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Abstract

This paper is divided into two parts. The first is an investigation of the effects of tunable

interactions between two ultracold neutral bosons confined by a quantum harmonic oscillator

trap. As the demand for experimental study of quantum systems grows stronger, it is of

keen interest to predict and control their behavior. Specifically, we explore the relation

between the strength of interactions and speed of the interaction ramping time scale on

the excitation of two-body states, and explain how such states are surprisingly resistant to

perturbations. The second part of this paper describes a fully controllable dynamic optical

lattice. These lattices are the skeleton that hold ultracold particles in manipulable arrays so

that quantum, solid state, and condensed matter phenomena can be observed in a controlled

environment.

1 Part I: Two-Particle Interaction in a Harmonic Trap

1.1 Analytic Framework

A system of two identical non-interacting particles in a one-dimensional quantum harmonic

trap (QHO) potential

V (x1,x2) =
1

2
mω2(x2

1 + x2
2) (1)

can be characterized by the position-space Hamiltonian
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ĤQHO = K̂ + V̂ =
−~
2m

(
∂2

∂x2
1

+
∂2

∂x2
2

) +
1

2
mω2(x2

1 + x2
2). (2)

Although the true interaction potential may be complicated, for ultracold interactions

we can approximate the potential by a zero-range Dirac delta function Vint = G(t)δ(x2−x2)

[1, 2] which is scaled by a time-dependent interaction strength parameter G(t), where G > 0

represents particle repulsion and G < 0 represents mutual attraction. The interaction

strength between otherwise neutral particles can be finely tuned by manipulation of external

magnetic fields [3], known as Feshbach resonances. The mechanisms responsible for this

phenomena will not be not discussed in this paper, and the interaction strength G will be

treated as arbitrarily controlled.

Including the zero-range interaction, the perturbed time-dependent Hamiltonian describ-

ing the system is

Ĥ =
−~
2m

(
∂2

∂x2
1

+
∂2

∂x2
2

) +
1

2
mω2(x2

1 + x2
2) +G(t)δ(x1 − x2) (3)

from which the evolution of the quantum state is determined by solving the Shrödinger

equation

i~
∂

dt
Ψ = ĤΨ. (4)

The steady-state solutions to Eqn. 4 for G(t) = 0 are the well known solutions to ĤQHO,

ψQHOn1n2 =

√
mω

π~2n1+n2n1!n2!
e−mω(x21+x22)/2~Hn1(

√
mω

~
x1)Hn2(

√
mω

~
x2), (5)

with quantized energies

En1n2 = En1 + En2 = ~ω(1 + n1 + n2) (6)

where n1, n2 ∈ Z++ and Hn are the Hermite polynomials.

Returning to Eqn. 3, we change bases to center of mass X and relative x coordinates.

Let

X = α(x1 + x2) and x = α(x1 − x2) (7)

be the new coordinates of the center of mass (COM) and relative positions, respectively,

which are scaled in natural units of α where

α =

√
mω

2~
(8)
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Applying this change to the basis set ({x1, x2} → {X,x}), we derive a new dimensionless

Hamiltonian in units of ~ω:

Ĥ

~ω
≡ ̂̃H = −1

2
(
∂2

∂X2
+

∂2

∂x2
) +

1

2
(X2 + x2) + γ(t)δ(x). (9)

Here, we have reparameterized the interaction strength as γ(t) = αG(t)
~ω . ̂̃H is a superposi-

tion of two Hamiltonians: the non-interaction harmonic oscillator in COM X space and a

harmonic oscillator perturbed by the interaction γδ(x) in relative x space. The Hamiltonian

solutions can be broken down via the separation of variables ansatz ψ(x,X) = u(x)Υ(X). If

we treat the interaction parameter as fixed, we can solve the time-independent Schrodinger

equation ̂̃Hψ = Eψ.

The COM steady state solutions Υn are the same as those in Eq. 5, but are now reduced

to naturalized units in one variable:

Υn(X) = (2nn!
√
π)−1/2e−X

2/2Hn(X), (10)

with dimensionless energies En = n+1/2. Because the COM wavefunction is not dependent

on the interaction parameter γ, it will remain in its initial state. In this way, the COM can

be ignored when evaluating the effects of particle interactions, but can always be multiplied

by the relative space wavefunction to recover the full 2D wavefunction.

Returning to the relative space Hamiltonian, we first note that for any value of γ, the

overall potential only changes at the origin x = 0. At this location, all odd harmonic states

vanish, and therefore will not be affected by the presence of the interaction potential, so

long as it exists only at the origin. Therefore, the relative space Hamiltonian has the same

odd-symmetry states as the harmonic trap (in naturalized units):

un,odd(x) = (2nn!
√
π)−1/2e−x

2/2Hn(x) (11)

with dimensionless energies εn,odd = n+ 1/2.

The even state solutions are [4]:

un,even(x) = NnU(
1− 2εn

4
,

1

2
, x2)e−x

2/2, (12)

where the Tricomi Functions U(a, b, z) take over the roll of the Hermite polynomials1 , andNn

is the dynamic normalization factor2 [5]. The even eigen-energies must be found numerically

through the implicit relation3 :

1 In fact, the Hermite polynomials are a subset of Tricomi functions for specific values of ε: the QHO

steady state eigenvalue energies.
2See Appendix A, Normalization Factor.
3The function Γ is the factorial function extended to the entire real line.
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γ

Γ( 3−2εn
4 )

=
−2

Γ( 1−2εn
4 )

(13)

-Γ
2�2

-6 -4 -2 2 4 6
Γ

-4

-2

2

4

Energy HÑΩL

Figure 1: Plot of the energy as a function of interaction strength γ for the n = 0 to n = 5

states.

The graph of the energy of each stationary state versus the interaction parameter (Figure

1) is immensely interesting in and of itself. At γ = 0, we have the expected energies at integer

increments starting at the ground state energy of 1
2 . However, as γ increases (representing

stronger and stronger repulsion), the energy of each even state tends toward the energy of

the odd state directly above it. The exact opposite is true for attractive interactions: as

γ goes to increasingly negative values, the even energies asymptote towards the odd states

directly below. However, the symmetry of this graph is broken by the behavior of the ground

state, which as the name implies, has no state beneath it. As γ → −∞, the ground state

energy falls unbounded in the mathematical sense, representing an infinitely bounded state

in the physical sense. The deeper implications behind this phenomenon are not entirely

understood. However, the rapidity of the divergence suggests that the ground state of the

relative wavefunction quickly condenses into a strong cusp, becoming sharper and sharper

at the origin. Recalling the classic example of a bound particle in an infinite Dirac well, but

subject to no other potential, we see that the ground state, as gamma grows increasingly

negative, quickly "forgets" the presence of the harmonic trap and approaches this textbook

case. Figure 1 agrees with this evaluation, showing that the ground state energy rapidly

approaches -γ2/2, the ground state energy of a wavefunction experiencing only an infinite

narrow well.

In addition to the shared energy values, the extreme interaction strengths also force the
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even wavefunctions into the same configuration as the corresponding odd state4 . Technically,

the even state wavefunctions are identical to the absolute value of the odd state wavefunc-

tions, but the physically observable probability densities (the square of the absolute value

of the wavefunction) are the same.

lim
γ→±∞

|ψn|
2

=
∣∣ψn±1

∣∣2 , n ∈ {2, 4, 6...} (14)

Ψ0
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Ψ4HΨ3L
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Figure 2: Plots of the first few steady states for γ = −∞, γ = 0 and γ =∞.

1.2 Numeric Framework

We have explored the concepts put forth in this paper by a numeric technique known as the

split-operator method (SOM). In order to solve Schrödinger’s equation for the evolution of

a quantum state in a dynamic potential, the complications of solving a partial differential

equation in time and space renders nearly all possible scenarios unexplorable. The goal of

this method is to reanalyze the time-dependent Schrödinger equation for small time steps

tj separated by ∆t to create a discrete evolution:

ÛΨ(x, tj+1 = tj + ∆t) = e−iĤ∆t/~Ψ(x, tj). (15)

We begin with the standard quantum unitary evolution operator

Û = e−iĤ∆t/~ = e−i(K̂+V̂ )∆t/~, (16)

which is a rotation in Hilbert Space H for the state |Ψ〉 ∈ H on which it acts: Û |Ψ〉 = |Ψ′〉.

The Baker-Hausdorff-Campbell theorem allows us to factor Û as

Û = e−i(K̂+V̂ )∆t/~ = e−iK̂∆t/~e−iV̂∆t/~ +O(∆t2). (17)

The O(∆t2) correction is due to the non-commutativity of V̂ and K̂. We can take this

factorization one step further and write a "split" evolutionary operator [6]:

4This includes the ground state being forced into the first excited state as γ →∞.
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Û = e−iK̂∆t/2~e−iV̂∆t/~e−iK̂∆t/2~ +O(∆t3). (18)

Let us define ÛK1/2 ≡ e−iK̂∆t/2~ and ÛV ≡ e−iV̂∆t/~ for a compact notation.

We note that the discretization of t results in an error accumulation on the order of

O(∆t3) per time step[7]. After Nt = T
∆t timesteps, where T is the total evolution time, the

error accumulated is O(∆t2).

We begin by defining a position space grid {xn = xmin +(n−1)∆x} where n ∈ 1, 2, ...Ng

and Ng is the number of gridpoints sampled, i.e. the grid resolution [8]. We can imagine this

as a periodic space with circumference Lx such that xmax+∆x = xmin and∆x = Lx/Ng. We

also define a momentum space grid {pm = 2πm/Lx}, m ∈ 1, 2...Ng. The momentum space

must match the conditions presented by the position space; specifically: pmax + ∆p = pmin,

∆p = 2π/Lx, and Lp = ∆pNg.

The relationship between position and momentum space is found via the Fourier Trans-

form5 . Let ψ(x) be a position-space wavefunction, and ψ̃(p) be the corresponding momentum-

space wavefunction. Then:

ψ̃ = Fψ =
1√
2π

∫ ∞
−∞

ψe−ipxdx. (19)

The overall quantum state Ψ can be represented as a vector in a Ng-dimensional Hilbert

space |Ψ〉 ∈ HNg
which can be represented in position-space by taking the projection of Ψ

on the position-space bases

ψ(xi) = 〈xi|Ψ〉 , (20)

or conversely in momentum-space

ψ̃(pi) = 〈pi|Ψ〉 . (21)

Because our method of evolution operates on discretized variables, we must use a discrete

version of the Fourier Transform (DFT). However, because in the discrete case the trans-

form operator is defined as a matrix with dimension Ng×Ng, the number of sub-operations

executed scales as N2
g each time the DFT is invoked. For this reason, an alternative was

developed known as the Fast Fourier Transform (FFT) which is a highly accurate approxi-

mation to the DFT, but scales as Ng logNg, making it much faster.

The motivation behind being able to transform between position and momentum-space is

not immediately obvious, especially when this transformation creates additional operations

to be executed during the evaluation period. Recalling Eq. 18, each time step of the

5To a true mathematician, Eq. 19 is actually the inverse Fourier transform.
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evolution approximation involves acting on the previous wavefunction with three unitary

energy operators: a kinetic energy operator, a potential energy operator, and another kinetic

energy operator. The potential energy operator is defined by

V̂ = V (x̂) = V (x), (22)

which is the potential energy of the system in position-space (where x̂ = x). The kinetic

energy operator is defined:

K̂ =
p̂2

2m
=
−~2

2m

∂2

∂x2
(23)

in position-space, which is derived from the relation p̂ = −i~ ∂
∂x . However, in momentum-

space, p̂ = p, and the kinetic energy operator is defined:

K̂ =
p2

2m
(24)

In position-space, the kinetic energy operator is proportional to the Laplacian ∇2 on

position base states. The derivative operator can be approximated by a NG ×NG matrix,

but this approach scales as N2
G for each application of K̂. However, in momentum-space, the

kinetic energy operator is simply a multiplicative operation, and therefore the scales only as

NG. For this reason, it uses fewer resources to implement this operator in momentum-space,

after a FFT.

Combining these, we can create a chain of operators that evolve the wavefunction

Ψ(x, t)→ Ψ(x, t+ ∆t):

Ψ(x, t+ ∆t) = F−1 ∗ ÛK1/2 ∗ F∗ÛV ∗ F−1 ∗ ÛK1/2 ∗ F∗Ψ(x, t). (25)

Although aesthetically this form is convoluted, computationally it creates an effi cient

and powerful approximating method which scales as NG logNG and has error O(∆t3).

In the discrete representation, there are also complications that arise from the use of the

Dirac spike, which is infinitessimal in width. Although this powerful tool is often used in

mathematical frameworks on account of its convenient properties, it is more realistic to use

an interaction potential that extends with finite width. We therefore chose to use a narrow

Gaussian function to represent a finite-range interaction potential

Int(x) = γe−x
2/2λ2 , (26)

where λ � σ. The length scale of the interaction potential λ is much smaller than the

length scale of the trap σ.
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Figure 3: Plot of the interaction ramping with time, where ξ is the ramp period.

The ramping of the interaction strength can also lead to non-stationary behavior in

the numeric state. Ramping "kinks" (discontinuities in the first derivative) can create

perturbations in the wavefunction, but the use of smoothed ramping functions requires

additional criteria for deciding when the interaction strength is "suffi ciently close" to the

limiting value. We decided to use a shifted sine function during the ramp period ξ. In this

way, we avoid both kinks and limiting behaviors, at the expense of a discontinuity in the

third derivative. The ramping function has the form

Int(x, t) =


0 t < 0

γe−x
2/2λ2 1

2 [sin(πtξ −
π
2 ) + 1] 0 ≤ t ≤ ξ

γ ξ < t

. (27)

1.3 Numeric Validity

The obvious problem in dealing with numeric analyses is the interpretation of the accuracy of

the results. How can we be sure what the computer generates is physically meaningful? One

solution is to apply a test case in which the result is known analytically, and then adjust the

computational parameters until the numeric result matches the analytic solutions. Although

the trivial case is to apply this approach to an unchanging QHO potential, the triviality of

this case does not strongly test the numerical implementation.

A better test is to observe the case of a highly adiabatic dynamic potential to a steady

state solution for some arbitrary nonzero choice of γ. We expect that if we ramp up the

interaction strength infinitely slowly, we will remain in the ground state the entire time,

even though the form of the ground state changes with γ6 . For our test case, we evolved the

6For example, if we began in the |ψ0〉 ground state when γ = 0 and ramped infinitely slowly to γ = γo 6= 0,

we would expect to remain perfectly in the state |ψ0〉 even though |ψ0〉γ=0 6= |ψ0〉γ=γo. This is the perfectly
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Figure 4: Plot of the fidelity of the analytic ground state |0〉 and numeric state |N〉 for

various ∆t at Ng = 500(∆x = 1
50 ) and ξ = 10,γ = 10. Saturation is reached at ∆t = 1

75 , at

which point 〈N |0〉 = .9893.

ground state at γ = 10 over a ramping period of ξ = 10� 1
ω , where

1
ω is the characteristic

time scale of the quantum trap, to approximate an adiabatic ramp time. We compared the

fidelity of the resulting numeric wavefunction |N〉 to the analytic ground state |0〉 of the

γ = 10 interaction potential, where

F (α, β) = | 〈α | β〉 |, (28)

(the overlap between the two states,) and then increased the number of time and spacial

sampling points (resolution) until the fidelity value becomes insensitive to increasing resolu-

tion. This assures us that any significant difference in the fidelity is attributable to physical

effects, not computational errors.

1.4 Results

Collectively, the results of our tests indicate that even when subject to varying potentials,

the evolving numeric wavefunction |N〉 is resistant to excitations. That is, if |N〉 began in

the ground state, it retains a strong tendency to remain in the ground state throughout the

ramping process. This tendency is weakened by decreasing dramatically the ramp period

ξ or increasing the magnitude of the interaction strength |γ|. The sensitivity to positive

versus negative γ is not the same; the resistance to excitations is weaker for γ < 0 than for

γ > 0.

First we examine the effect created by varying the interaction strength. Referring to

Figure 5, we see that as the ramping period becomes longer, the probability of finding |N〉

adiabatic scenario.
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Figure 5: The probability of finding |N〉 in the ground state as a function of ramp period ξ for

γ = ±2.5. Though they mirror one another in behavior, the attractive interaction displays

greater probability of excitation. The dashed lines show the minimal possible probability

for each scenario, occuring at instantaneous interaction ramping ξ = 0.

in the ground state (P = |〈N | 0〉|2, where |0〉 is the analytic ground state) is increased,

mimicking the increasingly adiabatic case. From the figure, it is apparent that this proba-

bility does not approach one, which indicates statistical error. We estimate that there are

two possible sources. The first is the general disagreement created through the numerical

approximations. We estimate this systematic error to be about 3%. Observed "overshoots"

of the total probability of eigenstates never exceded 1.03, 3% above the physically acceptable

value of one, when taking into account the first six states. The second factor of error is the

model itself. The difference between a delta spike and a narrow Gaussian, though small,

can lead to differing behaviors among the occupying wavefunctions. This is not a source

of error in the true sense; we are merely comparing the results of one physical model to a

similar second model.

Figure 5 also shows how the behaviors of specific γ are not symmetric with respect to

the sign of γ. The plot shows that the behavior of γ = −2.5 follows closely in form of

γ = 2.5, but that the physical probabilities are decreased for negative γ. This indicates that

there is a significant underlying difference in the behavior of the ground state for attractive

interactions and repulsive interactions.

We also observe snapshots of the numeric state for varying interaction strengths at

speicifc values of the ramp period. Figure 6 shows how, as expected, the probability of

finding |N〉 in the ground state drops off as the magnitude of γ increases. Again, the

disparity between repulsive and attractive interactions is observed, as this probability drops

off much faster for negative γ. Also, as we expected, the slower the interaction is turned
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Figure 6: The probability of finding |N〉 in the ground state as a function of interaction

strength γ for ramp periods of ξ = 1 (solid,) and 10 (dashed.) The probabilities drop

off much faster for attractive interactions than repulsive. The dot-dashed line shows the

instantaneous ramping case, the minimum allowable probability for any ξ, γ.

on, the slower this probability drops off, but only for positive γ. For negative γ, the faster

ramping has the lower probability fall off. The difference between the two is small, and may

be an artifact of numeric error. Additional comparisons of a greater set of ramp speeds is

needed to draw any further conclusions.

The dot-dashed line shows the instantaneous ramping case, ξ = 0. This probability is

found by comparing the analytic ground state for any γ with the QHO ground state γ = 0.

The latter represents instantaneous ramping, such that the wavefunction has no time to

evolve. Even up to interaction strengths of γ = 5, the minimal probability of finding the

wavefunction in the ground state is .79. This obviously is not true for negative γ where

the probability drops of faster, but this is definitive evidence that the state is resistant to

excitations even for fast interaction ramping and up to large interaction strengths.

Γ=5

Ξ=10

-4 -2 0 2 4
x

Γ=-2.5

Ξ=10

-4 -2 0 2 4
x

Figure 7: Plots of the evolved numeric wavefunctions |N〉 (solid) transposed on the analytic

ground state wavefunctions |0〉 (dashed) for various interaction strengths.
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1.5 Additional Research

The field of quantum information theory is a hot area right now. A key topic of interest

to researchers in this field is the understanding and exploitation of quantum entanglement.

Entanglement, in its most rudimentary form, is a measure of correlation of information

between two observable systems. For this paper, the entanglement might be between the

positions of particle 1 and particle 2. Conversely, it might be the correlation between the

center of mass and relative positions. In fact, each particular coordinate system chosen can

exhibit entanglement measures and, intrestingly enough, not every coordinate system will

have the same measure.

There are many people who study how the various entanglements among coordinate

transformations reflect symmetry properties in the physical systems in those coordinates.

For example, using the purity (one type of entanglement measure)

P (φ) =

∫ ∫ ∫ ∫
R
φ(x1, x2)φ∗(x′1, x2)φ∗(x1, x

′
2)φ(x′1, x

′
2)dx1dx2dx

′
1dx
′
2, (29)

we can determine how the interaction between the particles entangles their positions (or

momenta, etc.) It is easily shown that any separable wavefunction φ(x,X) = φx(x)φX(X),

such as that of the COM-relative basis wavefunction used in this paper, has a purity of

one and is perfectly unentangled for any value of γ. However, in the original position-space

basis, this is not true. (Numerically, it is roughly 0.7 for γ = 5.)

Future research studying how the interaction affects entanglement could show how en-

tanglement can be directly tuned. We conjecture that as γ becomes more negative, and the

particles more attracted, the entanglement between the particles’positions should become

increasingly correlated.
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2 Part II: The Idealized Three-Dimensional Optical

Lattice

More often than not, physicists in the laboratory are operating under monetary as well as

equipment limitations. Because of this, lab technicians construct their particular lattice to

fulfill only the specific needs of their experiment which has lead to a shortage of information

of the full abilities of the optical lattice. However, through the use of computer simulation,

we can study the various configurations that a perfectly controllable lattice can perform.7

2.1 Defining the Potential

A fully controllable lattice consists of three independent lasers, all aimed orthogonally at a

single intersection point and retroreflected back upon themselves. Each beam is an electro-

magnetic wave travelling in the ê1-direction with polarizations in the ê2- and ê3-directions.

For example,

−→
E 1 =

∑
{i=2,3}

[E1ie
i(ky−ωt+φ1i)êi + E1ie

i(−ky−ωt+θ1i+φ1i)êi], (30)

where the subscripts mn signify the the beam direction, m , and the polarization direction,

n; φ represents the incident phase of the beam and θ represents an arbitrary phase change

of the beam post reflection; k represents the wave number; and ω represents the angular

frequency of the wave. The intensity of each orthogonal component of each beam can be

independently controlled. By controlling these components’ strengths we can effectively

induce a polarization rotation. The net electric field of the lattice is the sum of these three

beams:

−→
E =

3∑
i=1

−→
E i (31)

Particles in such a field experience an effect known as a scalar light shift depending on the

average intensity of the field:

Iavg ∝
∣∣∣−→E tot

∣∣∣2 =
−→
E tot ·

−→
E ∗tot (32)

The average intensity of the field is only stable (naturally time-independent) if the wave-

lengths and wavenumbers of the three beams are identical. Otherwise, vibrational oscilla-

tions arise in the intensity, which will destabilize the lattice. This leaves the incident phase,

relative phase, and individual beam intensity as controllable parameters.

7For additional information, see [9], [10], and [11].

13



The physical lattice is created by the average intensity field derived in Eq. 32. Using a

frequency just below the resonant frequency of the lattice particles, we create red-detuning.

In a red-detuned lattice, the locations of maximum intensity correspond to potential minima;

particles are drawn toward high-intensity sites. (The opposite effect is known as blue-

detuning.)

2.2 Basic Parameters

In total, the lattice has 18 controllable parameters: six intensities (where Iij = E2
ij) which

control the amplitudes of the beams (and effectively the polarization angles), six initial

phases φij , and six phases θij (for example, the beam projected in the y-direction has a

phase change for both its x- and z-polarized components.) By examining the final intensity,

it can be seen that the φ parameters only exist in pairs. By exploiting this, we can eliminate

half of the φ values. As an arbitrary choice, we let the φ parameters of higher numeric index

be eliminated.

2.3 1D Well Splitting and Pairing

Consider the 1D (blue-detuned) lattice where the periodic wells are slowly split into two

equal wells, pair with neighboring wells, split again, then rejoin to create the original well

again. This lattice set can be constructed along the y-axis (at x = z = π
2 ) by letting

I1x = I3x 6= 0, θ3x = π, φ1x = π
2 , and letting φ1x increase slowly enough to maintain

stability in the lattice. The following graphs plot intensity as a function of position.

0246810125101520

φ1x = π
2

0246810125101520

φ1x = 7π
8
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φ1x = 9π
8

0246810125101520

φ1x = 3π
2

The ability to divide wells is of key importance to technologies using atom interferometry.

By splitting the atomic wavefunction into separate wells, the differences between the two

wavefunctions can be analyzed to measure minute effects of the surrounding environment,

such as tiny variations in gravity. This could ultimately lead to abilities such as advanced

GPS.

2.4 Basic 2D Configurations [9]

We can first ignore the effects of the third beam, such that we are effectively dealing with

a 2D lattice in the xy-plane. The first 2D lattice we consider is when beams 1 and 2 are

polarized in the same direction, in this case ẑ (see Figure 2.1-A). This creates a lattice of

wells that are aligned along a diagonal (the intensity is roughly sinusoidal in the direction

(x̂+ ŷ)/
√

2.)
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Figure 2.1-A Figure 2.1-B

The second 2D lattice we examine is the case in which the beam polarizations are or-

thogonal: beam 1 only has x̂ polarization and beam 2 only has ŷ (Figure 2.1-B). This lattice

has wells that are arranged rectangularly. As shown, it has more, but shallower, wells than

the previous lattice. In both graphs, lighter colors corresponds to higher intensity. For the

purposes of well pairing in 2D, it is a combination of these two lattice types that allows for

this ability.

2.5 Basic 3D Configurations

The simplest 3D lattice structure we consider is the case in which all three beams are

polarized orthogonally; that is, beam 1 is polarized in the ẑ-direction, beam 2 in the ŷ,

and beam 3 in the x̂-direction. This setup gives a sinusoidally varying intensity in all three

directions. If all phase parameters vanish, and I1z = I2y = I3x 6= 0, then the lattice is a

simple-cubic crystal of equally-deep wells (Figure 2.2-A).

The next simple case we consider is when all beams have equal intensities. (That is,

I1x = I1z = I2x = I2z = I3x = I3y 6= 0.) This creates a body-centered cubic lattice with

wells roughly twice as deep as the previous setup (Figure 2.2-B). (Contours shown in each

frame are not equal in value.)
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Figure 2.2-A Figure 2.2-B

However, as stated before, the ideal configuration for well-pairing transformations is a

combination of the above lattices. This creates a simple-cubic lattice that alternates in the

xy-plane (the plane of well pairing) between deep and shallow wells. The alternating in

depths is a consequence of the ability to well pair smoothly.

When the correct phase parameters are changed, each deep well will pair with an adjacent

shallow well, but depending on how the the wells are split, they may or may not be allowed

to exchange positions. The following illustrations show the combined 3D lattice and the

"reverse" lattice where the deep/shallow wells have exchanged after the well pairing. The

actual parameters that allow for this transormation will be explored in the next section.

2.6 Linear Well Pairing

The simplest transformation of well pairing is pairing along a line, that is, limiting the

pairing to one dimension. The lattice configuration shown above allows for easy well pairing
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in one dimension, more diffi cult pairing in a second dimension, and no pairing in the third.

The direction is arbitrary and determined by the values of the intensities. For example, the

lattice shown above was created by the following values: I1x = I2y = I3x, I1x = 5 ∗ I1z,

I2y = 5 ∗ I2z, I3x = 3 ∗ I3y and θ3x = θ3y = π.

This particular lattice can easily pair wells in the x̂-direction, can be made to pair in

the ŷ-direction, and cannot pair in the ẑ. For pairing along a line, this lattice would be

implemented to pair wells along the x-axis. This could also be used to split wells, starting

first with wells paired to create deep wells and then separating them back into the separate

wells. However, the separate wells will not be of the same size (depth), so this perhaps may

not be the best option in practice.

Implementing the well pairing sequence is easy, we just let θ2z go from 0 to π simlul-

taneous with φ1z going from 0 to π/2. The deep and shallow wells can then be made to

exchange positions by allowing θ2z and φ1z to continue increasing or retain their positions

by allowing θ2z and φ1z to decrease at the same rate as before.

θ2z = π, φ1z = π/2 θ2z = 3π, φ1z = 3π/2

2.7 Circular Well Pairing

This transformation is of great interest, because it can be used to mimic the movement of

charged particles within a magnetic field. Depending on which wells the particles begin in

they can be made to move counter- or clockwise in a circle (really a square) of four wells

by pairing, for instance, in the x̂-direction, then the ŷ, then the -x̂, then the -ŷ. This is a

simple extension of the linear well pairing sequence.

If we begin with the same lattice setup used in the previous section, we can first use the
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linear pairing process of letting θ2z go from zero to 2π and φ1z go from 0 to π simultaneously.

At this point the particle will have moved across one side of the square. Now we must adjust

lattice parameters to "rotate" the pairing process by π/2.

θ2z = π, φ1z = π/2, θ1z = 0 θ2z = 4π, φ1z = π/2, θ1z = π

θ2z = 3π, φ1z = 3π/2, θ1z = 0 θ2z = 2π, φ1z = −π/2, θ1z = π

2.8 Extension and Future Research

The ultimate goal is to use dynamical lattices to transport loaded particles along controlled

paths, such as the imitation of particles responding to magnetic fields via the circular well-

pairing. Before this is possible, a stable method for varying the lattice potential to maintain

predictable behavior in the particle wavefunctions must be determined. Creating an initial

stationary wavefunction can be done by Taylor expanding (and retaining only the second-

order term) about a well minimum to approximate a QHO potential

VQHO ≈ −
V (0)x2

2
, (33)
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where the natural frequency of the trap is ω =
√
V (0)/m. This allows us to prepare

a particle in any stationary state for the QHO. The next step will be to find a manner of

transforming the lattice such that the state is not perturbed by the evolving lattice potential.

This exploration will likely have to be numeric, perhaps even a trial-and-error approach, as

there are currently no known solutions to the Schrödinger equation for a potential of this

lattice form.

With the ability to controllably transport loaded particles (in a way that can be eas-

ily repeated,) condensed matter and solid state phenomena such as superconductivity can

be explored in a more directly observable way. Once these phenomena can be recreated

artificially, the technological opportunities are vast.

Conclusions

This paper described how two-particle quantum states are resistant to excitations, maintain-

ing about 80% to 90% probability of remaining in the ground state, even for fast interaction

ramping and large interaction strengths. This is significant because experiments using such

interactions can be confident in the probability of keeping loaded particles in the ground

state during operations that involve changing the interaction strength.

Though the realm of quantum mechanics seems to bear no direct connection to the

macroscopic world we occupy, the laws that govern the microscopic scales of the universe

open a doorway to powerful new and untapped resources. Realization of advanced quantum

technologies hinges upon our ability to fully understand the nature of the quantum world

and how to control it. Our research attempts to glimpse into the reservoir of unexplored

quantum behaviors so that its nature may be better understood.
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3 Appendix A: Expanded Functions

3.1 Normalization Factor

Nn = π−1/2

√
Γ( 3

4 −
εn
2 )Γ( 1

4 −
εn
2 )

Φ( 3
4 −

εn
2 )− Φ( 1

4 −
εn
2 )

where Φ is the logarithmic derivative of the factorial function Γ.

3.2 Expanded Lattice Average Intensity

Iavg = 2I1x[1 + cos(2ky − θ1x)] + 2I1z[1 + cos(2ky − θ1z)] + 2I2y[1 + cos(2kx− θ2y)]

+2I2z[1 + cos(2kx− θ2z)] + 2I3x[1 + cos(2kz − θ3x)] + 2I3y[1 + cos(2kz − θ3y)]

+2
√
I1zI2z[cos(ky − kx+ φ1z) + cos(ky + kx+ φ1z − θ2z)

+ cos(ky + kx− θ1z − φ1z) + cos(ky − kx− θ1z − φ1z + θ2z)]

+2
√
I1xI3x[cos(ky − kz + φ1x) + cos(ky + kz + φ1x − θ3x)

+ cos(ky + kz − θ1x − φ1x) + cos(ky − kz − θ1x − φ1x + θ3x)]

+2
√
I2yI3y[cos(kx− kz + φ2y) + cos(kx+ kz + φ2y − θ3y)

+ cos(kx+ kz − θ2y − φ2y) + cos(kx− kz − θ2y − φ2y + θ3y)]

where I2x ∝ E2
2x, etc., and k is the beam wavenumber.
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