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A. Risk management in the twenty-first century 
A lesson learned from the recent financial crisis is how important risk management is in today’s ever 

more globalized world. Financial markets in this day and age do not work in isolation. The idea of a 

contagion spreading from a sovereign crisis in Europe to the U.S. is not out of the question anymore. 

The intertwined nature in which markets work today is the reason why risk management has taken a 

central stage in today’s financial systems.  

Firms that are able to accurately assess and manage different types of risk ultimately increase their 

profitability over time. The definition of risk, though, is too broad. Risk can be classified as one of 

several forms. Following are some of the types of risks that almost every firm today directly or 

indirectly faces.  

1. Operational risk – is a broad concept that encompasses all sorts of monetary losses that may 

result from “inadequate or failed internal processes, people, and systems or from external events” 

(Federal Reserve Bank of San Francisco, 2002). 

2. Credit risk – is the risk that one party will not fulfill its obligations under a financial contract 

which would result in other party’s financial loss (OECD, 2005). As such, credit risk results from 

any sort of credit extension. More specifically, credit risk can be subcategorized into issuer or 

counterparty risk.   

a. Counterparty risk – is the risk that a borrower will not be able to fulfill his obligations 

under a contract. Ex-ante transaction, counterparty risk pertains to the risk of default by 

counterparty as well as the risk that a financial intermediary would default before the 

transaction is complete. A financial intermediary in this sense may provide 

clearing/underwriting services. Ex-post default i.e. when either counterparty or the 

financial intermediary has defaulted, risk of the transaction moves to estimating losses 

due to exposures that are not hedged anymore due to default. In such a case, it’s 

important to find a way to hedge the same exposures using a similar contract.   

3. Political risk – is the risk that comes from the possibility of a government adversely affecting the 

returns on investments through its policies (Bekaert & Hodrick, 2007). In times of an economic 

downturn, a country’s government can decide to enforce capital controls to protect its currency 

from attacks by speculators, among many things. When investments are made in politically 

unstable countries, this risk should be properly assessed and accounted for.  



4. Reputational risk – refers to losses incurred by a business when its reputation gets hurt. Such 

losses can be sometimes unexpected as it’s difficult to assess what kinds of activities may 

negatively impact the reputation of a firm.   

5. Market risk – the volatility in returns arising due to exposure to the overall market (Bekaert & 

Hodrick, 2007). Market risk can also be referred to as systemic risk.  

The above list of risks is still not exhaustive. Firms can have many different kinds of risks based on 

their specific activities. For instance, profitability of a firm that sells grains takes a direct impact from 

basis risk, which is the difference between prices of the hedged vehicle and the prices of the asset. For a 

firm that sells grains, basis risk is the difference between prices of grain futures/forwards and the spot 

price for grains. Except for instances where price fluctuations in the hedging instrument fully offset the 

price fluctuations in the asset, firms need to be wary of basis risk and should have sufficient liquidity to 

deal with losses when the hedge expires.  

In the past decade, advances in financial innovation have made it relatively easier to hedge risks. 

However, financial innovations like derivatives come with their own risks. Although derivative 

instruments allow risk mitigation, inadequate understanding of how these instruments work can multiply 

losses for a firm. Many firms today hold derivative securities as part of the overall portfolio chiefly to 

boost portfolio returns as well as insure the portfolio against certain events. But derivatives have their 

own investment characteristics that require sophisticated methods and models for proper analysis. With 

all the complexities of today’s financial markets, it has become a necessity to use risk modeling to 

predict extreme loses. In the absence of an adequate risk control system, it can be difficult for firms to 

get rid of fluctuations in returns.   

The purpose of this paper is to analyze three risk models that have become synonymous with risk 

management. The paper attempts at analyzing Value at Risk (VaR), Expected Shortfall (ES), and 

Expected Value Theory (EVT) using a hypothetical equity portfolio of five stocks. The paper highlights 

the main differences between these risk models by applying each of the risk models to the portfolio to 

estimate maximum losses.  

B. Why VaR?  

VaR has become a standard tool in risk management. It has become especially important following 

the 1995 Basel Accord amendment which encouraged banks and deposit-taking-institutes to forecast 

daily VaR using internal models (Chang, Jimenez-Martin, McAleer, & Perez-Amaral, 2011). Before 

VaR, risk was measured in terms of standard deviation. The popularity of Markowitz portfolio theory 

prompted investors to think of investments in terms of excess returns per unit of risk. At that time, 



standard deviation seemed like a suitable measure of risk. However, there are a few problems with using 

standard deviation as a measure of investment risks (Brouwer, 2001).      

a. Behavioral finance supporters argue that an investor does not perceive of risk in terms of 

volatility. Investors are only concerned about downside volatility whereas standard deviation is a 

symmetric measure i.e. it treats losses and gains the same way. 

b. The assumption that variance, square of standard deviation, is finite is contrary to what financial 

mathematics has proven. Experiments suggest that second moment is non-existential in financial 

markets. 

c. Central limit theorem applies only to the center of the distribution and thus does not explain the 

tails of the distribution, the area which exposes an investor to risks. 

d. Many financial instruments cannot be explained by the Gaussian distribution. For instance, 

options, warrants etc have non-normal distributions. 

e. Although not as sensitive to mean or range, variance is an unstable measure that is also 

influenced by the presence of outliers. 

These issues with the use of variance for risk prediction led to a more stable and reliable risk 

measure – VaR.  VaR is an estimate of the amount of loss that can be incurred on a given portfolio over 

a specific time horizon T with a confidence level (1-α). VaR assumes that repeated sampling results in a 

small probability α of losses exceeding VaR for a given horizon T (Brouwer, 2001). Thus, VaR provides 

an estimate for a possible dollar-loss on a portfolio and makes it easier to compare riskiness across 

investment portfolios.   

C. Hypothetical Equity Portfolio (2009 to 2012) 

The hypothetical portfolio is composed of daily equity returns for five stocks namely, BP, HP, 

Guess, Google, and Ford. The period chosen for this hypothetical portfolio was 2009 – 2012, right after 

the financial crisis. The selection of period over which this hypothetical portfolio existed is a factor that 

could affect the results of loss estimates using the three risk models. Period representativeness is key, as 

the period should be reflective of actual risks associated with each stock. Because of this reason, three 

years of historical data was used in modeling risks for each stock and subsequently the portfolio.  If we 

had selected 2000 – 2012 as the period, one could argue that there was a regime shift during this period. 

Regime shift means a persistent change in the underlying structure of a system due to external factors. 

The period would not have been representative of each stock, as the factors that influenced stock 

performance prior to the financial crisis may be different post crisis. Regression techniques can be 

applied to test for regime shifts, but we will not concern ourselves with that in this paper.  

 



1. Estimating VaR Using the Historical Method  

In this paper, the two methods used to calculate VaR are  

a. Historical method  

b. Simulation approach 

Historical method uses historical data to estimate VaR over a period t with a specific confidence 

interval. For the analysis of the portfolio and each of its individual securities, VaR estimates were 

calculated with 95% and 97.5% confidence intervals. Horizon t used in this case is a one-day period. For 

a normal distribution, confidence intervals corresponding to these two values capture about 95% and 

97.5% of the entire return distribution. Because we are only concerned with the frequency and level of 

extreme losses in the tails of the distribution, 95th and 97.5th percentiles of the distribution provide an 

estimate for VaR such that there is 5% and 2.5% probabilities of losses exceeding VaR, respectively.  

 Table 1 below provides summary statistics for individual stocks and the portfolio. Over the 2009 

– 2012 period, Ford’s stock had the highest mean return while HP’s stock had the lowest. The standard 

deviations for all five stocks and the portfolio range between 26.15% (for the portfolio) to 44.39% (for 

GUESS’s stock). Kurtosis for the six entities is positive, which means that return distributions are 

leptokurtic i.e. they have fatter tails than what is suggested by the normal distribution. Returns are 

clustered more around the mean, which gives distributions peakedness and fatter tails. The kurtosis for 

GUESS is 3.30, which is quite close to the kurtosis for a normal distribution, which is 3.0. Hence the 

return distribution for GUESS can be assumed to be close to normal. Kurtosis of 2.54 for the Ford’s 

stock also indicates a return distribution close to normal. The overall portfolio also has positive kurtosis, 

but it is less than 3.0. Thus the overall portfolio’s return distribution is platykurtic, which means that it 

has slightly thinner tails than a normal distribution.    

 

 

 

 

 

 

 

    

Table 1: Portfolio and Stocks’ statistics with VaR estimates 
For distributions that are leptokurtic, VaR underestimates the true probability of losses exceeding a 

certain threshold. For instance, HP’s stock has the largest kurtosis, yet its VaR estimates are comparable 

  VaR - 95% 
confidence 

Interval  

VaR - 97.5% 
confidence 

Interval  

Mean  Standard 
Deviation 

Kurtosis  

HP -3.19% -4.14% -32.41% 32.51% 20.86 
BP -2.99% -4.07% -4.77% 34.57% 11.73 
GUESS -4.61% -5.66% 7.37% 44.39% 3.30 
FORD -3.84% -4.65% 23.22% 38.65% 2.54 
GOOG -2.42% -3.33% 15.88% 26.96% 8.67 
Portfolio  -2.78% -3.56% 1.08% 26.15% 2.03 



to that of Guess and Ford, which are almost normally distributed. Figure 1 shows the histogram for HP’s 

stock.   
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Figure 1: HP Stock Return Distribution with fat tails 
As can be seen, returns are more frequent close to the mean and the distribution has extreme 

returns in the tails. VaR for HP’s stock with a 95% confidence is -3.19%. Even with a 97.5% confidence 

interval, VaR predicts a -4.14% loss. However, the stock had daily returns as low as -22%, as the 

histogram also indicates. Thus caution needs to be taken when interpreting VaR results for different 

assets. If the asset returns do not follow a normal distribution, which is one of the key assumptions used 

in VaR calculations, then the estimates for maximum losses with a specific confidence interval will tend 

to underestimate the risks and may lead to faulty investment decisions.   

Problems with Historical Method for VaR Calculations  
One of the main advantages of Historical Method for VaR calculations is that it is easy to 

implement. A large data set is the only requirement for VaR calculations under this approach. At the 

same time, reliance on empirical data is also a pitfall of this approach. The data used in the case of this 

hypothetical portfolio consists of a period that had unusual volatility in asset returns, which may not be 

representative of the individual stocks. The U.S. economy was coming out of recession and moving 

toward a slow recovery. It was an exceptional period in the history of financial markets as a result of 

which VaR estimates for each individual security as well as the portfolio may under or overestimate 
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actual risks. It’s always a challenge to select a sample set that is representative of the underlying 

population, and the Historical Method exacerbates that  

 problem. The tradeoff involved is between the implementation convenience of the model and 

the accuracy of the sample statistic, which in our case is the VaR estimate with 95% and 97.5% 

confidence intervals.   

 The Basel Committee on Banking Supervision pointed out the dilemma of Historical Method as, 

“most risk management models, including stress tests, use historical statistical relationships to assess 

risk. They assume that risk is driven by a known and constant statistical process, i.e. they assume that 

historical relationships constitute a good basis for forecasting the development of future risks. The crisis 

has revealed serious flaws with relying solely on such an approach” (Bank of International Settlements 

[BIS], 2009). Although majority of the models rely on historical values to some extent for calculations 

of sample statistics, complete and sole reliance on past data for forecasting of risk measures like VaR 

can lead to faulty risk estimates.  

 An alternative to the Historical Method for calculating VaR is the Historical Simulation 

approach. The advantage to using Historical Simulation approach is that it uses a monte carlo approach 

to simulate sample returns for an underlying population. By doing this, noise that often exists in the 

original data set is removed so that VaR calculated using the randomly generated sample reflects true 

risks associated with an asset.   

2. Historical Simulation  

In order to apply this method, sample returns were simulated using sample standard deviation 

and mean of the stocks over the 2009-2012 period. In order to compare VaR values across methods, a 

total of 759 observations were simulated using the random number generator in order to match the size 

of the data set to that used in the Historical Method approach.  

 Continuing with the BP example, the difference between the VaR values using the Historical 

Method versus the Historical Simulation method is apparent in Table 2. Although both the methods 

make use of the historical data, the estimated Value at risk for the BP stock is slightly larger in 

magnitude with the Historical Simulation method than with the Historical Method. The small difference 

between the VaR values at 95% confidence and 97.5% confidence intervals using the Historical 

Simulation Method suggests smaller variability in the sample than what is being suggested by the 

Historical Method.  

 

 

 



 

 

 

 

 

 

 

The simulation approach predicts a larger daily loss for the portfolio at both 95% and 97.5% 

confidence intervals. However, we know from our discussion above that the portfolio has a kurtosis 

smaller than 3 i.e. 2.03. Because the return distribution for the portfolio is platykurtic (thin tails), the 

standard deviation for the empirical data is larger than it would be if the portfolio return distribution had 

a kurtosis of 3.0 or greater, as data points are more spread out in a platykurtic distribution. In order to 

simulate returns for the portfolio, standard deviation and mean from the empirical data series were used 

as inputs. Thus, VaR estimates under the simulation approach overestimate portfolio risks due to their 

reliance on a standard deviation that comes from a platykurtic distribution. The simulation approach 

assumes, without regards to the kurtosis for the distribution, that there are more chances of having large 

losses in the tails of the distribution due to a standard deviation that indicates a more spread out data set. 

Sample representativeness thus again becomes an issue in the simulation approach as it uses standard 

deviation and mean from empirical data to simulate returns for the same period.  

     Criticisms against VaR 

Consider a trader at a bank who found a deal which would yield 35% in the best scenario, but based 

on his monthly VaR calculation for this position with a 95% confidence interval, the losses could be as 

much as 22% if the markets move in the other direction. The trader wants to carry out this trade with 

40% of his $100 million portfolio. Thus, the anticipated loss on a $40 million position is $8.8 million 

using a 95% confidence interval, and there is only a 5% chance of losses exceeding this level. Due to a 

historically small standard error, which is the standard deviation of a sampling distribution of a statistic, 

both the firm and the trader strongly believe that VaR estimate is accurate. In spite of the bank having 

enough capital at its disposal to sustain losses of a magnitude of $8.8 million over a period of a month, 

the markets unexpectedly moved in the other direction. Instead of $8.8 million losses, total loss incurred 

on the position over a month is a staggering 30% of the overall $40 million position i.e. $12 million. The 

Historical Simulation    
Initial Investment 
in Portfolio 

95th Percentile  97.5th Percentile  

  % in $ % in $ 
$1,000.00 -2.83% -$28.30 -3.37% -$33.70 

Historical Method    
Initial Investment 
in Portfolio 

95th Percentile  97.5th Percentile  

  % in $ % in $ 
$1,000.00 -2.78% -$27.80 -3.56% -$35.60 

Table 2: Comparison of VaR estimates for the Portfolio under the Historical and the Historical Simulation approaches 



unexpected $3.2 million in losses above the expected $8.8 million severely affected the bank’s liquidity 

position. Investments with significantly high expected returns also have high risks.   

The above example exhibits one of the greatest shortcomings of VaR, which is that it fails to 

explain magnitude of losses in extreme events. The word extreme takes on a whole new meaning in the 

context of risk management. VaR is a great tool to get an intuitive sense for capital that can be at risk in a 

certain transaction, but it assumes asset returns are normally distributed. If this assumption is violated and 

individual asset returns are in fact non-normally distributed then VaR estimates will be misleading, as 

they will underestimate the true capital at risk (Sollis, 2009). Thus, there is a need to explore risk models 

that are more robust than VaR i.e. a violation of one of their assumptions does not alter their results.  
  One of the main criticisms against VaR is that it’s not a coherent risk measure. A coherent risk 

measure is one which exhibits the following five properties. 

  For a probability space (Ω, ℱ, Ρ) and a time horizon denoted by ∆, there is a set of random 

variables on (Ω, ℱ), represented by L0 (Ω, ℱ, Ρ), that is finite. Then a set Μ ⊂ L0 (Ω, ℱ, Ρ) is a set of 

portfolio losses over a time horizon ∆. M can be seen as a convex cone satisfying the following 

properties (Embrechts, Frey & McNeil, 2005) 

a. L1 + L2 ∈ M 

b. λL1 ∈ M for λ > 0 

 Any risk measure ϱ: M → ℝ, where M is the domain of ϱ and ℝ is the co-domain, needs to 

satisfy the following four properties in order to be coherent.  

a. Translation Invariance for all L ∈ M and every l ∈ ℝ,  

   Ρ(L+l) = ϱ(L) + l 

 This property states that adding or subtracting a deterministic quantity l to a position that 

led to loss L should lower the risk of the portfolio by reducing capital requirements exactly by 

the same amount. For instance, if a portfolio had a loss L > 0, adding an amount of capital ϱ(L) 

will lead to the adjusted loss L’ = L - ϱ(L), so that there is no need for an extra capital injection.   

b. Sub-additivity for all L1, L2 ∈ M 
  ϱ (L1+L2) ≤ ϱ (L1) + ϱ (L2) 

 The above statement reflects that if a portfolio is diversified, the risk of the overall portfolio 

should be less than the individual component risks. It is an important requirement to have for 

any good risk measure should have. Subadditivity also allows for decentralization of risk. For 

instance, if positions of two trading desks lead to losses L1 and L2, a risk manager can use a 



subadditive measure to ascertain that ϱ (Li), the overall risk of the portfolio is less than some 

number M.  

c. Positive homogeneity for all L ∈ M and λ > 0,  

     ϱ (λL) = λ ϱ(L) 

 It means that a change in the size of a portfolio should only result in a proportional change 

in capital requirements, as there is no change in the composition of the portfolio.      
d. Monotonicity for L1, L2 ∈ M, such that L1 ≤ L2,, we have  

  ϱ (L1) ≤ ϱ (L2) 

 The axiom of monotonicity shows that for positions with smaller losses, the capital     

requirements should also be lower.  

 Generally VaR does not satisfy the subadditivity requirement and thus is not a coherent risk 

measure. VaR fails to be subadditive when the assets in a portfolio have highly skewed loss 

distributions, which is usually the case for portfolios composed of options, warrants, high yield bonds 

etc. Even when assets have smooth and symmetric distributions but their copulas (explain dependence 

structures between random variables) are asymmetric, VaR becomes non-subadditive. VaR is also non-

subadditive when an underlying random variable has a leptokurtic or a heavy-tailed distribution. VaR is 

only subadditive in the ideal scenario where all given portfolios can be expressed in terms of linear 

combinations of the same underlying elliptically distributed risk factors (Embrechts et al., 2005). 

 As can be seen, VaR is not a very robust risk measure as one can infer reliably about the losses 

for a given portfolio using VaR only under a very special scenario. In real world, portfolios are not 

composed that ideally. It is more than likely to have portfolios containing derivative instruments to some 

extent, in which case VaR estimates can lead to not so optimal investment decisions.  

  Another problem with Var is that it reveals nothing about the magnitude of losses in case of 

extreme events and the probabilities associated with them. In order to infer more accurately magnitude of 

losses under extreme events, Expected Shortfall can be used either in conjunction with VaR or some 

other risk model, such as Extreme Value Theory (EVT), to estimate the degree of losses and probabilities 

associated with events causing them.  

3. Expected Shortfall (ES)     
 Besides being a coherent risk measure, Expected Shortfall method also has the advantage that it 

provides easy implementation and relatively stronger interpretative power than VaR. Under an ES 

approach, average losses in the tails of a distribution are taken at a specified confidence interval. The 

confidence intervals used in this case are the same as the ones used to calculate VaR i.e. 95% and 



97.5%. Table 3 gives the ES estimates for all five stocks as well as the portfolio. It can be seen that ES 

estimate for the overall portfolio is smaller compared to individual stocks. This is one of the main 

properties of a coherent risk measure that it encourages diversification to reduce overall risk for the 

portfolio, which is in line with Markowitz’s modern portfolio theory.   

 

 

 

 

 

 

To carry out an ES analysis, sample returns first need to be arranged in ascending order and then 

average of the lowest 5% and 2.5% of the returns yields ES estimates with a 95% and 97.5% confidence 

intervals respectively. For a sample of 759 observations, it corresponded to the lowest 38 observations 

for the 95% confidence interval and the lowest 19 observations for the 97.5% confidence interval. Hence 

for the portfolio under consideration, there is a 5% probability that losses could exceed 3.97% and a 

2.5% probability that losses could more than 4.97% of the capital invested in the portfolio. Compared to 

the Historical and Simulation approaches to calculating VaR, ES resulted in a higher estimate for daily 

VaR for the portfolio, although the portfolio’s return distribution is platykurtic. This difference in 

estimates for daily losses is due to the fact that ES is the average of the daily losses that may occur in 

the tails whereas VaR is simply the pth percentile for a return distribution. VaR does not factor in the 

magnitudes of losses above the pth percentile while ES does.  

 Figure 2 shows the trend in ES estimates at 95% and 97.5% confidence intervals. It can be 

noted how diversification significantly lowered average losses incurred during extreme events for a 

multi-asset portfolio.   

 

 

 

 

 
 
 
 
 

 
95% confidence Interval  97.5% confidence Interval  

GOOG -3.99% -5.16% 
BP -5.22% -6.95% 
HP -5.27% -6.86% 
GUESS -6.44% -7.89% 
FORD -5.26% -6.22% 
PORTFOLIO  -3.97% -4.79% 

Table 3: Average losses at 95% and 97.5% confidence intervals for individual stocks and the portfolio 



 

  
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          Figure 2: ES values for individual stocks and the hypothetical portfolio at 95% and 97.5% confidence interval 

Alternative to ES – Expected Value Theory (EVT) 

Risk models discussed so far serve the purpose of quantifying maximum losses a portfolio could 

suffer at a (1-α) confidence interval, where α is the significance level. The disadvantages of using VaR 

have been discussed in an earlier section, and as an alternative to VaR, ES method was introduced. It 

was showed how ES is a coherent risk measure and therefore is a more desirable risk measure than VaR. 

But ES still doesn’t explain the probabilities associated with extreme events on its own. In order to 

adequately quantify losses in case of an extreme event, risk modeling of the tails of a distribution is 

necessary. For this purpose, Expected Value Theory (EVT) can be combined with VaR or ES 

methodologies to analyze the tail behavior and estimate extreme losses that occur with a very low 

frequency. Before carrying out EVT analysis, it is worthwhile to observe quantile-quantile plot for the 

data set in question.  

Quantile – Quantile (Q-Q) Plot is a visual tool that shows the relationship between empirical data and 

reference distribution by plotting quantiles of empirical data against quantiles of a reference distribution 

(Embrechts, Frey, McNeil, 2005, pp. 68-69). Figure 3 shows the Q-Q plot for the five asset portfolio by 

plotting quantiles of the portfolio return distribution against quantiles of a normal distribution. Lack of 

perfect linearity in the plot indicates departures from the normal distribution.  
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Figure 3: Q-Q plot for the portfolio 

When empirical data series follow a normal distribution, q-q plot indicates almost a perfect linear 

relationship between quantiles from the data set and those derived from the standard normal distribution. 

In the figure above, quantiles on the bottom left and top right do not align linearly with the theoretical 

quantiles for a normal distribution. In fact they drift away from the linear line, which indicates that 

portfolio returns are not perfectly normally distributed, and the distribution may have fat tails. As the 

portfolio return distribution has a kurtosis of 2.03, we know that there is a departure from normality as 

the distribution has thinner tails than a normal distribution. In this case, VaR and ES estimates may have 

overstated true risks for the portfolio. Hence, QQ plots serve as a validation tool in EVT analysis and 

help in making the right distributional assumptions based off of which EVT analysis can be performed.  

 EVT analysis  

There are two main methods that are used to apply EVT to a data set – Block Maxima method 

and the Peaks-Over-Threshold method. First we discuss the Block Maxima approach.  

a. GEV Approach to Block Maxima is a method used to estimate a distribution F that lies in the 

domain of attraction of an extreme value distribution Hε for some ε, formally denoted as F ∈ MDA 

(H). If some normalized block maxima Mn, where Mn = max (X1, X2, ….. Xn), converges in 

distribution as n → ∞, then Hε must belong to the GEV family of distributions. The parametric 

form for the GEV family of distributions is  

Hε (x) = exp( - (1+ ε x) (-1/ ε),   ε ≠0 

            exp( - e -x),         ε = 0  



 Depending on the value for ε, Hε can take any one of three forms under the GEV parametric 

form. If ε = 0, the distribution is Gumbel. If ε > 0, the distribution is a Frechet distribution. If ε 
< 0, the distribution is a Weibull distribution (Embrechts et al., 2005). 

The key point of the GEV method is that if there are n-block maximum Mn, then the true distribution 

of the underlying can be approximated using a three parameters GEV distribution, where the 

parameters involved are µ, ε, and σ. Using the block maxima method, one needs a large number 

of observations for maxima which are drawn from a large number of samples with iid rvs 

(random variables). The block maxima method analyzes the maximum or minimum values for 

a given distribution of n-block maxima (Liow, 2008). The data is first divided into n non-

overlapping blocks and the maxima observations are fitted to a GEV distribution.  

This approach was, however, not used to analyze the tail distribution for the portfolio under 

consideration. Although more straightforward than the alternative peaks-over-threshold 

(POT) method, a downside of this method is the need for an extremely large data set that can 

then be divided into large blocks in order to find the maxima corresponding to each block. In 

reality, however, maxima don’t occur with high frequencies. Thus, in the absence of large 

blocks of maxima, the assumption that n-block maxima converges to a GEV parametric form 

will be erroneous and the conclusions regarding the maximum value for an underlying 

distribution will be less reliable.  

b. GPD Approach to Peaks-Over-Threshold is a modern alternative to the block maxima approach. It 

can also be used for large observations, and in fact, it uses the limited number of extreme 

observations more efficiently than block maxima. In POT analysis, a threshold u is chosen such that 

observations that exceed the threshold are analyzed as a tail distribution. Two approaches that can be 

employed for POT analysis are (McNeil, 1999):  

1. Semi-parametric approach – Hill estimator is one of the most studied methods for the 

modeling of heavy-tailed distributions. The method makes an assumption about a loss 

distribution as being in the domain of attraction of the Frechet distribution from the GEV 

family. Under this assumption, tail of the loss distribution has a form of  

   F(x) = L(x) x-α 

The Hill method is best for distributions that decay at a slowing rate as the underlying 

assumption assumes the loss distribution to be a Frechet distribution which decays at a very 

slow rate and has an infinite upper tail (Embrechts et al., 2005). Hill method is more focused 

on the tail index, α, which is the reciprocal of the shape parameter ε. The selection of the 



tail index needs to be such that optimizes the bandwidth of the loss distribution i.e. the 

range of values between the upper and lower bounds for a tail distribution (Elroy, 

2007). Because the hill method is semi-parametric, there is a trade-off between the ease 

of implementation and the efficiency with which the data is employed. It’s, however, 

more straightforward than POT or block maxima methods, but if the underlying loss 

distribution is not in the maximum domain of attraction of a Frechet distribution then 

the inferences based on this method will be incorrect.    

2. Peaks Over Threshold (POT) is a parametric model that is used in extreme value theory to 

model extreme observations as a Generalized Pareto Distribution (GPD) (Embrechts et al., 

2005). The distribution function for a GPD is given by 

Gε,β(x) = 1-(1+εx/β)-1/ε,   ε≠0 

      1-exp(-x/β),  ε=0 

where ε and β are the shape and scale parameters respectively. For ε> 0, the 

distribution function Gε,β(x) is an ordinary Pareto distribution and has a heavy tail. When ε 

= 0, the distribution function is that of an exponential distribution. When ε<0, the 

distribution function is that of a Pareto type II distribution with a short-tail. In the GPD 

family of distributions, the shape parameter guides the selection of a distribution to be 

used for modeling tail of an empirical data set. For the purpose of modeling the losses of 

the hypothetical portfolio, POT method was used.  First step in POT method requires the 

selection of a threshold u such that there are sufficient numbers of observations that exceed 

the threshold. Threshold should be selected such that small changes in its values don’t result 

in significant changes in the values of the estimated quantiles. It is therefore important to 

select a value for the threshold in a region where the tail behavior of the data being analyzed 

is stable and does not exhibit high volatility (Jaruskova & Hanek, 2006).    

Observations above a threshold u are assumed to have a distribution function F(y) (McNeil, 

1999) such that, 

   Fu(y) = P {X-u ≤ y | X > u} 

Fu(y) represents the conditional probability of a loss exceeding threshold u by an amount 

equal to y, given the fact that variable X exceeds the threshold. In practice, it is mostly 

assumed that the underlying loss distribution probability function Fu(y) has an infinite right 

end-tail, which helps make a simplifying assumption that there is a possibility of having 

extremely large losses, even if the probability associated with those outcomes is negligibly 

small. An important theorem regarding the loss distribution Fu(y) is that for a large class of 



underlying distributions F, as the threshold u is increased, Fu converges to a generalized 

Pareto distribution (McNeil, 1999). This large class of underlying distributions includes all of 

the statistical and actuarial distributions such as Normal, beta, chi-square (χ2), t, F, etc. 

Another important point is that the underlying loss distribution F on an interval (0, 1] is an 

example of a distribution with a finite right end point, in which case there is zero probability 

associated with losses above 1. Such distributions can be helpful in analyzing credit related 

losses.    

Mean Excess Plot is a visual representation of the excesses above a threshold u. For the portfolio in 

point, absolute losses (portfolio returns < 0) were arranged in descending order, and excesses above the 

thresholds were calculated for different threshold values starting from 0.5% to 8% at an interval of 

0.5%. For each threshold, average of the excesses was calculated and plotted against threshold values. 

Figure 4 below shows a graph of mean excesses as a function of threshold u.  

 
 
 
 
 
 
 
 
 
 
 

Figure 4: Mean Excesses for the multi-asset portfolio 

As the plot shows, mean excesses exhibit a random pattern. However, close to threshold value 

2.5%, mean excesses vary linearly with threshold u. Further the standard errors, which are the standard 

deviations of sampling statistics, for different threshold values show that threshold equal to 2.5% also 

has a small standard error. Even though thresholds 1.5% and 2.00% have the lowest and second lowest 

standard errors, those values for threshold are not selected because mean excesses in that region of the 

mean excess plot do not vary linearly with the threshold values. Therefore, 2.5% was selected as the 

threshold to be used in POT analysis of the portfolio. Figure 5 below provides standard errors and 

confidence intervals for different threshold values.  
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Figure 5: Standard errors and confidence intervals for varying threshold values  
 

The distribution of excesses above a threshold u is given as (Bensalah, 2000):  

  F(u+y) = P(X-u≤y | X > u) = P(Y ≥ y | X>u) , y ≥ 0 

Given the above distribution, the distribution function for extreme observations, Xi follows: 

   F(u + y) = P (X ≥ u+y) = P ((X ≥ u+y | X > u). P (X > u)) 

   F(u + y) = P ((X – u ≥ y | X > u). P (X > u)) 

 F(u + y) = Fu(y).F(u) 

A Pickands, Balkema-in Haan theorem suggest that for a high threshold,  

   (Fu(y)) ≈ Gε,β(u) (y) 

The distribution function F(u) can be estimated as  

   F(u) = (1/n) ∑ I {Xi > u} = (Nu/n) 

Substituting, we get  

   F(u+y) = (Nu/n)[1+ ε(y/ β)]-1/ ε 

where y = excess above threshold  

  ε = shape parameter  

  β = scale parameter 

Using 2.5% as the threshold, maximum likelihood estimation (MLE) was used to select the 

values for the shape and scale parameters. MLE involved maximizing sum of the log of the probability 

distribution function of the mean excesses for different values of the shape parameter. A value of 0.25 

Mean 
Excess 
Losses 

Threshold, 
u 

Standard Error Of 
Mean Excess Loss Upper Limit  Lower Limit  

1.24% 0.50% 0.0771% 1.31% 1.16% 
1.25% 1.00% 0.0943% 1.35% 1.16% 
1.15% 1.50% 0.1106% 1.26% 1.04% 
1.21% 2.00% 0.1394% 1.35% 1.07% 
1.12% 2.50% 0.1595% 1.28% 0.96% 
1.18% 3.00% 0.2036% 1.38% 0.98% 
1.17% 3.50% 0.2507% 1.42% 0.92% 
1.15% 4.00% 0.3012% 1.45% 0.85% 
1.31% 4.50% 0.3853% 1.69% 0.92% 
1.44% 5.00% 0.3902% 1.83% 1.05% 
1.20% 5.50% 0.3641% 1.57% 0.84% 
0.99% 6.00% 0.3168% 1.31% 0.68% 
0.49% 6.50% 0.3168% 0.81% 0.18% 
0.62% 7.00% na     
0.12% 7.50% na     



was found for the shape parameter value, ε, with a scale parameter value of 1.05. Next the quantiles for 

the distribution function of extremes were calculated using  

 F(u+y) = (Nu/n)[1+ ε(y/ β)]-1/ ε 

After calculating the quantiles, VaR with 95% and 97.5% confidence intervals is calculated, 
which resulted in 

   

  

 

 
Figure 6: VaR for the portfolio under the EVT approach  

 

In comparison to the VaR values obtained using the Historical and Expected shortfall 

approaches, EVT approach yielded estimates for value at risks that are significantly higher than VaR for 

either of the two methods. It should be noted that the values for VaR in figure 6 represent absolute losses 

due to which they are positive.  

EVT focuses on modeling tail of a distribution, and thus this method attempts at capturing losses 

in highly unlikely events. In order to be able to inject sufficient capital to sustain losses during times of 

crisis, one needs a model that can estimate those extreme losses with a high probability. Combining the 

VaR approach with EVT provides solution to this problem. 

Concluding remarks   

In this paper, using the hypothetical equity portfolio as the basis for analysis, extreme losses 

were estimated using four different methods – Historical approach to the calculation of VaR, Simulation 

approach, Expected Shortfall, and EVT applied under the POT approach. ES, Historical method, and 

Simulation approach to calculating VaR underestimated extreme risks that the portfolio was exposed to 

on a daily level over the 2009 – 12 period, as these methods make an assumption of normality in asset 

returns. In practice, assets are part of a larger portfolio that is a blend of various securities that may or 

may not have normally distributed returns. Thus it becomes difficult to obtain an accurate estimate for 

capital at risk for an overall portfolio under the ES and VaR approaches when the normality assumption 

does not hold. EVT, on the other hand, is a specialized framework for analyzing losses in extreme events 

that occur with a small probability. It’s a parametric model that has the flexibility to adapt to different 

data sets based on their particular parameter estimates. Hence, in the special case of extreme loss 

analysis, EVT is a more preferred method than either ES or VaR approaches and should be part of every 

risk manager’s toolkit.  

  

VaR with 95% confidence VaR with 
97.5% 
confidence 

Portfolio  6.2915% 6.4212% 
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