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Abstract

The four-level system is the simplest system from which entanglement

can be extracted and analyzed; as such, I will derive the appropriate ob-

servable operators that can extract entanglement from a four-level mixed

state. The entanglement of a general four-level quantum system is an

open problem in quantum information theory. Quantum entanglement is

a counterintuitive phenomenon in quantum mechanics with no analog in

classical mechanics; it allows for systems of multiple objects in which mea-

surements on these objects are more strongly correlated than any possible

classical system. These correlations hold even if the objects are separated

by considerable distances. These properties make quantum entanglement
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a crucial resource for developing quantum encryption and quantum com-

puting technologies. Using the mathematics of representation theory and

linear algebra, I will separate a general foul-level state into two entangled

two-level states, from which I can analyze the extent of the entanglement

between the two systems.

1 An Introduction to Quantum Entanglement

It is an assumption of classical mechanincs that any physical system with mul-

tiple degrees of freedom can be partitioned into multiple subsystems, and that

measurements on one subsystem are independent of measurements on any of

the other system. Though this assumption is intuitive, it does not hold in the

realm of quantum mechanics, as evidenced in the phenomenon known as quan-

tum entanglement. In quantum entanglement, properties of a subsystem cannot

be described independantly of the other subsystems, which allows for measure-

ments among subsystems that are more strongly correlated than any possible

classical theory. Perhaps most ba�ing is the fact that entanglement can occur

among objects separated by an arbitrary distance, which implies that the laws

of quantum mechanics are nonlocal.

To illustrate this phenomenon, we consider two systems, called system A and

system B, each consisting of a single spin-12 particle (say, an electron). Each of

these particles may be in either a �spin up� or �spin down� state, which we will

represent with the vectors |0〉and |1〉, respectively. We can choose to represent

these spin states as standard basis vectors

|0〉 =

 1

0

 |1〉 =

 0

1


Notice that the spin state of any single particle can be represented as a linear
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combination of these two basis vectors: |ψ〉 = c0 |0〉+ c1 |1〉, with the restriction

|c0|2 + |c1|2 = 1. Suppose that the state vector of A is |ψ〉A = 1√
2
|0〉A+ 1√

2
|1〉A

and the state vector of B is |φ〉B = 1√
2
|0〉B −

1√
2
|1〉B . Also suppose we assign

Alice to be the observer of System A and Bob to be the observer of System

B. Notice that each observer will observe either spin up or spin down with

equal probability, independent of the other observer's measurement. Now if we

consider the cumulative system A and B, then the state vector of the combined

system is the outer product of the two vectors:

|ψφ〉AB = |ψ〉A ⊗ |φ〉B =

 1√
2

1√
2

⊗
 1√

2

− 1√
2

 =



1
2

− 1
2

1
2

− 1
2



=
1
2
|0〉A ⊗ |0〉B −

1
2
|0〉A ⊗ |1〉B +

1
2
|1〉A ⊗ |0〉B −

1
2
|1〉A ⊗ |1〉B

As expected, each outcome has equal probability of occurring.

A key attribute of the state vector |ψφ〉AB , however, is the ability to express

the vector as the outer product of the state vectors of the two subsystems, that

is, |ψφ〉AB = |ψ〉A ⊗ |φ〉B . Such states are called separable states. However,

there exist states that cannot be factored via the tensor product. The most

general state of the combined system of A and B is

c00 |0〉A |0〉B + c01 |0〉A |1〉B + c10 |1〉A |0〉B + c11 |1〉A |1〉B

With the restriction
∑
i,j |cij |

2 = 1 (We will supress the �⊗� operator from

now on). Therefore, a possible state is |ψφ〉AB = 1√
2
|0〉A |1〉B + 1√

2
|1〉A |0〉B .
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Observe that the two possible outcomes |0〉A |1〉B and |1〉A |0〉B occurr with

equal probability.

Let's observe the outcome space more closely. If Alice measures the spin of

particle A, then her measurement will yield either |0〉A or |1〉A (each with 50%

probability), thus collapsing the state vector to either |0〉A |1〉B or |1〉A |0〉B .

However, if Bob subseqently measures the spin of particle B, the outcome of

the measurement is known with certainty, according to the outcome of Alice's

measurement. If Alice �nds her particle to be in the spin up state, then the

wavefunction of the system collapses to |0〉A |1〉B , and Bob will de�nitely �nd

his particle to be spin down; alternately, if Alice �nds particle A in the spin

down state, Bob will �nd particle B in the spin up state. And so, remarkably,

when Alice measures the state of her particle, she instantly knows the state of

Bob's particle, even if Bob's particle is lightyears away. The ability to tailor

correlated measurements such that a system appears entangled is a major topic

in quantum information theory, and this paper will attempt to shed some light

on this topic.

2 Pure and Mixed Quantum States

In quantum mechanics there exist two types of uncertainties. The �rst type of

uncertainty is standard quantum uncertainty - the concept that properties of a

system are not well-de�ned until a measurement is conducted. The second type

of uncertainty pertains to ignorance about the actual state of the system. For

example, an operator may randomly act on a system's state vector with some

probability, transforming it into another state vector (such a state will emerge

when the system is randomly prepared via di�erent procedures). Therefore, the

system may be in one state or the other. When the state is known, this is called

a pure state, otherwise, if there is some uncertainty over what state the system
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is in, then state is called a pure state.

A pure state can be expressed as a ket vector such as |ψ〉 = 1√
2
|0〉+ 1√

2
|1〉 -

note that only the uncertainty inherent in this state is whether a measurement

of spin will yield spin up or spin down. A mixed state, however, can not be

expressed as a single state vector, as it is a statistical ensemble of pure states.

Instead of using ket vectors to represent quantum states, it is convenient to use

a what is known as a density matrix.

De�nition: A density matrix ρ is an n × n matrix with the following

properties:

1. ρ is Hermitian, or self-adjoint. That is, ρ† = ρ, where ρ† is the conjugate

transpose of ρ.

2. Trace[ρ] = 1, where Trace[ρ] is the sum of the diagonal entries of ρ.

3. ρ is positive semide�nite. Since ρ is Hermetian, this is equivalent to saying

that all eigenvalues of ρ are nonnegative.

Density matrices prove to be a convenient way to express a mixed state. If

the state of the system is a statistical ensemble of pure states {ψ1, ψ2, . . . , ψn}

with probabilities p1, p2, . . . , pn. Then the density matrix of the mixed state is

given by

ρ =
n∑
i=1

|ψ1〉 〈ψ1|

Thus the pure state |ψ〉 = 1√
2
|0〉+ 1√

2
|1〉 has a density matrix of

ρpure = |ψ〉 〈ψ| =

 1
2

1
2

1
2

1
2


If instead we have a mixed state that has a 50% chance of being in state |ψ〉
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and a 50% chance of being in state |φ〉 = 1√
2
|0〉 − 1√

2
|1〉, the the state has a

density matrix:

ρmixed =
1
2
|ψ〉 〈ψ|+ 1

2
|φ〉 〈φ| =

 1
4

1
4

1
4

1
4

+

 1
4 − 1

4

− 1
4

1
4

 =

 1
2 0

0 1
2


Note that ρpure and ρmixed both have a trace of 1, are self-adjoint, and a

straightforward calculation shows that their eigenvalues are nonnegative: they

are indeed density matrices.

Note that a density matrix is not unique to a particular statistical ensemble

of states. For example, if we have a mixed state with a 50% chance of being

in state |ψ′〉 = |0〉 and a 50% chance of being in state |φ′〉 = |1〉, then the

corresponding density matrix would be:

ρ′mixed =
1
2
|ψ′〉 〈ψ′|+ 1

2
|φ′〉 〈φ′| =

 1
2 0

0 0

+

 0 0

0 1
2

 =

 1
2 0

0 1
2


and so ρmixed = ρ′mixed

Now the trace of a density matrix is 1, regardless of whether the matrix

represents a pure or mixed state. This is not case when when the density matrix

is squared, and it provides us with a useful indicator of whether the matrix

represents a pure or mixed state. For the trace of any pure state density matrix

is 1, and the trace of any mixed state density matrix is less than 1. Observe

that, for our density matrices above, Trace
[
ρ2
pure

]
=1 and Trace

[
ρ2
mixed

]
= 1

2 .

Moreover, we can show that the trace of the square of a density matrix is

bounded both above and below.

Theorem: If ρ is an n × n density matrix, then Trace
[
ρ2
]
∈
[

1
n , 1
]
for all

n ∈ N.

Proof: According to the spectral theorem for Hermetian matrices, ρ =
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UDU−1, where U is a unitary matrix and D is a diagonal matrix. Let {cρi :

i = 1, ...n} be the set of eigenvalues of ρ (and thus the set of eigenvalues of D as

well). Since ρ is positive-semide�nite, cρi ≥ 0 for all i ≤ n, i ∈ N. Moreover since∑n
i=1 (cρi) = Trace (D) = Trace

(
UU−1D

)
= Trace

(
UDU−1

)
= Trace (ρ) = 1,

cρi ≤ 1 for all i ≤ n, i ∈ N (otherwise an eigenvalue would have to be negative).

So we have cρi ∈ [0, 1] for all i ≤ n, i ∈ N.

Note that

Trace
(
ρ2
)

= Trace
(
UDU−1UDU−1

)
= Trace

(
D2
)

=
n∑
i=1

c2ρi

We'll use induction to show that
∑n

1=1 c
2
ρi ≥

1
n for all n ∈ N.

For the n = 1 case, since
∑1
i=1 cρi = cρ1 = 1,

∑1
i=1 c

2
ρi = c2ρ1 = 12 = 1 ≥ 1

1 ,

so our hypothesis is true for the n = 1 case.

Now if the hypothesis is true for n = k, that is,
∑k

1=1 c
2
ρi ≥

1
k , then

k+1∑
i=1

c2ρi =
k∑
i=1

c2ρi + c2ρk+1
≥ 1
k

+ c2ρk+1
>

1
k + 1

+ c2ρk+1
≥ 1
k + 1

Thus,
∑n
i=1 c

2
ρi ≥

1
n for all n ∈ N.

Now since cρi ∈ [0, 1], c2ρi ∈ [0, cρi ], for all i ≤ n, i ∈ N, and so
∑n
i=1 c

2
ρi ≤∑n

i=1 cρi = 1.

Putting these two inequalities together, we get 1
n ≤

∑n
i=1 c

2
ρi ≤ 1, or

Trace
(
ρ2
)
∈
[

1
n , 1
]
for all n ∈ N. �

This boundeness makes the trace of ρ2 a convenient measure to determine

how �mixed� a quantum state is, with Trace
[
ρ2
]

= 1 indicating a �minimally

mixed� (i.e. pure) state, and Trace
[
ρ2
]

= 1
n indicating a �maximally mixed�

state, that is, an ensemble of pure states in which each of the pure states has

an equal probability of occurring when the system is prepared.

7



2.1 The partial trace of a density matrix.

The partial trace of a matrix is a generalization of the trace introduced above,

and it can be used to determine the entanglement of a system. We will concern

ourselves with the four-level quantum system - the simplest system from which

entanglement can be extracted. Unlike the trace of a matrix, which yields a

number, the partial trace of a matrix yields another operator. In particular,

when we take the partial trace of a density matrix, we are free to choose what

operator to �trace over.� Most interesting for our purposes is tracing over one

of our subsystems - either particle A or particle B. If we have a 4 × 4 density

matrix such as the one below:

ρ =



a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33


Then the partial trace of ρ over particle B is given by the expression:

TraceB [ρ] =

 a00 + a11 a02 + a13

a20 + a31 a22 + a33


This particular partial trace has an illuminating physical meaning: that is,

to trace over particle B is to discard all knowledge about the state of particle

B, leaving only information about the state of particle A. If the partial trace

over B yields a pure state density matrix, then we know that throwing out

knowledge about the state of B does not a�ect our knowledge of the state of

particle A. However, if we trace over particle B and �nd the resulting matrix

to be a mixed state, then we know that throwing away infomation about one

system automatically creates uncertainty in the state of the other system. In
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other words, particle A's state cannot be completely described without reference

to the state of particle B, and so these particles are entangled. For example,

consider the density matrix of the state |ψφ〉AB = 1
2 |0〉A |0〉B −

1
2 |0〉A |1〉B +

1
2 |1〉A |0〉B −

1
2 |1〉A |1〉B :

ρ0 = |ψφ〉AB 〈ψφ|AB =



1
4 − 1

4
1
4 − 1

4

− 1
4

1
4 − 1

4
1
4

1
4 − 1

4
1
4 − 1

4

− 1
4

1
4 − 1

4
1
4



ρ0 has partial trace TraceB [ρ0] =

 1
2

1
2

1
2

1
2

, we have shown earlier that this
represents a pure state, and so ρ0 is an unentangled state (which is consistent

with our earlier construction of |ψφ〉AB as the product |ψ〉A ⊗ |φ〉B , where

|ψ〉A = 1√
2
|0〉A+ 1√

2
|1〉A and |φ〉B = 1√

2
|0〉B−

1√
2
|1〉B). Alternately, the state

|ψφ〉AB = 1√
2
|0〉A |1〉B + 1√

2
|1〉A |0〉B has density matrix:

ρ1 = |ψφ〉AB 〈ψφ]AB =



0 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 0



and ρ1 has partial trace TraceB [ρ1] =

 1
2 0

0 1
2

, we have shown earlier

that this represents a mixed state, and so ρ1 is an entangled state (which is also

consistent with our previous results).
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3 Concurrence

The partial trace of a density matrix is not the only indicator of entanglement.

A second method is called concurrence, which is a real number associated with

a density matrix. To set up this de�nition for a given four-level density matrix

ρ �rst consider the matrix ρ̃ = (σy ⊗ σy) ρ† (σy ⊗ σy), where σy is the Pauli spin

matrix σy =

 0 −i

i 0

. Then, if {λ0, λ1, λ2 λ3} is the set of sqaure roots of

eigenvalues of the matrix ρρ̃, listed in descending order, then the concurrence

of ρ, C (ρ), is de�ned as

C (ρ) = max {0, λ0 − λ1 − λ2 − λ3}

Now C (ρ) ∈ [0, 1], where a concurrence of 0 indicates no entanglement and

and a concerrence of 1 indicates maximum entanglement. To show that this

de�nition is consistent with our previous consider again the density matrix

ρ0 =



1
4 − 1

4
1
4 − 1

4

− 1
4

1
4 − 1

4
1
4

1
4 − 1

4
1
4 − 1

4

− 1
4

1
4 − 1

4
1
4


Now

ρ0ρ̃0 =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Which clearly has 0 its only eigenvalue, and so C (ρ0) = 0. Thus ρ0 repere-

sents an unentangled state, which is the same result we arrived at earlier.
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Now consider the density matrix

ρ1 =



0 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 0


Where

ρ0ρ̃0 =



0 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 0


and ρ1ρ̃1 has eigenvalues 1 and 0 (with multiplicity 3), therefore λ1 = 1,

λ2 = λ3 = λ4 = 0, and so C (ρ1) = 1: ρ1 is a maximally entangled state (which

we have shown earlier using the partial trace). Our ultimate goal is to con�rm

whether or not an arbitrary four-level quanrum state can be treated as two

two-level states with arbitrary entanglement, according to our choice of basis

4 Entanglement is Relative to the Observables

Accoring to Zanardi, Lidar, and Lloyd �A partitioning of a given Hilbert space

is induced by the experimentally accessible observables. [...] In this sense en-

tanglement is always relative to a particular set of experimental capabilities.�

(Source: arXiv:quant-ph/0308043). In the case of Alice and Bob, then, each

observer can custom-tailor his or her observables to obtain an arbitrary amount

of entanglement. Here, �custom-tailored observables� means choosing an appro-

priate basis, which can be realized actively (by physically rotating the enitre
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system) or passively (by rede�ning the orthonormal basis).

Here, the question of interest is whether or not there is a choice of basis

such that any four-level quantum system can appear to be entangled. For pure

states, we know that there is such a basis [REFERENCE], but it remains an

open question for mixed states. We will prove the existence of such a basis for

a particular mixed state.

4.1 Inducing entanglement in a four-level mixed state

4.1.1 A Particular Example

Consider the following mixed state density matrix ρ and unitary matrix U :

ρ =



0.8 0 0 0

0 0.05 0 0

0 0 0.05 0

0 0 0 1


U =

1√
2



1 0 0 1

1 0 0 −1

0 1 1 0

0 1 −1 0


Straightforward calculations of concurrence result in C (ρ) = 0, C

(
U−1ρU

)
=

0.6. So, ρ appears to be unentangled in the standard basis, while ρ appears to

be entangled when expressed in the basis consisting of the columns of U .

Interesting, this particular unitary matrix U is the transformation that takes

the Bell states - the maximally entangled states - to the standard basis, which

are minimally entangled, according to the basis map:

• |Φ+〉 = 1√
2
|0〉A |0〉B + 1√

2
|1〉A |1〉B 7−→ |0〉A |0〉B

• |Φ−〉 = 1√
2
|0〉A |0〉B −

1√
2
|1〉A |1〉B 7−→ |0〉A |1〉B

• |Ψ+〉 = 1√
2
|0〉A |1〉B + 1√

2
|1〉A |0〉B 7−→ |1〉A |0〉B

• |Ψ−〉 = 1√
2
|0〉A |1〉B −

1√
2
|1〉A |0〉B 7−→ |1〉A |1〉B
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Now if ρ is the density matrix of two particles in the basis shared by observers

Alice and Bob, then the unitary transformation U contains the instructions for

Alice and Bob to tailor their observables in order for their particles to be entan-

gled. For example, if the product SAZ = σz ⊗ I corresponds to Alice measuring

the z-component of spin for her particle and Bob making no measurement on

his particle, this particular observable would appear to be unentangled in the

original basis; however, when this obserable is expressed in the basis induced

by U , SPZ = U−1 (σz ⊗ I)U (call it the PQ basis, as opposed to the original

AB, �Alice-Bob� basis), then the resulting measurements on the particles would

make them appear to be entangled.

4.1.2 General Entanglement Behavior for Classes of Unitary Matri-

ces

We will now use our example density matrix ρ from before to study how its con-

currence changes when ρ is transformed by several families of unitary matrices.

First consider the singly-parametrized family of unitary matrices:

Uθ =



cos (θ) 0 0 − sin (θ)

0 cos (θ) − sin (θ) 0

0 sin (θ) cos (θ) 0

sin (θ) 0 0 cos (θ)


Using Mathematica evaluate the concurrence on the interval θ ∈ [0, 2π],

we �nd that U−1
θ ρUθ has a maximum concurrence of 0.6 when θ = (2n− 1) π4 ,

where n ∈ N, and has zero concurrence when θ = nπ2 , n ∈ N.

Next we have another singly-parametrized family of unitary matrices:
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Uθ =



cos (θ) 0 0 sin (θ)

− sin (θ) 0 0 cos (θ)

0 cos (θ) − sin (θ) 0

0 sin (θ) cos (θ) 0


(Note that our unitary transformation U in 4.1.1 belongs to this family, as

U = Uπ
4
.) This family exhibits same relationships between θ and U−1

θ ρUθ as

the previous family: U−1
θ ρUθ has a maximum concurrence of 0.6 when θ =

(2n− 1) π4 , where n ∈ N, and has zero concurrence when θ = nπ2 , n ∈ N.

These two particular examples highlight an observation about the e�ect of

unitary transformations on concurrence: performing a swap opererator S on a

unitary transformation will not a�ect the concurrence of a density matrix; that

is, C
(

(SU)−1
ρ (SU)

)
= C

(
U−1ρU

)
. We see that the two families of density

matrices shown above are related by a swap operator, as one can be arrived at

by permuting the rows and columns of the other.

4.1.3 Further Questions

It remains to be seen whether there exists a mixed state density matrix ρ and

a unitary transformation U such that C (ρ) = 0, C
(
U−1ρU

)
= 1, that is, a

choice of basis will transform an unentangled system into one with maximal

entanglement.
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