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Abstract

Every college dorm displays at least one print by M.C. Escher. Many people admire Escher's

work, but do not know its mathematical roots.

Escher's interest in divisions of planes goes back to his early work, but the mathematical

in�uence in his work did not fully appear until he journeyed through the Mediterranean around

1936. Particularly, when visiting La Alhambra in Spain, he became fascinated with the order

and symmetry of the tiling. He then studied mathematical papers on topics such as symmetry

groups, non-Euclidean geometries, and impossible shapes, later incorporating them into his

artwork.

When one looks at an Escher print, e.g. Angels and Demons, one immediately sees the

complicated tiling within the circle. However, what is not necessarily realized is that the work

is a representation of a hyperbolic geometric space. Though inspired by the �at tiling of the

Alhambra, Escher strayed away from Euclidean geometry in many of his works, creating tiling

in spherical and hyperbolic geometries. These three types of geometries make up the world we

live in. On a local scale, we live on a �at surface, i.e. in Euclidean geometry, but calculating

distances on Earth's surface requires spherical geometry. On a larger scale, the universe acts

under the laws of hyperbolic geometry, the same as in Escher's Angels and Demons. In a

similar manner, much of Escher's work is the visualization of key mathematical concepts from

Complex Analysis and Group Theory.

�
�

�Mathematicians have opened the gate leading to an extensive domain.� � M. C. Escher

�

1 Who was M. C. Escher?

�
When studying mathematics, new ideas are presented in an abstract, highly conceptualized

form. It is easy to get lost in these intangibles and forget just how beautiful math can be. But
behind every mathematical theorem is a picture - a means of visualizing these otherwise abstract
ideas. A wonderful way to visualize mathematics is through the artwork of Dutch artist, M. C.
Escher.

�
Despite never having any formal, mathematical training, Escher became known for the strong

mathematical in�uences in his artwork. He was inspired by his travels around Europe and forays
into mathematical papers to create his own artistic renditions of mathematical concepts on topics
such as non-Euclidean geometries, impossible shapes, and symmetry groups. He began his career
studying architecture, but, after a poor academic performance, switched to painting and sculpture.
From then on, his artwork took the form of woodcuts, lithographs, and mezzotints.

�
Escher strayed from his early works of landscapes and nature and ventured into the world of

mathematical art after a visit to the Spanish palace, La Alhambra. Originally constructed as a
fortress, but later turned into a royal palace in the 14th century, La Alhambra remains a popular
tourist destination, exhibiting some of Spain's most impressive Moorish architecture and art. In
tandem with Moorish tradition, the walls and ceilings of the palace are sculpted heavily with
intricate tiling, or interlocking, repetitive patterns laid out in geometric grid.

�
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Figure 1: Tiling at La Alhambra

�
After seeing the patterns at La Alhambra, Escher became obsessed with the regular division of

the plane. Returning home, he attempted his own sketches and showed them to his brother, Berend,
who in turn introduced him to a paper on plane symmetry groups by the mathematician, Pólya.
Despite not understanding many of the theoretical concepts, Escher was able to teach himself the
principles behind each of the 17 groups of symmetry for a 2-dimensional plane. The �gure below
presents some excellent examples of Escher's tilings. The complicated morphing within the tilings
demonstrate the geometric bases for each pattern (�M. C. Escher�).

�

Figure 2: Escher's woodcut Metamorphosis II (1940)

�
In 1954, Escher met the British-born Canadian mathematician, Harold Scott MacDonald Cox-

eter, who was considered one of the greatest geometers of the 20th century. They became life-long
friends, and Escher read one of his articles on hyperbolic tessellations, or tiling on a hyperbolic disk,
the concept of which inspired Escher's Circle Limit series. A couple decades after Escher's death,
Coxeter, in turn, studied his etchings, and came to the conclusion that Escher got the tessellations
right, down to the millimeter (O'Connor).

�
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Figure 3: Escher's woodcut Circle Limit I (1958)

�
Escher's own mathematical pursuits culminated in a paper, titled Regular Divisions of the Plane

(1958), in which he described the systematic buildup of mathematical designs in his artwork.
�
At this point, Escher grew tired of the regular divisions of the plane and he turned to more un-

usual perspectives, exploring di�erent geometries, as in Circle Limit , as well as depicting impossible
shapes that cannot be realized in a 3-dimensional world. One of the shapes Escher became fasci-
nated with is the Penrose triangle, popularized by the mathematician Roger Penrose. The triangle
has the illusion of being solid on a �at surface, but it cannot be built in reality. In his lithograph,
Waterfall , Escher overlays two impossible triangles to create a self-feeding waterfall that ends up
two stories higher than it began (�M. C. Escher�). Escher began his sketch of the lithograph with
the triangular form of a Moebius band, which is a non-orientable surface in which one can circle
around the surface twice and end up back in the same exact spot.

�
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Figure 4: Escher's lithograph Waterfall (1961)

�

Figure 5: Making a Moebius Band

�
However, despite his change in focus, Escher did not completely lose his roots in drawing insects

and using themes from nature, often overlaying his geometric grids with designs with insects or
other types of animals. He incorporated these images into his multitude of geometric tilings. As
seen in Metamorphosis II and Circle Limit I , Escher incorporated a lot of movement and patterns
into this work. Such motions in Escher's artwork can be explained through concepts from Complex
Analysis and Group Theory.

�
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2 Complex and Linear Mappings

�
Complex, or linear, mappings help to explain the movement in the tiling in Escher's artwork. A

linear mapping is a transformation of vectors from the domain to the range, that preserves addition
and scalar multiplication.

�
So for a function, f : S → T , if x1, x2 ∈ S, then

f(x1 + x2) = f(x1) + f(x2) and

f(ax1) = af(x2).

A mapping can also be thought of as a motion, which comes from the representation of a complex
number as a 2 x 2 matrix. Linear mappings have three types of transformations: dilation, rotation,
and translation.

�
Complex numbers are the extension of the real number system and can be viewed as points of

the coordinate plane. A complex number, z, can be expressed in the form of z = a+ bi, where a is
the real part and y is the imaginary part, and where i2 = −1. Here, a and b are real numbers and
can also be expressed as an ordered pair, (a, b). Since complex numbers are two-dimensional, they
can be represented by 2 x 2 matrices.

�
The simplest way to understand how a complex number can be written as a matrix, is to use

Euler's formula in combination with polar form.
�
If z = a+ ib, then
�
r = |z| =

√
a2 + b2, which is the modulus, or absolute value, of z, and

arg(z) = θ = tan−1( ba ), which is the argument, or the angle of r with the positive real axis.
�
So in polar, z = rcos(θ) + irsin(θ).
But, Euler's formula says that eix = cos(x) + isin(x).
�
So,

eix = cos(x) + isin(x)

⇐⇒ reix = r(cos(x) + isin(x)) = rcos(x) + irsin(x).

Hence, z = reiθ.
�
Something to note, is that |eiθ| =

√
cos2(θ) + sin2(θ) = 1, indicating that eiθlives on the unit

circle. When multiplying by r, |reiθ| = r, making r the radius of the circle.
�
To �nish, note that in the complex plane, the number 1 can be expressed by the point (1, 0),

or in matrix form,

[
1
0

]
. Likewise, the point i can be expressed by

[
0
1

]
. Let z1 = a + bi and

z2 = c+ di be two complex numbers. Then,[
a b
c d

] [
1
0

]
=

[
0
1

]
, and

[
a b
c d

] [
0
1

]
=

[
1
0

]
.

�
So multiplication by the number 1, takes number to i and multiplication by the number i, takes

it to −1. Multiplication by i becomes a rotation by 90◦. Solving,[
a b
c d

] [
0 −1
1 0

]
,
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we get

z =

[
a −b
b a

]
.

�
We can then use polar, where a = rcos(θ) and b = rsin(θ), to obtain

z =

[
rcos(θ) −rsin(θ)
rsin(θ) rcos(θ)

]
= r

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
,

where

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
is a rotation matrix.

�
Also, by DeMoivre's Theorem, zn = (reiθ)n = rneinθ = rncos(nθ) + irnsin(nθ). So zn is a

rotation of C upon itself n-times (Marsden and Ho�man 16).
�

3 Geometry

�
In order to understand Escher's work, we need to look at di�erent types of geometries by the

set of motions that preserve the geometries. There are three types of geometries in the world and
we experience all three of these types on di�erent scales.

�

Figure 6: Curvature and Geometry

�
On a daily basis, we experience �at, or Euclidean geometry. In this geometry, triangles have at

most 180◦, and all of the trigonometric properties we are used to, hold. When we calculate walking
distances or driving distances, we use Euclidean geometry.

�
Since the Earth is a sphere, on a larger scale we experience spherical geometry. On the Earth's

surface, triangles can have anywhere between 180◦ and 360◦. In spherical geometry, lines are
mapped to circles since any line drawn on the Earth's surface can be thought of as an equator, or a
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circle. On such a surface, parallel lines always eventually cross. A common way spherical geometry
is used is in the calculation of �ight paths.

�
The third type of geometry, and perhaps the least intuitive, is hyperbolic geometry. We ex-

perience this geometry without often realizing it. Although the shape of the universe is still an
open question, some popular theories suggest that the universe has a hyperbolic nature. Due to
gravitational pulls, things get pulled inwards.

�

Figure 7: Curvatures of Space

�
In hyperbolic geometry, the angles of triangles add up to less than 180◦. An ideal hyperbolic

triangle, which has all three vertices lying on the circle at in�nity, has interior angles of zero, and
therefore has 0◦.

�
Another example of hyperbolic geometry, is the internet. Since the internet was grown organi-

cally, with most of the routes passing through the core. It can be observed that in order to connect
any three nodes, the routes must bend inwards.

�

Figure 8: Internet Map
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�
Locally, all geometries look �at. Just like on the Earth's surface, we perceive ourselves living on

a �at surface, both spherical and hyperbolic geometries can be locally approximated using linear
approximations.

�
The following theorem proves that these three geometries are the only three geometries.
�

Theorem. Uniformization Theorem [Klein (1883), Koebe (1900's ), Poincare (1907)]:
(i.) Every surface admits a Riemannian metric of constant Gaussian curvature.
(ii.) Every simply connected Riemann surface is conformally equivalent to one of the following:

C(K = 0); Ĉ(K = 1); D(K = −1).

�
The Uniformization Theorem states that any simply-connected Riemann surface is conformally

equivalent to, or can be mapped to, one of three surfaces. A Riemann surface is a generalization
of the complex plane, which has the following property: any small disk on the surface can be
conformally mapped to a corresponding disk in the complex plane. The surfaces include the complex
plane (C), the Riemann sphere (Ĉ), and the hyperbolic unit disk (D). The Uniformization Theorem
says that these are the only three conformally distinct Riemann surfaces.

�
If the curvature equals 0, then the surface can be conformally mapped to the complex plane.

It would therefore follow the geometry of �at surfaces, or Euclidean geometry. If the curvature
equals +1, then the surface can be conformally mapped to the sphere, and would therefore fall
under spherical geometry. If the curvature equals −1, then the surface can be conformally mapped
to the hyperbolic plane, and would then follow the laws of hyperbolic geometry. As a result, the
uniformization theorem shows that the world exhibits three, and only three, types of geometries
(Casey).

�

4 Groups

�
Before discussing the motions of each geometry, we must introduce groups.
�
A Group is a set, G, and an operation *, denoted

〈G, ∗〉

such that:
�

• For all g, h ∈ G, g ∗ h ∈ G, i.e. the set is closed.

• For all g, h, k ∈ G, (g ∗ h) ∗ k = g ∗ (h ∗ k), i.e. associativity holds.

• There exists e ∈ G such that for all g ∈ G, g ∗ e = g, i.e. there is an identity element in the
group.

• For all g ∈ G, there exists g−1 ∈ G such that g ∗ g−1 = e, i.e. every element has an inverse.

�
The operation * can also be thought of as a motion.
�

5 Groups of Motions in Each Geometry

�
Each type of geometry can be represented by its group of motions, with composition as the

operator:
�
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• Euclidean Geometry

〈{eiθz + α}, ◦〉

• Spherical Geometry 〈{
αz − β
−β̄z + ᾱ

}
, ◦
〉
,

where |α|2 + |β|2 = 1.
�

• Hyperbolic Geometry 〈{
eiθ

z − α
1− ᾱz

}
, ◦
〉
,

where |α| < 1
�
As mentioned previously, in Euclidean geometry, the mappings are called linear transformations,

which comprise of three forms of motions, dilation, rotation, or translation.
�
In spherical geometry, the mappings are called Moebius Transformations, which are bi-linear

mappings. In addition to the three types of motion from linear transformations, Moebius Trans-
formations add the extra action of inversion. An example of an inversion is 1

z , which turns C, the
complex plane, inside out. Another,

(
1
z

)2
turns C inside out and then folds C onto itself. Spherical

mappings now do the four following - dilation, rotation, translation, and inversion. Geometrically,
circles are mapped to circles, but now lines are also mapped to circles, because, as mentioned
previously, lines can be thought of as equators.

�
In hyperbolic geometry, the mappings are called Moebius-Blaschke Transformations, and these

describe hyperbolic motion (Casey).
�

6 Euclidean Geometry in Escher's Work

�
Escher began his mathematical art after observing Moorish tilings. Accordingly, he began his

creating own tilings on a �at plane, using linear transformations from Euclidean geometry to rotate,
translate, and dilate his patterns. Escher's tilings can be categorized into the following 17 symmetry
groups, with each symmetry group describing a di�erent set of motions. The symmetry groups are
as follow:

�

Symmetry Group Lattice Rotation Order Re�ection Axis Generating Region

p1 Parallelogram 1 none 1 unit
p2 Parallelogram 2 none 1

2 unit
pm Rectangular 1 parallel 1

2 unit
pg Rectangular 1 none 1

2 unit
cm Rhombic 1 parallel 1

2 unit
pmm Rectangular 2 90◦ 1

4 unit
pmg Rectangular 2 parallel 1

4 unit
pgg Rectangular 2 none 1

4 unit
cmm Rhombic 2 90◦ 1

4 unit
p4 Square 4 none 1

4 unit
p4m Square 4 45◦ 1

8 unit
p4g Square 4 90◦ 1

8 unit
p3 Hexagonal 3 none 1

3 unit
p3m1 Hexagonal 3 60◦ 1

6 unit
p31m Hexagonal 3 30◦ 1

6 unit
p6 Hexagonal 6 none 1

6 unit
p6m Hexagonal 6 30◦ 1

12 unit

10



Figure 9: 17 Groups of Symmetry (Gallian 476)

�
Here, p1 is the most basic symmetry group, comprising of only translations and no rotational or

re�ective symmetry. An example of a p1 symmetry group can be seen in Escher's Sky and Water ,
where the birds and the �sh are only shifted, but not rotated and re�ected.

�

Figure 10: Escher's woodcut Sky and Water I (1938)

�
Even Escher's famous Day andNight exempli�es these mappings. Disregarding the areas where

the birds morph into other aspects of the artwork, and only focusing on the tiling of the birds, the
pattern is once again characteristic of the p1 symmetry group. Each combined pair of black and
white birds is only shifted along the page and neither rotated or re�ected.

�
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Figure 11: Escher's woodcut Day and Night (1938)

�
Escher's Sun and Moon is characteristic of a di�erent symmetry group, p31m, due to the 120◦

rotations. Each �gure can be rotated 120◦ around certain points to bring it back to its original spot.
Each bird can be treated as triangle that is re�ected over its three edges. Since this piece has the
120◦ rotation, re�ection, and all threefold centers lie on the re�ection axes, it can be classi�ed into
the p31m group. However, Escher did make slight modi�cations to the beak and wing structures
of the birds as they go out from the center.

�
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Figure 12: Escher's woodcut Sun and Moon (1948)

�

7 Spherical Geometry in Escher's Work

�
While not as numerous as his �at or hyperbolic works of art, Escher also experimented with

spherical mappings. The piece, Hand with Reflecting Sphere is a great example of spherical geom-
etry. The re�ection within the sphere follows curvature of a Moebius mapping. Since Moebius
transformations are distance-preserving, the distances of all of the objects in the room are pre-
served in the re�ecting sphere. Moebius transforms form the group of isometries, or the set of all
distance-preserving maps, on the sphere.

�

Figure 13: Escher's lithograph Hand with Reflecting Sphere (1935)

�
Using a bit of Complex Analysis, we can show that the sphere in the artwork preserves the

distances of the objects in the room by showing that the Moebius mappings preserve length. To do
this, we need to consider

L (Γ) =

˛
Γ

|dz|
1+|z|2 ,

where L (Γ) is the length of the path Γ in the unit circle. As mentioned above,Mα,β(z) = αz+β
−β̄z+ᾱ

is the Moebius transformation.
�

Claim. We want to show that L (Mα,β(Γ)) = L (Γ), i.e. that the length of Γ with the Moebius
transformation acting upon it is equal to the original length of Γ.
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�

Proof. L (Mα,β(Γ)) =
¸
Mα,β(Γ)

|dz|
1−+|z|2 =

¸
Γ

|M
′
α,β(z)||dz|

1+|Mα,β(z)|2 . Since Mα,β(z) = αz+β
−β̄z+ᾱ , M

′

α,β(z) =

α(−β̄z+ᾱ)+β̄(αz+β)

(−β̄z+ᾱ)2 = −αβ̄z+αᾱ+αβ̄z+ββ̄
(−β̄z+ᾱ)2 = |α|2+|β|2

|−β̄z+ᾱ|2 , since αᾱ = (a+ ib)(c+ id) = a2 + b2 = |α|2 by

de�nition. Then L (Mα,β(Γ)) =
¸

Γ

|α|2+|β|2

|−β̄z+ᾱ|2

1+| αz+β−β̄z+ᾱ |
2
|dz| =

¸
Γ

|α|2+|β|2
|−β̄z+ᾱ|2+|αz+β|2 |dz|

=
¸

Γ
|α|2+|β|2

|β̄|2|z|2−2|ᾱβ̄z|+|ᾱ|2+|α|2|z|2+2|αβz|+|β|2 |dz|. Since |α| = |ᾱ| and |β| = |β̄|, this equals,¸
Γ

|α|2+|β|2
|β|2|z|2+|α|2|z|2+|α|2+|β|2 |dz| =

¸
Γ

|α|2+|β|2
(|α|2+|β|2)(1+|z|2) |dz| =

¸
Γ
|dz|

1+|z|2 = L (Γ).

�
Since the length of any path with the Moebius transformations acting on it is equal to the

original length of the path, Moebius mappings are length-preserving.
�

8 Hyperbolic Geometry in Escher's Work

�

Figure 14: Escher's woodcut Angels and Demons (1960)

�
One of the most famous Escher pieces, Angels andDemons, is a great example of hyperbolic

mappings. The piece is a representation of hyperbolic geometry on a hyperbolic disk. Each angel is
mapped onto the other angels through rotations and translations on the hyperbolic plane. Likewise,
rotations and translations are used to map each demon onto the other demons.

�
As with the Moebius mapping, we can show that the Moebius-Blaschke motions preserve hy-

perbolic length. Even though when we view piece on a �at surface, the angels and demons on the
outer edges of the disk appear smaller than the ones in the center, in the hyperbolic plane, each
angel has the same exact area. Similarly, every demon has equal area.

�
In order to show that the hyperbolic motions preserve length, we need to consider

L (Γ) =

˛
Γ

|dz|
1−|z|2 ,
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where L (Γ) is the hyperbolic length of the path Γ in the unit disk. As mentioned above,
Φα(z) = z−α

1−ᾱz is the Moebius-Blaschke transformation.
�

Claim. We want to show that L (Φα(Γ)) = L (Γ), i.e. that the length of Γ with the Moebius-
Blaschke transformation acting upon it is equal to the original length of Γ.

�

Proof. L (Φα(Γ)) =
¸

Φα(Γ)
|dz|

1−|z|2 =
¸

Γ
|Φ
′
α(z)||dz|

1−|Φα(z)|2 . Since Φα(z) = z−α
1−ᾱz , Φ

′

α(z) = (1−ᾱz)+ᾱ(z−α)
(1−ᾱz)2 =

1−ᾱz+ᾱz−αᾱ
(1−ᾱz)2 = 1−|α|2

(1−ᾱz)2 , since αᾱ = (a+ ib)(c+ id) = a2 + b2 = |α|2 by de�nition.

Then L (Φα(Γ)) =
¸

Γ
|Φ
′
α(z)||dz|

1−|Φα(z)|2 =
¸

Γ

1−|α|2

(1−ᾱz)2

1−| z−α1−ᾱz |2
|dz| =

¸
Γ

1−|α|2
|1−ᾱz|2−|z−α|2 |dz|

=
¸

Γ
1−|α|2

1−2|ᾱz|+|α|2|z|2−|z|2+2|αz|−|α|2 |dz|. Since |α| = |ᾱ|, this equals,
¸

Γ
1−|α|2

1+|α|2|z|2−|z|2−|α|2 |dz| =¸
Γ

1−|α|2
(1−|α|2)(1−|z|2) |dz| =

¸
Γ
|dz|

1−|z|2 = L (Γ).

�
Once again the length of the path with the Moebius-Blaschke transformation acting on it is

equal to the original length of the path.
�
The same hyperbolic mapping can be seen in Escher's Circle Limit III . As before, the area of

each triangle and of each �sh is preserved. In this piece, it is also easy to see the inward bending
curvature of the triangles in hyperbolic geometry.

�

Figure 15: Escher's woodcut Circle Limit III (1959)

�
An interesting thing to note, is that since the disk is representing the hyperbolic plane, the edge

of the piece is the circle at in�nity.
�
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9 Conclusion

�
These are only a small sampling of Escher's works of art, but they are emblematic of his approach.

Even without formal mathematical training, Escher understood that math could be applied in
unexpected ways. The tools from Complex Analysis and Group Theory help formalize the principles
that Escher grasped intuitively. They explain the systematic approach that Escher took in creating
movement in his art. In addition to being great works of art, his artwork forms a medium of
expression for these abstract ideas. Next time an Escher print catches your eye in a college dorm,
you can stop and re�ect on not only the artistic, but also the mathematical complexity inherent in
the work.
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