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Abstract

The biological threat of a pandemic disease eruption has become all too real in the

current state of world affairs. Although adorned by Hollywood tycoons, the threatening

danger of biochemical disease warfare is a reality. If a weaponized virulent warhead

containing a highly infectious contagion were to detonate on American soil, what are the

chances of controlling the disease? Depending on the infectious range used of diseased

individuals, as well as the radius and population density of the initial disease outbreak,

we can model different scenarios that adjust these density parameters using differential

equations. This will enable us to more accurately create a plan in which survival

and suppression is most effective. In population-dense areas such as the District of

Columbia, can a highly transmissive virus even be contained? If the contagion is

designed to create a highly aggressive host, survival may not be possible. At this point

if the contagion has no known suppressor or cure, in order to save the most lives, the

only possibility may be to isolate and eliminate everything within the infected radius.
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Part I

Introduction
Ever since the human population was brought to its knees at the hands of the Black Plague

in the Dark Ages, man has developed a vested interested in how disease is spread. Man once

stood face to face with the reaper of death, just barely escaping complete extinction. How is

it possible that such a small pathogen spread so rapidly? Before anyone knew how to react,

the disease had crippled the very fabrics of society.

The purpose of this research is to analyze the way in which a disease system changes

as a function of time. The parameters of the disease model will then be altered to model

the rates of change for a rapid pandemic disease spread. A hypothetical disease will then

be created based on observable characteristics of known biological parasites. Based on the

model created, both the equilibrium points of disease eradication and human eradication

will be qualitatively interpreted to determine the feasibility of both scenarios.

Part II

Differential Equations and Disease

Modeling
Differential Equations are used in order to model a changing system that involves the

derivatives of a function coupled with the function itself. This type of system modeling has

been found useful in areas of biology, physics, and engineering. The rates at which each

system changes with respect to the time is calculated by taking the derivative of the system.

A derivative is simply the rate of change on the system7.
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Ordinary Differential Equations are given in the form

F (x,y,y′, . . . ,y(n)) = 0

where y is given as a function of x such that we have the first derivative y′ = dy
dx in terms

of x. This also gives the nthderivative as y(n) = dny/dxn.7,8

In terms of disease modeling, the simplest system was created by Kermack and McK-

endrick. This model was created to explain the rapid rise and fall of the number of infected

individuals in epidemics such as the plague. The number of people infected with the illness

was modeled over a closed period of time and assumes a fixed population size such that there

are no births, death due to disease, or non-disease-related deaths6,7.

Part III

The SIR Model
The Kermick-McKendrick model, more commonly referred to as the SIR model, models

the number of people in a closed population infected during the outbreak of a contagion

over time. Kermick and McKendrick created three coupled nonlinear ordinary differential

equations to model the system. The first group consisted of the population of susceptible

individuals and was labeled as S(t). Those who were in the susceptible group were capable

of being infected. The second group was the infected members of the population, labeled

as I(t). Those who were infected were capable of spreading the infection to members of

the susceptible population. The final group was the recovered individuals, labeled as R(t).

Those in the recovered group were assumed to be immune to the contagion5,6.
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All three groups are then subdivided into fractions of the whole population yielding:1

(1) s(t) = S(t)
N

(2) i(t) = I(t)
N

(3) r(t) = R(t)
N

Since this model uses a closed population, at all time t, we have s(t) + i(t) + r(t) = 1.

Moreover, there will never be an addition to the susceptible group since birth rate and

immigration are ignored. Therefore, only those who are infected will leave the susceptible

group. The rate at which the members of s(t) change will be dependent on the total of

infected individuals present. Now we assume that there will be β contacts per unit of time

that will be sufficient enough to spread the disease. This will mean that there will be βs(t)

new infected individuals generated per unit of time5.

The only way in which an infected can change populations is by recovering and developing

an immunity to the disease. We assume that there will be a fixed number of individuals in

i(t) recovering by parameter α and entering r(t). This model can be shown by figure 1.

Based on these assumptions, we have the systems changing in the following ways:

(4) ds

dt
=−βs(t)i(t)

(5) di

dt
= βs(t)i(t)−αi(t)

(6) dr

dt
= αi(t)

1N is the total population of the model
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These three nonlinear ordinary differential equations lead to the following system5:

(7) ds

dt
+ di

dt
+ dr

dt
= 0

Figure 1:

SIR Model - Graphic Representation

Part IV

Pathogens and Parasites
What would happen if a contagion infected a human so that they lose control of their

functioning and become helpless at the hands of the governing parasite? Organisms have

been infected in such ways in various parts of the animal kingdom. The infecting organism

changes the behavioral patterns of the host in order to allow the parasite to proliferate,

sometimes even at the cost of the host’s life.

One parasitic worm, Euphalorchis californiensis, infects the gills of killifish. This parasitic

worm surrounds the brain of the fish and cause the fish to swim to the surface of the water.

Once the organism reaches the surface, they turn onto their sides and flash the reflective gills

underneath their fins. This alerts predators of the locations of the killifish and allows them

to be eaten. Once the birds have consumed the fish, the parasitic worm is then spread to
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other fish in the water via the fecal matter of the birds. These killifish, who rarely breach the

surface of the water, are shown to sacrifice their own health in order to allow the Euphalorchis

californiensis to spread9. Not only is the behavior of the killifish changed, but it sacrifices

its own life.

Another interesting organism is the Spinochordodes tellinii, a nematomorph parasitic

hairworm. Grasshoppers accidentally ingest the microscopic larvae of the parasite which

can be found deposited throughout the wild. Once the larvae are ingested, they produce a

protein that affects the brain and the nervous system of the host grasshopper. The parasite

stays within the grasshopper until the time comes in which the worm must transform into

an aquatic adult. The proteins that the worm produces directly and indirectly affect the

central nervous system of the grasshopper and changes the behavior of the grasshopper so

that it will seek out water to plunge into. The worm will then emerge from the dying or

dead host in order to seek out a mate1.

The final organism that will be introduced is the Leucochloridium paradoxum, an en-

doparasitic worm that infects Succinea snails in the wild. The flat worm enters the digestive

tracts of the snail where the larvae grow and develop sporocysts. The snail is used as an

intermediate host as the parasite makes its way into a terminal host. The terminal host for

the Leucochloridium paradoxum is a bird. The bird is used as a means of spreading the eggs

of the parasite throughout the animal kingdom in its excrements. In order to be introduced

into the bird, the snail that the worm infects must first be consumed by the bird. The

sporocysts inside the snail grow into the tentacles of the host and causes elongation and

pulsation3. The movement and color attract birds who rip off the tentacles and ingest the

parasite. It is interesting that the Succinea snails are consumed by the birds since they are

normally photophobic. However, the flat worm inside the infected snails somehow causes

the organism to become photophylic and climb to the tops of tall trees and grasses2,3. All

of the behavioral properties of the snail are amazingly changed by this infecting parasite.
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Part V

The Human Infection
There are several examples in nature of parasites that infect organisms and change the

way in which they behave in an extreme manner. Oftentimes, the host organism will risk

their life for the proliferation of the infecting agent. Now suppose a similar parasite was

to develop in humans that rapidly develops and reproduces. The human body would act

as the host environment for the organism to develop within. Once the parasite is mature

and the host environment has reached the saturation level for growth and development, the

organism could cause the infected person to seek other environments for the parasite to live

within. If the parasite lives within the blood of the host organism, the only logical means of

transmission into newer hosts would be via saliva and blood contact.

As we saw in other organisms, the parasites are capable of releasing proteins that change

the way in which the host acts. In the case of a human infection with the goal of blood and

saliva transmission in mind, chemical signatures could be released into the blood that affect

the Limbic System. This is the system that deals with the primitive functions of our brain,

which include emotions such as anger, aggression, and hunger. If this area were affected,

the host human could show abnormally increased aggression towards others. Moreover, the

proteins within the blood could cause pheromone release. This would cause the organism

to seek only those who were not already infected. Eventually, the host body would not be

capable of supporting both the parasite and itself. As a result, the infected would die.
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Part VI

The Disease Model
With the given background on the human parasite discussed, the model that we use to

analyze the infection spread would need to change. This would call for a lethal pandemic

model in which the infected would be capable of dying. Philip Munz, Ioan Hudea, Joe Imad,

and Robert J. Smith used a model in their paper which can be applied to this situation,

however, they created a parameter that would move the deceased individuals back into the

infected environment4. Assuming that once an individual expires from the disease that they

cannot actively infect2 the susceptible, we can alter this model so that it will fit our disease

model.

Just as in the SIR model, there will be three different groups that the population will be

divided into. The first will be the susceptible, S(t). These are the individuals who are healthy

and capable of being infected. The next group is the infected, Z(t). These individuals have

been infected by the parasite and are capable of spreading the disease. The final group is

the removed individuals, R(t). These individuals have died either of natural causes or via

infection4.

The susceptible are capable of dying and entering the removed group by natural causes

via parameter δ, or they can enter the infected group via parameter β. Since the infected

are abnormally aggressive towards non-infected individuals, it can be assumed that the

susceptible would take defensive moves against the actions of the infected. Via parameter

α, those who are infected can be killed by a susceptible and enter the removed group4. This

will result in the model shown in Figure 2.

Since this model has two mass-action transmissions, there will be more than one nonlinear

term in the model, making it more difficult. This mass-action incidence will specify that an
2actively infecting can be assumed as infecting via aggression that leads to blood or saliva contact with

that of a susceptible individual.
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Figure 2:

SZR Model - Graphic Representation

average population member would need to make sufficient contact so that it could spread

the infection with βN other individuals in one unit of time. The probability of a susceptible

making random contact with a non-infected is S/N . This yields the new total of new infected

being (βN)(S/N)Z = βSZ.

Since the susceptible also have the ability to defend themselves, we assume then that αN

infected will be killed based on the probability of S/N contacts such that the total infected

removed will be (αN)(Z/N)S = αSZ 4.

Based on these parameters, these three groups would change as follows:

(8) S′ = π–βSZ–δS

(9) Z ′ = βSZ–αSZ

(10) R′ = δS+αSZ
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Equations (8), (9), and (10) can be combined to satisfy

(11) S′ +Z ′ +R′ = π

which leads to

(12) S+Z+R =∞

as times t approaches ∞ if π 6= 0.

If done on a short time scale, we can allow the birth rate to be zero. This would yield

the following

(13) S′ = βSZ–δS = 0

(14) Z ′ = βSZ–αSZ = 0

(15) R′ = δS+αSZ = 0

There are only two logically possible scenarios from this point - either S = 0 or Z = 0.

If S = 0, then there are only infected remaining, and we have an apocalypse.

(16) ¯(S,Z̄, R̄) = (0, Z̄,0)

If Z = 0, then only the susceptible remain, and the infection is defeated.

(17) ¯(S,Z̄, R̄) = (N,0,0)
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Using the Jacobian, we are able to calculate the rate of change of the multivariable system

as follows4:

(18) J =


−βZ− δ −βS 1

βZ−αZ βS−αS 1

δ+αZ αS 1


3

For the disease-free equilibrium we have

(19) J(N,0,0) =


0 −βS 1

0 βS−αS 1

0 αS 1



This will yield eigenvalues such that det(J−λI) =−λ[λ2 +[1− (βN−αN)]λ−βN ]. Since

the values of these eigenvalues are always positive, the system will be unstable.

For the infection-free equilibrium we have

(20) J(0, Z̄,0) =


−βZ− δ 0 1

βZ−αZ 0 1

δ+αZ 0 1



This will yield eigenvalues such that det(J − λI) = −λ([βZ− δ]− λ)(1− λ). Since these

values are always negative, the system will be asymptotically stable.

In qualitatively analyzing the Jacobian we have learned a great deal about the two

equilibrium points. The equilibrium point of the disease-free Jacobian was unstable, and the

equilibrium point of the human-free Jacobian was asymptotically stable. Thus, it can be

derived that human survival would be impossible under the conditions that we have created.
3The third column is a series of 0’s, but we will use 1’s as a stabilizing factor in order to compute the

Jacobian.
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Part VII

Discussion
If the fate of the human population was based on the results of the disease model

that we created, then our final days would be upon us. These results created, however, are

not completely decisive. There are several different parameters that can be included into the

system of equations that may possibly slow the rate at which the susceptible are infected

with the contagion.

In order to more accurate depict the results of an epidemic disease such as the one

described, several other factors must be included. First, this disease that we analyzed was

assumed to have a negligible latent infection period, immediately moving the susceptible into

the infected group. Should a significant latent period of infection be present in the actual

disease, this would lower the rate at which the human population is affected. Next, it can be

assumed with reason that if the infection occurred over a period of time in which birth rate

becomes significant, then the rate at which the infection overcomes the population would be

lower, although not by much.

The most important factors that must be considered in a logical epidemic outbreak are

government and military interventions. It can be assumed that significant efforts would

be taken in order to ensure that anyone who has become infected or interacted with the

infected would be secluded into a quarantine zone. Moreover, if those who were infected

displayed notable signs of aggression that caused harm to other individuals, the most likely

governmental response would be military based. If the military was used to fight back masses

of infected, then it is possible that human infection rate would substantially lower. The final

scenario that must be included into the discussion of lethal pandemic outbreak is immediate

destruction of the infected area. This would ensure than anyone infected would be removed

provided action is taken immediately.
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Part VIII

Conclusion
Although it is impossible to perfectly analyze how a population will react to an epidemic

disease spread, differential equations can be a useful tool to approixmate how the systems will

change. The Kermack-McKendrick model, although useful for certain models, is ineffective

when lethal diseases are introduced into a system. When death is introduced, the model

used by Munz, et al is most effective. However, these models must be adjusted so that

they can more accurately represent the population that is effected by including quarintines,

latent periods of infection, and other parameters that are not represented in the SZR model

of disease spread. Most importantly, there are several parameters that may not be able to

be accounted for in these models such as determination and love. These system that are

created only account for how humans are supposed to act. However, it can be reasonably

assumed that humans do not always act the way the are supposed to - especially when love

is introduced.

Without a means of representing these parameters, we are left with our best approxima-

tions. If a disease were to develop with the properties that we created then based on this

model, human survival would be impossible. The only humans that would remain on earth

would be those that were infected. In the end, even these individuals would die from com-

plications of the parasitic contagion and only the corpses would remain. The end of human

existence would begin with a tiny spore, but it will be the brainwashed infected working

under the puppeteering hands of the parasite that causes man to end his own species with

mindless agressive attacks against his own kind. In a sense, it is the walking dead who end

the world.
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