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Abstract 

You have a series of options. You need to decide whether to keep looking for more choices, or to pick from among 
those you've already discovered, but you don't know what else is out there. What is the optimal time to stop looking 
and pick? This is the thrust behind this work, in which I develop a theory of optimal stopping consistent with 
conventional utility maximization and study how the distribution of options in the potential choice space affects this 
maximization. Combining a mathematical treatment with computer simulation reveals that the searching agent 
systematically fails to achieve theoretically possible maximum utility while following a rational decision making 
model. The magnitude of this failing is found to be linearly dependent on the variance in utility of the distribution of 
choice space options. What this means operationally is that having a more uniform spread in quality of options can 
reduce happiness; applications include job searching, home and asset sales, and dating behavior.  
 
I. 

Sometimes people don’t like making decisions. It doesn’t really matter what the actual 

decision is, anecdotally it’s not uncommon for people to “go with the flow” and defer a choice to 

a friend, family member, or spouse.  And there’s an understandable reason. Imagine deciding 

where to take your family to dinner in an area you don’t know well. Not only may you feel 

external pressure from your family members to make a good decision—based on price, tastiness 

of the food, atmosphere, etc.—you also have to take time to look at and sort through the 

available choices. True, your time is valuable, but the act of looking has other costs too, 

including gas and energy in this case. It’s completely reasonable for the other parties involved to 

want to avoid these costs if they can. By implication, whatever disutility is associated with the 

task of searching through available options and coming to a decision outweighs the utility of 

actually being able to pick. 

 Given then that you’re in charge of choosing the best option from an unknown set, you 

want to balance the benefits of looking against the costs. When the costs outweigh the benefits, 

it’s in your best interest to stop. Finding that point is the process of optimal searching, and that 

point is the solution to the optimal searching problem. 

 In this paper, I look to develop a general theory of optimal searching under certain 

conditions, namely the following: 1) the searching agent has rough but imperfect knowledge of 
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the distribution of the value of each option; 2) the agent acts rationally and is able to cardinally 

rank options he finds; 3) the values of the found options are derived from a normally distributed 

random variable; and 4) the agent may look through infinitely many options should he choose to 

do so.  

 This general theory will aim to answer a number of qualitative and quantitative inquires 

relevant to searching. Given the conditions listed above, whether there is an explicit solution for 

the optimal time spent searching is of particular interest. Agents may use this knowledge to 

maximize their utility when confronted with a search in a general context. Further, how do the 

particular characteristics of each agent affect the optimal time spent searching? Surely an 

individual’s personality profile affects the process in some way. And what about the 

characteristics of the underlying distribution option values? How does varying the distribution 

parameters optimal stopping point? In this paper I will aim to answer these questions and clarify 

the dependencies among these variables. 

II. Literature Review: 

Economists have worked to develop specific solutions to the optimal stopping problem as 

it relates to certain canonical issues. Among these, labor market dynamics, utility maximization, 

and financial option exercise stand at the foreground, and these cases are treated with tools that 

generalize to more a general theory.  

Modeling labor market dynamics has proven difficult in the past due to the relative 

failure of classical labor supplied-labor demanded models to predict market clearing wage rates 

and unemployment levels. Under realistic conditions, an agent receives one job offer at a time 

and must choose within short time whether to accept the terms of employment. This decision 

involves estimating the chance of receiving a better paying offer and weighing that chance 
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against the disutility associated with further search costs. This process is developed by Pierre 

Cahuc and Andre Zylberberg (2004), who use marginal utilities and differential equations to 

create families of solutions the problem. Even then, these solutions don’t deal well with 

additional real-world complexities. 

Nobel Laureate Peter Diamond laid the groundwork to deal with these complexities in his 

early 1980’s study of search friction; having quantified the effect of a relatively small amount of 

economic inefficiency, he found that that inefficiency led to a relatively large disturbance from 

market theoretical equilibrium (Peter Diamond 1982).1 These forays were further advanced by 

co-laureates Dale Mortensen and Christopher Pissarides, and were ultimately combined into the 

DMP model of searching and matching. While these models advance the case of multiple agents 

searching simultaneously for like “goods,” they do not deal with the specific microeconomic 

decision made by an individually searching agent (Harold Cole and Richard Rogerson, 1999). 

To this end, there is much literature that deals with the factors that underlie utility 

maximization inherent in this decision, when an agent is subject to certain conditions. It turns out 

that the gathering of information about available options is an especially nontrivial step in the 

process. Before the agent considers any of the options available to him he must decide whether 

he needs more information to make an informed choice about whether to continue searching 

(Wolfgang Stadje, 1997), and if necessary, must sacrifice some marginal amount of utility to 

make this determination.  

The assumptions on which a utility maximizing agent with incomplete information will 

base his actions (Barton L. Lipman, 1999) also play an important role in the searching process. 

While people have demonstrated that they will generally make consistent choices 75% of the 

                                                        
1 This phenomenon is known as the Diamond Paradox. 
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time, Blavatskyy has shown that people will make random errors in assessing the expected utility 

of an option the remaining 25%, indicating that actually determining the value of a given option 

is a particular difficulty of searching agents (Pavlo R. Blavatskyy, 2007). Intuitively, errors in 

valuation have been shown to be heteroskedastic (Blavatskyy, 2009). 

 Besides the intrinsic value of the searched-for option, other factors affect an agent’s 

utility during the search process. An agent’s patience (John Quah and Strulovici Bruno, 2009) 

limits the allowable duration of the search by changing the functioning the functional form and 

magnitude of the parameters in the utility discounting function. (As the search time mounts, so 

do opportunity costs, hence time-disutility begins to play a role.) At the same time, searching 

through too few options also has potential for disutility. When evaluated for the case of agent 

with an infinite time horizon choosing when to exercise a financial option, the agent is under 

constant temptation to realize a profit, provided the option is in the money (Jianjun Miao and 

Junjian Miao, 2008). If he exercises the option before the option reaches maximum value he will 

have lost out.  

Compounding the difficulties in determining the best time to stop the search are regret 

effects. In general, people lose utility when they realize they would have been better off doing 

something besides what they are doing (Dean P. Foster and Vohra Rakesh, 1999). While people 

do have a tendency to disregard and minimize the disutility of future regret (Francesco Drago 

and Kadar Dora, 2006), a rationally searching agent should continually calculate this effect, less 

he halt a search prematurely.  

III.  Theoretical Model: 

One can view the optimal stopping problem as a specific case of utility maximization. In 

general, given certain constraints and parameters, an agent must execute an action at a time that 



Menasche 6 

maximizes welfare. Under this model, this executable action is the choice to stop searching.  

A. Assumptions and Definitions 

I start by assuming the agent is in a situation where he may take an arbitrarily long time 

to search through various utility giving options, should he choose to do so. To begin, assume that 

the agent takes a certain discrete period of time to discover one of these options (through 

exploring his “observation space,” the collection of all possible options, denoted henceforth by 

Ω), and that he can assign immediately a cardinal utility score to this option.  Denote these utility 

giving options, henceforth “observations,” by xi, i ∈ {1, 2, ... , n}, where n is the total number of 

discovered observations at time t, and define a map E: xi  R, such that E[xi] = Ui, where Ui is 

the utility of observation xi. We may collect the discovered observations in a set called the 

“consideration space” denoted ω, such that ω = {x1, x2, … , xn}. Let the ith element of ω be 

denoted by ω[i]. 

Assume further that the utilities given by these observations are distributed normally by 

~N(µpop, σ2
pop) and that the agent has only rough knowledge of the distribution parameters. The 

agent’s prior knowledge is given by ~N(µprior,σ2
prior). In the simplest case, once the agent 

discovers an observation, we allow him to return to it and choose it cost-free, should he choose. 

This condition may be relaxed after further exposition.  

B. Introducing the Utility Function 

Searching comes with inherent costs. Intuitively, the agent should continue to search 

through the observations until the costs of searching for new options outweigh the benefits. In 

one simple model, there are two components that have the potential to change the agent’s utility, 

holding constant E[xi]. One of these factors is time-disutility. The act of searching takes time and 

time is a valuable resource. Accordingly, there should be some disutility inherent to the 
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investigation of new observations. The other is disutility associated with regret; if an agent is too 

cursory in his survey of the observation space he may experience disutility from wondering if he 

has made the right choice by stopping the search.  

Given this intuition, define a utility function with parameters ω, n, and t, where utility, U, 

is given by 

(1)    

€ 

U(ω,n,t) = Max(E[ω]) − a1t −
a2
n

, 

where a1, a2 are positive constants and t, n are positive integers. One could view a1 as an agent’s 

impatience—at higher values, one time unit will discount more utility. In the same way, a2 may 

be viewed as an agent’s propensity to experience regret. At higher values, an agent feels the need 

to investigate more observations.  It is reasonable to adjust the units of time such that the agent 

discovers one observation per unit t. Note that this assumes the agent discovers new observations 

at a constant rate. Doing so and allowing the agent to find the first observation at time t = 1, then 

t = n, and U becomes 

(2)    

€ 

U(ω,t) = Max(E[ω]) − a1t −
a2
t

.      

C. Maximizing Utility 

The agent should choose the observation from his consideration space that yields the 

highest utility, hence the

€ 

Max(E[ω])  term. Examining the limiting behavior of the function 

agrees with intuition. As t→∞, the agent examines all the options (assuming Ω has infinitely 

many elements) and the regret term disappears; however in doing so, U→ –∞ as the costs of 

searching mount.  Figure 1 depicts a plot of (2) as a function of time, holding ω constant. 

Qualitatively, we see that U reaches a maximum when the benefits of alleviating regret are 

outweighed by the time disutility. The quantitative intersection in this figure is unique to the 
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parameters chosen to generate the graph and is not yet important. Because we hold ω constant, 

we can also differentiate U with respect to t and optimize the function to solve explicitly for the 

optimal stopping time. Solving, we find  

(3)     

€ 

dU
dt

= −a1t +
a2
t 2

,  

(4)     

€ 

tideal =
a2
a1

,         

and 

(5)    

€ 

Umax = Max(E[ω]) − 2 a1a2 .     

This is a simple result, but it hinges on the assumption that the agent’s consideration space grows 

with no variation in the utility of each discovered observation. In any meaningful search the 

consideration space grows with observations that yield utilities distributed in some way. As 

mentioned, we will assume here that these utilities are distributed normally with parameters µpop 

and σ2
pop. Solutions given by (4) and (5) are accurate in the absence of any variance in the 

underlying distribution of the observations, in other words as σ2
pop→ 0. In the empirical analysis, 

I will aim to demonstrate how introducing some randomness into the observation space lowers 

the agent’s values for tideal and Umax, and how relaxing certain assumptions further affects the 

searching process. 

D. The Search Simulation 

 The searching process will be simulated within Mathematica; I will begin by describing 

each step of the program. Before the agent interacts with his environment at all, I make the 

assumption that he has some rough knowledge of the underlying distribution parameters µpop and 

σ2
pop, and achieve this computationally by generating two random numbers within an arbitrary 

interval and multiplying each by µpop and σ2
pop respectively to establish µprior and σ2

prior. While 
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µprior is free to vary above or below µpop, σ2
prior should intuitively be larger than σ2

pop given the 

agent understands that his knowledge is potentially inaccurate. Widening this interval 

accordingly and graphing the results yields something like Figure 2, with xi~N(µpop, σ2
pop) 

graphed in black and xi~N(µprior,σ2
prior) graphed in red.  

 The agent then begins the searching process. Assuming the utility function of form (2) 

the agent discovers x1 at time t = 1. The agent will continue to discover new observations when 

the utility associated with discovering the next observation (including search costs) is greater 

than the current utility, thus one must define a Utility function, Ut +1, for the next time period. 

Generally, 

(6)   

€ 

Ut+1[ω t+1,t,nt+1] = Max(E[ω t+1]) − a1(t +1) − a2
nt+1

,  

where ωt+1 is the consideration space at time t + 1 and nt+1 is the number of total observations at 

that time. Given that the expectation of a normal distribution is the mean of that distribution, at 

time t + 1 the agent anticipates discovering an observation xt+1, such that 

(7)  

€ 

E[xt+1] =Ut+1 =Uω t = µt ,   

where 

€ 

Uω t is the mean utility of the observations in ω at time t and µt is convenient notation. It 

follows from (6) that 

(8)   

€ 

Ut+1[ω t ,µt ,t,nt+1] = Max(E[ω t + {µt}]) − a1(t +1) − a2
nt+1

,    

but we can note that even in general, Max(E[ωt]) is already given, so the first term is known if 

the agent can solve for µt. For the case where observations are discovered at a constant rate and t 

= n, (8) simplifies to  

(9)   

€ 

Ut+1[ω t ,µt ,t] = Max(E[ω t + {µt}]) − a1(t +1) − a2
t +1

,    



Menasche 10 

and the primary theoretical concern becomes solving for µt. To begin, we consider the case 

where t = 1, and the agent has discovered only one observation. The agent has rough prior 

knowledge of the distribution of Ω, but cannot immediately calculate µt without incorporating the 

new knowledge gained from the observation he discovered. He must revise this prior knowledge 

to reflect actual data about the true distribution of Ω. It is intuitive that given only one data point 

the agent cannot immediately take x1 = µt; instead, µt should be formed by averaging the point in 

some way with the prior knowledge. To do this, one option is for the agent to weight the 

observations by Z-score. Intuitively, if E[xt] is farther away from µprior, the agent should revise 

his prior knowledge more because he perceives it is more likely that his initial knowledge is 

inaccurate. As the agent discovers more observations, however, the strength of the previously 

computed mean should increase sue to the amount of supporting data. 

 Difficulties arise, however, because in order to compute the Z-score, the agent must 

compute some measure of the standard deviation that includes information from both his prior 

knowledge and the new data point. The standard deviation, in turn, depends on the current 

distribution mean so the two quantities must be computed simultaneously. Noting that for the 

first time period µt-1 = µprior, this would imply simultaneous equations of the form 

(10)     

€ 

µt =
(n)(µt−1) + (z)E[xt ]

n + z
       

and 

(11)     

€ 

σ t =
1
n

(ω[i]−µt )
2

i=1

n

∑      

where 

(12)      

€ 

z =
xt −µt

σ t

,    
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however, until ‘enough’ observations are discovered, the agent cannot rely on a measure of the 

standard deviation calculated in this way.  Certainly, the standard deviation of only xt is not 

perfectly representative of the underlying distribution, so the agent should use his prior 

knowledge to construct some kind of average. Ideally, such an average would converge to the 

calculated value of the standard deviation when the number of observations in the consideration 

space is sufficient. Constructing such a function yields a piecewise function given by  

(13)   

€ 

σ t =

N0 − n
N0

σ prior +
n
N0

1
n

(ω[i]−µt )
2

i=1

n

∑ , n ≤ N0

1
n

(ω[i]−µt )
2

i=1

n

∑ , n > N0

 

 

 
 

 

 
 

,  

where N0 is a parameter characteristic to agent describing in some way his confidence in his prior 

knowledge or otherwise the strength of his memory. If N0 is relatively large, he will have to 

discover comparatively many observations before he disregards his old conception of the 

distribution of Ω and uses the his calculated value exclusively. If n ≤ N0 then from (13) we can 

see that then the prior and the calculated values are combined with weights consistent with the 

number of observations discovered. After this point, when n > N0, the agent will rely only on the 

value he calculates from the consideration space.2  

 Solving (10), (12), and (13) simultaneously yields values for µt and σt that the agent then 

uses to form his revised distribution, the mean of which will serve as the basis for the expectation 

of the next observation’s utility. To demonstrate in the context of the previous figure that shows 

the agent’s prior generation, Figure 3 displays the acquisition of the first observation and the 

                                                        
2 Figure 3 displays the results of this revision process after 25 iterations; the underlying 
distribution of Ω is graphed in black, the agent’s initial guess at the distribution of Ω is graphed 
in blue, and his guess after 25 iterations is graphed in red. The lighter curves show the process of 
convergence to the red plot. 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agent’s revision of the distribution. The dashed vertical line is E[x1], the black curve is the 

distribution of Ω, and the red curve is the agent’s previous conception of the distribution of Ω. 

The utility of the observation generated is close to µpop; notice µt is closer to µpop and the 

discrepancy of the observation with respect to the prior seems to be about one standard deviation. 

Accordingly, the deviation of the revised distribution is marginally less.  

 As a slight digression, it is reasonable to ask whether the revision process is an accurate 

one. Using tests of 25 iterations each, I have found that very near convergence occurs quickly, 

regardless the observations generated. Figure 4 depicts three such cases, with the underlying 

distribution curve drawn in bold black, the agent’s prior knowledge in bold blue, and the revised 

distribution after 25 observations in bold red. The intermediary revisions are the lighter curves. 

For this figure, the agent’s value of N0 is 10. 

 Using the same coloring scheme, Figure 5 shows the same convergence, but with a 

change in parameter, namely N0 = 5. Convergence is more variable, but still appears acceptable. 

 After the agent revises his prior knowledge, he computes the expected utility of 

discovering another observation using (9). If it is higher than his utility currently, he continues to 

look. For the observation and priors shown in Figure 3, this process is depicted in Figure 6. In 

this figure, the expected utility at time t + 1 is graphed in red at time t. Current utility is graphed 

in blue. Provided the red dots are above the blue dots, the search should continue. The point in 

time at which the dots cross is the time at which the search would stop. Figure 7 depicts the 

agent’s conception of Ω (in magenta) at the time the search initialized from Figure 3 ultimately 

concludes. It has converged to near to the actual distribution of Ω. Figure 8 displays the 

corresponding graph of Utility vs. Time at the optimal stop time.  
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 Generating more observations and examining the agent’s utility response as time goes on 

shows that the agent would stop the search prematurely; utility continues to increase despite the 

agent’s projections. Figure 9 shows this progression. A full printout of this simulation run-

through complete with code is available in the Figures section as Figure 14. The next section will 

quantitatively examine the relationship between the variance of Ω and the difference in utility 

achieved by the agent given the premature stop.  

IV.  Emperical Analysis: 

Consistent with (4), there exists an optimal time to stop the search given no variance in 

the utility of the observations discovered and added to ω. (In other words, the agent discovers an 

observation that yields a given utility again and again.) We might then ask how introducing 

variance to Ω affects this optimal time.  

Rerunning the simulation for various values of σ2
pop (25 iterations per value) and 

averaging the difference in time of the agent’s stopping against the no variation value given by 

(4) yields results given in Table 1. When this time difference is graphed as a function of the σpop 

/µpop ratio, the result is given by the curve graphed in Figure 10. The dependence is clearly 

nonlinear, but qualitatively, one notes that higher levels of uncertainty in the underlying 

distribution shorten the time the agent spends searching. The graph asymptotes to a value of (tmax 

– 1) because when variability in Ω gets to a certain level, the search ends most frequently in only 

one round and the maximum the difference in time periods can be is, in fact, (tmax – 1).  

Pursing this angle of analysis further leads one to more questions. While we have already 

that established that the search ends before the no-variance theoretical value of t, it is also 

apparent from the qualitative shape of the agent’s realized and expected utility vs. time graph 

(Figure 9) that the simulated search that includes variance also ends before it should. The agent 
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could actually improve his ultimate stopping utility if he searches past the point where his 

expected utility (graphed in red) crosses his currently realized utility (graphed in blue) to the 

point where the realized utility is at a maximum. How much does stopping the search rationally 

(where expected utility crosses realized utility) lower the ultimate stopping utility, given that the 

realized continues on to another maximum? 

It turns out that the size of the gap between the true maximum utility and the rational 

stopping utility is a linear function of the σpop /µpop ratio. This relationship is displayed in Figure 

11; data used in least-squares regression are summarized in Table 2. The resultant best-fit line is 

given by 

(14)    

€ 

ΔU = (3.68 ± 0.09)
σ pop

µpop

∗100
 

 
  

 

 
  − 0.01,      

where |ΔU| is the magnitude of the reduction in utility in percent. (To generate these data, 100 

iterations of the model were performed at each value of σpop /µpop, with the results averaged.) 

These findings imply that for every 1% change in the underlying distribution, Ω, there is 

approximately a 3.68% reduction in stopping utility as measured by the vertical difference 

between the expected utility/realized utility crossing point and the level at which realized utility 

is actually maximized. See Figure 12 for a clarification of this point.  

 Again, as a consequence of the agent acting rationally (and consequently stopping his 

search too early), he does loses out, to the tune of 3.8% per 1% in the σpop /µpop ratio. The agent 

should look longer; one possible extension to the model could be to find out by how much.  

Strangely, this result also points toward the conclusion that by minimizing the variance in 

an underlying distribution of options, the agent can achieve greater happiness for a given µpop. 

This is not intuitive—somehow the idea that an agent might gut out a longer search and try to get 
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lucky is hard to shake. It is important to note, however, that the values for time-disutility and 

regret parameters a1 and a2 are held fixed in these cases. It is possible that somehow if the agent 

expects a wider distribution (with extreme values more likely) his time-disutility coefficient will 

be lower indicating more patience and a willingness to look for longer. Another interesting 

extension would be to make the parameter a1 randomly generated but inversely proportional to 

σpop and thus σprior. Without this addition, it suffices to say that more variability in Ω tricks the 

agent into stopping sooner to some extent. 

 An easy way to improve the applicability of the searching process is to inquire whether 

the qualitative effects of the previous differ in nature to a search where the agent cannot 

immediately return to an observation once he has moved on. This is analogous to an individual 

choosing whether to accept a job or sell a house given an offer; if the expected value of a later 

observation is higher once the costs of waiting and searching are subtracted, it is rational for the 

individual to wait. Intuitively, these searches should take longer. The agent develops knowledge 

of the distribution at the same rate in both cases, but it is more likely the agent in the second case 

will keep searching because half the time he will be holding a below-average observation that he 

would rather trade for another of better value.  

 Given the new restrictions in the searching process, one might then imagine a scenario 

where a rationally acting agent moves on from an observation expecting to find something better 

but is then disappointed to find the observation he relinquished was actually above average. It 

might then take him considerable time to recover an observation of the same value; given the 

agent is rationally acting and has some threshold value for the time-discounting parameter, he 

may be forced to stop before he finds another due to time disutility. This is a settling scenario: 
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the agent knows that better and more valuable observations are present in Ω but has looked long 

enough that he must make a less optimal selection. 

 Indeed, this circumstance comes to fruition. Depicted in Figure 13, the agent’s realized 

utility is no longer monotonically increasing. At t = 6, the agent expects a higher utility but is 

disappointed and is forced to ultimately accept a stopping utility less than his utility at t = 6.  To 

construct this example, iterative runs of the model were performed using different values of the 

time discounting parameter to determine the threshold where settling would occur. The scenario 

first manifested itself in the results when the a1/µpop ratio was 0.15.  

V. Conclusion and Further Research: 

Due to the stochastic expansion of ω, it is not possible to solve for an explicit expression 

that describes the utility-maximizing time while there is variability present in Ω. That said, it is 

possible to iterate the constructed model numerically and note qualitative behavior and 

commonalities among iterations. Common to all trials is the observation that if the agent follows 

a rational heuristic—comparing next time period’s utility to this period’s—he will stop searching 

before he realizes his maximum possible utility. The amount of time he must continue to reach 

this point remains a viable point for further research.  

Despite this shortcoming, the size of the gap between stopping utility and maximum 

utility has been quantified and found to be directly proportional to the variance of the underlying 

distribution of observations. This implies that an agent, given a choice between two observation 

spaces to search through, should pick the one with less variation given each has the same value 

for µpop. When parameters are exogenously given and the agent searches consistent with current 

restrictions, less choice may actually mean more utility, ultimately. 
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This may change if utility function parameters a1 and a2 are functions of the underlying 

distribution or functions of the priors generated from the underlying distribution. An intuitive 

extension is to create some dependence between a2, the regret coefficient, and σprior or σt. If an 

agent believes there to be more variability in Ω and he may experience more regret for a given 

number of observations discovered, perhaps feeling he has lost out on the chance to “get lucky” 

and find a high value observation early in the search. (Intuitively, finding a high value 

observation later is effectively the same as finding a lower value observation earlier because of 

time discounting.) With these effects added, I anticipate the effect of the population variance on 

the gap between actual maximum utility and realized utility will be less—the magnitude of the 

change that occurs will be related to the proportionality constant between a2 and σt.  

Varying the rate at which the agent discovers observations may also affect the results 

found. Depending on the application, it may not be appropriate for the agent to discover 

observations at a constant rate.3  True, the constant rate approach works for situations like 

monogamous dating (where generally one can only ‘discover’ one person at a time), but imagine 

a sought-after house hits the market after several months of anticipation. The sellers, who are 

‘searching’ for the highest utility offer, will likely receive an influx of offers initially; more 

offers will come in as time progresses but at a decreasing rate. Eventually the number of offers 

should asymptote to 0 or 1 as t→∞, with some associated probability of either outcome as each 

additional time period is added.  

Operationally, one can write such a function—perhaps a shifted, discretized decaying 

exponential, call it g(t)—and add g(t0) elements to the consideration space, ω, at time t0 to 

                                                        
3 As an aside, just because I defined it so that the agent discovers one observation per time 
period, that doesn’t mean you couldn’t have chosen a different time scale to establish the same 
parity.  
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accomplish this. Variants of this model could include either searches where the agent is allowed 

to return to previously investigated observations or searching where the agent must choose 

between the offers presented at time t0. As it is, the constant rate discovery model investigated in 

this paper is probably not a bad approximation for the behavior that occurs toward the middle or 

the end of another type of search, like the exponential decay.  Trying other functional forms of 

g(t) may also be fruitful, but such an approach is unlikely to change qualitative behavior. Ideas 

for this include a simulation of the act of physical searching, i.e. the agent searches outward 

investigating observations at the circumference of an expanding circle. In this case, because it’s 

the area of the circle that’s growing, the number of new observations discovered per circular 

expansion step should scale as r(t)2, where r(t) is the radius of the circle as a function of time.  

Given a more rapidly expanding consideration space, it becomes unreasonable at some 

point to continually disregard the time it takes the agent to compute E[xi]. Correcting the utility 

function to account for this might involve something of the form  

(15)    

€ 

U(ω,t) = Max(E[ω]) − a1(t + Trank ) −
a2
t

,   

where Trank~N(µrank,σ2
rank) and µrank and σ2

rank are the mean and variance time it takes for the 

agent to compute

€ 

Max(E[ω]) . This increases the complexity of the model by a significant 

amount, however, because the agent will also factor this time into his computation of next time 

period’s utility. To do this, he must make assumptions about the distribution of Trank and then 

revise his estimation of the distribution parameters in a manner similar to the way he revises his 

estimation of the distribution of Ω. The net effect of these simultaneous processes will likely be 

heightened sensitivity to initial conditions and thus a more chaotic model, though the exercise is 

worth the time.  
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 The inclusion of an agent’s taste for risk could also add depth to the model. A simple way 

to accomplish this would be to change the way the agent calculates utility at time t + 1 by 

(16)  

€ 

Ut+1[ω t ,µt ,σ t ,t] = Max(E[ω t + {µt}]) ± a3(σ t ) − a1(t +1) − a2
t +1

,  

where a3 is a positive parameter measuring the strength of the agent’s taste for or aversion to 

risk. Note that a risk-averse agent would subtract a3(σt) while a risk-loving agent would add the 

term. Risk here is quantified by the agent’s calculated standard deviation of Ω at time t. Another 

possible interpretation of this term could be an agent’s feelings about the future, i.e. optimism vs. 

pessimism.  

 Each of these changes, when implemented, has potential to make the current searching 

model more realistic. At the same time, it is important to implement each individually first to the 

most basic case before combining them, in order to identify potential difficulties. As complexity 

in the model increases, I predict increasing sensitivity to parameters and randomly generated 

initial conditions; this will make interpretation difficult.  

 But in truth, I don’t think I have addressed the biggest hurdle to the model’s 

applicability—of significant concern is its dependence on cardinal ranking. By necessity, in 

order to compute utility at time t, compute utility at time t + 1, or revise the agent’s perception of 

the underlying distribution, each observation must yield a concrete value for E[xi]. Worthy of 

exploration is the model’s generalization to ordinal ranking. While I predict qualitative behavior 

to be similar, it is presently unclear how one would perform manipulations similar to those in 

this model to an ordered list of options. This is an avenue worth exploring.  

Without a doubt, the questions raised by the results of this model are more numerous and deep 

than any quantitative relationship developed herein. The reader should instead place emphasis on 

the qualitative findings—that under the regime founded by current functional forms a rational 
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agent will end a search before utility is truly at a maximum. Increasing the variance in Ω causes 

the gap between realized utility and true maximum utility to grow. These are the key takeaways.  
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VII. Tables: 

Table 1: Premature search data. Parameters: a1 = 0.05, a2 = 5.0 

 
σ /µ  Ratio 

Δt (in periods) 
from theoretical 

value 

 
Uncertainty 

0.00 0.00 0.00 
0.003125 1.56 0.77 
0.00625 2.60 0.87 
0.0125 3.56 0.51 
0.025 4.60 0.76 
0.05 5.52 1.00 

0.0625 5.64 0.70 
0.075 5.80 0.58 
0.10 5.88 0.67 
0.125 6.56 0.51 
0.15 6.64 0.76 
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Table 2: Data supporting regression of percent decrease in realized utility vs. percent increase in 
σ/µ. 

Percent 
Increase in 

σ /µ  

Percent 
Decrease in 

U 
0.00 0.00 
1.25 4.98 
2.50 10.52 
3.75 14.45 
5.00 16.22 
6.25 22.23 
7.50 27.14 
8.75 32.60 

10.00 36.10 
11.25 40.82 
12.50 47.68 
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VIII. Figures: 

Figure 1: Maximum utility occurs when time disutility balances alleviation of regret. 
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Figure 2: An agent’s prior knowledge is randomly generated based on the underlying distribution 
of Ω. 
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Figure 3: Acquisition of the first observation and subsequent revision. 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Figure 4: Convergence of agent’s prior knowledge to actual distribution of Ω, N0 = 10.  
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Figure 5: Convergence of agent’s prior knowledge to actual distribution of Ω, N0 = 5. 
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Figure 6: Utility vs. Time. Expected utility of t + 1 is graphed in red, utility at time t is graphed 
in blue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Menasche 32 

 

Figure 7: Agent’s conception of distribution of Ω graphed in magenta at the conclusion of the 
search initialized in Figure 3.  
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Figure 8: Expected utility and realized utility converge at time t = 5 for search initialized in 
Figure 3 
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Figure 9: Realized utility could be improved if the agent searches past his rational stopping point 
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Figure 10: Search with variance stops before the no-variance calculated optimal point 
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Figure 11: The gap between true maximum utility and stopping utility grows with variance in Ω  
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Figure 12: The ‘gap’ between true maximum utility and realized stopping utility 
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Figure 13: The agent must rationally settle for utility less than that which he once had realized 
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Figure 14: A full simulation run with code. 
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