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Abstract. This Capstone expounds several key theorems of Alfred Tarski
and J.C.C. McKinsey that connect Boolean algebra, point-set topology, and
the system of modal logic S4. We augment Boolean algebras with a new
operation satisfying certain properties, and then use those algebras to give a
decision procedure for S4. This result is then extended to topology to �nd
a decision procedure for topological equations built from the operations of
closure, union, intersection, and complement. This correspondence between
S4 and topological spaces also leads to several interesting results about S4; for
instance, there are in�nitely many distinct modal functions of a single variable
in S4. We then show by way of a new notion of dissectible spaces that S4 is
complete with respect to the Cantor space, and in a certain sense also complete
with respect to Euclidean space. Though we are principally concerned with
S4, we also provide a proof of decidability of S5 and remark on its relation to
topological spaces.
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1. Introduction

�
This paper's primary aim is to explicate the results of J.C.C. McKinsey and Al-

fred Tarski concerning the system of modal logic S4 and its connections to Boolean
algebra and topology. In section 2, we introduce the notion of an S4-algebra. It is
shown that we can determine whether an arbitrary sentence of S4 is provable by
inspecting all �nite S4-algebras with less than a certain number of elements. This
constitutes a proof of the decidability of S4, as well as a proof of S4's completeness
with respect to the collection of all �nite S4-algebras. We also indicate how to
obtain the corresponding result for S5. In section 3, we de�ne topological spaces
in terms of a closure function. We show that this characterization is equivalent
to the more usual open set de�nition, and derive some other theorems of topol-
ogy. In section 4, we de�ne a notion of an S4-algebra over a topological space,
and prove that every S4-algebra is isomorphic to a subalgebra of the S4-algebra
over some topological space. Thus we have a correspondence between topological
equations and sentences of S4 (that is, a topological semantics), and so we obtain
a decision procedure for topological equations. In section 5, we show that every
�nite S4-algebra is isomorphic to a subalgebra of the S4-algebra over any totally
disconnected, dissectible topological space, and is also isomorphic to the S4-algebra
relative to some open element over any dissectible topological space. We therefore
establish that S4 is complete with respect to the Cantor space, and in a certain
sense complete with respect to Euclidean space. We conclude with some historical
remarks in section 6.

�

2. A Decision Procedure for S4

�

De�nition 1. [4, 1.1-1.6] We call A = (K,×,−) a Boolean algebra when K is a
set, − is a unary operation, and × is a binary operation that satisfy the following:

.1 K contains at least two elements.

.2 K is closed under −, ×.

.3 × commutes. That is, for a, b ∈ K, a× b = b× a.

.4 × associates. That is, for a, b, c ∈ K, a× (b× c) = (a× b)× c.

.5 For a, b ∈ K, if there exists a c ∈ K for which a × −b = c × −c, then
a× b = a.

.6 For a, b, c ∈ K, if a× b = a, then a×−b = c×−c.
�

We then de�ne:
�

.7 0 := a×−a

.8 1 := −0

.9 a+ b := −(−a×−b)

.10 a < b := a× b = a

�
We will make frequent use of some elementary facts about Boolean algebras, so

we state a number of them now.
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�

Theorem 1. [4, B1-B20] In every Boolean algebra A = (K,−,×), the following
hold:

.1 a = −− a

.2 De Morgan's Laws: (−(−a × −b)) = a + b; (−(−a + −b)) = a × b;
(−a×−b) = −(a+ b); (−a+−b) = −(a× b)

.3 a× a = a

.4 a < b and b < a implies a = b

.5 a < b and b < c implies a < c

.6 −a+ a = 1

.7 a+ a = a

.8 −1 = 0

.9 0 + a = a

.10 a < 1

.11 (a× b) < a

.12 a < (a+ b)

.13 (a× b) + c = (a+ c)× (b+ c)

.14 (a+ b) < c i� a < c and b < c

.15 a < b and c < d implies (a+ c) < (b+ d)

Proof. We opt to prove only a subset of these. For .3, we observe that since a×−a =
a×−a, we have a× a = a by De�nition 1.5.

�
For .4, we notice that a < b means a = a × b, and b < a means b = b × a. By

De�nition 1.3, a× b = b× a, and so a = b.
�
For .5, suppose a < b and b < c. Then a = a× b and b = b× c. Substituting the

latter into the former, we have a = a× (b× c), which by associativity is equivalent
to a = (a× b)× c. Again using the fact that a = a× b, we have a = a× c, and so
a < c.

�
For .6, observe that −a+ a = −(−− a×−a), which by de�nition is −0, which

again by de�nition is 1.
�
For .11, we are to show that a × b = (a × b) × a. But by associativity and

commutativity, (a× b)× a = (a× a)× b, which by .3 equals a× b. �

�
In discussing the systems S4 and S5 we will take the symbols ∼,∧, � as primitive,

and will use p, q, r, ... to refer to propositional variables. We consider the sentence
p∨ q as shorthand for ∼ (∼ p∧ ∼ q), the sentence p→ q as shorthand for ∼ �(p∧ ∼
q), and the sentence p ≡ q as shorthand for (p→ q) ∧ (q → p).

�

De�nition 2. ([5, 125-6, 493-501] We take S4 to be the system axiomatized by:

.1 p ∧ q → q ∧ p

.2 p ∧ q → p

.3 p→ p ∧ p

.4 (p ∧ q) ∧ r → p ∧ (q ∧ r)
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.5 p→∼ (∼ p)

.6 [(p→ q) ∧ (q → r)]→ (p→ r)

.7 [p ∧ (p→ q)]→ q

.8 � � p ≡ �p
�

And for S5, we add to the above:

.9 p→∼ � ∼ �p
�

The two systems share the same rules of inference, which are:
�

.10 Conjunction: If p and q have been shown, we may obtain p ∧ q.
�
.11 Modus ponens: If p and p→ q have been shown, we may obtain q.
�
.12 Replacement: Two propositions which have been demonstrated to be

equivalent may be substituted for each other. For example, since ��p ≡
�p is an axiom, we may replace as many instances of �p as we like in a
sentence by � � p.

�
.13 Substitution: Any proposition may be substituted into the propositional

variables of an other sentence. For example, if we had established that
�p →∼ � ∼ �p, then we may substitute (q ∧ �q) for p to obtain �(q ∧
�q)→∼ � ∼ �(q ∧ �q).

�

De�nition 3. [4, 2.1-3.2] We may augment a Boolean algebra A = (K,−,×) with
a unary operation ∗ satisfying the following conditions:

.1 K is closed under ∗, i.e. if a ∈ K then ∗a ∈ K.

.2 If a ∈ K, then a < ∗a.

.3 If a, b ∈ K, then ∗(a+ b) = ∗a+ ∗b.

.4 ∗0 = 0.
�

We may then ask whether the following also hold:
�

.5 If a ∈ K, then ∗a = ∗ ∗ a.

.6 If a ∈ K, then ∗a = 1 unless a = 0.
�

If ∗ satis�es .1-.5 we call A an S4-algebra. If .6 is satis�ed in place of .5 we call A
an S5-algebra. In either case, we will write A = (K,−,×, ∗).

�
From 3.6 and 3.4 one can derive 3.5. For ∗1 < 1 because a < 1 for all a, and

1 < ∗1 by 3.3., so ∗1 = 1. Thus for a 6= 0, ∗ ∗ a = ∗ ∗ 1 = ∗1 = ∗a. And for a = 0,
∗ ∗ a = ∗a by way of 3.4. Therefore every S5-algebra is an S4-algebra.

�

De�nition 4. [4, 314-5] We say an algebra A = (K,−,×, ∗) veri�es a sentence α of
S4 (or S5) if and only if every substitution of elements fromK into the propositional
variables of α, along with the operations −,×, ∗ for ∼,∧, � respectively, yields a
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value of 1, where by 1 we mean the unity of the Boolean algebra. If not, i.e. if there
are elements of K such that when substituted into α we obtain a value di�erent
from 1, we say A falsi�es α.

�
It is worth pointing out that the Boolean algebra {0, 1} veri�es every theorem

of the propositional calculus and no others; this is expressed in the familiar notion
of truth tables. One way to think of the goal of this section is as an attempt to
extend the idea of truth tables to the propositional calculus that has been enriched
with the operator � and a new kind of implication.

�

Example 1. Consider the S4-algebra A1 = ({0, 1},−,×, ∗) where −,× are de�ned
in the ordinary way, and ∗0 = 0, ∗1 = 1. Then:

�

.1 As we would expect, A1 falsi�es the sentence p → (p → q). Rewriting
the sentence with the operations of A1 gives −∗ [p×−−∗(p×−q)]. By
our de�nition of ∗, we can simplify to −[p× (p×−q)]. Now set p = 1,
q = 0, and we have −[1× (1×−0)] = −(1× 1) = −1 = 0.

�
.2 To check that A1 veri�es the sentence ∼ p∨ ∼ � ∼ p, we rewrite it as

−p + − ∗ −p, and then again as −(− − p × − − ∗ − p) = −(p × ∗ − p)
to convert to the basic operations. Now we observe that −(1×∗− 1) =
−(1×∗0) = −(1× 0) = −0 = 1, and −(0×∗− 0) = −0 = 1. Note that
∼ p∨ ∼ � ∼ p is not a theorem of either S4 or S5 ([2], 24).

�

Example 2. Consider the S4-algebra A2 = ({0, a, b, 1},−,×, ∗) where a × b = 0,
∗a = a, ∗b = 1, −a = b,−b = a, and the rest of the operations are de�ned in the
ordinary way. Then:

�

.1 A2 also falsi�es p→ (p→ q) on the same evaluation as in the preceding
example.

�
.2 A2 falsi�es the sentence ∼ p∨ ∼ � ∼ p on the evaluation p = a, since

−(a× ∗ − a) = −(a× 1) = −a = b 6= 1.
�
.3 A2 fails to be an S5-algebra since ∗a 6= 1. As we might hope, A2 falsi�es

the sentence ∼ �p∨ ∼ � ∼ �p, which is sometimes given in the form
�p ⊃ � � p in an alternate axiomatization of S5. When translated into
the operations of A2, we have −∗p+−∗−∗p = −(−−∗p×−−∗−∗p),
which we can simplify to −(∗p× ∗ − ∗p). Substituting p = a, we have

−(∗a× ∗ − ∗a) = −(a× ∗ − a)

= −(a× ∗b) = −(a× 1) = −a = b 6= 1.

�
.4 Likewise, A2 falsi�es our S5 axiom p →∼ � ∼ �p on the evaluation

p = a. We see that p →∼ � ∼ �p becomes − ∗ (a × − − ∗ − ∗a) =
− ∗ (a× ∗ − ∗a), which is − ∗ (a× ∗ − a) = − ∗ (a× ∗b). Then �nally,
we get − ∗ (a× 1) = − ∗ (a) = −a = b 6= 1.
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�

Theorem 2. [6, Theorem 2] If a and b are elements of an S4-algebra, then:

.1 If a < b then ∗a < ∗b.

.2 If ∗a = 0, then a = 0.

.3 a < b if and only if (a→ b) = 1.

.4 If a < b1, a < b2,..., a < bk then a < b1 × b2 × ...× bk.

Proof. For .1, suppose a < b. Then b = a + b, and so ∗b = ∗(a + b) = ∗a + ∗b,
showing ∗a < ∗b.

�
For .2, if ∗a = 0 then a < 0, and so a = a× 0 = 0.
�
For .3, if a < b, then a×−b = 0, and hence − ∗ (a×−b) = 1 which is the same

as (a → b) = 1. On the other hand, if (a → b) = 1, then − ∗ (a×−b) = 1, and so
by .2, a×−b = 0, from which it follows that a < b.

�
For .4, we see that a < bi means that a = a× bi. Then

∏k
i=1 a = (a× b1)× (a×

b2)× ...× (a× bk) = (
∏k
i=1 a)× (

∏k
i=1 bi). But in a Boolean algebra,

∏k
i=1 a = a,

so we have a = a× (b1 × b2 × ...× bk), or a < b1 × b2 × ...× bk. �

�
We are now in a position justify the names �S4-algebra� and �S5-algebra�.
�

Theorem 3. [6, Theorem 10] Every S4-algebra veri�es every theorem of S4, and
likewise for S5-algebras.

Proof. Let A = (K,−,×, ∗) be an S4-algebra. We are to show that A veri�es
the axioms of S4, and that application of the rules of inference for S4 preserve
veri�cation by A. For the axiom 2.1, p ∧ q → q ∧ p, we observe that substituting
elements a, b from K yields − ∗ [(a × b) × −(b × a)]. From Boolean algebra, we
obtain − ∗ [(a× b)×−(a× b)], which equals − ∗ 0 = −0 = 1.

�
For 2.2, we have −∗ [(a× b)×−a)] = −∗ [(a×−a)× b] = −∗ (0× b) = −∗0 = 1.
�
For 2.3, we have − ∗ [a×−(a× a)] = − ∗ (a×−a) = − ∗ 0 = 1.
�
For 2.4, we see that − ∗ [[(a × b) × c)] × −[a × (b × c)]] = − ∗ [[(a × b) × c)] ×

−[(a× b)× c)]] = − ∗ 0 = 1.
�
For 2.5, we have − ∗ (a×−−−a) = − ∗ (a×−a) = − ∗ 0 = 1.
�
For 2.6, �rst notice that a×−c < [(a×−b) + (b×−c)]. Then by Theorem 2.1,

∗(a×−c) < ∗[(a×−b)+(b×−c)], and so ∗(a×−c) < ∗(a×−b)+∗(b×−c). Then we
see that −[∗(a×−b)+∗(b×−c)] < −∗ (a×−c). Then we rewrite the left hand side
to obtain −∗(a×−b)×−∗(b×−c) < −∗(a×−c), i.e. (a→ b)×(b→ c) < (a→ c),
and so by Theorem 2.3, [(a→ b)× (b→ c)]→ (a→ c) = 1 as desired.

�
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For 2.7, observe that −b− a+ (a×−b). Since (a×−b) < ∗(a×−b), it follows
that −b < −a+ ∗(a×−b). Then −[−a+ ∗(a×−b)] < b. But −[−a+ ∗(a×−b)] =
a×−∗(a×−b) = a×(a→ b). Again by Theorem 2.3, we have [a×(a→ b)]→ b = 1.

�
For the modal axiom ��p ≡ �p, substituting a fromK yields [−∗(∗∗a×−∗a)]×[−∗

(∗a×−∗∗a)]. Simplifying with ∗∗a = ∗a, we obtain [−∗(∗a×−∗a)]×[−∗(∗a×−∗a)],
which becomes − ∗ 0×− ∗ 0 = 1× 1 = 1.

�
For the rule of conjunction, if we suppose that α and β are each veri�ed by A,

then α ∧ β will become 1× 1 under every substitution, and so equal to 1.
�
For modus ponens, suppose that α and α→ β are each veri�ed and that a and

b are two arbitrary expressions of A resulting from a substitution into α and β
respectively. Then a→ b = −∗ (a×−b) = −∗ (1×−b) = −∗−b = 1. So ∗− b = 0,
which by Theorem 2.2 implies that −b = 0, and so b = 1.

�
For the rule of replacement, suppose α ≡ β is veri�ed. Let a and b be the result of

substituting elements from A into α and β respectively. Then we have (a→ b) = 1
and (b → a) = 1. Then by Theorem 2.3, a < b and b < a, which implies a = b.
Then clearly substituting a for b into a third sentence will not change its value.

�
Finally, the rule of substitution holds by our de�nition of veri�cation. For if α is

veri�ed, this means that every substitution of elements from A for the propositional
variables of α yields a value of 1. So, we may substitute any element we like to
obtain another veri�ed sentence, which is precisely the rule.

�
For S5, we need only check that an S5-algebra A1 veri�es the additional axiom

2.9. We see that p →∼ � ∼ �p becomes − ∗ (a × − − ∗ − ∗a), which equals
− ∗ (a× ∗ − ∗a). If a = 0, then we have − ∗ (0× ∗ − ∗0) = − ∗ 0 = −0 = 1, and if
a 6= 0, we have − ∗ (a× ∗ − 1) = − ∗ (a× ∗0) = − ∗ (a× 0) = − ∗ 0 = −0 = 1. �

�
Notice that Examples 1 and 2 show that an S4-algebra may verify some sen-

tences that are not theorems of S4. We shall call an S4-algebra that veri�es only
those theorems an S4-characteristic algebra, and de�ne an S5-characteristic algebra
analogously. We are ultimately going to show that such an algebra exists, but �rst
we will take a short digression to show that no �nite S4-algebra has this nice prop-
erty. We also note that from Example 2.4 and the last theorem we have shown that
axiom 2.9 is not redundant, and thus that S4 and S5 are indeed distinct systems.

�

Theorem 4. [3, Theorem 1] No �nite S4-algebra is S4-characteristic.

Proof. Consider an S4-algebra A1 with strictly less than n elements. We will con-
struct a sentence Fn such that A1 veri�es Fn, and then show that Fn is not a
theorem of S4. Let Fn =

∑
1≤i<k≤n(pi ≡ pk). That is,

Fn = (p1 ≡ p2) ∨ (p1 ≡ p3) ∨ ... ∨ (p1 ≡ pn) ∨ (p2 ≡ p3) ∨ ... ∨ (pn−1 ≡ pn).
9



Where the pi's are propositional variables. Since A1 has less than n elements,
any evaluation of Fn will have some summand of the form a ≡ a, and so the whole
sum will reduce to a statement that is veri�ed.

�
Now, to see that Fn is not a theorem, we consider another S4-algebra A2. Let K2

be the power set of the integers from 1 to n. De�ne − as set complement and × as
set intersection so that we have a Boolean algebra on K2, and de�ne the ∗ operation
as ∗∅ = ∅ and ∗a = {1, ..., n} otherwise. It is clear that A2 indeed satis�es the �ve
conditions of De�nition 3. Using this algebra we can �nd an evaluation such that
each summand of Fn is false: Choose the pi's so that each are distinct (we have
enough elements to do this). Then (pi ≡ pj) = − ∗ (pi ∩ −pj) ∩ − ∗ (pj ∩ −pi).
We want to show that this reduces to ∅, which amounts to showing that one of
the terms of the outer product is non-empty, since then ∗ applied to that would
yield {1, ..., n} and so its complement would be ∅, making the whole product equal
to ∅. From elementary set theory, we see that for non-empty sets, if A 6= B then
the complement of one must meet the other. Hence each (pi ≡ pj) reduces to ∅,
so the whole sum reduces to ∅. So we have shown that Fn is not satis�ed by an
S4-algebra, so it is not a theorem. �

�
Clearly Theorem 4 also demonstrates that there is no �nite S5-algebra.
�

Theorem 5. [6, Theorem 11] There is an S4-characteristic algebra.

Proof. Let Σ be the set of all sentences of S4. We cannot immediately make an
algebra out of this set that will su�ce because we will need a more useful notion of
equality than identity of two sequences of symbols to show, for instance, that ∗0 = 0.
To get around this di�culty, de�ne a relation R on Σ as follows: for α, β ∈ Σ, αRβ
i� α ≡ β is a theorem of S4. It is easy to see that R is a congruence relation.
Re�exivity follows from the fact that α ≡ α is a theorem of S4. For symmetry,
if we suppose that αRβ, then `S4 α ≡ β. Then by the rule of replacement, we
may replace the left hand side of the theorem α ≡ α with β to obtain β ≡ α,
which shows that βRα. In similar fashion we see that R is transitive and that R is
compatible with the operations ∼,∧, �.

�
We now de�ne a new algebra AC = (K,−,×, ∗) where K consists of the equiv-

alence classes of Σ under the relation R. For [α], [β] ∈ K, de�ne the operations in
the natural way, i.e. −[α] = [∼ α], [α] × [β] = [α ∧ β], and ∗[α] = [�α]. Note that
in AC , the element 1 is [>], the set of sentences equivalent to the truth constant.
Hence [1] = [p∨ ∼ p]. Similarly, the zero element is [⊥] = [p∧ ∼ p].

�
We now show that AC is an S4-algebra. The �rst condition of De�nition 3 is

obvious. For 3.2, we see that [α] < ∗[α] means [α] < [�α]. So by de�nition of
<, we are to show that [α] = [α] × [�α] = [α ∧ �α]. But this merely asserts that
`S4 (α ≡ α ∧ �α). Theorem 16.33 in [5] states (p → q) ≡ p → (p ∧ q), and [5,
Theorem 18.4] states p → �p so we have the left to right implication. For right to
left, we appeal to [5, Theorem 12.17] which states p ∧ q → q.

�
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Likewise, `S4 (�α ∨ �β) ≡ �(α ∨ β) is exactly [5, Theorem 19.82], so 3.3 is
satis�ed. To see that ∗[0] = [�0] = [0], notice that 0 ≡ p∧ ∼ p, and we know
that `S4 [(p∧ ∼ p) ≡ �(p∧ ∼ p)] by [6, Theorem 7]. Finally, it is clear that 3.5 is
satis�ed as �p ≡ � � p is an axiom of S4.

�
To complete the proof, we show that any non-theorem of S4 is falsi�ed by AC .

Suppose α is not a theorem of S4. If p is a propositional variable in α, substitute
[p] for p. With this substitution we obtain [α]. Suppose for a contradiction that
[α] = [1]. But this means `S4 α ≡ >, which contradicts α being a non-theorem. �

�
One can �nd an S5-characteristic algebra by way of a similar construction.
�
Since the set of propositional variables in S4 is countable, and sentences of S4

are built from �nite applications of ∼,∧, and � to the propositional variables, the
set Σ of sentences in S4 is countable as well. So AC is clearly countable. One
might ask, then, why we have not already found a decision procedure for S4, since
it would appear that AC supplies a negative test for theoremhood (we already have
a positive test from the axioms and rules). That is, given a sentence α, we could
attempt every evaluation on the basis of AC , and if α is not provable, we would
eventually �nd a falsi�cation. This cannot be done, however, because AC is not
itself decidable. Given two arbitrary elements [α], [β] of AC , we cannot tell whether
[α] = [β], since all we know is that [α] = [β] if and only if `S4 α↔ β. But deciding
`S4 α ↔ β is just the problem we are trying to solve. So in particular, we cannot
decide whether an evaluation equals [1] in AC .

�

Theorem 6. [6, Theorem 12] Given an S4-algebra A = (K,−,×, ∗) and a �nite
subset of K, {a1, ..., an}, there is a �nite S4-algebra AF = (KF ,−F ,×F , ∗F ) such
that

.1 ai ∈ KF where i = 1, 2, ...n.

.2 KF has at most 22n

elements.
.3 If −a ∈ KF then −Fa = −a, if (a× b) ∈ KF then a× b = a×F b, and

if ∗a ∈ KF , then ∗a = ∗Fa.

Proof. Let KF consist of every element obtained by a �nite number of applications
of the operations − and × to the elements a1, ..., an. In other words, let KF be the
Boolean subalgebra generated by those elements. De�ne −F and ×F by restricting
them to KF . From Boolean algebra, we see that KF has at most 22n

elements.
�
Note that we could not just de�ne ∗F in the same way, because we would risk

introducing new elements and thus ruining our Boolean algebra. We need to de�ne
∗F in such a way that it uses the elements already present.

�
So, de�ne ∗F as follows. We say an element b ∈ KF covers an element a ∈ KF

when a < b and ∗b ∈ KF . Let ∗Fa be the product of ∗ applied to all the elements
of KF that cover a. That is, if the elements b1, ..., bk are those elements of KF

that cover a, then ∗Fa = ∗b1 × ∗b2 × ... × ∗bk. We are to show that KF equipped
with ∗F satis�es the conditions of an S4-algebra. Since KF is a subalgebra of K, it
contains 0 and −0, which is 1. We know that ∗1 = 1, and a < 1 for every a, so ∗Fa
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is always de�ned. And if b1, ..., bk ∈ KF cover a, then our de�nition of KF ensures
that their product is also in KF . Hence KF is closed under ∗F .

�
We now show that if a, ∗a ∈ KF then ∗a = ∗Fa. Now, from the fact that A is

an S4-algebra, a < ∗a. Hence a covers a. Then in the de�nition of ∗Fa, we will
have ∗Fa = ∗a× ∗b1 × ...× ∗bk where the bi's are the other elements (if any) that
cover a. Hence from Boolean algebra we see that ∗Fa < ∗a. On the other hand, we
observe that if a is covered by b1, ..., bk, then by Theorem 2.4 and De�nition 3.2 we
see ∗a < ∗b1 × b2 × ... × ∗bk = ∗aF . Hence ∗a = ∗Fa, and so AF meets the three
conditions of the theorem.

�
To complete the proof, we show that AF is an S4-algebra. Condition 3.1 of

De�nition 3 has already been done. and 3.2 follows from our de�nition of ∗F and
Theorem 2.4. For 3.4, we observe that 0 ∈ KF and since ∗0 = 0, ∗0 ∈ KF as
well. Then by the preceding paragraph, 0 = ∗F 0. For 3.5, we are to show that
∗Fa = ∗F ∗F a. We already know that ∗Fa < ∗F ∗F a. For the other direction,
suppose b1, ..., bk cover a. Then ∗b1, ..., ∗bk cover ∗Fa. Let c1, ..., cl be the other
elements covering ∗Fa. So we have ∗F ∗F a = ∗∗b1× ...×∗∗bk×∗c1× ...×∗cl. Since
we are in a Boolean algebra, we we may multiply again by the ∗ ∗ bi's to obtain

∗F ∗F a = ∗ ∗ b1 × ...× ∗ ∗ bk × ∗c1 × ...× ∗cl × (∗ ∗ b1 × ...× ∗ ∗ bk).

But ∗ ∗ bi = ∗bi, and hence

∗F ∗F a = ∗ ∗ b1 × ...× ∗ ∗ bk × ∗c1 × ...× ∗cl × (∗b1 × ...× ∗bk),

which equals

∗F ∗F a× ∗Fa.

This shows that ∗F ∗F a < ∗Fa, and therefore ∗F ∗F a = ∗Fa.
�
Finally, we are to show 3.3, that ∗F distributes over addition in AF . So let

a, b ∈ KF and let a1, ..., ax cover a, let b1, ..., by cover b, and let c1, ...cz cover a+ b.
Our goal is to show that ∗F (a + b) = ∗Fa + ∗F b. By the de�nition of ∗F , we can
rewrite this as ∗c1 × ... × ∗cz = (∗a1 × ... × ∗ax) + (∗b1 × ... × by). From Boolean
algebra, we know that (a× b) + c = (a+ c)× (b+ c). Repeated applications of this
yields ∗c1× ...×∗cz = (∗a1 +∗b1)× (∗a1 +∗b2)× ...× (∗ax+∗by), and since A is an
S4-algebra, we can further simplify to ∗c1× ...×∗cz = ∗(a1 + b1)× ...×∗(ax + by).
Now let ∗cl be an element of the left hand side. Since a + b < cl, it follows that
a < cl and b < cl. Hence cl covers a and cl covers b, which means that cl is one
of the ai's and one of the bj 's, and so ∗cl is one of the elements of the right hand
side. On the other hand, if ∗(ai + bj) is an element of the right hand side, then ai
covers a and bj covers b. Then ai + bi covers a+ b, which means that ∗(ai + bj) is
one of the elements of the left hand side, and so the equality holds. �

�
To extend Theorem 6 to S5, we need only show additionally that if we start

with an S5-algebra, then ∗Fa = 1 when a is non-zero. If b1, ..., bk cover a, then
∗Fa = ∗b1 × ...× ∗bk = 1× ...× 1 = 1.

�
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Theorem 7. [6, Theorem 13] Let α be a sentence of S4 with just n subsentences
and k propositional variables. Then α is a theorem if and only if it is veri�ed by
every S4-algebra with ≤ 22n

elements.

Proof. If α is a theorem, then α is veri�ed by every S4-algebra and in particular
by every S4-algebra with ≤ 22n

elements. For the other direction, suppose that
α is not a theorem. Then α is falsi�ed by the S4-characteristic algebra AC , i.e.
there are elements b1, ..., bk such that when substituted into α we obtain something
other than 1. Suppose the subsentences of α are α1, ..., αn, and that substituting
b1, ..., bk from AC into α yields a1, ..., an. We may suppose without loss of generality
that an corresponds to α. These form a �nite subset of AC , so we may let Aα be
the �nite S4-algebra of the previous theorem. Notice that by including all of the
subsentences under the substitution, we ensure that the modal elements that we
need will be present in Aα. So, by the third condition of the previous theorem, Aα
and AC agree on the elements a1, ..., an. In particular, we see that an 6= 1 as an
element of Aα, which means that Aα falsi�es α. �

�
The last theorem requires no modi�cation for S5.
�
Theorem 7 provides us, in theory, with a decision procedure for S4. Given a

sentence α of S4 with n subsentences, we could construct all possible S4-algebras
with less than or equal to 22n

elements. We could then inspect each one, trying
every possible substitution into α. If every such S4-algebra veri�es α, then α is a
theorem, and of course, if one falsi�es α, then α is not a theorem of S4. Of course,
even a relatively simple sentence such as ∼ (� ∼ � ∼ p∧ ∼ �p) (or in shorthand,

��p ⊃ �p) has nine subsentences. 229

is a very large number, and we have not even
begun to discuss how (or how long it takes) to actually construct all S4-algebras

with ≤ 229

elements. Thus one of the aims of the remaining sections is to recast
this decision procedure in terms of more familiar objects than S4-algebras. But �rst
we will show that we have have also obtained a decision procedure for equations of
S4-algebras.

�
We will call an S4-algebraic expression any meaningful sequence of variables of

an S4-algebra and the operations −,×, and ∗. We will call an S4-algebraic equation
any equation whose right and left hand sides are S4-algebraic expressions. We will
say an S4-algebraic expression a corresponds to a sentence α when a results from
replacing the symbols ∼,∧, � by −,×, ∗ respectively and replacing the propositional
variables of α with variables of the S4-algebra.

�

Lemma 1. [6, 129] An S4-algebraic equation a = b holds in an S4-algebra if and
only if (a+−b)× (b+−a) = 1.

Proof. Suppose a = b is true in some S4-algebra. Then (a+−b)× (b+−a) = (a+
−a)×(a+−a) = 1×1 = 1. For the other direction, suppose (a+−b)×(b+−a) = 1.
Then a+−b = 1 and b+−a = 1. The former equation implies a < b, and the latter
implies b < a, so a = b. �

�
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Theorem 8. [6, Theorem 17] Let a = 1 be an S4-algebraic equation. Then this
equation holds in every S4-algebra if and only if the sentence α of S4 corresponding
to a is a theorem.

Proof. First, suppose that α is a theorem of S4. Then α is veri�ed by every S4-
algebra, which means precisely that a = 1 in every S4-algebra. For the other
direction, suppose that α is not a theorem. Then by the method of Theorem 7 we
can �nd a �nite S4-algebra which falsi�es α, i.e. one in which a 6= 1. �

�
By Lemma 1 and Theorem 8, we have found a decision procedure for all S4-

algebraic equations built from the operations of −,×, ∗. We can also handle the
relations < and = by the following theorem.

�

Theorem 9. [6, Theorem 18] Let α and β be sentences of S4, and let a and b be
the corresponding S4-algebraic expressions. Then a < b in every S4-algebra if and
only if α → β is a theorem of S4, and a = b if and only if α ≡ β is a theorem of
S4.

Proof. We know that a < b if and only if a × −b = 0. But this is equivalent to
∗(a × −b) = ∗0 = 0, from which we obtain − ∗ (a × −b) = 1. By Theorem 9, this
equation holds in every S4-algebra if and only if ∼ �(α∧ ∼ β) is a theorem of S4,
which is equivalent to α→ β being a theorem. Similarly, a = b if and only if a < b
and b < a. By what was just shown, these relations hold in every S4-algebra if and
only if α→ β and β → α are theorems, which is the same as saying that α ≡ β is
a theorem. �

�

3. Topological Spaces

�

De�nition 5. [7, 145] A topological space is a set X equipped with a unary oper-
ation C : P(X)→P(X) called the closure operation satisfying the following:

.1 If A ⊆ X, then A ⊆ C(A).

.2 If A ⊆ X, then C(A) = C(C(A)).

.3 If A,B ⊆ X, then C(A ∪B) = C(A) ∪ C(B).

.4 C(∅) = ∅.
�

We call a subset A ⊆ X closed when A = C(A). If C satis�es, in addition to the
above,

�

.5 If A ⊆ X is a singleton, then C(A) = A.
�

then we call X a topological space in the narrow sense.
�
Though this de�nition will be more convenient for our purposes, it is equivalent

to the more usual way of de�ning a topology on X by way of specifying a collection
of open sets.

�
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Theorem 10. [9, Theorem 3.7] Given a set X and a function C : P(X)→P(X)
satisfying conditions 5.1-4 and with closed sets de�ned in the manner described, we
obtain a topology on X where the closure of a set A, de�ned as the intersection of
all closed sets containing A, is exactly C(A).

Proof. Let F be the collection of subsets A ⊆ X for which C(A) = A. We are
to show that any intersection of members of F is still in F , that �nite union of
members of F is still in F , and that X, ∅ ∈ F . Then the topology τ on X will be
de�ned as containing the complements of the members of F .

�
First, observe that if A ⊆ B, then B = A∪(B\A), and so C(B) = C(A∪(B\A)).

Since C respects union, we have C(B) = C(A)∪C(A\B), it follows that C(A) ⊆ C(B).
�
To show that arbitrary intersection of members of F remains in F , suppose

that for each i in some index set I we have Fi ∈ F . Then ∩i∈IFi ⊆ Fi for all i,
and therefore C(∩i∈IFi) ⊆ C(Fi). Hence C(∩i∈IFi) ⊆ ∩i∈IC(Fi) = ∩i∈IFi. On the
other hand, ∩i∈IFi ⊆ C(∩i∈IFi) by condition 5.1, so we have ∩i∈IFi = C(∩i∈IFi),
which is what we wanted to show.

�
To show that �nite union of members of F remains in F , suppose that F1, ..., Fn ∈

F . Then by repeated applications of 5.3, C(F1∪ ...∪Fn) = C(F1)∪ ...∪C(Fn). But
for each i, C(Fi) = Fi by assumption, and so F1 ∪ ... ∪ Fn ∈ F .

�
∅ ∈ F follows immediately from 5.4, and X ∈ F follows from the fact that

X ⊆ C(X) by 5.1, and C(X) ⊆ X since X is closed under the closure operation.
�
It remains to show that C(A) is the smallest closed set containing A. By 5.2,

C(A) is a closed set, and by 5.1, C(A) does indeed contain A. On the other hand,
if F is a closed set containing A, i.e. A ⊆ F , then C(A) ⊆ C(F ) by the fact noted
above. But C(F ) = F by the assumption that F is closed, so C(A) ⊆ F , which
completes the proof. �

�
As an aside, the following theorem shows that we could just as well have de�ned

topological spaces in the usual way of open sets and reached the closure character-
ization that we want.

�

Theorem 11. Given a set X and topology τ on X, de�ne the closure of a set A as
the intersection of all closed sets containing A. Then the closure induces a function
f : P(X) → P(X) satisfying 5.1-4 and moreover,τf := {X \ A : f(A) = A} is
equal to τ .

Proof. Let A ⊆ X and let {Fi}i∈I be the indexed family of all closed sets containing
A. For 5.1, we see that since A ⊆ Fi for each i, A ⊆ ∩i∈IFi. For 5.2, let {Gj}j∈J
be the indexed family of closed sets containing ∩i∈IFi. Then ∩i∈IFi ⊆ Gj for all
j, and so ∩i∈IFi ⊆ ∩j∈JGj . Also, ∩i∈IFi is itself a closed set containing ∩i∈IFi,
so ∩j∈JGj ⊆ ∩i∈IFi.

�
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For 5.3, we �rst note that if A ⊆ B and {Gj}j∈J is the indexed family of
closed sets containing B, then ∩i∈IFi ⊆ ∩j∈JGj , since each Gj is itself a closed set
containing A and so is a member of the Fi's.

�
Now, let B ⊆ X, and let {Hk}k∈K be the family of closed sets containing

A ∪ B. Then we are to show that (∩i∈IFi) ∪ (∩j∈JGj) = ∩k∈KHk. For the left
to right inclusion, we see that since A ⊆ A ∪ B, ∩i∈IFi ⊆ ∩k∈KHk and likewise,
∩j∈JGj ⊆ ∩k∈KHk. For right to left, observe that (∩i∈IFi) ∪ (∩j∈JGj) is itself a
closed set containing A ∪B, and so is a member of the Hk's.

�
Lastly, for 5.4 we observe that ∅ is a closed set containing ∅, so the intersection of

all closed sets containing ∅ will equal ∅. So if we set f(A) equal to the intersection
of all closed sets containing A, then we have the function of the theorem statement.

�
For the second part of the theorem, let A ∈ {X \ A : f(A) = A}. So f(−A) =

−A. In other words, if {Fi}i∈I is the collection of closed sets containing −A, then
−A = ∩i∈IFi. But ∩i∈IFi is a closed set, so −A is closed which means A ∈ τ .
On the other hand, if A ∈ τ , then −A is closed and so f(−A) = −A since the
intersection of all closed sets containing −A will be −A itself. Then A ∈ τf . �

�

Theorem 12. Every topological space in the narrow sense is T1. That is, if X
is a topological space in the narrow sense, then for distinct points x, y ∈ X there
is a neighborhood of each not containing the other. Moreover, every T1-space is a
topological space in the narrow sense.

Proof. Let X be a topological space in the narrow sense with closure operation
C, and let x, y ∈ X be distinct points. Then C({x}) = {x} and C({y}) = {y},
and so −C({x}) is an open set containing y but not x, and −C({y}) is an open
set containing x but not y. For the other direction, suppose X is a T1-space and
x ∈ X. Then for each point di�erent from x, there is an open set not containing x.
Hence X \ {x} is open, which implies that {x} is closed. �

�
Lastly, we prove a lemma that will be helpful later on.
�

Lemma 2. If X is a topological space, and A,B are subsets of X where A is open,
then A ∩ C(A ∩B) = A ∩ C(B).

Proof. Since A∩B ⊆ B, the left to right inclusion is clear. For right to left, suppose
a ∈ A ∩ C(B). Then we are to show that a ∈ C(A ∩ B). Suppose not. Then since
the complement of C(A∩B) is open, there is an open set U containing a such that
U ∩ C(A∩B) = ∅, and furthermore, U ∩ (A∩B) = ∅. On the other hand, U ∩A is
also open and contains a. Since a ∈ C(B), we know that every neighborhood of a
meets B. Hence (U ∩A) ∩B 6= ∅, which is a contradiction. �

�
�
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4. The Connection Between S4-Algebras and Topological Spaces

�

Theorem 13. [7, Theorem 2.1] If X is a topological space, then P(X) forms
an S4-algebra under the operations of intersection, complement, and closure, and
we will call this the S4-algebra over X. Any subset of P(X) closed under these
operations does as well, and we call such a subset a subalgebra of the S4-algebra
over X.

Proof. This follows immediately from the de�nitions of topological spaces and S4-
algebras, where we identify ∗ with closure, − with set complement, and × with
intersection. �

�

Example 3. [7, 148] Suppose X is a topological space, and call K the S4-algebra
over X. Let K ′ be the collection of elements of K whose boundary is empty, i.e.
C(x)∩C(−x) = ∅. Then K ′ is a subalgebra of K. To see this, notice that if x has an
empty boundary, then so does −x. And if x, y ∈ K ′, then −(x ∩ y) = −x ∪ −y, so
C(x∩y)∩C(−(x∩y)) = C(x∩y)∩C(−x∪−y). Using the fact that closure respects
union and then distributing, we obtain [C(x∩y)∩C(−x)]∪ [C(x∩y)∩C(−y)]. Since
x ∩ y ⊆ x and x ∩ y ⊆ y, it follows that each piece of this union is empty, and so
K ′ is closed under intersection. Finally, since C(x) = C(C(x)), we know that K ′ is
closed under the closure operation.

�
Our next goal is to show the converse of Theorem 13, that given an S4-algebra

we can �nd a topological space that contains a subalgebra isomorphic to it. But
�rst, we take a short detour into Boolean algebras.

�

De�nition 6. We de�ne in�nite sums in a Boolean algebra in the following way.
Let B be a Boolean algebra and let A be an in�nite set of elements of B. Since ≤
is a partial order on B, we may de�ne ∪x∈Ax as supA if this supremum exists. (By
supA we mean an element a such that x ≤ a for all x ∈ A, and if x ≤ y for all
x ∈ A, then a ≤ y.)

�

De�nition 7. Let A be a set of elements of a Boolean algebra B = (K,−,×). If A
is �nite, then clearly the sum ∪x∈Ax is well-de�ned. If this sum is de�ned for every
countable set A, then we say B is countably additive. If it is de�ned for every set
A then we say B is completely additive.

�
Notice that since we have de�ned addition in terms of multiplication, any count-

ably (completely) additive Boolean algebra is also countably (completely) multi-
plicative.

�

Example 4. Consider the following Boolean algebras:

.1 Let K1 be the collection of subsets of R that are either �nite or have
�nite complement. Then K1 is a Boolean algebra, but is not countably
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additive since every singleton containing an integer is a member of K1,
but the collection of all integers is not.

�
.2 Let K2 be the collection of subsets of R that are either countable or

�nite or whose complement is countable or �nite. K2 is countably addi-
tive, but not completely additive since all singletons containing a non-
negative real number are in K2, but their union [0,∞) is not.

�

Lemma 3. [7, Lemma 2.3] Given a completely additive Boolean algebra K with
an operation CS de�ned over a subset S of K satisfying the conditions of a closure
operation, we can �nd an operation C de�ned on K such that K is an S4-algebra
with respect to C and moreover, CS and C agree for elements of S.

Proof. Let K be a completely additive Boolean algebra with CS a closure operation
de�ned over the subset S of K. Similarly as in the proof of Theorem 6, we will say
an element y of S covers an element x of K when x < y and CS(y) = y. (Notice,
however, that this is slightly di�erent from the covering we used in Theorem 6.)
We de�ne C(x) on K as the product of all the elements that cover x. In the event
that no element covers x, set C(x) = 1.

�
First we are to show that C is indeed a closure operation. From the way we have

de�ned covering, we see that x < C(x).
�
From this fact we also obtain C(x) < C(C(x)). On the other hand, suppose that

y covers x. Then since C(x) is a product of which y is one element, C(x) < y as
well. Hence y covers C(x). So since every element that covers x also covers C(x), we
will have C(C(x)) equal to some product that includes C(x), and so C(x) < C(C(x)).
From the two inclusions we see that we have shown C(x) = C(C(x)).

�
Since 0 < 0 and by de�nition, CS(0) = 0, we have C(0) = 0.
�
Lastly, we are to show that C respects addition. We note that in a Boolean

algebra the in�nite distributive laws hold so long as the sums and products involved
exist - and here they do by the assumption that K is completely additive and
therefore also completely multiplicative. Now, suppose A1, A2, and A3 are the sets
of elements that cover x, y and x + y respectively. We notice that every element
of A3 can be written in the form z1 + z2 where z1 covers x and z2 covers y. Then
we observe that C(x) + C(y) =

∏
z1∈A1

z1 +
∏
z2∈A2

z2. By distribution, this can

be rewritten as
∏
z1∈A1

∏
z2∈A2

(z1 + z2). But this is exactly
∏
z∈A3

z, which equals

C(x+ y) by de�nition.
�
To complete the proof, we show that if x ∈ S then CS(x) = C(x). Since x ∈ S

implies CS(x) ∈ KS , we see that CS(x) covers x and so CS(x) > C(x). On the other
hand, if y covers x, then by our de�nition of covering we have x < y and CS(y) = y.
This implies that CS(x) < CS(CS(y)) = CS(y) = y, i.e. CS(x) is contained in every
element covering x. Thus CS(x) < C(x), and so we have shown C(x) = CS(x). �

�
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Theorem 14. [7, Theorem 2.4] Every S4-algebra is isomorphic with a subalgebra
of the S4-algebra over a topological space.

Proof. Let A = (K,−,×, C) be an S4-algebra. By the Stone Representation Theo-
rem, we know that there is some set X for which K is isomorphic to a collection of
subsets SA of X with the operations of set complement and intersection. We can
make SA an S4-algebra isomorphic to A in the natural way: if a ∈ K is mapped to
A ∈ S under the isomorphism and C(A) is mapped to B, then set CS(A) = B. So to
complete the proof it su�ces to show that SA is isomorphic to a subalgebra of the
S4-algebra over some topological space. P(X) is a completely additive Boolean
algebra, and SA with the closure operation CS satis�es the hypothesis of the previ-
ous theorem. Hence we can de�ne a closure operation C for X so that X becomes
a topological space, and then we will have SA a subalgebra of the S4-algebra over
this space. Since our original algebra A isomorphic to SA, we are done. �

�
From this last theorem we see that an equation is true in every S4-algebra if

and only if it is true in every topological space, and that therefore a topological
equation built from the operations of set complement, intersection, closure, and
subset is true if and only if the corresponding sentence of S4 is provable. Hence we
obtain �for free� a number of interesting results about the system S4.

�
From Kuratowski's Closure-Complement theorem, we see that there are fourteen

distinct modalities (by which we mean �nite sequences of � and ∼) in S4, with
implication relations between them analogous to the subset relations between the
fourteen of topology. So, for example, we see that in S4,

�p→ � ��p→ ��p→ �� � p→ �p
just as

◦
A ⊂

◦
◦
A ⊂

◦
A ⊂

◦
A ⊂ A

holds in all topological spaces, where � is de�ned as ∼ � ∼, A is shorthand for

C(A), and
◦
A denotes the interior of A or equivalently, −C(−A).

�
It also follows that there are an in�nite number of distinct modal functions of one

variable, i.e. expressions built from one propositional variable and the operations
∼,∧, �, due to the corresponding result in topology that if we set φ(A) = A ∩
C(C(A)∩−A), then φ(A) is distinct from φ(φ(A)) which is distinct from φ(φ(φ(A)))
and so on. This con�rms that in the proof of Theorem 6 we could not simply identify
∗F with ∗, since the set generated by applications of ∗,×, and − could be in�nite
([6], 132-3).

�
Next, we obtain a decision procedure for topological equations independent from

S4-algebras. Notice that just as in Lemma 1, we can use equations of the form
A = X to decide whether any topological equation holds in every topological space.

�

Theorem 15. [6, Theorem 19] Let A be a topological expression containing n
subexpressions. Then A = X in every topological space if and only if A = X in
every topological space with ≤ 2n points.

19



Proof. If A = X holds in every topological space then it does so in every topological
space with ≤ 2n points. For the other direction, if A = X is not true in every
topological space, then the corresponding sentence α is not a theorem of S4 and
has n subsentences. Then there is an S4-algebra A with ≤ 22n

elements that falsi�es
α, say by the substitution of elements a1, ..., ak. By the method of Theorem 14, we
can �nd a topological space X such that A is isomorphic to the S4-algebra over X;
in fact, the element 1 from A will be mapped to the set X. Then substituting the
elements corresponding to a1, ..., ak under this isomorphism for the set variables of
A will yield a value di�erent from X, so we have found the topological space of
the theorem statement. And since A had ≤ 22n

elements, we see that X has ≤ 2n

points. �

�
Our next goal is to extend these results to T1-spaces.
�

Theorem 16. [7, Theorem 2.5] Given a topological space X with closure operation
CX , there exists a T1-space Y such that the S4-algebra over X is isomorphic to a
subalgebra of the S4-algebra over Y .

Proof. Let h be a function with domain P(X). For a singleton x, let h(x) be an
in�nite set so that for x, y ∈ X and x 6= y, h(x) ∩ h(y) = ∅. If A is a subset of
X, de�ne h(A) as ∪x∈Ah(x), and set h(∅) = ∅. We then set Y = h(X), and notice
that clearly h(A) ∪ h(B) = h(A ∪B).

�
Now, de�ne a new function g : P(Y )→P(X), where for A ∈P(Y ), g(A) is the

set containing those of points x ∈ X for which A∩h(x) is in�nite. Then we see that
g(A∪B), being the set of points x ∈ X such that (A∪B)∩h(x) is in�nite, is equal
to the set of points x for which (A ∩ h(x)) ∪ (B ∩ h(y)) is in�nite. But this means
that either A ∩ h(x) or B ∩ h(x) must be in�nite, and so g(A ∪B) = g(A) ∪ g(B).

�
We also observe that if A is �nite, then g(A) = ∅ since no set can intersect a

�nite set to produce an in�nite one.
�
And lastly, notice that for A ⊆ X, h(A) = ∪x∈Ah(x), and g(∪x∈Ah(x)) = {y ∈

X : h(y) ∩ ∪x∈Ah(x) in�nite}. For h(y) ∩ ∪x∈Ah(x) to be in�nite, it must be the
case that y ∈ A because otherwise h(y) ∩ h(x) = ∅ for each x ∈ A. Moreover, for
any y ∈ A, h(y) ∩ ∪x∈Ah(x) = ∪x∈Ah(x) since h(y) will be one of the elements of
the union. Therefore, g(h(A)) = A.

�
Now, de�ne the closure operation CY on Y by CY (A) = A∪hCX(g(A)) for A ⊆ Y .

Let's check that Y is indeed a T1-space with respect to CY .
�
From the de�nition of CY , it is clear that A ⊆ CY (A).
�
We have CY (A ∪ B) = A ∪ B ∪ hCXg(A ∪ B). Since g respects union, this is

equal to A ∪ B ∪ hCX(g(A) ∪ g(B)), and since CX does as well, we have A ∪ B ∪
h(CXg(A) ∪ CXg(B)). We already showed that h respects union too, so we obtain
A∪B∪hCXg(A)∪hCXg(B), which we can rewrite as [A∪hCXg(A)]∪[B∪hCXg(B)],
which equals CY (A) ∪ CY (B) by de�nition.
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�
Now, CY CY (A) =CY (A ∪ hCXg(A)), which by the previous paragraph equals

CY (A) ∪ CY hCXg(A). Expanding CY , this becomes (A ∪ hCXg(A)) ∪ (hCXg(A) ∪
hCXghCXg(A)). Applying gh(A) = A and CXCX(A) = CX(A) yields A∪hCXg(A)∪
hCXg(A) ∪ hCXg(A), which reduces to just A ∪ hCXg(A).

�
Finally, CY (∅) = ∅ ∩ hCXg(∅) = ∅, and if A is �nite, then CY (A) = A∪ hCXg(A)

and since g applied to a �nite set yields ∅, we have A ∪ hCX(∅) = A ∪ h(∅) = A.
�
To complete the proof, we claim that h is an isomorphism between the S4-algebra

over X and a subalgebra of the S4-algebra over Y . From the way we de�ned h, it is
clear that union, intersection, and complement are preserved and that h is injective,
and we see that CY h(A) = h(A) ∪ hCY gh(A) = h(A) ∪ hCY (A) = h(A ∪ CY (A)).
Since A ⊆ CY (A), this equals hC(A), as desired. �

�

Example 5. To illustrate the method of the last theorem, consider the topological
space X = {a, b, c, d} where CX(A) = X for all A ⊆ X other than ∅, and C(∅) = ∅.
De�ne h as follows:

• h(a) = [0, 1), the interval of the real line
• h(b) = [1, 2)
• h(c) = [2, 3)
• h(d) = [3, 4)
• h(∅) = ∅

Then by the method of the theorem, we will set Y = [0, 4) and de�ne g as prescribed.

For instance, if A = (0,
√

2
2 ) ∪ (π, 4), then g(A) = {a, d}, because h(a ∪ d) ∩ A =

[0, 1) ∪ [3, 4) ∩ A is in�nite. Then for CY (A) we will have A ∪ hCXg(A) = A ∪
hCX({a, d}) = A ∪ h({a, b, c, d}) = A ∪ Y = Y . Indeed, CY will behave just as CX
when applied to an in�nite set A, since CXg(A) will always give {a, b, c, d} in this
case. But notice that for A = { 1

2}, g(A) will be empty, and so the term hCXg(A)
will contribute nothing to the union and we will have CY (A) = A as it should in a
T1-space.

�
Clearly the idea of this example can be readily extended to the case where X is

countably in�nite. In the case where X is uncountable, we need only exercise more
care in choosing the assigned intervals.

�
By Theorem 16, we see that a topological equation is true in every topological

space if and only if it is true in every T1-space, since if an equation if true in every
topological space, it is true in every T1-space because T1-spaces are topological
spaces, and on the other hand, if it is false in some topological space X, then it
will also be false in the T1-space containing a copy of X from the last theorem ([6],
Theorem 21).

5. Universal Algebras for S4 and S5

In this section we will need some new notions. Note that in light of the last
section, we will now use ∩ and × interchangeably to refer to the multiplication
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operation in an S4-algebra, and likewise for C and ∗, and for 1 and X as the unity
element.

De�nition 8. [7, De�nitions 1.9-11] An S4-algebra A is called connected if C(x)∩
C(−x) = 0 implies x = 1 or x = 0. A is called well-connected if C(x) ∩ C(y) = 0
implies x = 0 or y = 0. A is called totally disconnected if every non-empty open
element can be written as the sum of two disjoint non-empty open elements.

�
Our de�nition of connectedness is the ordinary one from topology. Well-connectedness

may thought of as the property that all closed sets must meet. Since in an S5-
algebra C(x) = 1 for all non-zero x, every S5-algebra is well-connected. As far as
examples, the S4-algebra over the space X of Example 5 is well-connected. For
another, if we consider the sets A1, A2, A3 where A1 is the boundary of the unit
circle, A2 is the interior of the unit circle, and A3 the exterior, then the S4-algebra
consisting of these sets, the empty set, and their unions is well-connected, since the
closure of each of these sets (except ∅) will include A1 with the ordinary closure
operation ([7], 147). The rational numbers with the usual topology form a totally
disconnected space, since given an open connected set (a, b) we can divide this into
two open sets by choosing an irrational c in the interval and partitioning (a, b) as
(a, c)∪ (c, b). Clearly we can extend this idea as needed if given an open set that is
not connected. The Cantor set also totally disconnected.

�

De�nition 9. [7, De�nition 3.1] Given an S4-algebra Γ = (K,−,∩, C) and an
element a ∈ K, a 6= ∅, we call Γa = (Ka,−a,∩a, Ca) the relative algebra of Γ with
respect to a. Ka consists of those elements x ∈ K such that x ⊆ a. We identify ∩a
with ∩, and de�ne −ax := −x ∩ a and Ca(x) = C(x) ∩ a.

�
Notice that this notion of a relative algebra is carried over directly from topology.
�

Corollary 1. [7, Corollary 3.2] Γa is an S4-algebra, and moreover, if a is open,
the open elements of Γa are also open elements of Γ.

Proof. From the way the operations of Γa are de�ned, it is clear that Γa is closed
under Ca.

�
For 3.2: If x ∈ Ka, Ca(x) = C(x) ∩ a. Since x ⊆ C(x) and x ⊆ a, we know that

x ⊆ C(x) ∩ a.
�
To see that Ca respects addition, notice that Ca(x ∪ y) = (C(x ∪ y)) ∩ a =

(C(x) ∪ C(y)) ∩ a, which we can rewrite as (C(x) ∩ a) ∪ (C(x) ∩ a) = Ca(x) ∪ Ca(a).
�
For 3.4: Observe that Ca(∅) = C(∅) ∩ a = ∅ ∩ a = ∅.
�
Finally, to see that Ca(Ca(x)) = Ca(x), i.e. C(C(x) ∩ a) ∩ a = C(x) ∩ a, we notice

that C(x) ∩ a ⊆ a and C(x) ∩ a ⊆ C(C(x) ∩ a), so the right to left inclusion holds.
For left to right, observe that C(x) ∩ a ⊆ C(x), so C(C(x) ∩ a) ⊆ C(C(x)) = C(x),
and therefore C(C(x) ∩ a) ∩ a ⊆ C(x) ∩ a.

�
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To prove the second part of the theorem, suppose a is open and x ∈ Γa is
open. This means that −a(Ca(−ax)) = x. Simplifying the left hand side, we have
−a(Ca(−x ∩ a)) = −a(C(−x ∩ a) ∩ a) = −[C(−x ∩ a) ∩ a] ∩ a. By Lemma 2 (which
we are justi�ed in applying to S4-algebras by the results of the last section), we can
simplify further to −[C(−x)∩a]∩a, which becomes (−C(−x)∪−a)∩a. Distributing,
we obtain (−C(−x) ∩ a) ∪ (−a ∩ a), and so we have −C(−x) ∩ a = x, showing that
−C(−x) = x, i.e. x is an open element of Γ. �

�
Notice, however, that the closed elements of Γa need not be closed in Γ. An easy

counterexample is the relative algebra of the real line with respect to (0, 1). There,
(0, 1

2 ] = C((0, 1
2 ])∩(0, 1) = [0, 1

2 ]∩(0, 1) = (0, 1
2 ] = C(0,1)((0,

1
2 ]) but C((0, 1

2 ]) = [0, 1
2 ].

However, if x is closed in Γ and x ⊆ a, then x is closed in Γa, because from x = C(x)
we see that Ca(x) = C(x) ∩ a = x ∩ a = x.

�

De�nition 10. [7, De�nition 3.3] We call an algebra Γ a universal algebra with
respect to a set U of algebras if for each algebra D ∈ U , there is a subalgebra ∆ of
Γ such that ∆ is isomorphic to D. If instead we can �nd an open element a such
that D is isomorphic to a subalgebra of Γa for each D ∈ U , we call Γa a generalized
universal algebra with respect to U .

�
Observe that if Γ is a universal algebra for U , then Γ is also a generalized universal

algebra for U ; we can see this by simply setting a equal to the unity element of Γ.
In this section we are concerned primarily with �nding a universal algebra for the
collection of all �nite S4-algebras. One may intuitively think of such a universal
algebra as an object that is 'large enough' and possessing the right properties to
contain every �nite S4-algebra (i.e. an isomorphic copy of each). Since S4 is
complete with respect to those algebras, S4 would be complete with respect to such
an object.

�

De�nition 11. [7, De�nition 3.4] We call an S4-algebra Γ dissectible when for
every non-empty non-empty element a and every pair of integers r, s with r ≥ 0,
s > 0, we can �nd r + s non-empty pairwise disjoint elements a1, ..., ar, b1, ..., bs
from Γ such that:

.1 a1, ..., ar are open

.2 The bi's all have the same closure, i.e. C(b1) = ... = C(bs)

.3 The sum of these elements is a, i.e. a1 ∪ ... ∪ ar ∪ b1 ∪ ... ∪ bs = a

.4. The boundary of a is contained in the closure of each bi, which is in turn
contained in the closure of each aj . That is, C(a)∩−a ⊆ C(bi) ⊆ C(aj).

We will call a collection of elements a1, ..., ar, b1, ..., bs satisfying the above a dissection
of a.

�
Although these conditions appear quite restrictive, and it takes considerable

e�ort to show that an S4-algebra is indeed dissectible, we shall see shortly that
the familiar S4-algebra over Euclidean space is dissectible. We also see from this
de�nition and from Corollary 1 that if Γ is dissectible, and a is open, then Γa is
dissectible.
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�
For our next theorem we need to recall some more notions from topology. A

topological space X is dense-in-itself when every point of X is a limit point of X,
i.e. when there are no isolated points. We say X is normal (also called T4) when
for every pair of closed subsets A,B that do not meet, we can �nd two disjoint
open sets C,D such that A ⊆ C and B ⊆ D. We say that X has a countable
basis (also called second-countable or completely separable) if there is a sequence
X1, X2, ..., Xn, ... of non-empty open subsets of X such that every non-empty open
subset of X can be written as a union of elements from that sequence, i.e. when
for A ⊆ X, A 6= ∅, there are indices i1, ..., in, ... such that A = Xi1 ∪ ... ∪Xin ∪ ....
Also note that a space with a countable basis must have a countable dense subset;
we can �nd it by choosing an element from each member of the basis.

�

Theorem 17. [7, Theorem 3.5] The S4-algebra over every normal, dense-in-itself
topological space with a countable basis is dissectible.

Proof. Let X be a normal, dense-in-itself topological space with a countable basis,
let A be a non-empty open subset of X, and let r, s ∈ Z with r ≥ 0 and s > 0.

�
We notice thatX being normal and second countable implies thatX is metrizable

by Urysohn's metrization theorem. Moreover, we see that there is a countable
subset E = {e1, e2, ...} such that every point of X is a limit point of E.

�
From topology we will use the ordinary de�nition of the distance from a point

to a set. That is, d(x,B) = inf{d(x, b) : b ∈ B}. We generalize this notion by
de�ning the distance between two sets, d(A,B), as inf{d(a, b) : a ∈ A, b ∈ B},
and say that if A or B is the empty set, then d(A,B) = 1. We also will use a new
but straightforward notion: for a set A, de�ne m(A) = inf{d(a,A \ {a} : a ∈ A}
where A is non-empty, and set m(∅) = 1. To give an example from the real line,
m({17, 19, 23, 29}) = 2. Finally, we will denote the open ball of radius r with center
a by B(a, r) and the closed ball by B(a, r).

�
Now, to construct the sets A1, ..., Ar, B1, ...Bs that will dissect A, we will de�ne

inductively two real numbers εn, δn, and sets Un, Vn, H
1
n, ...,H

r
n,K

1
n, ...,K

s
n.

�
For our initial values, set ε0 = 1, δ0 = 1, and each of the sets equal to ∅, except

for U0 which we set equal to A.
�
Now, suppose that the �rst n numbers and sets have been de�ned. Let u, v be

the �rst two elements of E that land in Un (we know that u, v exist since E must
meet every non-empty set). Then de�ne εn+1 = 1

3min{
1

n+1 , d(u,−Un), d(u, v)}.
�
Let x1, ..., xr+s be the �rst r+ s points from E that land in B(u, εn+1). (Notice

that u = x1.) Then de�ne δn+1 = 1
3min{d({x1, ..., xr+s},−B(u, εn+1), m({x1, ..., xr+s})}.

�
We setH1

n+1 = B(x1, δn+1),...,Hr
n+1 = B(xr, δn+1), and setK1

n+1 = {xr+1},...,Ks
n+1 =

{xr+s}. From the way we have de�ned δn+1 we see that these sets all are inside
B(u, εn+1), and they do not meet. Moreover, from the 1

3 factor in δn+1, we see that
there is some 'space' between them. Clearly they are also all non-empty.
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�
Finally, set Vn+1 = C(H1

n+1) ∪ ... ∪ C(Hr
n+1) ∪K1

n+1 ∪ ... ∪Ks
n+1, and Un+1 =

Un \ Vn+1.
�
We note two facts. First, for points x, y ∈ Vn, d(x, y) ≤ 1

n since εn <
1
n , and

the points of Vn lie within an open ball of radius εn. Second, from U0 = A and the
de�nitions of εn and δn, we see that Vn does not meet the boundary of A.

�
Now, we de�ne our sets A1, ..., Ar, B1, ..., Bs:

A1 = H1
1 ∪ ... ∪H1

n ∪ ...

.

.

.

Ar = Hr
1 ∪ ... ∪Hr

n ∪ ...

B1 = K1
1 ∪ ... ∪K1

n ∪ ...

.

.

.

Bs−1 = Ks−1
1 ∪ ... ∪Ks−1

n ∪ ...

Bs = A \ (A1 ∪ ... ∪Ar ∪B1 ∪ ... ∪Bs−1).

�
Since the setsHm

n ,Km
n are all non-empty and mutually exclusive, A1, ..., Ar, B1, ...Bs

are non-empty and mutually exclusive as well. Since the Hm
n 's are open balls, we

see that the Ai's are open. From the de�nition of Bs, it is clear that the union of
these sets equals A.

�
To see why the remaining two conditions are satis�ed, let us review our con-

struction process. In the �rst iteration, we began with the whole set A. We then
identi�ed the �rst two elements, u and v, from E that landed in A. We drew a
small ball B(u, ε1) around u that did not include v, and remained within A while
leaving some space between B(u, ε1) and the boundary of A. Within that ball, we
found the �rst r+s points from E. For the �rst r such points, we drew a small ball
around each one that remained within B(u, ε1), and de�ned their radius so that
they did not meet and left some space between them. We gave to each Ai one of
those balls. For the other s points, we gave one each to the Bi's. We then set up
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the next iteration by removing all of those open balls and points we assigned, and
repeated the process.

�
We see then that because of the space we left between Un and the boundary of A,

that at any given iteration there will be a point from E closer to the boundary that
has not yet been assigned. So eventually, we will reach that point and give to each
Ai a nearby open ball and to each Bi a nearby point. Hence for every boundary
point of A, within each of these sets we can �nd a sequence of points approaching
that boundary point. Therefore, C(A) ∩ −A ⊆ C(Bi) and C(A) ∩ −A ⊆ C(Aj).

�
Moreover, at a given iteration and for a given point x assigned to a Bi, we left

some space between x and the points and sets given to the other Aj 's and Bk's.
So we know that there are in�nitely many points closer to x from E that had not
yet been assigned. So eventually, we can be assured that we will give to each Aj
and each Bk a point near x. Hence for every point in Bi, we can �nd a sequence of
points from each Aj and each Bk converging to that point. Thus the closures of the
Bi's are equal, and by a similar argument we can conclude that C(Bi) ⊆ C(Aj). �

�
To further illustrate the method of the last theorem, we give the following ex-

ample.
�

Example 6. Let us give two iterations of a dissection of the open interval (0, 1)
of R where r = s = 2. Following the proof, we set the following sets and values,
taking E to be an enumeration of the rationals.

• ε0 = δ0 = 1
• H1

0 = H2
0 = K1

0 = K2
0 = ∅

• U0 = (0, 1)
• u = 1

2 , v = 1
3 . These are the �rst two rationals from our enumeration that

land in U0.
• ε1 = 1

18 , so B(u, ε1) = (4
9 ,

5
9 )

Now, we take the �rst four rationals (we choose four because r + s = 4) from the
enumeration that are in ( 4

9 ,
5
9 ) and set x1 = 1

2 , x2 = 5
11 , x3 = 6

11 , x4 = 6
13 . We set

δ1 = 1
429 so that intervals centered at these points with radius δ1 will not meet and

will not leave ( 4
9 ,

5
9 ). We set:

�

• H1
1 = B( 1

2 ,
1

429 )

• H2
1 = B( 5

11 ,
1

429 )

• K1
1 = { 6

11}
• K2

1 = { 6
13}

�
Now we set up for the next iteration by setting V1 = B( 1

2 ,
1

429 ) ∪ B( 5
11 ,

1
429 ) ∪

{ 6
11}∪{

6
13} and U1 = (0, 1)\V1. So we have removed two small closed intervals and

two points from (0, 1), and now we repeat the process. This time u = 1
3 and v = 2

3

as these are the �rst two rationals in our list that are left in U1. We set ε2 = 1
9 ,

and then consider B( 1
3 ,

1
9 ). The �rst four rationals in this interval are 1

3 ,
2
5 ,

3
7 , and

3
8 . Now we will have δ2 = 1

189 and we will again de�ne four sets:
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�

• H1
2 = B( 1

3 ,
1

189 )

• H2
2 = B( 2

5 ,
1

189 )

• K1
2 = { 3

7}
• K2

2 = { 3
8}

�
Again we will remove from (0, 1) these four sets along with the four sets from

above and repeat for new u and v. It is worth pointing out that εk is de�ned so
that as k increases, εk approaches zero even though in this case we had ε1 < ε2,
and likewise for δk. We continue inductively de�ning the sets H and K, and set
A1 equal to the union of the interiors of the H1

i 's and A2 equal to the union of
the interiors of the H2

i 's. So A1 will be an in�nite union of smaller and smaller
intervals dispersed throughout (0, 1). We likewise set B1 equal to the union of the
K1
i 's and B2 equal to the union of the K2

i 's together with every point not included
in A1, A2, or B1. So B1 and B2 are sets of points dispersed throughout (0, 1).

�
So at each iteration we have chosen the next rational point in (0, 1) that has not

yet been assigned to one of A1, A2, B1, B2, drawn a small interval around it, and
within that interval we give a small interval to A1, a small interval to A2, and a
point each to B1 and B2. Note that δ is de�ned so that we cannot give to A1 an
interval (a, b) and then to A2 an interval (b, c). If we did, then we could not deal
with the point b as clearly it could not be contained within an interval disjoint from
those already assigned, and it could not be placed into one of the Bi's because we
want the closure of the Bi's to be equal.

�
Now, why is this a valid dissection? The Ai's are unions of open intervals so

they are open, and the de�nition of B2 ensures that the union of these sets will
equal (0, 1). Furthermore the sets are clearly disjoint. It remains to be seen why
the boundary of (0, 1) is included in the closure of the Bi's and Ai's. At a given
iteration we can be assured that at a later iteration we will go far enough out into
the sequence of rationals to �nd an unassigned point that is closer to say, 0, than
any of the previously assigned points. Then using the assignment method we give
to each Ai and each Bi a nearby point. So it will turn out that each set contains a
sequence converging to 0 and likewise for 1. Similarly we can see that the closure
of each Ai will contain the closure of the Bi's (this relies on the above mentioned
fact about how ε and δ are de�ned so that there will be enough space between the
intervals assigned). Finally the closure of B1 and of B2 will be equal because for
every rational not in the Ai's we will have given to B1 and to B2 either that point
itself or in�nitely many nearby points.

�

Theorem 18. [7, Corollary 3.6] The S4-algebra over Euclidean space is dissectible.

Proof. This follows immediately from the fact that Euclidean space is dense-in-
itself, normal, and has a countable basis. �

�
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Theorem 19. [7, Theorem 3.7] If Γ is a dissectible S4-algebra and a is a non-
empty open element of Γ, and Φ is a �nite well-connected S4-algebra, then there is
a subalgebra ∆ of Γa such that ∆ ∼= Φ.

Proof. Our proof proceeds by induction on the number of atoms in Φ. If there is
just one, then there is nothing to check. So, we assume that the theorem holds for
every �nite well-connected S4-algebra with less than p atoms and that Φ contains
p atoms.

�
Recall that for an algebra to be well-connected, every closed element must meet.

Hence there is an atom b1 that is contained in every closed element of Φ. Suppose
that b2, ..., bk are the other atoms whose closure equals C(b1), if there are any. So
we have C(b1) = C(b2) = ... = C(bk).

�
Observe that b1∪...∪bk ⊆ C(b1∪...∪bk), which equals C(b1)∪...∪C(bk). But these

closures are equal, so their sum is just C(b1). On the other hand, if x is an atom
and x ⊆ C(b1), then C(x) ⊆ C(C(b1)) = C(b1). We have suppose that b1 is contained
in every closed element, so b1 ⊆ C(x), and thus C(b1) ⊆ C(x), so C(x) = C(b1). This
shows that x is one of the bi's. Therefore, we have b1 ∪ ... ∪ bk = C(b1).

�
Let c1, ..., cq be the other atoms of Φ besides the bi's. Notice that since b1 exists

for sure, q < p.
�
We select from these atoms a set d1, ..., dn. Let d1 be the �rst atom in the list

of ci's whose closure does not contain as proper part the closure of any of the cj 's.
That is, if C(cj) ⊆ C(d1), then C(cj) = C(d1). We let d2 be the �rst atom of the
ci's whose closure also satis�es this property and has a closure di�erent from C(d1),
and so on.

�
First observe that it is possible to select the di's in this way. For if we look at

c1 and �nd that C(ci) = C(c1) or C(ci) * C(c1) for each i, then we set c1 = d1. If,
on the other hand, say C(c2) ( C(c1), then we may look at c2 and repeat. Since
there are only q of the ci's, in the worst case we will have d1 = cq and no other
dj 's. Furthermore, it is clear that for every ci there is a dj such that dj ⊆ C(ci).

�
Thus we may de�ne the following elements. Let ei = ∪di⊆C(cj)cj for i = 1, ..., n.

That is, let ei be the sum of all those cj 's whose closure contains di. By the last
remark of the previous paragraph, it is clear that e1 ∪ ... ∪ en = c1 ∪ ... ∪ cq.

�
Additionally, we set e0 = b1 ∪ ... ∪ bk. Then we will have e0 ∪ ... ∪ en = X, as

every atom is contained in the left hand side.
�
We shall now show that each of e1, ..., en is open. Notice that −ei = −∪di⊆C(cj)

cj = ∩di⊆C(cj)(X − cj). We can write this intersection as the sum of m atoms
a1, ..., am. Now, we will show that C(a1 ∪ ... ∪ am) = a1 ∪ ... ∪ am. The right
to left inclusion is obvious. For left to right, suppose for a contradiction that
there is an atom x included in the left hand side but not the right. Then since
C(a1 ∪ ... ∪ am) = C(a1) ∪ ... ∪ C(am), we see that x ⊆ C(al) for some l. Since x is
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not in a1 ∪ ... ∪ am, x ⊆ ei. Then by de�nition, di ⊆ C(x), and hence di ⊆ C(al).
But al is an atom, so this means that al ⊆ ei, which contradicts al being in −ei.

�
Since Γ is dissectible, we can �nd pairwise disjoint non-empty elements a1, ..., an, f1, ..., fk

that meet the conditions for a dissection. Set a0 = f1 ∪ ... ∪ fk.
�
We see that CΓ(f1) = CΓ(f1) ∪ ... ∪ CΓ(fk) from the de�nition of dissection, and

so CΓ(f1) = CΓ(f2) = ... = CΓ(fk) = CΓ(a0).
�
We let ∆0 be the subalgebra of Γa0 consisting of of all sums of the elements

∅, f1, ..., fk. Notice that though ∆0 uses the same operations, it is not the same as
Γa0 ; rather it results from treating the elements f1, ...fk as if they were atoms.

�
Now, de�ne a function h0 : Φe0 → ∆0 as follows. For x = bi1∪...∪bij , an element

of Φe0 (the relative subalgebra with respect to e0) set h0(x) = fi1 ∪a0 ... ∪a0 fij ,
and set h0(∅) = ∅.

�
h0 is an isomorphism. This is obvious so far as bijection and preservation of

operations of complement, union, and intersection are concerned. To see that
h0(Ce0(x)) = C∆0

h0(x): Observe that for x = ∅ we have both sides equal to ∅. For
x non-empty, we have Ce0(x) = e0 = b1 ∪ ...∪ bk, so h0(Ce0(x)) = f1 ∪ ... ∪ fk = a0.
On the other hand, C∆0(y) = CΓ(y) ∩ a0 for non-empty y. But we have seen that
CΓ(y) = a0 for any sum of the fi's, so C∆0(h0(x)) = a0 as well.

�
Now, observe that for each i = 1, ..., n, the relative algebra Φei is well-connected

since every non-empty element contains di by our de�nition of ei. Also, we have
seen that the number of atoms in ei is at most q, which is less than p and so we may
use our induction hypothesis. Since ai is open in Γ by the de�nition of dissection,
there is a subalgebra ∆i ≤ Γai such that ∆i

∼= Φei . That is, there is an isomorphism
hi between ∆i and Φei .

�
So, de�ne the function h : Φ→ Γa by h(x) = h0(x∩e0)∪ ...∪hn(x∩en). Setting

∆ equal to the range of h, we have Φ ∼= ∆. Hence ∆ is an S4-algebra, and indeed
it is a subalgebra of Γa, and so we have proven the theorem. �

�
Setting a equal to the unity element X of Γ of this last theorem gives the result

that every dissectible S4-algebra is a universal algebra for all �nite well-connected
S4-algebras.

�
Then we see that since every S5-algebra is a well-connected S4-algebra (since

the closure of any non-empty element is equal to the unity element), that every
dissectible S4-algebra serves as a universal algebra for the set of all �nite well-
connected S5-algebras. In particular, we see that Euclidean space is a universal
algebra for S5.

�

Theorem 20. [7, Theorem 3.8] Every totally disconnected dissectible S4-algebra is
a universal algebra for the set of all �nite S4-algebras.
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Proof. Let Γ be a totally disconnected dissectable S4-algebra, and let Φ be a �nite
S4-algebra. As in the previous theorem, we proceed by induction on the number
of atoms in Φ. As before, there is nothing to check in the base case. So, suppose
that the theorem holds whenever Φ has less than p atoms, and that Φ has exactly
p atoms.

�
If Φ is well-connected, then we are done by the previous theorem. So assume

that Φ is not well-connected.
�
Let c1, ..., cq be the atoms of Φ, and select a set of atoms d1, ..., dn as in the proof

of the previous theorem, and again set ei = ∪di⊆Ccjcj . Then again, e1 ∪ ... ∪ en =
c1 ∪ ...∪q = X. And since Φ is not well-connected, there is some atom that is
not contained in every closed element, and therefore not contained in the closure
of every atom. Thus each ei contains less than p atoms, and we may apply our
induction hypothesis to each Φei .

�
Since Γ is totally disconnected, there are n non-empty pairwise disjoint open

elements a1, ..., an in Γ whose sum is the universal element of Γ. Moreover, the
relative algebras Γai are each totally disconnected. Therefore, by our induction
hypothesis, there is a subalgebra ∆i ≤ Γai such that Φei

∼= ∆i for each i. If hi is the
function establishing this isomorphism, we may set h(x) = h1(x∩e1)∪...∪hn(x∩en),
and we will have an isomorphism between Φ and a subalgebra ∆ = Range(h) of
Γ. �

�
From this last theorem we see that the S4-algebra over every dense-in-itself,

totally disconnected subspace of Euclidean space serves as a universal algebra for
all �nite S4-algebras. Of particular interest, we see that the Cantor set and the
rationals can serve as such.

�

Lemma 4. [7, Lemma 3.9] Let K be an S4-algebra, and let KWC be the set of
ordered pairs (x, y) where x ∈ K and y = X or y = ∅. De�ne the operations
of complement, union, and intersection on KWC in the natural way, and de�ne
CWC((x, y)) = (C(x), X) except in the case where x = ∅ and y = ∅, in which case
set CWC((∅, ∅)) = (∅, ∅). Then KWC is a well-connected S4-algebra.

Proof. We take the zero element of KWC to be (∅, ∅) and the unity element to
be (X,X). That KWC is indeed an S4-algebra is obvious. To see that it is well-
connected, notice that the element (∅, X) is contained within the closure of every
non-empty element. �

�

Lemma 5. [7, Lemma 3.10] If K and KWC are related as in the previous lemma,
then K ∼= KWC

(X,∅). Moreover, (X, ∅) is open.

Proof. De�ne the function h : K → KWC
(X,∅) by h(x) = (x, ∅). Clearly h(x) is in fact

an element of KWC
(X,∅), and it is obvious that h is indeed an isomorphism. We see

that since CWC(∅, X) = (C(∅), X) = (∅, X), the element (X, ∅) is open. �

�
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Lemma 6. [7, Lemma 3.11] If K is dissectible, then KWC is dissectible as well.

Proof. We notice that except for (∅, ∅), the closed elements ofKWC are the elements
of the form (x,X) where x is closed in K, for such an element, CWC((x,X)) =
(C(x), X)) = (x,X). Therefore, except for (X,X), the non-empty open elements of
KWC are of the form (−x,−X) where x is closed in K, i.e. the open elements are
all the elements (y, ∅) and (X,X) where y is open in K.

�
Then, given an open element (a, ∅) ∈ KWC and integers r, s with r ≥ 0, s > 0,

we can �nd a dissection of a by the elements a1, ..., ar, b1, ..., bs from K. Then we
see that the elements (a1, ∅), ..., (ar, ∅), (b1, ∅), ..., (bs, ∅) will dissect (a, ∅). In the
case of the element (X,X), we can also use the corresponding elements from K and
just set the s-th element equal to (bs, X) so that the sum will be (X,X). �

�

Theorem 21. [7, Theorem 3.12] Every dissectible S4-algebra is a generalized uni-
versal algebra for the set of all �nite S4-algebras.

Proof. Let K be a dissectible S4-algebra and let F be a �nite S4-algebra, and let
FWC be the S4-algebra of the preceding lemmas. Then FWC is a well-connected
�nite S4-algebra, so there is a subalgebra ∆ ≤ K such that FWC ∼= ∆. Since
(X, ∅) is open in FWC , and isomorphism respects closure and thus preserves open
and closed sets, (X, ∅) must correspond to an open element a in ∆. Thus we can
restrict this isomorphism to FWC

(X,∅), and we see that F
WC
(X,∅)

∼= ∆a since intersection is

preserved under the isomorphism. Moreover, we see that ∆a ≤ Ka and by Lemma
5, F ∼= ∆a. So we have found an open element a for which F is isomorphic to a
subalgebra of Ka, which proves the theorem. �

�
From this last theorem we see that the S4-algebra over Euclidean space is a

generalized universal algebra for the set of all �nite S4-algebras.
�
Finally, we notice that it is false that every dissectible S4-algebra is a universal

algebra for all �nite S4-algebras. From Lemmas 4 and 6 we see that there exists
a well-connected dissectible S4-algebra. Since every subalgebra of a well-connected
algebra will be well-connected as well, we could not �nd a subalgebra isomorphic
to a �nite S4-algebra that is not well-connected ([7], 160).

�

6. Historical Notes

�
Modal logic dates back at least as far as Aristotle. Medieval logicians studied it as

well, but it became neglected until the late 19th-century. Then, the Scottish logician
Hugh MacColl expressed dissatisfaction with the material implication p ⊃ q ≡∼ p∨q
on the basis of examples such as the following. Let p be the statement �He will
persist in his extravagency� and let q be the statement �He will be ruined.� Then
according to M.I., ∼ (p ⊃ q) ≡∼ (∼ p ∨ q) ≡ p∧ ∼ q, or �He will persist in his
extravagency and he will not be ruined.� But in ordinary language, the negation of
p implies q would be �It is possible that he persists in his extravagency without being
ruined.� His point was that the material implication did not capture our ordinary
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meaning of implication. This failure can be seen even more clearly by considering
the 'paradoxes of implication', which are the theorems of the propositional calculus
p ⊃ (q ⊃ p) and ∼ p ⊃ (p ⊃ q). In words, anything true is implied by anything
at all, and anything false implies anything at all. From these one can prove that
(p ⊃ q) ∨ (q ⊃ p). In words, given any two propositions, one implies the other or
vice versa.

�
MacColl himself never axiomatized modal logic, though he did introduce symbols

for necessity and possibility ([4], 213-216). But C.I. Lewis saw as well that M.I.
di�ers greatly from our ordinary understanding of a statement like �q follows from
p�, and so was led to develop the logic of strict implication. He found that strict
implication had its own 'paradoxes', such as (∼ (q → p) → � ∼ p) (If there is a
proposition that does not strictly imply p, then p is possibly false) and ∼ �p→ (p→
q) (If p is self-contradictory - i.e. impossible - then p strictly implies any proposition
whatever). Lewis said of them: �Unlike the corresponding paradoxes of material
implication, these paradoxes of strict implication are inescapable consequences of
logical principles which are in everyday use. They are paradoxical only in the
sense of being commonly overlooked, because we seldom draw inferences from a
self-contradictory proposition� ([5], 174-5).

�
The reader may have noticed that the axiomatizations of S4 and S5 used in this

paper di�er from the modern ones. Here, we de�ned every axiom in terms of strict
implication, and used only the possibility operator. In contrast, the modern account
augments the propositional calculus with the operators � and � and leaves strict
implication unmentioned. This shift was due to Gödel and his work connecting
intuitionistic logic and S4. There, he axiomatized S4 by way of the now standard
schemasK (�(p ⊃ q) ⊃ (�p ⊃ �q)), T (�p ⊃ p), and 4 (�p ⊃ ��p), together with
the necessitation rule (from p conclude �p) and the set of theorems of propositional
logic. In the view of Blackburn, Rijke, and Venema, this later axiomatization is
preferable on several counts. First, it is easier to show the distinctness of systems
axiomatized in this fashion. Second, they provide a more natural semantics, which
makes it is easier to tell whether a given system includes all the axioms that we
want it to. That is, it is more readily seen that it captures the kinds of reasoning in
which we are interested. For instance, Lewis did not consider the important system
KT (which is between S2 and S4 in terms of strength), while each of his systems
S1, S2, and S3 have waned ([1], 38-48).

�
All this being said, however, it was in this earlier period that the connections

between algebra, topology, and modal logic were developed. First, in 1938 Tang
Tsao-Chen gave the interpretation of � as the topological operation of closure and
showed that if a sentence of S4 is provable, then the corresponding topological equa-
tion holds in all spaces ([6], 129). McKinsey in 1941 proved the other direction of
the correspondence, and so provided a decision procedure for topological equations.
Three years later Tarski and McKinsey demonstrated the completeness of S4 with
respect to the Cantor set and the real line. These discoveries still generate inter-
est, as evidenced by a 2005 publication by Awodey and Kishida giving topological
semantics to �rst order modal logic and a 2006 paper by Mints and Zhang on the
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Tarski-McKinsey proof. Moreover, the algebraic results of Tarski and Jónsson in
1952 would eventually become recognized as essential to Kripke semantics ([1], 41).

�
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