

Sheaf Invariants for Information Systems

Michael Robinson

2012

Technical Report No. 2014-2

lowerlevelPT
Typewritten Text
https://doi.org/10.17606/m0nx-h357

Final Report for AFOSR MURI on Complex Networks

Federal Contract No. FA9550-09-1-0643

Sheaf Invariants for Information Systems

Principal Investigator:
Prof. Michael Robinson
Assistant Professor
Mathematics and Statistics
American University
Office: (202)885-3681
Mobile: (484)477-3345
michaelr@american.edu

Program Manager:
Dr. Robert Bonneau
AFOSR/RSL
Office: (703) 696-9545
Fax: (703) 696-7360
Secure: 426-9545
robert.bonneau@afosr.af.mil

American University

Contents

1. Executive summary 1
2. Research progress 2
2.1. Objective 1: Novel invariants 2
2.2. Objective 2: Semantic and dynamic features 2
2.3. Objective 3: Exploitation of the theory 3
3. Research narrative 3
3.1. Background material 3
3.2. Sheaf cohomology 4
3.3. Discoveries related to switching sheaves 6
3.4. Discoveries related to filter theory 8
3.5. Discoveries related to sampling theory 9
3.6. Novel algorithms developed 10
4. Dissemination activities 14
4.1. Monograph on Topological Signal Processing 14
4.2. Papers and preprints written 14
4.3. Conference activity 16
5. Student participation 16
5.1. Graduate student: Morgan DeHart 16
5.2. Graduate student: Matthew Hubler 17
6. Recommendations for future work 17
6.1. Recommendation 1: Unify the constructions of sheaf models for

information systems 17
6.2. Recommendation 2: Analyze persistent cohomological features 18
6.3. Recommendation 3: Discover patterns of inference from cohomological

features 18
References 18
Python sheaf library 18

1. Executive summary

The primary objective of this project was to construct, classify, and exploit
invariants for discriminating information systems that are based on abstracted
structural descriptions. This main objective was split into three smaller objectives:

(1) Construct invariants for information systems that exploit coarse and mul-
tiscale structural specifications about their underlying network or commu-
nication topology,

(2) Classify the semantic and dynamic features of the systems that these in-
variants consider, and

(3) Exploit the classification results to provide actionable design and analysis
rules that can be incorporated into experimental and simulation workflows.

All of these objectives were met. Several interesting (and potentially impor-
tant) discoveries were made as a result of the project. These discoveries have
been reported to the scientific community, and they are being written as articles
for archival journals. In addition, the Principal Investigator (PI), Prof. Michael
Robinson, completed a draft of a manuscript entitled Topological Signal Processing

1

that can be used to teach the techniques discovered on this project to beginning
graduate student researchers. Finally, Prof. Robinson’s research group grew from
one student at the start of the project to five students (partially funded by this
project), partially as a means to apply the new algorithmic techniques discovered
on this program.

2. Research progress

This project discovered several new classes of sheaves and morphisms that are
relevant to information systems, and developed algorithms that can be applied to
simulated data or data collected by laboratory systems.

2.1. Objective 1: Novel invariants. Status: Success!
The project began by revisiting transmission line sheaves [9] and switching

sheaves [8], since these classes of sheaves are concrete and have proven value in
applications. By studying how these classes of sheaves are used as models of phys-
ical phenomena, we discovered new sheaf models for other applications. Over the
course of the project, we discovered

(1) Sheaves of timeseries, images, and video streams [7],
(2) Flow and concentration sheaves [7],
(3) Sheaves of bandlimited signals [6],
(4) Sheaves of piecewise linear functions and Taylor series [6].

2.2. Objective 2: Semantic and dynamic features. Status: Success! As a
result, many new avenues of research have been opened.

Since sheaf morphisms are the primary tool for studying the relationships be-
tween sheaves, we began to study how sheaf models for information systems could
be related to one another.

We discovered three classes of engineering-relevant morphisms between sheaves:

(1) Pairs of morphisms that describe discrete, linear translation-invariant sys-
tems [7],

(2) Sampling morphisms that describe measurement procedures [6], and
(3) The number of morphisms between pairs of switching sheaves can detect

semantic differences between logically-equivalent circuits.

Because discrete, linear translation-invariant systems have now been placed on
a sheaf-theoretic footing, the greater generality afforded by sheaves allows us to
consider substantially broaders classes of filters. We have uncovered a number of
interesting directions for future study, including a class of nonlinear, angle-sensitive
filters.

The discovery of the correct definition of sampling in terms of sheaf morphisms
opens up the possibility of a general sheaf-theoretic treatment of measurement
processes and inference algorithms. Although continuing research in this direction
is ambitious, we recommend studying sampling in general sheaf contexts. Success in
this direction could lead to a Shannon-Nyquist-like theorem for networks of sensors
collecting multi-modal data.

We found that switching sheaf morphisms characterize semantic similarity, and
our discovery initiated the study of the combinatorics of switching sheaf morphisms.
In particular, we believe enumeration and interpretation of sheaf morphisms is now
an interesting open problem about which very little is known.

2

2.3. Objective 3: Exploitation of the theory. Status: Success! As a re-
sult, many new avenues of research have been opened.

The theoretical progress made on this project directly led to the development of
novel algorithms for processing data. We tested these algorithms on a mixture of
simulation and laboratory data. Specifically, we

(1) Invented a class of novel filtering algorithms, and performed initial tests on
image datasets,

(2) Developed a library (written in the Python language; listing included as an
appendix of this report) for computing sheaf theoretic invariants, such as
cohomology and induced maps on global sections,

(3) Enumerated the complete list of morphisms between two switching sheaves,
(4) Implemented and tested a geometry extraction algorithm (developed on a

previous effort) for transmission line sheaves,
(5) Developed and tested a new differential-topological algorithm to analyze the

sonar echos of a rotating target [5], and compared its output to a prexisting
persistent cohomology algorithm [3].

3. Research narrative

3.1. Background material. We include here a brief introduction to the relevant
sheaf theory necessary to understand our progress on this project. The reader is
encouraged to see [2] for a more extensive treatment.

3.1.1. Sheaves. A sheaf is a mathematical object that stores locally-defined data
over a space. In order to formalize this concept, we need a concept of space that
is convenient for computations. The most efficient such definition is that of a
simplicial complex.

Definition 1. An abstract simplicial complex over a set A is a collection X of
(possibly ordered) subsets of A, for which x ∈ X implies that every subset of x
is also in X. We call each x ∈ X with k + 1 elements a k-face of X, referring to
the number k as its dimension. Zero dimensional faces (singleton subsets of A) are
called vertices, and one dimensional faces are called edges. We say that a face a
includes into a face b (written a b) whenever a is a proper subset of b.

Although sheaves have been extensively studied over topological spaces (see [1] or
the appendix of [4]), the resulting definition is ill-suited for application to sampling.
Instead, we follow a substantially more combinatorial approach introduced in the
1985 thesis of Shepard [11].

Definition 2. A sheaf F on an abstract simplicial complex X is a covariant functor
from the face category of X to the category of vector spaces. Explicitly,

• for each element a of X, F(a) is a vector space, called the stalk at a,
• for each inclusion of two faces a b of X, F(a b) is a linear function

from F(a)→ F(b) called a restriction, and
• for every composition of inclusions a b c, F(b c) ◦ F(a b) =
F(a b c).

Definition 3. Suppose F is a sheaf on an abstract simplicial complex X and that
U is a collection of faces of X. An assignment s which assigns an element of F(u) to
each face u ∈ U is called a section supported on U when for each inclusion a b (in

3

X) of objects in U , F(a b)s(a) = s(b). A global section is a section supported on
X. If r and s are sections supported on U ⊂ V, respectively, in which r(a) = s(a)
for each a ∈ U we say that s extends r. The collection of sections supported on a
given set forms a vector space.

Definition 4. A sheaf morphism is a natural transformation between sheaves.
Explicitly, a morphism f : F → G of sheaves on an abstract simplicial complex X
assigns a linear map fa : F(a) → G(a) to each face a so that for every inclusion
a b in the face category of X, fb ◦ F(a b) = G(a b) ◦ fa.

3.2. Sheaf cohomology. Much of the theory of sheaves is concerned with com-
puting spaces of sections and identifying obstructions to extending sections. The
machinery of cohomology systematizes the computation of the space of global sec-
tions for a sheaf.

Recall that an abstract simplicial complex X consists of ordered sets. For a a
k-face and b a k + 1-face, define

[b : a] =

+1 if the order of elements in a and b agrees,

−1 if it disagrees, or

0 if a is not a face of b.

Define the following formal cochain vector spaces Ck(X;F) =
⊕

a a k-face of X F(a).
The coboundary map dk : Ck(X;F)→ Ck+1(X;F) takes an assignment s from the
k faces to an assignment dks whose value at a k + 1 face b is

(dks)(b) =
∑

a a k-face ofX

[b : a]F(a b)s(a).

It can be shown that dk ◦ dk−1 = 0, so that the image of dk−1 is a subspace of the
kernel of dk.

Definition 5. The k-th sheaf cohomology of F on an abstract simplicial complex
X is

Hk(X;F) = ker dk/image dk−1.

Observe that H0(X;F) = ker d0 consists precisely of those assignments s which
are global sections. Cohomology is also a functor: sheaf morphisms induce linear
functions between cohomologies. This indicates that cohomology preserves and
reflects the underlying relationships between sheaves.

3.2.1. Transmission line sheaves. One of the first places where signal processing
got its start was in the transmission of signals along telegraph wires. In the context
of wave propagation on a graph, the space of solutions forms a sheaf. This even
holds if the propagation is lossy, or if we instead consider fundamental solutions,
in which there are a number of sources [9]. This sheaf has a convenient cellular
structure, as explained in the following definition.

Definition 6. Suppose X is a 1-dimensional cell complex X whose edges e are
labeled by (1) a nonnegative real function L (called the length) and (2) an arbitrary
direction. The transmission line sheaf T with wavenumber k is given by

(1) T (v) = Cdeg v for all vertices v,
(2) T (e) = C2 for all edges e, and

4

a b c

A
W

Figure 1. An R-S flip-flop circuit

(3) If em is the m-th edge attached to a degree n vertex v,

T (v em)(u1, . . . , un) =

(
um, e

−ikL(em)
(

2
n

∑n
j=1 uj − um

))
if em is inward at v(

eikL(em)
(

2
n

∑n
j=1 uj − um

)
, um

)
if em is outward at v

3.2.2. Switching sheaves. Switching sheaves provided the starting point for this
project, as a concrete example of a sheaf for an information system.

A switching sheaf is an algebraic-topological model of an asynchronous circuit.
In order to define what a switching sheaf is, we need some preliminary definitions.
Suppose that X is an oriented CW complex. If c, d are cells of X such that c ∈ ∂d
and dim d = dim c + 1, then c is called a face of d, written c d. We call d a
coface of c. If c and d agree about orientation, we call them co-oriented.

Suppose Q is a sheaf on an oriented cell complex X. We will say that Q is a
quiescent switching sheaf based on a set A if for all cells c ∈ X,

(1) the stalk Q(c) = A if c has no co-oriented cofaces,
(2) otherwise, the stalk Q(c) =

∏
dQ(d) where d ranges over the co-oriented

cofaces of c, and
(3) the restriction Q(c) → Q(e) function is the projection onto the factor in

the product Q(c) =
∏
dQ(d) associated to e.

Unfortunately, quiescent switching sheaves are not generally sheaves of abelian
groups. As a result, we cannot compute their cohomology and their analysis is
subject to a state explosion. We correct for both problems by encoding the values
of A in an F-vector space. Consider the function T : A → F ⊗ A, given by the
inclusion x 7→ 1 ⊗ x. This T lifts the restrictions to F-linear maps. Applying this
idea in our definition of quiescent switching sheaves corresponds to a particular
categorification.

We therefore define a switching sheaf to be a cellular sheaf that is the categori-
fication via T of a quiescent switching sheaf. This essentially amounts to rewriting
the definition of quiescent switching sheaves by replacing the Cartesian product
with a tensor product, and the restriction maps become contractions instead of
projections.

As an example, consider the circuit X shown in Figure 1, which is a basic memory
element. Computation of the cohomology of the associated switching sheaf S shows
that H0(X;S) has dimension 7 and H1(X;S) has dimension 1. Here is a basis for
H0(X;S):

5

Element of H0(X;S) Description

a⊗ b⊗ c Danger
a⊗ b⊗ c Set

a⊗ b⊗ c Reset
a⊗ b⊗ c Hold zero
a⊗ b⊗ c Hold one

a⊗ b⊗ c+ a⊗ b⊗ c Transition Danger to Reset

a⊗ b⊗ c+ a⊗ b⊗ c Transition Danger to Set

The first five basis elements should be familiar to any electrical engineer, since
they are the quiescient logic states of the circuit [10]. Therefore, the last two basis
elements are of most interest. These are linear combinations of two terms, neither
of which is a T -lift of a section of Q. The most suggestive interpretation is that
they imply an uncertainty when exiting the Danger state. As the inputs a and b
transition from both logic 0 to both logic 1, there is a race condition. Only one
of them transitions first, so there is a brief transition into the Set or Reset states
before entering a Hold state. If we add the last two basis elements, we obtain
a ⊗ b ⊗ c + a ⊗ b ⊗ c which indicates that an uncertainty about which of a or b
transitions has occured results in uncertainty in the signal c.

It is clear from the example that switching sheaves contain strictly more infor-
mation than simply the logic states of a circuit, which are encoded as sections of Q.
Using the Mayer-Vietoris principle [1] for cellular sheaves, it is possible to relate
the cohomology of a circuit composed of simpler circuits to the cohomology of each
of these subcircuits.

Theorem 7. [8] The effect of attaching a wire is best described by the following
slogan:

• Attaching a wire that does not participate in feedback suppresses logic states
and leaves H1 unchanged.
• Attaching a wire that participates in feedback leaves logic states unchanged

and adds to the dimension of H1.

As an immediate corollary, nontrivial H1 of a switching sheaf detects race con-
ditions.

3.3. Discoveries related to switching sheaves. This section addresses Objec-
tive 2, because the morphisms discovered capture semantic relations between logic
circuits.

Early in the project, we discovered examples of sheaf morphisms between switch-
ing sheaves. For instance, consider the cellular map of two directed graphs, given
by the dashed arrows in the diagram

6

The following diagram shows a switching sheaf morphism over this map

F2
2 F2

2 F2
21 0

0 1

oo

1 0
0 1

tt

F4
2

��

__ ??

F2
2m

oo

OO

��
F2
2 G1 0

0 1

oo

where m is either

1 0
0 0
0 0
0 1

 or

0 1
1 1
1 1
1 0

. Observe that each square in the diagram

above commutes, and that the arrows are reversed with respect to the cellular map.
Both of these are defining features of a sheaf morphism.

This morphism induces a homomorphism on the sheaf cohomologies, which ex-
plains how consistent logic states of the simplified circuit diagram (on the right)
are represented in the diagram with more detail (on the left).

As a step in the direction of understanding and generalizing this result, we
tabulated the number of sheaf morphisms between two switching sheaves. For con-
creteness, we considered the case of switching sheaves over the connection diagrams

A

��

B

~~

C

~~

A

B

��

C

~~
v1

��

w

��

v2

��

At each of the vertices in the connection graphs, a logic gate must be specified. To
ensure consistency, we constructed switching sheaves over each graph so that the
two logic circuits had the same truth table. As a result, the quiescent switching
sheaves were isomorphic, though the switchig sheaves are typically not isomorphic.
We iterated over each of the 256 (2 × 2 × 2) possible pairs of 2-input logic gates
and computed the number of morphisms that connect the two resultant switching
sheaves. Table 1 lists the frequencies of morphism counts we found.

We found that the like the cohomology of the switching sheaf, the number of
switching sheaf morphisms is more sensitive to semantic differences than the truth
table of a logic circuit. Specifically, there exist pairs of circuits all with the same
truth table that do not have the same number of switching sheaf morphisms between

7

Table 1. Number of morphisms between switching sheaves over
chained 2-input gates to a single 3-input gate

Number of morphisms Frequency
0 96
1 96
2 60
3 0
4 4

them. For instance, consider the case where v2 is the 2-input zero function. There
are 2 morphisms when v1 is also 2-input zero function and w is the 3-input zero
function. However, if v1 is changed to be an AND gate, then there are no morphisms
between the two circuits.

At the time of writing, the number of morphisms between pairs of logically
equivalent switching sheaves remains rather mysterious. It remains an open problem
to characterize the number of morphisms between two switching sheaves in terms
of their semantic properties. In the case above, there are four switching sheaf pairs
that have 4 morphisms between them, all of which are insensitive to inputs A and B.
However, many other circuit pairs that are insensitive to A and B have a different
number of sheaf morphisms between them.

Although apparently plentiful, it appears that sheaf morphisms of the kind just
exhibited are perhaps not general enough. Instead one could require that a diagram
like

R Soo // T
be used, in which one of the two morphisms induces isomorphisms on cohomology.
Although abstract, this derived category construction can be used to realize all
discrete linear translation invariant systems as discussed in the next section.

3.4. Discoveries related to filter theory. Our discoveries in filter theory ad-
dress

• Objective 1: By providing novel models of signals within information sys-
tems, and
• Objective 2: By modeling the dynamics of these signals within signal pro-

cessing hardware and software.

The primary finding was a constructive theorem [7] that encodes discrete, linear
translation invariant filters with finite impulse response (FIR LTI) as a pair of sheaf
morphisms.

Theorem 8. Every FIR LTI filter F arises as the composition of linear maps
F = λ∗ ◦ p−1∗ : ΓS1 → ΓS3 induced on global sections by a pair of sheaf morphisms

S1 S2
λ //poo S3.

In this diagram, the invertible linear map p∗ : ΓS2 → ΓS1 is induced by p, and the
map induced by λ is λ∗ : ΓS2 → ΓS3.

This theorem has a clear interpretation in terms of the typical implementation
of a filter, either in hardware or software. The global sections of S1 are precisely

8

the possible input sequences, the global sections of S3 correspond to the output
sequences, and the global sections of S2 correspond to the contents of the internal
storage of the filter. The proof of the theorem is a rather explicit construction,
which outlines the evolution of these three timeseries.

The benefit of using sheaf morphisms to describe filters is that they can treat
a number of additional cases. In addition to the novel algorithms we discovered,
each of the following are straightforward generalizations, requiring no additional
theoretical work to construct:

(1) Infinite impulse response filters can be constructed simply by extending the
definition of V(N) to treat spaces of sequences instead of finite-dimensional
vectors.

(2) Nonlinear, block processing filters can be constructed by modifying the
component maps of the morphism λ to be nonlinear functions. For instance,
constant false alarm rate (CFAR) detectors can be encoded in this way. We
discovered a nonlinear, angle-sensitive filter using this framework (Section
3.6.1).

(3) If G is a finitely-generated group that acts on X, then G-equivariant sim-
plicial maps can be used to generalize V(N) to other simplicial complexes
X. This permits extensions of Theorem 8 to treat images, video, and more
complex discrete datasets.

3.5. Discoveries related to sampling theory. Our sampling theory discoveries
address

• Objective 1: By providing a concrete model of the unknown quantity being
measured and the measurements obtained and relating the two through a
sampling morphism, and
• Objective 2: By way of a theorem that explains whether inferences drawn

from the measurements will suceed.

Suppose that F is a sheaf on an abstract simplicial complex X, and that S is
the grouping sheaf V(1) on X supported on a closed subcomplex Y . A sampling of
F is a morphism s : F → S that is surjective on every stalk. Given a sampling,
we can construct the ambiguity sheaf A in which the stalk A(a) for a face a ∈ X
is given by the kernel of the map F(a)→ S(a). If a b is an inclusion of faces in
X, then A(a b) is F(a b) restricted to A(a). This implies that

0→ A ↪→ F s−−−−→ S → 0

is an exact sequence, which induces the long exact sequence (via the Snake lemma)

0→ H0(X;A)→ H0(X;F)→ H0(X;S)→ H1(X;A)→ · · ·

An immediate consequence is therefore

Theorem 9. (Sheaf-theoretic Nyquist theorem) The global sections of F are iden-
tical with the global sections of S if and only if Hk(X;A) = 0 for k = 0 and
1.

Several applications to specific sheaves were constructed during the project:

(1) The usual proof the Shannon-Nyquist sampling theorem can be reinter-
preted as a special case [6],

9

Figure 2. An image (482×653 pixels) with curved striations (left)
and its LSRA filtered image (right), in which the colors represent
angle in degrees. The filter used a block size of 30 pixels and a
spectral radius between 3 and 8 pixels.

Figure 3. Schematic of the local spectral angle calculation

(2) A novel sampling reconstruction condition was obtained for sheaves of piece-
wise linear functions [6], which are not bandlimited, and

(3) Several examples of the ambiguity sheaves associated to sheaves describing
the diffusion of contaminants through a network of channels were described
in [7].

3.6. Novel algorithms developed. In order to address Objective 3, we developed
several novel algorithms and tested them on various datasets.

3.6.1. Angle-sensitive filters. Curved striations are sometimes an important feature
to be detected in an image. For instance, the left panel of Figure 2 shows a pho-
tograph of a stack of dishes. The collection of edges of the dishes forms a striated
feature in the image. It is therefore useful to have a filter that measures the ori-
entation of striated features from an image. It is most effective to describe this
orientation by an angle.

We developed a topological filter called the local spectral rotation angle (LSRA)
which takes an intensity-valued image to an angle-valued image. Of necessity, this
filter is not linear, since the space of angles is not a vector space. On the other
hand, it is local since the orientation of striations can change across the image.

Topological filters provide a solid foundation on which to construct a method
for making local angular measurements of striations in an image. Essentially, the
desired filter should compute the angle of any striations in small patches of an
image, and then assemble the resulting computations into an angle-valued image,

10

Stairway
Stairway

Stairway

70 ft

150 ft

Walls made of concrete blocks

Hallway ends terminate in glass windows

Stairway

Stairway

Stairway

Figure 4. Dimensioned floorplan of the third floor of David Rit-
tenhouse Laboratory

as shown in Figure 3. The topological filter described here uses (1) the 2d-Fast
Fourier Transform of a small patch followed by (2) a peak detection on an annular
window to determine the dominant angle.

This filter can be constructed using the same kind of sequence of sheaves

S1 S2
λ //poo S3.

as occurs with FIR LTI filters. Again, S1 represents the input and S3 represents
the output, though the sections are images in the case of an angle-sensitive filter.
The sheaf S2 models the internal state of the filter, in this case circular regions of
pixels centered on each point. The morphism p performs the same role as before,
by loading input pixels into the state buffer. However, λ is now no longer a linear
operator. Instead it is an implementation of the procedure shown in Figure 3.

3.6.2. Geometry extraction for transmission lines. A global section of a sheaf is
uniquely specified by its value on all vertices. In the case of a transmission line
sheaf, a global section constrains the geometry of the graph. The calculation of the
values of a section along a graph is a useful tool for “sounding” the length of edges
in a graph, described in detail in [9]. The collection procedure is straightforward:
place a directional sensor at each vertex in the graph and measure the incoming
wave amplitudes. For instance, a horn antenna could be placed at each intersection
of hallways in a building, and oriented in the direction of each hallway for each
measurement. As is already well-known, it is necessary to select several algebraically
independent operating wavenumbers, as the next example shows.

Example 10. Consider the case of attempting to measure the geometry of Figure
4 from the graph model in Figure 5. Suppose that three sensors are placed at

11

v1

v3

v2

e1

e2

e3

a

b

c

d

C2 C3oo

T (v3 e2)
��

T (v3 e1) // C2

C2

C2 C3oo

T (v1 e2)

OO

T (v1 e3)// C2 C3

T (v2 e3)
oo

T (v2 e1)

OO

��
C2

Figure 5. Directed graph (left) and transmission line sheaf (right)
for the third floor of David Rittenhouse Laboratory

Table 2. Simulated magnitude and phase measurements for Ex-
ample 10

Vertex Hallway Mag at 905 MHz Phase at 905 MHz Mag at 2451 MHz Phase at 2451 MHz

v1 External 1.4 dB −8.6◦ 0.44 dB −14◦

v1 e2 -5.5 dB −1.5◦ -0.82 dB −28◦

v1 e3 -6.6 dB 82◦ -4.9 dB 83◦

v2 External 1.9 dB −78◦ 0.57 dB −85◦

v2 e1 -3.4 dB 156◦ -1.7 dB 108◦

v2 e3 -6.6 dB 131◦ -4.9 dB 150◦

v3 External 0 dB 0◦ 0 dB 0◦

v3 e1 -3.4 dB −126◦ -1.7 dB −17◦

v3 e2 -5.5 dB 150◦ -0.82 dB −16◦

each of v1, v2, and v3, for which simulated magnitude and phase measurements
shown in Table 2. These measurements correspond to two operating frequencies,
one at 905 MHz and one at 2.451 GHz (typical wireless network frequencies), and
were simulated by solving the lossless Helmholtz equation on a graph in which the
edge lengths were as shown in Figure 4, namely L(e1) = 220 ft, L(e2) = 150 ft,
and L(e3) = 70 ft. The choice of frequences is important; frequencies with small
common factors make accurate measurements of edge lengths difficult.

The algorithm described in [9] allows us to estimate the lengths of e1, e2, and
e3. For instance, using the operating frequency of 905 MHz yields the following
estimates:

• L(e1) ≈ −0.233 ft, which is too small by exactly 405 half-wavelengths,
• L(e2) ≈ 0.459 ft, which is too small by exactly 275 half-wavelengths, and
• L(e3) ≈ −0.148 ft, which is too small by exactly 129 half-wavelength.

Using 2.451 GHz alone isn’t more accurate, since it yields the following estimates:

• L(e1) ≈ 0.140 ft, which is too small by exactly 1095 half-wavelengths,
• L(e2) ≈ 0.0130 ft, which is too small by exactly 747 half-wavelengths, and
• L(e3) ≈ −0.0742 ft, which is too small by exactly 349 half-wavelengths.

12

However, combining the two frequencies alleviates the difficulty, in the following
way. Suppose we have two estimates L and L′ for an edge length, associated to
wavelengths λ and λ′, we then search for the smallest such value that satisfies

L+m
λ

2
= L′ + n

λ′

2
,

where m and n are integers. Performing this search on each of the edges in our graph
yields the correct lengths, namely L(e1) ≈ 220 ft, L(e2) ≈ 150 ft, and L(e3) ≈ 70
ft.

3.6.3. Tracking of rotating targets. As one of the first examples of topologically-
motivated filtering and detection process, we developed a method for tracking a
rotating target. In [5], we presented a novel angular fingerprinting algorithm for
detecting changes in the direction of rotation of a target with a monostatic, sta-
tionary sonar platform. Unlike other approaches, we assumed that the target’s
centroid is stationary, and exploited doppler multipath signals to resolve the oth-
erwise unavoidable ambiguities that arise. Since the algorithm is based on an
underlying differential topological theory, it is highly robust to distortions in the
collected data. We demonstrated performance of this algorithm experimentally, by
exhibiting a pulsed doppler sonar collection system that runs on a smartphone.
The performance of this system is sufficiently good to both detect changes in target
rotation direction using angular fingerprints.

Operationally, the process consists of the following steps:

(1) Acquisition of the reference collection.
(2) Measurement of the rotation period. We used a range-doppler filter to iden-

tify the target’s signature, from which the rotation period can be deduced
as the largest doppler component at the target’s range.

(3) Range gating. Since the target’s range is known, all range bins before this
range are removed. This is important since there were substantial range
and doppler sidelobes present in the waveform. (These are largely due
to receiver desense and overload effects as no time sensitivity control was
applied to the receiver.)

(4) Storage of a contiguous block of pulses that correspond to precisely one
period. Assuming the fan is rotating at a constant speed, the pulse number
corresponds linearly with the angular coordinate of the fan’s rotation.

(5) Acquisition of the second collection.
(6) Application of the same range gate filtering as applied to the reference

collection.
(7) For each pulse of the second collection, the nearest pulse (in the energy

norm) of the first collection is computed. This sets up a function from the
pulses of the second collection to the angular coordinate of the first.

(8) Since this function is subject to noise, we Kalman filtered it, resulting in
an approximation of the angular fingerprint function F is the output of the
procedure.

By examining the slope of the angular fingerprint, changes in rotation direction
speed can be deduced. If the slope is negative, then the rotation directions in the
first and second collections differ; if positive, then the rotation directions agree.

We demonstrated the Algorithm by measuring the rotation rate of a ceiling fan
using a simple sonar setup. Consider the collection geometry indicated in Figure

13

Figure 6. Experimental setup: fan on ceiling, sensor on floor

6. In this scenario, a rotating fan was located on the ceiling of a room with walls
made of drywall and a sonar platform was placed on the floor. The sonar platform
consisted of the speaker and microphone of a cell phone (Prof. Robinson’s Nokia
n900). The transmitted waveform was an impulse train with a bandwidth of 7 kHz,
range resolution of 5 cm, and pulse repetition rate of 34 Hz. In all, 175 pulses were
collected.

A typical final output fingerprint function (after Kalman filtering) is displayed
in Figure 7. The negative slope of the graph indicates that the fan was spinning
different directions during each of the two collections.

4. Dissemination activities

4.1. Monograph on Topological Signal Processing. One of Prof. Robinson’s
primary intellectual outputs from this project was a monograph entitled Topolog-
ical Signal Processing. Prof. Robinson has already used portions of the book for
training the students in his research group. Prof. Robinson has a contract with
Springer for publishing the completed manuscript both in print and online, and
a completed draft of it was circulated for comments from trusted members of the
Applied Topology community at the beginning of Summer 2013.

This book takes the perspective that signal processing has much to gain by
taking a more local approach; consistency between nearby sensors or measurements
is expected, but is not expected between sensors that are far apart. But how does
one measure distance without explicitly invoking geometry, which is potentially
very uncertain? This is the purview of topology ; the lesson is that nearness can be
studied implicitly and local signals can be studied through the theory of sheaves.

4.2. Papers and preprints written.

(1) [5] “Multipath-dominant analysis of rotating blades using a pulsed wave-
form,” IET Radar Sonar and Navigation, Volume 7, Issue 3, March 2013,

14

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70
Pulse−to−pulse correspondence

Pulse from Collection D: Rotating counterclockwise, 1/3 Hz

P
ul

se
 fr

om
 C

ol
le

ct
io

n
F

: R
ot

at
in

g
cl

oc
kw

is
e,

 1
/2

 H
z

Figure 7. Angular fingerprint of two experiments with different
rotation directions and speeds

pp. 217-224. Wind turbines present an opportunity for real-time, clear
weather wind observations. By remotely measuring the speed and direc-
tion of turbine rotation, one could opportunistically measure wind speed
and direction. However, current methods do not allow for rotation direction
measurement if one uses a stationary monostatic radar platform. We pre-
sented a novel angular fingerprinting algorithm that fills this gap. Unlike
other approaches, the target’s centroid is stationary and, so the algorithm
exploits doppler multipath signals to resolve the otherwise unavoidable am-
biguities. Since the algorithm is based on an underlying differential topo-
logical theory, it is robust to distortions in the collected data. The authors
demonstrate performance of this algorithm experimentally, by exhibiting a
pulsed doppler sonar collection system that runs on a smartphone.

(2) [6] “The Nyquist theorem for cellular sheaves,” Sampling Theory and Appli-
cations (SampTA) 2013, Bremen, Germany, arXiv:1307.7212. We develop
a unified sampling theory based on sheaves and show that the Shannon-
Nyquist theorem is a cohomological consequence of an exact sequence of
sheaves. Our theory indicates that there are additional cohomological ob-
structions for higher-dimensional sampling problems. Using these obstruc-
tions, we also present conditions for perfect reconstruction of piecewise
linear functions on graphs, a collection of non-bandlimited functions on
topologically nontrivial domains.

(3) [7] “Understanding networks and their behaviors using sheaf theory,” to
appear in IEEE Global Conference on Signal and Information Processing
(GlobalSIP) 2013, Austin, Texas, arXiv:1308.4621. Many complicated net-
work problems can be easily understood on small networks. Difficulties
arise when small networks are combined into larger ones. Fortunately, the

15

mathematical theory of sheaves was constructed to address just this kind of
situation; it extends locally-defined structures to globally valid inferences
by way of consistency relations. This paper exhibits examples in network
monitoring and filter hardware where sheaves have useful descriptive power.

4.3. Conference activity. In Prof. Robinson’s role as a mediator between math-
ematics and engineering, he traveled on this project to foster cross-discipline col-
laboration between engineers and mathematicians. Specifically, his conference par-
ticipation during Summer 2013 on this project brought visibility to the message
that sheaf theory is a valuable engineering tool. He made two international trips,
which presented results on this project. The first of these two conferences (SampTA
in Bremen, Germany (July 1-5, 2013)) is populated by half mathematicians and
half engineers, while the second (Applied Topology in Bedlewo, Poland (July 21-27,
2013)) attracts exclusively mathematicians.

Prof. Robinson served as an organizer of the invited special session on Sampling
and Geometry at SampTA, and was a referee for papers submitted to the session.
As an invited speaker at the conference, he presented the results outlined above
on sampling theory, which served to convince engineers that they have something
to learn from sheaf theory. This conference was populated potential users of the
theory developed on this project. The wider SampTA conference attracts very high-
profile attention; Emmanuel Candes (Stanford), one of the inventors of compressive
sensing, gave a plenary address.

The second conference was the annual meeting of Applied Topologists. This
conference was organized by the top researchers in the field, indeed its initial
proponents, including Frederick Cohen (University of Rochester), Michael Farber
(University of Warwick), Robert Ghrist (University of Pennsylvania), and Marian
Mrozek (Jagiellonian University). There are no contributed paper sessions at this
conference; one speaks by invitation only. Prof. Robinson gave a plenary address
at this conference, and presented the other half of the story about applied sheaf
theory, that new mathematical aspects to the theory must be developed to address
engineering problems.

5. Student participation

The mathematics master’s degree program at American University allows stu-
dents to pursue a degree in pure and applied mathematics. American University
provides an excellent combination of resources for advanced education in the math-
ematical sciences. Through small class sizes and attentive faculty, students receive
personalized attention throughout the program. This project nutured the devel-
opment of two talented students, who in turn extended the reach of the project’s
technical results.

5.1. Graduate student: Morgan DeHart. The project funded Morgan DeHart
during the Fall 2012 and Spring 2013 terms, which was the first academic year of
his Master’s degree program. Mr. DeHart assisted the analysis of switch sheaf
cohomology, and was instrumental in the study of morphisms between switching
sheaves. The software that he wrote systematically counted the possible morphisms
between switching sheaves along a cellular map, and tabulated these results over
all possible logic circuits of a given topology.

16

Mr. DeHart started his study of sheaf theory during the Fall 2012 semester, and
was therefore an ideal candidate to proofread the Topological Signal Processing
book being written by Prof. Robinson. He made numerous useful comments during
this process and because of this, developed a solid understanding of sheaf theoretic
techniques.

At the completion of the Spring 2013 semester, Mr. DeHart took a summer
internship with United Technologies Research Center under the direction of Dr.
Alberto Speranzon, studying the application of topology to network cyber/physical
security.

5.2. Graduate student: Matthew Hubler. The project funded Matthew Hubler
during the summer of 2013, during which he was working on his Master’s degree.
Mr. Hubler wrote software in support of the application of novel topological filters
(as described above) to image analysis tasks. Mr. Hubler also developed a good
working knowledge of the operating parameters for the TerraSAR-X satellite radar
platform, which was the source of some of the imagery he helped to analyze. His
work was (and continues to be) valuable by providing a fielded testbed for testing
the novel algorithms developed on this project.

6. Recommendations for future work

This project uncovered several different kinds of sheaves for signal processing and
network problems. These sheaves appear to arise from related constructions, and
have related properties, but no explicit common framework has been discovered. A
good next step would be to develop a general classification of information system-
relevant sheaves that includes existing sheaf models as special cases. This model
would highlight what aspects of an information system are best captured by a sheaf
theoretic model, and would suggest ways to avoid ambiguities when using the model
to make inferences.

Specific recommendations for future work include

(1) Unify the construction of sheaf models for information systems, so that the
different examples discovered on this project are special cases,

(2) Analyze the persistent cohomological features arising from these models,
and

(3) Discover plausible inference patterns from these features.

6.1. Recommendation 1: Unify the constructions of sheaf models for in-
formation systems. Given a collection of sheaf models of an information system,
it would be useful to produce a systematic, canonical construction of morphisms be-
tween them. For instance, the specification of a specific switching sheaf morphism is
rather constrained. This indicates that given a particular category of sheaf models,
the morphisms may be determined by a smaller, “engineering-friendly” specifica-
tion. With such a specification, and it should be possible to understand the resulting
cohomology of sheaf models. For instance, this would produce an explanation of
the meaning of H0 for switching sheaves; an unresolved mystery at present. More
aggressively, we may discover a duality theorem (probably based on Verdier dual-
ity) that relates sheaves describing network nodes and sheaves describing network
connections.

17

6.2. Recommendation 2: Analyze persistent cohomological features. Se-
quences of sheaves support the definition of persistence sheaves, a (dual) general-
ization of the increasingly popular persistent homology used in data analysis. We
should aim to understand the meaning of “persistent topological feature” in this
context, with a careful emphasis on the meaning of the complexity scale. Indeed,
while zig-zag persistence works formally in this context, it is unclear how to in-
terpret the persistence scale. The usual theorems about robustness of persistence
diagrams are of no use. We should therefore aim to prove theorems that explain the
robustness of persistent cohomology in this new context. Finally, adoption by the
engineering community would require developing a software tool to aid the study
of persistent sheaf cohomology in applications.

6.3. Recommendation 3: Discover patterns of inference from cohomologi-
cal features. The most ambitious research direction would be an assault on a proof
of a multiscale, general sampling theorem. This theorem could have wide-ranging
implications, including special cases that indicate bounds on sampling requirements
for network and software validation, sensor planning, and beyond. As a mitigation
of the associated technical risk, we could enhance the software developed in support
of Recommendation 2 to compute cohomology of sequences of persistence sheaves.
This would enable the ad hoc study of sampling in particular systems, even in the
absence of a theoretical result.

References

[1] Glen Bredon. Sheaf theory. Springer, 1997.

[2] J. Curry. Sheaves, cosheaves and applications, arxiv:1303.3255. 2013.
[3] V. de Silva, D. Morozov, and M. Vejdemo-Johansson. Persistent cohomology and circular

coordinates. Discrete & Computational Geometry, 45(4):737–759, 2011.

[4] John H. Hubbard. Teichmüller Theory, volume 1. Matrix Editions, 2006.
[5] M. Robinson. Multipath-dominant analysis of rotating blades using a pulsed waveform. IET

Radar Sonar and Navigation, 7(3):217–224, March 2013.

[6] M. Robinson. The Nyquist theorem for cellular sheaves. In Sampling Theory and Applications
(SampTA), 2013.

[7] M. Robinson. Understanding networks and their behaviors using sheaf theory. In IEEE Global

Conference on Signal and Information Processing (GlobalSIP), 2013.
[8] Michael Robinson. Asynchronous logic circuits and sheaf obstructions. In GETCO 2010,

January 2010.

[9] Michael Robinson. Inverse problems in geometric graphs using internal measurements,
arxiv:1008.2933, 2010.

[10] Claude Shannon. A symbolic analysis of relay and switching circuits. Master’s thesis, MIT,
1940.

[11] A. Shepard. A cellular description of the derived category of a stratified space. PhD thesis,

Brown University, 1985.

Python sheaf library

Persistence-capable sheaf manipulation library

#

Copyright (c) 2013, Michael Robinson

Distribution of unaltered copies permitted for noncommercial use only

All other uses require express permission of the author

This software comes with no warrantees express or implied

18

import numpy as np

import random

Data structures

class Coface:

"""A coface relation"""

def __init__(self,index,orientation):

self.index=index

self.orientation=orientation

class Cell:

"""A cell in a cell complex"""

def __init__(self,dimension,compactClosure=True,cofaces=[]):

self.dimension=dimension

self.compactClosure=compactClosure

self.cofaces=cofaces

def cofaceList(self):

return [cf.index for cf in self.cofaces]

def isCoface(self,index,orientation=None):

if orientation==None:

return index in [cf.index for cf in self.cofaces]

else:

return (index,orientation) in [(cf.index,cf.orientation) for cf in self.cofaces]

class CellComplex:

def __init__(self,cells):

"""Construct a cell complex from its cells"""

self.cells=cells

def isFaceOf(self,c,cells=[]):

"""Construct a list of all cells that a given cell is a face of"""

if cells:

cl=cells

else:

cl=range(len(self.cells))

return [i for i in cl if self.cells[i].isCoface(c)]

def skeleton(self,k,compactSupport=False):

return [i for i in range(len(self.cells))

if ((compactSupport or self.cells[i].compactClosure) and self.cells[i].dimension==k)]

def faces(self,c):

"""Compute a list of all faces of a cell"""

return [i for i in range(len(self.cells)) if self.cells[i].isCoface(c)]

def cofaces(self,c,cells=[]):

19

"""Iterate over cofaces (of all dimensions) of a given cell; optional argument specifies which cells are permissible cofaces"""

for cf in self.cells[c].cofaces:

if cf.index in cells or not cells:

yield cf

for cf in self.cells[c].cofaces:

if cf.index in cells or not cells:

self.cofaces(cf.index,cells)

def components(self,cells=[]):

"""Compute connected components; optional argument specifies permissible cells"""

if not cells:

cellsleft=range(len(self.cells))

else:

cellsleft=cells

cpts=[]

cpt=[]

while cellsleft:

cpt=self.expandComponent(cellsleft[0],cells,[cellsleft[0]])

cpts+=[list(set(cpt))]

cellsleft=list(set(cellsleft).difference(cpt))

return cpts

def expandComponent(self,start,cells=[],current_cpt=[]):

"""Compute the connected component started from a given cell. Optional argument specifies permissible cells"""

if not cells:

cellsleft=list(set(range(len(self.cells))).difference(current_cpt))

else:

cellsleft=list(set(cells).difference(current_cpt))

if not cellsleft:

return current_cpt

neighbors=self.connectedTo(start,cellsleft)

for c in neighbors:

current_cpt+=self.expandComponent(c,cellsleft,list(set(current_cpt+neighbors)))

current_cpt=list(set(current_cpt))

return current_cpt

def connectedTo(self,start,cells=[]):

"""Which cells is a cell connected to? Optional argument specifies permissible cells"""

if not cells:

return list(set(self.faces(start) + self.cells[start].cofaceList()))

else:

return list(set.intersection(set(self.faces(start) + self.cells[start].cofaceList()),cells))

def starCells(self,cells):

"""Cells in star over a subset of a cell complex"""

20

return list(set(cells+[cf.index for c in cells for cf in self.cofaces(c)]))

class SheafCoface(Coface):

"""A coface relation"""

def __init__(self,index,orientation,corestriction):

self.index=index

self.orientation=orientation

self.corestriction=corestriction

def __repr__(self):

return "(index=" + str(self.index) + ",orientation="+str(self.orientation)+",corestriction="+str(self.corestriction)+")"

class SheafCell(Cell):

"""A cell in a cell complex with a sheaf over it"""

def __init__(self,dimension,cofaces=[],compactClosure=True,stalkDim=1):

if cofaces:

try:

self.stalkDim=cofaces[0].corestriction.shape[1]

except AttributeError:

self.stalkDim=0

else:

self.stalkDim=stalkDim

Cell.__init__(self,dimension,compactClosure,cofaces)

def __repr__(self):

string="(dimension="+str(self.dimension)+",compactClosure="+str(self.compactClosure)

if self.cofaces:

for cf in self.cofaces:

string+="," + cf.__repr__()

return string+")"

else:

return string+",stalkdim="+str(self.stalkDim)+")"

Sheaf class

class Sheaf(CellComplex):

def cofaces(self,c,cells=[],currentcf=[]):

"""Iterate over cofaces (of all dimensions) of a given cell; optional argument specifies which cells are permissible cofaces"""

for cf in self.cells[c].cofaces:

if cf.index in cells or not cells:

if currentcf:

cfp=SheafCoface(cf.index,

currentcf.orientation*cf.orientation,

np.dot(currentcf.corestriction,corestriction))

else:

cfp=cf

yield cfp

21

for cf in self.cells[c].cofaces:

if cf.index in cells or not cells:

if currentcf:

cfp=SheafCoface(cf.index,

currentcf.orientation*cf.orientation,

np.dot(currentcf.corestriction,corestriction))

else:

cfp=cf

self.cofaces(cf.index,cells,cfp)

def star(self,cells):

"""Restrict a sheaf to the star over a subset of the base space"""

Extract a list of all relevant cells in the star

cells=CellComplex.starCells(self,cells)

return Sheaf([SheafCell(dimension=self.cells[i].dimension,

stalkDim=self.cells[i].stalkDim,

compactClosure=self.cells[i].compactClosure and (not set(self.faces(i)).difference(set(cells))),

cofaces=[SheafCoface(cells.index(cf.index),cf.orientation,cf.corestriction) for cf in self.cells[i].cofaces]) for i in cells])

def kcells(self,k,compactSupport=False):

"""Extract the compact k-cells and associated components of coboundary matrix"""

k=CellComplex.skeleton(self,k,compactSupport)

ksizes=[self.cells[i].stalkDim for i in k]

kidx=list(cumulative_sum(ksizes))

return k,ksizes,kidx

def localSectional(self,cells=[]):

"""Construct a new sheaf whose global sections are the local sections of the current sheaf over the given cells, and a morphism from this new sheaf to the current one."""

if not cells:

cells=range(len(self.cells))

Edges of new sheaf = elements of S with at least one face in the list of cells

edges=[i for i in cells if self.isFaceOf(i,cells)]

morphism=[]

newcells=[]

for i in edges:

newcells.append(SheafCell(1,

compactClosure=self.cells[i].compactClosure and (not set(self.faces(i)).difference(set(cells))),

stalkDim=self.cells[i].stalkDim))

morphism.append(SheafMorphismCell([i],[np.eye(self.cells[i].stalkDim)]))

Vertices of new sheaf = elements of S with no faces

vert=list(set(cells).difference(edges))

22

Corestrictions of new sheaf = compositions of corestrictions

for i in vert:

starting at this vertex, do a depth-first search for the edges in the new sheaf

cofaces=list(self.cofaces(i,cells))

newcofaces=[]

for cf in cofaces:

newcofaces.append(SheafCoface(edges.index(cf.index),

cf.orientation,

cf.corestriction))

if cofaces:

newcells.append(SheafCell(0,compactClosure=True,cofaces=newcofaces))

else:

newcells.append(SheafCell(0,compactClosure=True,stalkDim=self.cells[i].stalkDim))

morphism.append(SheafMorphismCell([i],[np.eye(self.cells[i].stalkDim)]))

return Sheaf(newcells),morphism

def localRestriction(self,cells_1,cells_2):

"""Compute the map induced on local sections by restricting from a larger set to a smaller one"""

Obtain sheaves and morphisms of local sections for both sets

sheaf_1,mor_1=self.localSectional(cells_1)

sheaf_2,mor_2=self.localSectional(cells_2)

Compute global sections of each sheaf in terms of cohomology

H0_1=sheaf_1.cohomology(0)

if not np.all(H0_1.shape):

return np.zeros(H0_1.shape)

Extend sections of sheaf 1 to vertices of sheaf 2, if needed

Observe that value at each vertex of sheaf 2 either

(1) comes from value at a vertex of sheaf 1 or

(2) comes from value at an edge of sheaf 1,

in which case a single corestriction map obtains it

from the value at a vertex of sheaf 1

k_1,ksizes_1,kidx_1=sheaf_1.kcells(0)

k_2,ksizes_2,kidx_2=sheaf_2.kcells(0)

rows=sum(ksizes_2)

sections=np.zeros((rows,H0_1.shape[1]))

for ss in range(H0_1.shape[1]): # Looping over sections in sheaf 1

for i in range(len(k_2)): # Looping over vertices in sheaf 2

Compute compute preimages of this sheaf 2 vertex

ms=[k for k in range(len(mor_1)) if

set(mor_1[k].destinations).intersection(mor_2[k_2[i]].destinations)]

if ms:

if sheaf_1.cells[ms[0]].dimension==0:

23

ii=ms[0]

idx=k_1.index(ii)

map,j1,j2,j3=np.linalg.lstsq(mor_2[i].maps[0],mor_1[ii].maps[0])

A=np.dot(map,H0_1[kidx_1[idx]:kidx_1[idx+1],ss])

sections[kidx_2[i]:kidx_2[i+1],ss]=A

else:

ii=sheaf_1.faces(ms[0])[0] # parent cells

idx=k_1.index(ii)

for cf in sheaf_1.cells[ii].cofaces:

if cf.index==ms[0]:

cr=cf.corestriction

break

A=np.dot(cr,mor_1[ii].maps[0])

map,j1,j2,j3=np.linalg.lstsq(mor_2[i].maps[0],A)

sections[kidx_2[i]:kidx_2[i+1],ss]=np.dot(map,H0_1[kidx_1[idx]:kidx_1[idx+1],ss])

Rewrite sections over sheaf 2 in terms of 0-cohomology basis

map,j1,j2,j3 = np.linalg.lstsq(sections,sheaf_2.cohomology(0))

return map.conj().T

Input: k = degree of cohomology to compute

Output: matrix

def coboundary(self,k,compactSupport=False):

"""Compute k-th coboundary matrix"""

Collect the k-cells and k+1-cells

ks,ksizes,kidx=self.kcells(k,compactSupport)

kp1,kp1sizes,kp1idx=self.kcells(k+1,compactSupport)

Allocate output matrix

rows=sum(kp1sizes)

cols=sum(ksizes)

d=np.zeros((rows,cols),dtype=np.complex)

if rows and cols:

Loop over all k-cells, writing their matrices into the output matrix

for i in range(len(ks)):

Loop over cofaces with compact closure

for cf in self.cells[ks[i]].cofaces:

if self.cells[cf.index].compactClosure or compactSupport:

ridx=kp1.index(cf.index)

block=np.matrix(cf.orientation*cf.corestriction)

d[kp1idx[ridx]:kp1idx[ridx+1],kidx[i]:kidx[i+1]]+=block

return d

else:

return d

def cohomology(self,k,compactSupport=False,tol=1e-5):

24

"""Compute basis for k-th cohomology of the sheaf"""

Obtain coboundary matrices for the sheaf

dm1=self.coboundary(k-1,compactSupport)

dm1=np.compress(np.any(abs(dm1)>tol,axis=0),dm1,axis=1)

d=self.coboundary(k,compactSupport)

Compute kernel

if d.size:

ker=kernel(d,tol);

else:

ker=np.eye(d.shape[1])

Remove image

if k > 0 and dm1.any():

map,j1,j2,j3=np.linalg.lstsq(ker,dm1)

Hk=np.dot(ker,cokernel(map,tol));

else:

Hk=ker

return Hk

def betti(self,k,compactSupport=False,tol=1e-5):

"""Compute the k-th Betti number of the sheaf"""

return self.cohomology(k,compactSupport).shape[1]

def pushForward(self,targetComplex,map):

"""Compute the pushforward sheaf and morphism along a map"""

sheafCells=[]

mor=[]

Loop over cells in the target cell complex

for cidx in range(len(targetComplex.cells)):

c=targetComplex.cells[cidx]

Compute which cells are in the preimage of this cell

bigPreimage=[d for d,r in map if r==cidx]

For each cell, compute map on global sections over the star

along each attachment

cfs=[]

for cf in c.cofaces:

smallPreimage=[d for d,r in map if r==cf.index]

corest=self.localRestriction(self.starCells(bigPreimage),

self.starCells(smallPreimage))

cfs.append(SheafCoface(cf.index,

cf.orientation,corest))

25

mor.append(SheafMorphismCell(bigPreimage,

[self.localRestriction(self.starCells(bigPreimage),[d]) for d in bigPreimage]))

if cfs:

sheafCells.append(SheafCell(c.dimension,cfs,c.compactClosure))

else:

ls,m=self.localSectional(self.starCells(bigPreimage))

sheafCells.append(SheafCell(c.dimension,[],c.compactClosure,stalkDim=ls.betti(0)))

return Sheaf(sheafCells),mor

def flowCollapse(self):

"""Compute the sheaf morphism to collapse a sheaf to a flow sheaf over the same space"""

Generate the flow sheaf

fs=FlowSheaf(self)

mor=[]

for i in range(len(self.cells)):

c=self.cells[i]

If a vertex, collapse by composing edge morphism with corestrictions

if c.dimension==0:

map=np.zeros((0,c.stalkDim))

for j in range(len(c.cofaces)-1):

cf=c.cofaces[j]

map=np.vstack((map,np.sum(cf.corestriction,axis=0)))

mor.append(SheafMorphismCell([i],[map]))

else:

If an edge, collapse by summing

mor.append(SheafMorphismCell([i],[np.ones((1,c.stalkDim))]))

return fs,mor

class AmbiguitySheaf(Sheaf):

def __init__(self,shf1,mor):

"""Construct an ambiguity sheaf from two sheaves (over the same base) and a morphism between them"""

cellsnew=[]

for i in range(len(shf1.cells)):

c=shf1.cells[i]

New cell has same dimension, compactness,

Stalk is the kernel of the component map there

Corestrictions come from basis change on each corestriction

K=kernel(mor[i].map[0])

stalkDim=K.shape[0]

cfnew=[]

26

for cf in shf1.cells[i].cofaces:

S=cf.corestriction

L=kernel(mor[cf.index].map[0])

R=np.linalg.lstsq(L,np.dot(S,K))

cfnew.append(SheafCoface(index=cf.index,

orientation=cf.orientation,

corestriction=R))

cellsnew.append(SheafCell(dimension=c.dimension,

compactClosure=c.compactClosure,

stalkDim=stalkDim,

cofaces=cfnew))

Sheaf.__init__(self,cellsnew)

Flow sheaves

class DirectedGraph(CellComplex):

def __init__(self,graph,vertex_capacity=-1):

"""Create a cell complex from a directed graph description, which is a list of pairs (src,dest) or triples (src,dest,capacity) of numbers representing vertices.

The vertex labeled None is an external connection

Cells are labeled as follows:

First all of the edges (in the order given),

then all vertices (in the order they are given; not by their numerical

values)"""

Construct list of vertices

verts=[]

for ed in graph:

s=ed[0]

d=ed[1]

if s != None:

verts.append(s)

if d != None:

verts.append(d)

verts=list(set(verts))

Loop over edges, creating cells for each

compcells=[]

for i in range(len(graph)):

compcells.append(Cell(dimension=1,

compactClosure=(graph[i][0]!=None) and (graph[i][1]!=None)))

compcells[-1].vertex_label=None

try: # Add capacity if specified

compcells[-1].capacity = graph[i][2]

except:

pass

Loop over vertices, creating cells for each

27

for i in verts:

Collect cofaces

cfs=[j for j in range(len(graph)) if graph[j][0]==i or graph[j][1]==i]

Compute orientations of each attachment

orient=[]

cofaces=[]

for j in range(len(cfs)):

if graph[cfs[j]][0]==i:

orient.append(-1)

else:

orient.append(1)

cofaces.append(Coface(cfs[j],orient[j]))

compcells.append(Cell(dimension=0,

compactClosure=True,

cofaces=cofaces))

compcells[-1].vertex_label=i

compcells[-1].capacity=vertex_capacity

CellComplex.__init__(self,compcells)

def findPath(self,start,end,history=[]):

"""Find a path from specified start cell to end cell

Cell attribute .capacity_left specifes whether the cell can be used"""

if start == end:

return history+[end]

Initialize the capacities used, if unavailable

for c in self.cells:

if not hasattr(c,’capacity_left’):

c.capacity_left = 1

if self.cells[start].dimension == 0:

Compute list of outgoing edges

for cf in self.cells[start].cofaces:

if cf.orientation == -1 and cf.index not in history and self.cells[cf.index].capacity_left:

ch=self.findPath(cf.index,end,history+[start])

if ch:

return ch

return None

else:

Locate vertices which this edge is pointing into

fs=[i for i in range(len(self.cells)) if self.cells[i].isCoface(start,1)]

Is there is a vertex with remaining capcity?

if fs and fs[0] not in history and self.cells[fs[0]].capacity_left:

return self.findPath(fs[0],end,history+[start])

else: # No such vertex

28

return None

def maxFlow(self,start,end):

"""Compute the maximal flow through a graph using Ford-Fulkerson algorithm. Cell attribute .capacity specifies the number of times the cell can be used. The default capacities are 1 for edges, infinity for vertices, which results in finding all edge-disjoint paths."""

Initialize the capacities on intermediate cells

for c in self.cells:

try: # ... to use requested capacities

c.capacity_left = c.capacity

except: # if no capacity specified

if c.dimension == 0: # Vertices get infinite capacity

c.capacity_left=-1

else: # Edges get capacity 1

c.capacity_left = 1

Initialize start/end cell capacities to be infinite

self.cells[start].capacity_left=-1

self.cells[end].capacity_left=-1

Search for paths

chains=[]

ch=self.findPath(start,end)

while ch:

Add list of chains

chains+=[ch]

Delete capacities from the cells in this chain

for i in ch:

self.cells[i].capacity_left -= 1

Find the next chain

ch=self.findPath(start,end)

return chains

def maximalChains(self,start,history=[]):

"""Compute a list of maximal chains beginning at a cell"""

if self.cells[start].dimension == 0:

Compute list of outgoing edges

cfs=[cf for cf in self.cells[start].cofaces

if cf.orientation == -1 and not cf.index in history]

if cfs: # There are outgoing edges, loop over them

chains=[self.maximalChains(cf.index,history+[start])

for cf in cfs]

lst=[]

for ch in chains:

lst+=ch

return lst

29

else: # No outgoing edges, so this vertex is terminal

return [history+[start]]

else:

Locate vertices which this edge is pointing into

fs=[i for i in range(len(self.cells)) if self.cells[i].isCoface(start,1)]

Is there is a vertex with remaining capcity

if fs and not fs[0] in history:

return self.maximalChains(fs[0],history+[start])

else: # No such vertex

return [history+[start]]

def coveringSpace(self,sheets,partial=False):

"""Create a directed graph that is a covering space of this one with the specified number of sheets"""

Construct new edge set

edges=[c for c in self.cells if c.dimension == 1]

newcells=edges*sheets

edgeidx=[idx for idx in range(0,len(self.cells))

if self.cells[idx].dimension==1]

Decompactify edges on request

if partial:

for i in range(0,len(edges)):

newcells[i].compactClosure=False

Construct new vertex set

for c in self.cells:

if c.dimension == 0:

for i in range(0,sheets):

if i == sheets-1 and partial:

break # Skip last vertex copy if requested

Remap cofaces

cofaces=[Coface((edgeidx.index(cf.index)+

(i+(1-cf.orientation)/2)*len(edges))

%(len(edges)*sheets),

cf.orientation)

for cf in c.cofaces]

newcells.append(Cell(dimension=0,

compactClosure=True,

cofaces=cofaces))

return CellComplex(newcells)

def erdosRenyiDirectedGraph(nvert,prob):

"""Create a random graph with nvert vertices and probability of an edge prob"""

return DirectedGraph([(a,b) for a in range(nvert)+[None]

for b in range(nvert)+[None]

if random.random() < prob and (a!=None or b!=None)])

30

class FlowSheaf(Sheaf,DirectedGraph):

def __init__(self,graph):

"""Create a flow sheaf from a directed graph"""

sheafcells=[]

for c in graph.cells:

cofaces=[]

j=0

for cf in c.cofaces:

Compute corestrictions

if j in range(len(c.cofaces)-1):

corest=np.matrix([m==j for m in range(len(c.cofaces)-1)],dtype=int)

else:

corest=np.matrix([cf.orientation for cf in c.cofaces][0:-1])

cofaces.append(SheafCoface(cf.index,cf.orientation,corest))

j+=1

sheafcells.append(SheafCell(dimension=c.dimension,

compactClosure=c.compactClosure,

cofaces=cofaces))

Sheaf.__init__(self,sheafcells)

class TransLineSheaf(Sheaf,DirectedGraph):

def __init__(self,graph,wavenumber):

"""Create a transmission line sheaf from a directed graph, in which edges have been given a .length attribute"""

Default edge lengths

for c in graph.cells:

if c.dimension == 1:

if c.compactClosure==False:

c.length=1

try:

if c.length<0:

c.length=1

except:

c.length=1

sheafcells=[]

for c in graph.cells:

cofaces=[]

if c.dimension == 0: # Edges have interesting corestrictions

n=len(c.cofaces)

phaselist=[2/n for i in range(n)]

31

for m in range(n):

if c.cofaces[m].orientation == -1:

corest=np.matrix([[i==m for i in range(n)],

phaselist],

dtype=complex)

corest[1,m]-=1

corest[1,:]*=np.exp(-1j*wavenumber*graph.cells[c.cofaces[m].index].length)

else:

corest=np.matrix([phaselist,

[i==m for i in range(n)]],

dtype=complex)

corest[0,m]-=1

corest[0,:]*=np.exp(1j*wavenumber*graph.cells[c.cofaces[m].index].length)

cofaces.append(SheafCoface(c.cofaces[m].index,

c.cofaces[m].orientation,

corest))

else: # All other faces have trivial corestrictions

n=2

cofaces=[SheafCoface(cf.index,cf.orientation,[]) for cf in c.cofaces]

sheafcells.append(SheafCell(dimension=c.dimension,

compactClosure=c.compactClosure,

cofaces=cofaces,

stalkDim=n))

Sheaf.__init__(self,sheafcells)

class SheafMorphismCell:

def __init__(self,destinations=[],maps=[]):

"""Specify destinations and maps for this cell’s stalk under a morphism"""

self.destinations=destinations

self.maps=maps

A local section

class SectionCell:

def __init__(self,support,value):

"""Specify support cell indices and values in each cell stalk for a local section"""

self.support=support

self.value=value

class Section:

def __init__(self,sectionCells):

self.sectionCells=sectionCells

def support(self):

"""List the cells in the support of this section"""

return [sc.support for sc in self.sectionCells]

32

def extend(self,sheaf,cell,value=None,tol=1e-5):

"""Extend the section to another cell; returns True if successful"""

If the desired cell is already in the support, do nothing

if cell in self.support():

return True

Is the desired cell a coface of a cell in the support?

for s in self.sectionCells:

for cf in sheaf.cells[s.support].cofaces:

if cf.index == cell:

If so, extend via corestriction

val=np.dot(cf.corestriction,s.value)

Check for consistency

if value != None and np.any(np.abs(val - value)>tol):

return False

value = val

Are there are any cofaces for the desired cell in the support?

if value == None: # Attempt to assign a new value...

Stack the corestrictions and values associated to existing support

lst=[(cf.corestriction,s.value)

for cf in sheaf.cells[cell].cofaces

for s in self.sectionCells

if cf.index == s.support]

if lst:

crs=np.vstack([e[0] for e in lst])

vals=np.vstack([e[1] for e in lst])

If the problem of solving for the value at this cell is

underdetermined, refrain from solving it

if matrixrank(crs,tol) < crs.shape[1]:

return True

Attempt to solve for the value at desired cell

val,res,j2,j3=np.linalg.lstsq(crs,vals)

if np.any(np.abs(res)>tol):

return False

value = val

else: # ...or check consistency with an old one

for cf in sheaf.cells[cell].cofaces:

for s in self.sectionCells:

if s.support == cf.index:

if np.any(np.abs(np.dot(cf.corestriction,value)-s.value)>tol):

return False

A value was successfully assigned (if no value was assigned,

do nothing, but it’s still possible to extend)

33

if value != None:

self.sectionCells.append(SectionCell(cell,value))

return True

class PersistenceSheaf(Sheaf):

Compute k-th persistence sheaf

Input: list of sheaves

list of triples: source sheaf index, destination sheaf index, sheaf morphism data

def __init__(self,sheaves,morphisms,k):

"""Compute the k-th degree persistence sheaf over a graph"""

persheaf=[]

Loop over sheaves

for i in range(len(sheaves)):

Loop over morphisms initiated from this sheaf

cofaces=[]

for (s,d,mor) in morphisms:

if s==i:

cofaces.append(SheafCoface(d,

1,

inducedMap(sheaves[i],sheaves[d],mor,k)))

if cofaces:

persheaf.append(SheafCell(dimension=0,

compactClosure=True,

cofaces=cofaces))

else: # If cell does not have cofaces, compute stalk from Betti number

persheaf.append(SheafCell(dimension=1,

compactClosure=len([d for (s,d,mor) in morphisms

if d==i])>1,

stalkDim=sheaves[i].betti(k)))

Initialize the sheaf

Sheaf.__init__(self,persheaf)

Functions

def cumulative_sum(values, start=0):

yield start

for v in values:

start += v

yield start

def matrixrank(A,tol=1e-5):

u, s, vh = np.linalg.svd(A)

return sum(s > tol)

def kernel(A, tol=1e-5):

34

u, s, vh = np.linalg.svd(A)

sing=np.zeros(vh.shape[0],dtype=np.complex)

sing[:s.size]=s

null_mask = (sing <= tol)

null_space = np.compress(null_mask, vh, axis=0)

return null_space.conj().T

def cokernel(A, tol=1e-5):

u, s, vh = np.linalg.svd(A)

sing=np.zeros(u.shape[1],dtype=np.complex)

sing[:s.size]=s

null_mask = (sing <= tol)

return np.compress(null_mask, u, axis=1)

def isSubchain(bigger,smaller):

"""Determine if smaller is a subchain of bigger"""

try:

idx=bigger.index(smaller[0])

except:

return False

for s in smaller:

try:

if bigger[idx] != s:

return False

else:

idx += 1

except:

return False

return True

def subchainMatrix(chainsCols,chainsRows):

"""Construct a binary matrix specifying which chains in the second set are subchains of the first"""

mat=np.zeros((len(chainsRows),len(chainsCols)))

for i in range(len(chainsCols)):

for j in range(len(chainsRows)):

if isSubchain(chainsCols[i],chainsRows[j]) or isSubchain(chainsRows[j],chainsCols[i]):

mat[j,i]=1

return mat

Input: domain sheaf

range sheaf

list of sheaf morphism data, one for each cell

k

Output: matrix

def inducedMap(sheaf1,sheaf2,morphism,k,compactSupport=False,tol=1e-5):

"""Compute k-th induced map on cohomology for a sheaf morphism"""

Compute cohomology basis for each sheaf

35

Hk_1=sheaf1.cohomology(k,compactSupport)

Hk_2=sheaf2.cohomology(k,compactSupport)

if (not Hk_1.size) or (not Hk_2.size):

return []

Extract the k-skeleta of each sheaf

k_1,ksizes_1,kidx_1=sheaf1.kcells(k,compactSupport)

k_2,ksizes_2,kidx_2=sheaf2.kcells(k,compactSupport)

Construct chain map

rows=sum(ksizes_2)

cols=sum(ksizes_1)

m=np.zeros((rows,cols),dtype=np.complex)

for i in range(len(k_1)):

for j,map in zip(morphism[k_1[i]].destinations,morphism[k_1[i]].maps):

if sheaf2.cells[j].dimension==k:

ridx=[q for q in range(len(k_2)) if k_2[q]==j]

if ridx:

ridx=ridx[0]

m[kidx_2[ridx]:kidx_2[ridx+1],kidx_1[i]:kidx_1[i+1]]+=map

Map basis for domain sheaf’s cohomology through the chain map

im=np.dot(m,Hk_1)

Expand output in new basis

map,j1,j2,j3 = np.linalg.lstsq(im,Hk_2)

return map.conj().T

Department of Mathematics and Statistics, American University, 4400 Massachusetts

Ave NW, Washington, DC 20016
E-mail address: michaelr@american.edu

36

	ADPB2AD.tmp
	Michael Robinson
	Technical Report No. 2014-02

	ADP52A4.tmp
	Technical Report No. 2014-2

