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Abstract

We present a method for solving interacting, four-body systems in a one-dimensional harmonic

trap. By expressing the particle coordinates in Jacobi cartesian coordinates, we discover the

underlying Oh symmetry, i.e. tetrahedral (Td) symmetry with parity inversion. This symmetry

provides an alternate method for describing particle configurations and clustering, and it simplifies

numerical calculations of the energy eigenstates of the system for tunable interactions.
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I. INTRODUCTION

Recent advances in experimental measurements of ultracold, trapped, and interacting

few-body systems have generated a need for precision calculations in few-body physics [1–

10]. Experimental progress motivates theoretical work, and precise theoretical models allow

for the advancement of experimental measurements [11].

In our theoretical model, we develop an efficient method to solve for the spectrum of

the Hamiltonian in a truncated Hilbert space. The three-particle method in [1] simplifies

the calculation of the Hamiltonian’s energy eigenstates by exploiting the underlying C6v

symmetry (i.e., hexagonal symmetry with a vertical reflection plane). Building on this

three-particle method, we present a method for solving four harmonically-trapped particles

in one dimension by using an optimal computational basis that exploits the Hamiltonian’s

underlying Oh symmetry (i.e. tetrahedral (Td) symmetry with parity inversion) and reduces

the number of degrees of freedom from four to three. Additionally, our model conveniently

describes particle clustering and interactions.

This method has a long history in nuclear, atomic, and molecular physics. Refs. [2] and

[3] exploit similar properties using different methods, and ref. [4] solves a similar problem

using an alternate, but related approach. Recent theoretical and experimental research has

also provided evidence for an analogous Efimov effect in the unitary limit of the N > 3-body

problem, opening a vast new domain of research in many-body systems [12].

II. MODEL OVERVIEW

In Sections III, IV, and V we begin by deriving the Hamiltonian for the harmonic trap

potentials and interaction potentials in two-, three-, and four-particle systems. The trap

potential contains energy potentials arising only from the trap itself, whereas the interaction

potential contains only the contact potentials between two-particle interactions.

In each of the following derivations we begin in the particle coordinate system in configu-

ration space and perform a change of basis transformation into a Jacobi coordinate system,

still in configuration space. Graphically, this change of basis transformation is simply a

rotation of the coordinate axes in configuration space.

Starting with the two-particle system we derive the Hamiltonians in both bases and
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present a variable change that creates analogous, unitless Hamiltonians. In the three- and

four-particle systems we continue the derivation and present the Jacobi transformations for

those systems.

III. TWO-PARTICLE INTERACTION IN A ONE-DIMENSIONAL TRAP

A. Hamiltonian in the Two-Dimensional Particle Basis

For two identical particles in a one-dimensional harmonic trap, the non-interacting Hamil-

tonian H0 is given by

H0 =
1

2m
p̃1

2 +
1

2m
p̃2

2 +
1

2
kq̃1

2 +
1

2
kq̃2

2, (1)

and the two-particle contact interaction potential V is given by

V = g (δ (q̃1 − q̃2)) , (2)

where p̃i and q̃i are the momentum and position of particle i, and g is a constant determined

by the interaction strength.

In order to define unitless analogs to H0 and V we define a new quantity σ, a fundamental

length scale, as

σ =

√
~
mω

,

where ω =
√
k/m. Using σ we can define unitless analogs to q̃i and p̃i:

qi =
q̃i
σ
, pi =

p̃i
~/σ

. (3)

Substituting these values into Equations 1 and 2 yields

H0 =
1

2
~ω
(
p21 + p22 + q21 + q22

)
, and

V = g (δ (σq1 − σq2)) =
g

σ
(δ (q1 − q2)) .
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We can finally define a unitless total Hamiltonian as

Hg =
H0 + V

~ω
=

1

2

(
p21 + p22 + q21 + q22

)
+ γ (δ (q1 − q2)) ,

where γ = g/ (~ωσ) .

B. Hamiltonian in the Two-Dimensional Jacobi Basis

The particle space coordinates can be transformed into Jacobi space coordinates by the

rotation matrix

J2 =

 1√
2
− 1√

2

1√
2

1√
2

 ,

which rotates the coordinate axes by −π
4

radians as shown in Figure 1. When J2 acts on

the (q1, q2)
> position vector , we define a Jacobi coordinate basis in configuration space.

J2

 q1

q2

 =

 1√
2
q1 − 1√

2
q2

1√
2
q1 + 1√

2
q2

 =

 r1

r2


That is, J2q = r. Similarly, for the momentum coordinate in particle space we can define

a coordinate in Jacobi space using the same transformation, i.e. J2p = k. Thus, in Jacobi

space, the total, unitless Hamiltonian is

Hg =
1

2

(
k21 + k22 + r21 + r22

)
+ γ

(
δ
(√

2r1

))
=

1

2

(
k21 + k22 + r21 + r22

)
+

γ√
2

(δ (r1)) .
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FIG. 1: This figure demonstrates that the transformation to Jacobi coordinates can be represented

as a rotation in configuration space. The r2 direction bisects the angle bounded by the all-positive

q1-q2 quadrant.

IV. THREE-PARTICLE INTERACTION IN A ONE-DIMENSIONAL TRAP

A. Hamiltonian in the Three-Dimensional Particle Basis

A similar derivation exists for the three-particle case. In Jacobi space, the non-interacting

Hamiltonian H0 is given by

H0 =
1

2m

(
p̃1

2 + p̃2
2 + p̃3

2
)

+
1

2
k
(
q̃1

2 + q̃2
2 + q̃3

2
)
,

and the three-particle contact interaction V is given by

V = g (δ (q̃1 − q̃2) + δ (q̃2 − q̃3) + δ (q̃3 − q̃1)) .

Using the definitions assigned in Equation 3, we can, once again, find unitless analogs to

H0 and V , now in three dimensions. Here,

H0 =
1

2
~ω
(
p21 + p22 + p23 + q21 + q22 + q23

)
=

1

2
~ω
(
p2 + q2

)
, and

V =
g

σ
(δ (q1 − q2) + δ (q2 − q3) + δ (q3 − q1)) ,

where we’ve defined p = (p1, p2, p3)
> and q = (q1, q2, q3)

> for the three-particle case.
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FIG. 2: This figure demonstrates that the transformation to Jacobi coordinates can be represented

as a rotation in configuration space. The r3 direction points into the middle of the solid angle

bounded by the all-positive q1-q2-q3 octant.

We can now define the unitless total Hamiltonian in three-dimensions as

Hg =
H0 + V

~ω
=

1

2

(
p2 + q2

)
+γ (δ (q1 − q2) + δ (q2 − q3) + δ (q3 − q1)) .

B. Hamiltonian in Three-Dimensional Jacobi Space

The particle space coordinates can be transformed into Jacobi space coordinates by the

rotation matrix

J3 =


1√
2
− 1√

2
0

1√
6

1√
6
−
√

2
3

1√
3

1√
3

1√
3

 ,

which rotates the coordinate axes by −π
4

radians in the azimuthal direction and then by π
4

radians in the polar direction as shown in Figure 2.

Similar to the transformation in 2-dimensions, J3q = r and J3p = k. Thus, in three-
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dimensional Jacobi space, the total, unitless Hamiltonian is

Hg =
1

2

(
k2 + r2

)
+γ

[
δ
(√

2r1

)
+ δ

(
− 1√

2
r1 +

√
3

2
r2

)

+δ

(
− 1√

2
r1 −

√
3

2
r2

)]
,

where k = (k1, k2, k3)
> and r = (r1, r2, r3)

> in three dimensions.

V. FOUR-PARTICLE INTERACTION IN A ONE-DIMENSIONAL TRAP

A. Hamiltonian in Four-Dimensional Particle Space

Finally, a similar derivation exists for the four-particle case. In particle space, the non-

interacting Hamiltonian H0 is given by

H0 =
1

2m

(
p̃1

2 + p̃2
2 + p̃3

2 + p̃4
2
)

+
1

2
k
(
q̃1

2 + q̃2
2 + q̃3

2 + q̃4
2
)

=
1

2m
P̃

2
+

1

2
kQ̃

2
, (4)

and the four-particle contact interaction V is given by

V = g

(
4∑
i=1

4∑
j>i

δ (q̃i − q̃j)

)
, (5)

where the summation in Equation 5 simply loops over all possible two-particle interactions.

Using the definitions assigned in Equation 3, we can, once again, find unitless analogs to

H0 and V , now in four dimensions. Here,

H0 =
1

2
~ω
(
P 2 + Q2

)
, and
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V =
g

σ

(
4∑
i=1

4∑
j>i

δ (qi − qj)

)
,

where we define P = (p1, p2, p3, p4)
> and Q = (q1, q2, q3, q4)

> in the four-particle case.

We can now define the unitless total Hamiltonian in four-dimensions as

Hg =
H0 + V

~ω

=
1

2

(
P 2 + Q2

)
+ γ

(
4∑
i=1

4∑
j>i

δ (qi − qj)

)
.

B. Hamiltonian in Four-Dimensional Jacobi Space

The Jacobi space coordinates can be transformed into Jacobi space coordinates by the

rotation matrix

J4 =


1√
2
− 1√

2
0 0

1√
6

1√
6
−
√

2
3

0

1
2
√
3

1
2
√
3

1
2
√
3
−
√
3
2

1
2

1
2

1
2

1
2

 .

Similar to the transformation in 2- and 3-dimensions, J4Q = R and J4P = K. Thus, in

four-dimensional Jacobi space, the total, unitless Hamiltonian is

Hg =
1

2

(
K2 + R2

)
+ γ

[
δ
(√

2r1

)
+ δ

(
1√
2
r1 +

√
3

2
r2

)

+ δ

(
1√
2
r1 +

1√
6
r2 +

2√
3
r3

)
+ δ

(
− 1√

2
r1 +

√
3

2
r2

)

+ δ

(
− 1√

2
r1 +

1√
6
r2 +

2√
3
r3

)
+ δ

(
−
√

2

3
r2 +

2√
3
r3

)]
, (6)

where K = (k1, k2, k3, k4)
> and R = (r1, r2, r3, r4)

> in four dimensions.
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In the form for Hg in Equation 6 we see that the Hamiltonian of four equal-mass har-

monic oscillators in one dimension is isomorphic to one isotropic harmonic oscillator in four

dimensions [1]. We can also say analogous statements for the two-, three-, and N- particle

cases.

VI. SEPARABILITY

There are two important things to notice about the r4, center of mass, coordinate. First,

r4 is not present in the contact potential component (V ) of Equation 6. Second, the r4

coordinate separates from r in the trap potential component of Equation 6. This is called

separability and is the motivation for the transformation from particle space to Jacobi space.

This separability allows us to express the energy eigenstates “as an unentangled product

of center-of-mass and relative wave functions” [1]. The Hamiltonian Hg can be written as a

sum of the center of mass Hamiltonian Hr4 and the relative Hamiltonian Hr. That is,

Hg =
1

2

(
K2 + R2

)
+ V (r)

=
1

2

(
k2 + k24 + r2 + r24

)
+ V (r)

=
1

2

(
k24 + r24

)
+

1

2

(
k2 + r2

)
+ V (r)

= Hr4 +Hr,

where we’ve defined Hr4 = 1
2

(k24 + r24) and Hr = 1
2

(
k2 + r2

)
+ V (r). In assuming that

an eigenstate ψ(R) can be written in the form ψ(R) = ψr4(r4)ψr(r)), we can write the

Schrödinger equation (cf. Equation 8 in Section VII) as

(Hr4 +Hr)ψr4(r4)ψr(r) = E ψr4(r4)ψr(r)

⇒ Hr4 (ψr4(r4))

ψr4(r4)
+
Hr (ψr(r))

ψr(r)
= E.

Written in such a way, we see that under the Jacobi transformation the energy eigenstates

can be written as an unentangled product of center-of-mass and relative wave functions.

9



VII. STATIONARY STATES

For one particle in a one-dimensional harmonic trap, the dynamic equation is given by

i~
∂ψ

∂t
= Ĥψ. (7)

Our goal is to find the system’s stationary states, i.e. our goal is to find the wavefunctions

in which |ψ (x, t)|2 = |ψ (x, 0)|2. This is equivalent to finding the eigenfunctions of the

Hamiltonian operator

Ĥψ (x, t) = E ψ (x, t) . (8)

By finding these stationary states we discover a basis that can be used to describe the non-

stationary states. In one dimension with only one particle, this discovery is trivial. There

is only one way to distribute any given energy among one particle in one dimension, so the

solution of Equation 7 is trivially ψ (x, t) = e−iHgt/~ψ (x, 0).

In four particles in one dimension, finding the stationary states proves more useful. By

exploiting the symmetries of the four particles, we will be able to easily calculate the eigen-

functions of the trap Hamiltonian. The stationary states of the trap Hamiltonian form a basis

for all square-integrable function on configuration space and we can use these eigenfunctions

to approximate the eigenfunctions of the total (i.e., trap and interaction) Hamiltonian.

VIII. SYMMETRIC GROUP OF FOUR PARTICLES

A group is a collection of transformations of a given point set, which (1) contains the

identity transformation; (2) for every transformation M , also contains its inverse M−1; and

(3) includes the composition of all member transformations [13]. One type of group is the

symmetric group of four elements S4 (not to be confused with the S4 rotation-reflection

class), which is the group of all permutations on four symbols. With four identical particles

in our system there are 4! = 24 possible permutations.

Within the symmetric group of four elements there are five types (or classes) of per-

mutations. Each permutation in a given class is of the same type of particle exchange. A

permutation in which no particles are exchanged is in the identity class E; a permutation

in which three particles are exchanged is in class C3; a permutation in which there are two,
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two-particle switches is in class C2; a permutation in which there is one, two-particle switch

is in class σd; and a permutation in which all four particles are exchanged is in class S4.

This class structure is further explained in Section VIII B.

A. Configuration Space Representation in the Particle Basis

One representation of the Td group can be found in the particle basis of the four particles.

We can build 24, 4×4 matrices to represent the permutations of the group. Defining the

row vectors

q1 = (1, 0, 0, 0) , q2 = (0, 1, 0, 0) ,

q3 = (0, 0, 1, 0) , and q4 = (0, 0, 0, 1) , (9)

we are able to represent each permutation of the four particles as a matrix. The matrix


q1

q2

q3

q4

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,

for example, represents the identity (the permutation in which no particles are exchanged).

The matrix 
q2

q1

q4

q3

 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 ,

on the other hand, represents the permutation in which particles 1 and 2 are exchanged

and particles 3 and 4 are exchanged. The 24 matrices of this form form a representation of

the Td group in particle space. In this representation, each matrix is a representation of a

configuration in particle space and will be denoted M q
i . The operator corresponding to the

element M q
i in the Td group is denoted Dq(Mi). The operator group in configuration space

is denoted Dq(Td) and is a representation of the group.
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B. Configuration Space Representation in the Jacobi Cartesian Basis

In the orthonormal Jacobi space (i.e., in the vector space in which r1, r2, r3, and r4 are

orthonormal basis vectors) we can plot the particle space coordinate vectors. Taking any

vector in particle space and left-multiplying it by J4 yields the particle space coordinate in

terms of the Jacobi space coordinates. For example,

J4 · q1
> =

1√
2
r1 +

1√
6
r2 +

1

2
√

3
r3 +

1

2
r4

where q>1 = (1, 0, 0, 0)> is defined in Equation 9. The conversion is similar for the other

particle coordinate vectors.

We truncate the four-dimensional q1
>, q2

>, q3
>, and q4

> vectors to three dimensions

and plot these vectors in the three-dimensional Jacobi space (i.e., the r1, r2, r3 orthonormal

basis). Truncating the particle space coordinates, equivalent to ignoring the r4 coordinate, is

justified in Section VI and will be further explained below. A plot of the particle coordinates

in the Jacobi basis is shown in Figure 3.

FIG. 3: This figure shows the particle coordinate vectors plotted in the three-dimensional Jacobi

space. The fourth dimension is truncated from the particle coordinate vectors and the r4 coordinate

is ignored entirely. The particle coordinate vectors form the vertices of a regular tetrahedron. The

q1, q2, and q3 vectors are vertically rotated by arccos
(
2
√
2

3

)
radians (≈ 19.5 degrees) above the

r1-r2 plane and the angle between any two qi vectors is arccos
(
−1

3

)
radians (≈ 109.5 degrees).
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In Figure 3, the qi particle coordinate vectors form the vertices of a regular tetrahedron in

three dimensions. Under the J4 Jacobi transformation truncated to three dimensions, the S4

symmetric group is arranged as the tetrahedral Td group. In Jacobi space, any permutation

that brings the tetrahedron into coincidence with itself is a symmetry element of the Td

group.

One possible permutation is the one in which particles 1 and 2 are exchanged and particles

3 and 4 are exchanged (denoted by P2143). This is a rotation of π about the vector(
0,
√

2, 1
)>

in three dimensions and can be represented by the matrix transformation

J4


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 J−14 =


−1 0 0 0

0 1
3

2
√
2

3
0

0 2
√
2

3
−1

3
0

0 0 0 1

 .

This is one of the three, two-fold rotations that make up the C2 class in the Td group.

The 24 elements of the Td group are categorized in 5 classes: the identity E; eight, three-

fold rotations C3; three, two-fold rotations C2; six mirror reflections σd; and six, four-fold

rotation-reflections S4 [13]. The permutations are characterized by class in Table I. See

Appendix A for a table of the 24 permutation matrices written in the Jacobi basis.

E(1) C3(8) C2(3) σd(6) S4(6)

P1234 P1342 P2143 P1243 P2341

P1423 P3412 P1324 P2413

P2314 P4321 P1432 P3142

P2431 P2134 P3421

P3124 P3214 P4123

P3241 P4231 P4312

P4132

P4213

TABLE I: This table characterizes each permutation as an element in one of the five classes of the

Td group. The notation “P2431” indicates that particle 2 is in the original position of particle 1,

particle 4 is in the original position of particle 2, particle 3 is in its original position, and particle

1 is in the original position of particle 4.

The 24 matrices of this form form a representation of the Td group in Jacobi space. In this

representation, each matrix is a representation of a configuration in Jacobi space and will
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be denoted M r
i . The operator corresponding to the element M r

i in the Td group is denoted

Dr(Mi). The operator group in Jacobi space is denoted Dr(Td) and is a representation of

the group. Further, the Dq(Td) and Dr(Td) representations are equivalent representations,

as they have the same structure and differ only by choice of basis [13].

C. Hilbert Space Representation in the Jacobi Cartesian Trap Eigenbasis

The first two representations (especially the first) are somewhat trivial. The represen-

tation in particle space Dq(Td) is straightforward, and the representation in Jacobi space

Dr(Td) is simply a change of basis from the first. In order to construct additional represen-

tations we now move from configuration space to the infinite-dimensional Hilbert space—the

space of all square-integrable functions. We can take an already-existing transformation and

associate with it a linear operator that can act on functions.

Still ignoring the r4 coordinate, in the following representations the functions onto which

our operators will act will be the harmonic oscillator wavefunctions of three relative particle

coordinates in one dimension Ψn′
1,n

′
2,n

′
3

(r1, r2, r3). We first define the harmonic oscillator

wavefunction of one particle in one dimension as

ψn′
i
(ri) =

π−1/4√
2n n!

(
Hn′

i
(ri)
)
e−r

2
i /2, (10)

where
(
Hn′

i
(ri)
)

is the n′i-th order Hermite polynomial and n′i is the energy level of the i-th

relative coordinate.

In order to expand our definition to three relative particle coordinates in one dimension we

simply multiply three of the wavefunctions defined in Equation 10. Thus, our three-particle

wavefunction Ψn′
1,n

′
2,n

′
3

(r1, r2, r3) is defined as

Ψn′
1,n

′
2,n

′
3

(r1, r2, r3) = ψn′
1

(r1)ψn′
2

(r2)ψn′
3

(r3) . (11)

Further, in this representation our linear operators will be the permutation matrices in

Jacobi space (M r
i , or equivalently, J4M

p
i J
−1
4 ) discussed in Section VIII B.

Having M r
i act on Ψn′

1,n
′
2,n

′
3

(r1, r2, r3) is equivalent to

Ψn′
1,n

′
2,n

′
3

(M r
i · (r1, r2, r3)) = Ψn′

1,n
′
2,n

′
3

(M r
i · r)
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and yields the function

Ψn′
1,n

′
2,n

′
3

(M r
i · r)

=
[
ψn′

1
([M r

i · r]1) ψn′
2

([M r
i · r]2)

ψn′
3

([M r
i · r]3)

]
, (12)

where [M r
i · r]1 is the first element of the (M r

i · r) vector, [M r
i · r]2 is the second element,

etc.

We are now ready to calculate the wavefunction defined in Equation 12. We begin by cal-

culating the wavefunctions for the unpermuted particles for all possible energy distributions.

For total energy N = n′1 + n′2 + n′3 the degeneracy dN (the number of ways to distribute N

units of energy among the three relative particle coordinates) is given by

dN =
(N + 1)(N + 2)

2
.

For example, with two units of energy (N = 2) there are 6 ways to distribute the energy

among r1, r2, and r3; for N = 3 there are 10 ways; etc. A table of possible distributions

for N = 2 is shown in Table II. In our solution for this representation we calculated

wavefunctions for all distributions through N = 3.

N = 2 State 1 State 2 State 3 State 4 State 5 State 6

(n′1, n
′
2, n

′
3) (0,0,2) (0,1,1) (0,2,0) (1,0,1) (1,1,0) (2,0,0)

TABLE II: This table shows all possible distributions of two units of total energy among r1, r2,

and r3. Each column is a possible distribution state. n′i = 0 indicates that the i-th coordinate is

in the ground state, n′i = 1 indicates that the i-th coordinate is in the first excited state, etc.

Next, we calculated the wavefunctions of each energy distribution in each of the 24 possi-

ble permutations. That is, we calculated Ψn′
1,n

′
2,n

′
3

(M r
i · r) with all possible M r

i permutation

matrices. If the Hamiltonian Hg is invariant under a symmetry transformation M r
i , then

we should be able to use the unpermuted wavefunctions of a given total energy to build a

basis with which to write each of the permuted wavefunctions of that total energy [13]. This

is equivalent to saying that when the M r
i operators act on a permuted wavefunction of a

certain energy, the unpermuted wavefunctions of that energy simply “mix” together.

For example, in the N = 2 family we have six unpermuted wavefunctions that are used
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as a basis. We can pick any permuted wavefunction of any N = 2 energy distribution and

write it as a linear combination of the six unpermuted N = 2 wavefunctions.

Carrying out this procedure for all operators M r
i in the Td symmetry group we obtain

representations for the N = 0 state, the N = 1 states, the N = 2 states, etc., which together

form a representation for the entire group. This Jacobi space representation in a function

space basis will be denoted Df (Td).

IX. TRANSITION COEFFICIENTS BETWEEN DIFFERENT EIGENBASES OF

FUNCTIONS ON CONFIGURATION SPACE

For the four representations that have been constructed thus far we need a method

for transforming between different eigenbases of functions on configuration space.

Ψn′
1,n

′
2,n

′
3,n

′
4

(R) represents functions with a well defined center-of-mass Jacobi cartesian mode

excitation, whereas Ψn′
1,n

′
2,n

′
3,n

′
4

(
J−14 ·R

)
represents functions with a well defined particle

excitation. In this section we derive the transformation matrices to transform one basis to

another.

This derivation follows the general procedure just described in Section VIII C. In this

transformation, however, we calculate the wavefunctions untransformed by any operator and

use them as a basis to write the wavefunctions transformed by the J−14 operator.

First, we calculate the wavefunctions of the form

Ψn′
1,n

′
2,n

′
3,n

′
4

(R)

= ψn′
1

(r1) ψn′
2

(r2) ψn′
3

(r3) ψn′
4

(r4)

for all possible energy distributions. For total energy N = n′1 + n′2 + n′3 + n′4 the degeneracy

dN , now for four relative particle coordinates, is given by

dN =
(N + 1)(N + 2)(N + 3)

6
.

For example, with two units of energy (N = 2) there are now 10 ways to distribute the

energy among r1, r2, r3, and r4; for N = 3 there are 20 ways; etc. In our solution for the

transition coefficients we calculated wavefunctions for all distributions through N = 4.
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Next we calculated the wavefunctions transformed by the J−14 operator. The wavefunc-

tions took the form

Ψn′
1,n

′
2,n

′
3,n

′
4

(
J−14 ·R

)
=
[
ψn′

1

([
J−14 ·R

]
1

)
ψn′

2

([
J−14 ·R

]
2

)
ψn′

3

([
J−14 ·R

]
3

)
ψn′

4

([
J−14 ·R

]
4

)]
,

where, as before,
[
J−14 ·R

]
1

is the first element of the
(
J−14 ·R

)
vector,

[
J−14 ·R

]
2

is the

second element, etc.

If the non-interacting Hamiltonian H0 is invariant under the J−14 transformation, then we

should, once again, be able to use the untransformed wavefunctions of a given total energy

to build a basis with which to write each of the transformed wavefunctions of that total

energy [13].

Under the J−14 operator we find that we obtain representations for the N = 0 state, the

N = 1 states, the N = 2 states, etc., which together form a representation for the entire

group, which will be denoted Df
p (Td).

X. IRREDUCIBLE REPRESENTATIONS: SYSTEMS OF TWO PARTICLES

To construct irreducible representations in our four-particle system we begin by presenting

the method in the two-particle case. The two-particle method generalizes to systems of any

number of particles.

In our two-particle system, our unitless trap Hamiltonian operator is given by

Ĥ = ~ω
(
− ∂2

∂q21
− ∂2

∂q22
+ q21 + q22

)
,

and acts on the two-particle wavefunction

Ψn1,n2 (q1, q2) = ψn1 (q1)ψn2 (q2)

where ψni
(qi) is defined as in Equation 10.

In this system there are four types of symmetries, and thus four group elements associated

with this Hamiltonian: the identity E, the parity transformation π, the reflection σ, and the
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parity-reflection transformation πσ. We can take these transformations and associate with

them linear operators Û that can act on functions. For n1 = n2, the effects of these operators

leaves each of the wavefunctions unchanged, and for n1 6= n2, using the property of Hermite

polynomials in which Hni
(−qi) = (−1)niHni

(qi), the effects of each of these operators are

outlined below.

Û(E)Ψn1,n2 (q1, q2) = Ψn1,n2 (q1, q2)

Û(π)Ψn1,n2 (q1, q2) = Ψn1,n2 (−q1,−q2)

= (−1)n1+n2Ψn1,n2 (q1, q2)

Û(σ)Ψn1,n2 (q1, q2) = Ψn1,n2 (q2, q1) (13)

= Ψn2,n1 (q1, q2)

Û(πσ)Ψn1,n2 (q1, q2) = Ψn1,n2 (−q2,−q1)

= (−1)n1+n2Ψn2,n1 (q1, q2)

That is, the identity operator leaves the particle coordinates unchanged, the parity operator

reverses the sign of each of the particle coordinates (q1 → −q1 and q2 → −q2), the reflection

operator switches the particle coordinates (q1 ↔ q2), and the parity-reflection operator both

reverses the signs of and switches the particle coordinates (q1 → −q2 and q2 → −q1).

We can represent each of these transformations as matrices by defining Ψn1,n2 (q1, q2)→

(1, 0)> and Ψn2,n1 (q1, q2)→ (0, 1)>. Using these definitions,

E →

 1 0

0 1

 , π →

 (−1)n1+n2 0

0 (−1)n1+n2

 ,

σ →

 0 1

1 0

 , and πσ →

 0 (−1)n1+n2

(−1)n1+n2 0

 .

The collection of these four matrices is a reducible representation of the group.

In order to break this representation into irreducible representations, we next find any

eigenvectors common to all four of these matrices. For both the e and π matrices, all vectors
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are eigenvectors, and both σ and πσ share the eigenvectors 1√
2

1√
2

 and

 1√
2

− 1√
2

 ,

which will be denoted Ψ+
n1,n2

and Ψ−n1,n2
, respectively.

Now, in a method identical to the one shown in Equation 13, we compute the effect of

each of the operators on our new eigenvectors. The effects of each of these operators on the

two eigenvectors are outlined below.

Û(E)Ψ±n1,n2
= Ψ±n1,n2

Û(π)Ψ±n1,n2
=

1√
2

(
Û(π)Ψn1,n2 ± Û(π)Ψn2,n1

)
= (−1)n1+n2Ψ±n1,n2

Û(σ)Ψ±n1,n2
=

1√
2

(
Û(σ)Ψn1,n2 ± Û(σ)Ψn2,n1

)
= ±Ψ±n1,n2

Û(πσ)Ψ±n1,n2
=

1√
2

(
Û(πσ)Ψn1,n2 ± Û(πσ)Ψn2,n1

)
= ±(−1)n1+n2Ψ±n1,n2

We thus have four different types of functions: the Ψ+
n1,n2

functions in which n1+n2 is even

(the A1 representation), the Ψ−n1,n2
functions in which n1+n2 is even (the A2 representation),

the Ψ+
n1,n2

functions in which n1+n2 is odd (the B1 representation), and the Ψ−n1,n2
functions

in which n1 + n2 is odd (the B2 representation). Additionally, the wavefunctions for which

n1 = n2 fall into the A1 representation.

For example, for Ψ+
1,0,

Û(E)Ψ+
1,0 = Ψ+

1,0, Û(π)Ψ+
1,0 = −Ψ+

1,0,

Û(σ)Ψ+
1,0 = Ψ+

1,0, and Û(πσ)Ψ+
1,0 = −Ψ+

1,0,

and thus Ψ+
1,0 is in the B1 representation.

Table III is a character table for the symmetric group of two symbols. The entries in the

table are the characters χ(µ) (R) (in this case, the 1 × 1 matrices) of group element R in

irreducible representation µ for the symmetric group of two elements S2.
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C2v E(1) π(1) σ(1) πσ(1)

A1 1 1 1 1 Ψ0,0, Ψ1,1, Ψ+
0,2, Ψ2,2, Ψ+

1,3, Ψ+
0,4

A2 1 1 -1 -1 Ψ−0,2, Ψ−1,3, Ψ−0,4
B1 1 -1 1 -1 Ψ+

0,1, Ψ+
1,2

B2 1 -1 -1 1 Ψ−0,1, Ψ−1,2

TABLE III: This is the character table for the C2v group [13]. The entries in the table are the

characters χ(µ) (R) (in this case, the 1×1 matrices) of group element R in irreducible representation

µ. In the rightmost column we list the first few wavefunctions in each representation.

Oh E(1) C3(8) C2(3) σd(6) S4(6)

A1 1 1 1 1 1

A2 1 1 1 -1 -1

E 2 -1 2 0 0

F2 3 0 -1 1 -1

F1 3 0 -1 -1 1

TABLE IV: This is the character table for the Oh group [13]. The entries in the table are the

characters χ(µ) (R) of a group element R in irreducible representation µ.

XI. PROJECTION ONTO IRREDUCIBLE REPRESENTATIONS

The following projection operator formula encompasses the procedure just outlined in

Section X. The projection P of a state onto representation µ is given by

P (µ) =
nµ
g

∑
R

(
χ(µ) (R)MR

)
, (14)

where nµ is the dimension of the representation, g is the number of elements in the group,

χ(µ) (R) is the character of a group element R in representation µ, and MR is the matrix

operator for group element R [13].

The character χ(µ) (R) of a group element R is simply the trace of a class’s permutation

matrix in irreducible representation µ (Table IV). The character is independent of choice of

basis [13]. The dimension of the irreducible representation nµ is the character of the identity

element in representation µ.

In the four-particle case, g = 24, and the summation sums over all 24 of the permutation

matrices (truncated to three dimensions) in the Jacobi basis representation.

We can project any wavefunction onto any representation. For example, the projections
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of

Ψ2,0,0 (r1, r2, r3) =
e

1
2(−r2

1−r2
2−r2

3)

π3/4

(−1 + 2r21)√
2

onto the five representations are shown in Equation 15.

P (A1)Ψ2,0,0 =
e

1
2(−r2

1−r2
2−r2

3)

π3/4

−3 + 2r21 + 2r22 + 2r23
3
√

2

P (A2)Ψ2,0,0 = 0

P (E)Ψ2,0,0 =
e

1
2(−r2

1−r2
2−r2

3)

π3/4

r21 − r22 − 2
√

2r2r3

3
√

2
(15)

P (F2)Ψ2,0,0 =
e

1
2(−r2

1−r2
2−r2

3)

π3/4

3r21 − r22 + 2
√

2r2r3 − 2r23
3
√

2

P (F1)Ψ2,0,0 = 0

If we convert our wavefunctions back to particle coordinates, we find that all projections

onto the A1 representation are symmetric under all two-particle exchanges, and all pro-

jections on the the A2 representation are antisymmetric under all two-particle exchanges.

Thus, the A1 representation is comprised of all-boson systems, and the A2 representation

is comprised of all-fermion systems. The E, F2, and F1 representations contain mixtures

of distinguishable and indistinguishable particles. Since only the A1 and A2 representations

are comprised of indistinguishable particles, we focus only on these two representations for

the remainder of this paper. The method, however, generalizes to any representation.

Additionally, there are no non-zero A2 projections for N < 6, as N = 6 is the smallest

non-negative integer that can be written as a sum of four distinct non-negative integers.

This is expected, since the A2 representation is the all-fermion representation, for which no

two particles in the four-particle system can have the same excitation.

A. Normalized Projection, Method I

The projected wavefunctions will, in general, not be normalized. To normalize a projected

wavefunction we find the normalization constant A such that

∞∫
−∞

∞∫
−∞

∞∫
−∞

(
AΨn′

1,n
′
2,n

′
3

)∗ (
A
(
P (µ)Ψn′

1,n
′
2,n

′
3

))
dr1 dr2 dr3 = 1. (16)
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Since all of our irreducible representations are real (or can be brought to real form) [13],

Equation 16 simplifies to

A2

∞∫
−∞

∞∫
−∞

∞∫
−∞

Ψn′
1,n

′
2,n

′
3

(
P (µ)Ψn′

1,n
′
2,n

′
3

)
dr1 dr2 dr3 = 1, (17)

where we’ve both removed the complex conjugate and factored A2 from the integral. In

Equation 17’s simplified form, evaluating this integral using Mathematica’s Integrate func-

tion is much more computationally efficient. For the N = 4 projections, for example, finding

the normalization constants via Equation 16 took about 50 minutes, and via Equation 17

took only 30 seconds.

Thus, for non-zero projections,

A =
1√

∞∫
−∞

∞∫
−∞

∞∫
−∞

Ψn′
1,n

′
2,n

′
3

(
P (µ)Ψn′

1,n
′
2,n

′
3

)
dr1 dr2 dr3

, (18)

and our now-normalized, projected wavefunctions
(
P̂ (µ)Ψn′

1,n
′
2,n

′
3

)
are given by

(
P̂ (µ)Ψn′

1,n
′
2,n

′
3

)
= A

(
P (µ)Ψn′

1,n
′
2,n

′
3

)
,

with A given by Equation 18.

The normalized Ψ2,0,0 (r1, r2, r3) projections are thus

P̂ (A1)Ψ2,0,0 =
√

3
e

1
2(−r2

1−r2
2−r2

3)

π3/4

−3 + 2r21 + 2r22 + 2r23
3
√

2

P̂ (A2)Ψ2,0,0 = 0

P̂ (E)Ψ2,0,0 =
√

6
e

1
2(−r2

1−r2
2−r2

3)

π3/4

r21 − r22 − 2
√

2r2r3

3
√

2

P̂ (F2)Ψ2,0,0 =
√

2
e

1
2(−r2

1−r2
2−r2

3)

π3/4

3r21 − r22 + 2
√

2r2r3 − 2r23
3
√

2

P̂ (F1)Ψ2,0,0 = 0.
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B. Normalized Projection, Method II

We now propose an alternate, more computationally efficient method for finding the

normalized, projected wavefunctions. Instead of using Mathematica’s Integrate function,

we use the PolynomialReduce, Eigensystem, and Orthogonalize functions.

We begin by calculating all of the wavefunctions of total energy N via Equation 11.

To calculate these wavefunctions’ normalized projections onto representation µ, we first

calculate the unnormalized projections via Equation 14.

Next, we build the matrix representation of the projected wavefunctions of total energy

N onto representation µ. Using PolynomialReduce we write the projected wavefunctions

P (µ)ΨN in terms of the unprojected wavefunctions of the same energy ΨN .

For example, for N = 3 and µ = A1, we write each of the P (A1)ΨN=3’s as a linear

combination of the 10 ΨN=3’s. For example,

P (A1)Ψ0,0,3 =
2

9
Ψ0,0,3 + 0Ψ0,1,2 −

1

3
√

3
Ψ0,2,1 +

√
2

9
Ψ0,3,0 + 0Ψ1,0,2

+0Ψ1,1,1 + 0Ψ1,2,0 −
1

3
√

3
Ψ2,0,1 −

√
2
3

3
Ψ2,1,0 + 0Ψ3,0,0.

The coefficients on each of these 10 terms form the first row of the matrix. The second row

of the matrix is formed by the coefficients on the ΨN=3’s for P (A1)Ψ0,1,2, the third row is

formed by the coefficients on the ΨN=3’s for P (A1)Ψ0,2,1, etc.

Next, using Eigensystem, we find the eigenvalues and eigenvectors of the coefficient

matrix. Using only the eigenvectors with an eigenvalue of 1 (i.e., vectors unchanged by the

projection operator), we build an orthonormal basis via the Orthogonalize function. To

convert our basis vectors to basis functions, we simply take the dot product of each basis

vector with the vector with elements given by the ΨN ’s. The resulting basis function is the

normalized projection of all of the nonzero P (µ)ΨN .

In the N = 3, µ = A1 example we find the single basis vector

(
−
√
2
3

0 1√
6
−1

3
0 0 0 1√

6
1√
3

0
)>

.
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N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7

A1 1 0 1 1 2 1 3 2

A2 0 0 0 0 0 0 1 0

E 0 0 1 0 2 1 3 2

F2 0 1 1 2 2 4 4 6

F1 0 0 0 1 1 2 2 4

TABLE V: This table shows how many copies of each representation exist for each energy level.

The A1 and A2 representations are one-dimensional, the E representation is two-dimensional, and

the F2 and F1 representations are three-dimensional. To calculate the number of basis functions

for a given entry, simply multiply the entry by the dimension of the representation. For example,

for N = 5 and µ = F2 (a three-dimensional representation) there are 4× 3 = 12 basis functions.

Taking the dot product of this basis vector with

(
Ψ0,0,3 Ψ0,1,2 Ψ0,2,1 Ψ0,3,0 Ψ1,0,2 Ψ1,1,1 Ψ1,2,0 Ψ2,0,1 Ψ2,1,0 Ψ3,0,0

)>
yields the basis function

e
1
2(−r2

1−r2
2−r2

3)

π3/4

(
6r21r2 +

√
2r3 (3r21 − 2r23)− 2r32 + 3

√
2r22r3

)
3
√

3
,

which is the normalized, projected wavefunction for all nonzero, N = 3 projections in the

A1 representation.

For many N -µ combinations there may be multiple basis functions, in which case the

projected wavefunctions are simply a linear combination of the common, orthogonal wave-

functions. In the N = 4 projection onto the A1 representation, for example, all of the

projected wavefunctions are some linear combination of two orthogonal wavefunctions.

In our solution, we computed the basis vectors through N = 7. In Table V we list how

many copies of each representation exist for energy levels N = 0 through N = 7, and in

Appendix B we note the representations and energy levels for which a projected wavefunction

is nonzero.

XII. PARTICLE CLUSTERING

In the orthonormal Jacobi space basis we can find locations describing two separate two-

particle clusters (“2-2 clusters”) (in one dimension in Figure 4) and the locations describing
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a three particle cluster with one particle on its own (“3-1 clusters”) (in one dimension in

Figure 5).

FIG. 4: This figure shows an example of a 2-2 particle cluster in which particles q1 and q4 are in

one cluster and particles q2 and q3 are in another cluster.

FIG. 5: This figure shows an example of a 3-1 particle cluster in which particles q1, q2, and q3 are

in one cluster and particle q4 is on its own.

In the orthonormal Jacobi space basis, a plane spanned by any two of the particle-

coordinate vectors is a region in which the other two particles are clustered together. For

example, the plane spanning the q1–q2 vectors is a region in which particles q3 and q4 are in

the same location (Figure 6). There are six planes of this type – one for each two-particle

pair. The six planes are shown in Figure 7.

FIG. 6: This figure shows the plane in which particles q3 and q4 are in the same location. This

plane spans the q1 and q2 vectors, bisecting the angle between particles q3 and q4. There are 6

planes of this type.
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FIG. 7: This figure shows all two-particle clustering planes. Where two planes intersect in a line

there is a 2-2 particle clustering, and where three planes intersect in a line there is a 3-1 particle

clustering.

Locations in which two planes intersect in a line are 2-2 particle clusterings, and locations

in which three planes intersect in a line are 3-1 particle clusterings. The clustering lines are

shown in Figure 8.

We can also describe 1–2–1 particle clusterings (i.e., configurations in which one particle

is to the left of a 2-particle cluster and another particle is equidistant to the right of the

2-particle cluster). Not shown in Figure 8, each of the 1–2–1 clustering lines is perpendicular

to one of the planes in Figure 7.

XIII. PROJECTIONS AND PARTICLE CLUSTERING

By overlaying the clustering lines (from Figure 8) with the projected wavefunctions, we

notice some interesting results. We first convert our projected wavefunctions to spherical

coordinates (r1 → ρ sin(θ) cos(φ), r2 → ρ sin(θ) sin(φ), and r3 → ρ cos(θ)) and plot the

projected wavefunction at a specified value of ρ, effectively plotting only the angular portion

of the wavefunction.

In Figure 9 we plot the all-boson P̂ (A1)Ψ4,0,0 wavefunction. For this state, there are pri-

mary maxima at 2-2 clustering lines and secondary maxima at 3-1 clustering lines. This
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FIG. 8: This figure shows all 2-2 and 3-1 clustering lines. The four, 3-1 clustering lines (in red)

run along the particle coordinate axes, and the three, 2-2 clustering lines (in blue) bisect the angle

between each pair of particle coordinate axes.

preference to clustering is consistent with all wavefunctions in the A1 representation. Addi-

tionally, one indication that there are multiple copies of the A1 representation for N = 4 is

that the relative size of the angular nodes is dependent on our defined value of ρ.

FIG. 9: This figure shows the same clustering lines as in Figure 8, overlaid with the projection of

Ψ4,0,0 onto the A1 representation. Note the primary maxima at 2-2 clustering lines and secondary

maxima at 3-1 clustering lines for this state.
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In Figure 10 we plot the all-fermion P̂ (A2)Ψ3,0,3 wavefunction. For this state, there is 0

probability that the particles will cluster in any of the possible formations (i.e., 2-2 cluster-

ings, 3-1 clusterings, and 1-2-1 clusterings). This behavior is consistent with all wavefunc-

tions in the A2 representation.

FIG. 10: This figure shows the same clustering lines as in Figure 8, overlaid with the projection of

Ψ3,0,3 onto the A2 representation. Note the 0 probability that the all-fermion state will cluster in

any of the possible formations (i.e., 2-2 clusterings, 3-1 clusterings, and 1-2-1 clusterings).

XIV. CONCLUDING REMARKS

The method we’ve proposed generalizes nicely to N particles in d dimensions. Using the

Jacobi transformation to move from particle coordinates to relative coordinates as described

in Section V, we can effectively reduce our problem from one of (N∗d) generalized coordinates

to (N ∗ d) − 1. Extensions to (N ∗ d) ≥ 5 “require using the less-familiar point groups in

higher dimensions, which have been classified by Coxeter and others” [1]. For (N ∗d) ≥ 5 the

problem increases in difficulty, but is still solvable via our method, nonetheless. Additionally,

our method for finding the normalized projections described in Section XI B will be of great

value for large (N ∗d). Even in our computation of (N ∗d) = 4, this alternate method proves

to be more efficient than the standard normalization procedure by evaluation of the three,

infinite integrals. Finally, our method for classifying particle clustering described in Section

XII and implemented in Section XIII will be of great use in systems of interacting particles.
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Appendix A: Permutation Matrices in the Jacobi Cartesian Basis

In this appendix we list, in the Jacobi basis, the 24 possible permutation matrices. The

notation used here is equivalent to the that used in Table I.

1. E(1)

P1234 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.

2. C3(8)

P1342 =



1
2

√
3
2 0 0

1
2
√
3
− 1

6
2
√
2

3 0√
2
3 −

√
2
3 − 1

3 0

0 0 0 1


, P1423 =



1
2

1
2
√
3

√
2
3 0

√
3
2 − 1

6 −
√
2
3 0

0 2
√
2

3 − 1
3 0

0 0 0 1


, P2314 =



− 1
2

√
3
2 0 0

−
√
3
2 − 1

2 0 0

0 0 1 0

0 0 0 1


,

P2431 =



− 1
2

1
2
√
3

√
2
3 0

− 1
2
√
3

5
6 −

√
2
3 0

−
√

2
3 −

√
2
3 − 1

3 0

0 0 0 1


, P3124 =



− 1
2 −

√
3
2 0 0

√
3
2 − 1

2 0 0

0 0 1 0

0 0 0 1


, P3241 =
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5. S4(6)

P2341 =



− 1
2

√
3
2 0 0

− 1
2
√
3
− 1

6
2
√
2

3 0

−
√

2
3 −

√
2
3 − 1

3 0

0 0 0 1


, P2413 =



− 1
2

1
2
√
3

√
2
3 0

−
√
3
2 − 1

6 −
√
2
3 0

0 2
√
2

3 − 1
3 0

0 0 0 1


, P3142 =



− 1
2 −

√
3
2 0 0

1
2
√
3
− 1

6
2
√
2

3 0√
2
3 −

√
2
3 − 1

3 0

0 0 0 1


,

P3421 =



0 − 1√
3

√
2
3 0

1√
3

− 2
3 −

√
2
3 0

−
√

2
3 −

√
2
3 − 1

3 0

0 0 0 1


, P4123 =



− 1
2 −

1
2
√
3
−
√

2
3 0

√
3
2 − 1

6 −
√
2
3 0

0 2
√
2

3 − 1
3 0

0 0 0 1


,

P4312 =



0 1√
3
−
√

2
3 0

− 1√
3
− 2

3 −
√
2
3 0√

2
3 −

√
2
3 − 1

3 0

0 0 0 1


.

30



Appendix B: Nonzero Projections of Ψn′
1,n

′
2,n

′
3

(r1, r2, r3)

In this appendix we indicate the representations onto which the projections of Ψn′
1,n

′
2,n

′
3

are nonzero. A Xindicates that there exists at least one copy of a representation for a given

wavefunction. See Table V for the number of copies of each representation for each energy.

N = 0 A1 A2 E F2 F1

Ψ0,0,0 X

N = 1 A1 A2 E F2 F1

Ψ0,0,1 X

Ψ0,1,0 X

Ψ1,0,0 X

N = 2 A1 A2 E F2 F1

Ψ0,0,2 X X

Ψ0,1,1 X X

Ψ0,2,0 X X X

Ψ1,0,1 X X

Ψ1,1,0 X X

Ψ2,0,0 X X X

N = 3 A1 A2 E F2 F1

Ψ0,0,3 X X

Ψ0,1,2 X X

Ψ0,2,1 X X X

Ψ0,3,0 X X X

Ψ1,0,2 X X

Ψ1,1,1 X X

Ψ1,2,0 X X

Ψ2,0,1 X X X

Ψ2,1,0 X X X

Ψ3,0,0 X X

N = 4 A1 A2 E F2 F1

Ψ0,0,4 X X

Ψ0,1,3 X X X

Ψ0,2,2 X X X X

Ψ0,3,1 X X X X

Ψ0,4,0 X X X X

Ψ1,0,3 X X X

Ψ1,1,2 X X X

Ψ1,2,1 X X X

Ψ1,3,0 X X X

Ψ2,0,2 X X X X

Ψ2,1,1 X X X X

Ψ2,2,0 X X X X

Ψ3,0,1 X X X

Ψ3,1,0 X X X

Ψ4,0,0 X X X

N = 5 A1 A2 E F2 F1

Ψ0,0,5 X X

Ψ0,1,4 X X X

Ψ0,2,3 X X X X

Ψ0,3,2 X X X X

Ψ0,4,1 X X X X

Ψ0,5,0 X X X X

Ψ1,0,4 X X X

Ψ1,1,3 X X X

Ψ1,2,2 X X X

Ψ1,3,1 X X X

Ψ1,4,0 X X X

Ψ2,0,3 X X X X

Ψ2,1,2 X X X X

Ψ2,2,1 X X X X

Ψ2,3,0 X X X X

Ψ3,0,2 X X X

Ψ3,1,1 X X X

Ψ3,2,0 X X X

Ψ4,0,1 X X X X

Ψ4,1,0 X X X X

Ψ5,0,0 X X

N = 6 A1 A2 E F2 F1

Ψ0,0,6 X X

Ψ0,1,5 X X X

Ψ0,2,4 X X X X

Ψ0,3,3 X X X X

Ψ0,4,2 X X X X

Ψ0,5,1 X X X X

Ψ0,6,0 X X X X

Ψ1,0,5 X X X

Ψ1,1,4 X X X

Ψ1,2,3 X X X X

Ψ1,3,2 X X X

Ψ1,4,1 X X X X

Ψ1,5,0 X X X X

Ψ2,0,4 X X X X

Ψ2,1,3 X X X X

Ψ2,2,2 X X X X

Ψ2,3,1 X X X X

Ψ2,4,0 X X X X

Ψ3,0,3 X X X X

Ψ3,1,2 X X X

Ψ3,2,1 X X X X

Ψ3,3,0 X X X X

Ψ4,0,2 X X X X

Ψ4,1,1 X X X X

Ψ4,2,0 X X X X

Ψ5,0,1 X X X X

Ψ5,1,0 X X X X

Ψ6,0,0 X X X

N = 7 A1 A2 E F2 F1

Ψ0,0,7 X X

Ψ0,1,6 X X X

Ψ0,2,5 X X X X

Ψ0,3,4 X X X X

Ψ0,4,3 X X X X

Ψ0,5,2 X X X X

Ψ0,6,1 X X X X

Ψ0,7,0 X X X X

Ψ1,0,6 X X X

Ψ1,1,5 X X X

Ψ1,2,4 X X X

Ψ1,3,3 X X X

Ψ1,4,2 X X X

Ψ1,5,1 X X X

Ψ1,6,0 X X X

Ψ2,0,5 X X X X

Ψ2,1,4 X X X X

Ψ2,2,3 X X X X

Ψ2,3,2 X X X X

Ψ2,4,1 X X X X

Ψ2,5,0 X X X X

Ψ3,0,4 X X X

Ψ3,1,3 X X X

Ψ3,2,2 X X X

Ψ3,3,1 X X X

Ψ3,4,0 X X X

Ψ4,0,3 X X X X

Ψ4,1,2 X X X X

Ψ4,2,1 X X X X

Ψ4,3,0 X X X X

Ψ5,0,2 X X X

Ψ5,1,1 X X X

Ψ5,2,0 X X X

Ψ6,0,1 X X X X

Ψ6,1,0 X X X X

Ψ7,0,0 X X
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