=N,byrow=F)
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for(i in 1:N){

randomgam201_rgamma (100, 10)

randomgam202_rgamma (100,20)

randomgam203_rgamma (100, 30)
compgam6_cbind (randomgam201 , randomgam202, randomgam203)
compgaméc_closure (compgam6)
dircv3_apply(compgaméc,2,stdev) /apply (compgam6c,2,mean)
dirscv_sum(apply(compgaméc,2,stdev)/apply (compgam6c,2,mean))
var.tot_comp.var (compgam6c)

atotvar_(sum(comp.var (compgaméc)))/6
alphahat_(21.62512-(dirscv~2))/(6*(dirscv~2))

tot.cv2_(2/3) *(trigamma(alphahat)+trigamma (2*alphahat)+trigamma(3*alphahat))
smry.all<-cbind(dirscv,atotvar,tot.cv2,dircv3[1],dircv3[2] ,dircv3[3])
matr.smry[i,]<-smry.all

}

return(matr.smry)

3

find.out20<-find.dist20(1000,6)

# For D=3, N=100, a;=10, ap=50, and a3=100

#(sqrt(15)+sqrt (11/5)+sqrt(3/5)) "2 =37.58695
find.dist40<-function(N,col.cnt){
matr.smry<—matrix(0,ncol=col.cnt,nrow=N,byrow=F)

for(i in 1:N){

randomgam401_rgamma (100,10)

randomgam402_rgamma (100,50)

randomgam403_rgamma (100, 100)

compgam?7 _cbind (randomgam401,randomgam402,randomgam403)
compgam7c_closure (compgam7)
dircv3_apply(compgam7c,2,stdev)/apply(compgam7c,2,mean)
dirscv_sum(apply (compgam7¢,2,stdev) /apply(compgam7c,2,mean))

var.tot_comp.var (compgam7c)
atotvar_(sum(comp.var(compgam7c)))/6
alphahat_(37.58695-(dirscv”2))/(16%(dirscv"2))

tot.cv2_(2/3)*(trigamma(alphahat)+trigamma(5*alphahat)+trigamma(10*alphahat))
smry.all<-cbind(dirscv, atotvar,

tot.cv2,dircv3[1] ,dircv3[2] ,dircv3[3])
matr.smry[i,]<-smry.all

}

return(matr.smry)

),
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find.out40<-find.dist40(1000,6)

# For D=3, N=100, a;=1, ay=50, and a3=100

#(sqrt (150)+sqrt(101/50)+sqrt (51/100) ) “2=206 . 8666

find.dist30<-function(N,col.cnt){
matr.smry<-matrix(0,ncol=col.cnt,nrow=N,byrow=F)

for(i in 1:N){

randomgam301_rgamma (100,1)

randomgam302_rgamma (100, 50)

randomgam303_rgamma (100, 100)

compgam8_cbind (randomgam301 , randomgam302, randomgam303)

compgam8c_closure (compgam8)

dircv3_apply(compgam8c,2,stdev) /apply (compgam8c,2,mean)

dirscv_sum(apply(compgam8c,2,stdev)/apply(compgam8c,2,mean))

var.tot_comp.var (compgam8c)

atotvar_(sum(comp.var(compgam8c)))/6

alphahat_(206.8666-(dirscv~2))/(151*(dirscv~2))

tot.cv2_(2/3)*(trigamma(alphahat)+trigamma(50*alphahat)+trigamma (100*alphahat))

smry.all<-cbind(dirscv, atotvar,

tot.cv2,dircv3[1] ,dircv3[2] ,dircv3[3])

matr.smry[i,]<-smry.all

}

return(matr.smry)

}

find.out30<-find.dist30(1000,6)

Relationship between Total Variability and Sum of
Coefficients of Variation for correlated Variables

mvcorrelate<-function(x,d){
p<-dim(x)
z<-rmvnorm(p[1] ,cov=d)
y<=X=X
oz<-apply(z,2,order)
for (j in 1:p[2]1){
vlozl, 31, 0otk [, 1)
}
¥
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find.distnewl <- function(N, col.cnt) {

matr.smry <- matrix(0, ncol=col.cnt, nrow = N, byrow = F)

for(i in 1:N) {

randomgaml9 <- rgamma(100, 5)

randomgam20 <- rgamma(100, 5)

randomgam21 <- rgamma(100, 5)

gammax <- cbind(randomgaml9, randomgam20,randomgam21)

gammax.corr <- mvcorrelate(gammax, d)

compgam9c <-closure(gammax.corr)

dircv <- apply(compgam9c, 2,stdev)/apply(compgam9c, 2, mean)
dirscv <- sum(apply(compgam9c, 2,stdev)/apply(compgam9c, 2, mean))
var.tot <- comp.var(compgam9c)

atotvar <- (sum(comp.var(compgam9c)))/6

tot.cv2 <- 2 * trigamma((2 -(dirscv/3)"2)/(3 * (dirscv/3)"2))
smry.all <- cbind(direcv[1],dircv[2], dircv[3], dirscv, atotvar, tot.cv2)
matr.smry[i, ] <-smry.all

}

return(matr.smry)

}

find.outnewl <- find.distnew1 (1000, 6)

# Correlated Gamma random variables using the correlation matrix of the
logratios of the color compositional dataset

alrcolour_alr(colour)

find.distnew7 <- function(N, col.cnt) {

matr.smry <- matrix(0, ncol= col.cnt, nrow = N, byrow = F)

for(i in 1:N) {

randomgaml <- rgamma(100, 10)

randomgam? <- rgamma(100, 10)

randomgam3 <- rgamma(100, 10)

randomgam4 <- rgamma(100, 10)

randomgamb <- rgamma(100, 10)

gammax2 <- cbind(randomgaml, randomgam2, randomgam3,randomgam4,randomgamb )
gammax.corr2 <- mvcorrelate(gammax2, di)

compgam10c <- closure(gammax.corr2)

dircv <- apply(compgamiOc, 2,stdev)/apply(compgamiOc, 2, mean)
dirscv <- sum(apply(compgamiOc, 2,stdev)/apply(compgaml0c, 2, mean))
var.tot <- comp.var (compgamlOc)

atotvar <- (sum(comp.var(compgam10c)))/10

tot.cv2 <- 4 * trigamma((4- (dirscv/5)"2)/(5 * (dirscv/5)7°2))
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smry.all <- cbind(dircv[1],dircv([2], dircv[3], dircv[4], dircv[5],
dirscv, atotvar, tot.cv2)
matr.smry[i, ] <- smry.all

}

return(matr.smry)

}

find.outnew7 <- find.distnew7(1000, 8)

# Correlated Additive Logistic Normal variables using covariance matrix of

the logratios of the hongite compositional dataset

find.distnew9<- function(N, col.cnt) {
matr.smry <- matrix(0, ncol =col.cnt, nrow = N, byrow = F)
for{i in 1:N) {
xradlognorm20<- radlognorm(100,4,cov=d20)
dircv <- apply(xradlognorm20, 2, stdev)/apply(xradlognorm20, 2, mean)
dirscv <- sum(apply(xradlognorm20, 2, stdev)/apply(xradlognorm20, 2, mean))
var.tot <- comp.var(xradlognorm20)
atotvar <- (sum(comp.var(xradlognorm20)))/10
tot.cv2 <- 4 x trigamma((4 - (dirscv/5)~2)/(56 x (dirscv/5)"2))
smry.all <- cbind(dircv[1], dircv[2], dircv([3], dircv([4], dircv[5],
dirscv, atotvar, tot.cv2)
matr.smry[i, ] <- smry.all
}

return(matr.smry)

}

find.outnew9 <- find.distnew9(1000, 8)

Correlation between Sum of Coefficients of Variation and
Subcompositional Total Variability using Garbage compositional data

# 3-part Subcompositional Analysis

# Sum of Coefficients of Variation
comb<-combinations(8,3)

ww3<-NULL for(i in 1:56){
sub<-cbind(garbagelc[,comb[i,1]],garbagelc[,comb[i,2]],
garbageic[,comb[i,3]])
scv3<-sum(apply(sub,2,stdev)/apply(sub,2,mean))

ww3<-c (ww3,scv3)
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}

# Total Variability

comb<-combinations(8,3)
garbagelctot3<-matrix(0,ncol=1,nrow=56)

for(i in 1:56){

garbagelctot3[i,1] _comp.r2(garbagelc,c(comb[i,1],comb[i,2],
comb[i,3])) [1]

}

# 4-part Subcompositional Analysis

# Sum of Coefficients of Variation
comb<-combinations(8,4) ww4<-NULL

for(i in 1:70){
sub<-cbind(garbagelic[,comb[i,1]],garbagelc[,comb[i,2]],
garbagelc[,comb[i,3]],garbagelic[,comb[i,4]])
scv<-sum(apply(sub,2,stdev)/apply(sub,2,mean))

wwi<-c (wwéd,scv)

}

# Total Variability

comb<-combinations(8,4)
totalv4<-matrix(0,ncol=1,nrow=70)

for(i in1:70){

totalv4[i,1] _comp.r2(garbagelc,c(comb[i,1],comb[i,2],
comb[i,3],comb[i,4])) [1]

i

# 5-part Subcompositional Analysis

# Sum of Coefficients of Variation

comb<-combinations(8,5)

wwb<-NULL for(i in 1:566){
sub<-cbind(garbagelc[,comb[i,1]],garbagelc[,comb[i,2]],
garbagelc[,comb[i,3]],garbageic[,comb[i,4]],garbageic[,comb[i,5]])
scv<-sum(apply(sub,2,stdev)/apply(sub,2,mean))

wwb<—-c (wwb,scv)

}

# Total Variability
comb<-combinations(8,5)
totalvb<-matrix(0,ncol=1,nrow=56)
for(i in 1:56){
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totalv5[i,1]_comp.r2(garbagelc,c(comb[i,1],comb[i,2],
comb[i,3],comb[i,4],comb[i,5])) [1]
}
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