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Abstract

It has been shown that pair-wise interactions of atoms confined in the lowest vibrational states of

optical lattices generate effective three-body interactions. Experiment into the collapse and revival

dynamics of coherent states loaded into optical lattices has suggested the existence of measurable

effective higher-body interactions. We present a process with which to quantify the strength of the

effective three-, four- and higher-body interactions by use of the Bose-Hubbard model of interacting

bosons. Using Wick’s Theorem and third-order perturbation theory, we give an estimate of the

effective four-body interaction energy as well as insight to calculating a third-order correction to the

effective three-body interaction energy presented in current literature [1]. Understanding lattice

interaction dynamics may allow for better models of higher temperature superconducting materials

as well as lending more insight to understanding the dynamics of Bose-Einstein condensates loaded

into optical traps.
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INTRODUCTION

In the past two decades, researchers have developed two ground-breaking phenomena.

First is the ability to cool groups of atoms to fractions of a Kelvin. Today, this serves many

purposes, most notably making for better atomic clocks. However, an effect called Bose-

Einstein condensation has been only recently been realized. When bosons are cooled, the

statistics that govern them, Bose statistics, make it most probable for all the particles to

occupy the same quantum state, thus acting like a single entity with a single wave function.

Although predicted decades ago, these macroscopic quantum objects, make it possible to

study quantum phenomena on micron-scales.

Secondly, a process has been formulated with which scientists can use to create regular

arrays of potential wells using standing waves of laser light. These three-dimensional crystals

of light are called optical lattices and can be used to store and control an array of ultracold

atoms suspended in vacuum. Called optical lattices, these experimental setups can be used

to hold thousands of very cold atoms in regular arrays. The light forms 3-dimensional wells

that trap the particles, just how atoms trap their electrons in solids. Similarly, just as

electrons can tunnel from atom to atom in a solid, atoms in an optical lattice can tunnel

from light well to light well. Yet unlike a solid, scientists can tune most parameters of the

optical lattice, such as change well depth, well shape, atom separation, and much more.

They even allow scientists to image the interior of the lattice, something that is impossible

given a traditional solid.

Combined, these two technologies have allowed for the development of many interesting

studies and subfields. One such field is the study of condensate scattering. Two groups of

ultra cold atoms are loaded into different optical lattices and are suddenly released as the

optical lattice is turned off. The atom groups form condensates and will form interference

patterns as they the superimpose with some phase. As the phase changes, the interference

changes between constructive and destructive, which forms a collapse and revival of interfer-

ence patterns [3]. Much of the research of this article pertains to current research of collapse

and revival dynamics of Bose-Einstein condensate scattering.
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Motivation

A larger motivation for this research is to study many-body problems in quantum me-

chanics. The most exotic and unexplained phenomena in quantum physics manifests as

the number of interacting bodies grows large. These systems are often highly complicated

and require increasingly sophisticated models to lend understanding into the physics behind

them.

One such many-body problem is the study of high-temperature superconductors. Al-

though the theory of ordinary superconductors is well-understood, the mechanism behind

high-temperature superconductivity is still unknown after over 30 years of study. Supercon-

ductivity is widely studied because electrical current flows through the material with zero

resistance – a process which gives off little heat and allows for the production of extremely

strong magnetic fields. If understood, it is hoped that high-temperature superconductors will

facilitate the manufacture of room temperature superconductors, which could revolutionize

modern industry and make feasible many new technologies.

A leading model of high-temperature superconductivity supposes that electrons in the

solid quantum tunnel from atom to atom, allowing electrons to move through a solid purely

probabilistically and thus encountering zero resistance. However, due to their like charge,

electrons will likely be repelled from tunneling into site already occupied by one or more

electrons. Thus interactions, e.g. the Coloumb interaction, between electrons at a single site

inhibits the material’s ability to superconduct. It is theorized that the complex dynamics of

high-temperature superconductors relies on this trade off between quantum tunneling and

electron interactions, one granting and the other inhibiting the ability to superconduct.

Objective

To investigate the dynamics of the trade off between electron interactions and quantum

tunneling, one must study both closely. To do this one can consider modeling a high-

temperature superconductor with an optical lattice loaded with ultracold atoms. Instead of

electrons, or a species of neutral fermions, it is easier to first consider the lattice loaded with

neutral bosons – atoms with integer spin. Thus, we consider a system where the evolution of

a quantum state of the atoms in the lattice involves competition between tunneling processes
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(atoms quantum tunneling between adjacent lattice sites) and atom-atom interactions when

multiple atoms occupy the same lattice site.

Traditionally, the interactions between atoms are treated pair-wise, even when more than

two atoms occupy the same site. However, it was recently shown that pair-wise interactions

of atoms confined in the lowest energy states of optical lattice wells generate effective three-

body interactions, and this prediction was quickly verified by experiments looking at the

collapse and revival dynamics of coherent states. Surprisingly, however, those experiments

also showed clear evidence of four (and higher) body interactions [2]. It is assumed the same

process that gave effective three-body interactions also gives effective four-body interactions.

Calculating the energy of effective four- and higher-body interactions will directly contribute

to the better understanding of lattice interactions of multiple neutral bosons in a single lattice

site, which could be generalized to Fermi statistics in order to describe electron interactions

in solids.

MODEL

To begin describing this system, some assumptions must be made. To make matter

simpler, the bosons loaded into the lattice are assumed to be spinless, structureless, massive

particles. The energy of the bosons is assumed to so low that all are bosons are assumed

to be in the ground state, the lowest vibrational energy state. Additionally, the lattice well

depth is assumed to be so large that bosons cannot excite to traditional higher energy states,

even by way of interaction with other particles.

The most fundamental aspect describing each atom is its wave function, ϕα(~r), which is

a function of function of ~r = ~r(r, θ, φ). The explicit formulation is given below

ϕ(~r) =
∑
a

φa(~r)âa. (1)

One can approximate the superposition of many wave functions of bosons in the lattice as

a coherent state, number state or Fock state. The state

|N1N2 . . . Nn . . .〉

describes a state with N1 atoms in the ground state, N2 atoms in the first excited state, and

so forth. To manipulate a given number state, one can operate on a state using a creation
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or annihilation operator. The creation operator, â†n, creates an additional atom in state n

while the annihilation operator ân destroys an atom in state n. Given the number state |N〉,

with just N atoms in the ground state φ0,

â†1 |N〉 =
√
N + 1 |N + 1〉 (2)

â1 |N〉 =
√
N − 1 |N − 1〉 (3)

â†1â1 |N〉 =
√
N(N − 1) |N〉 (4)

To quantify the interaction energy between two atoms, the Bose-Hubbard Hamiltonian,

Ĥ2, is used

Ĥ2 =
U2

2

∫
d3r ϕ†a(~r)ϕ

†
b(~r)ϕc(~r)ϕd(~r) =

U2

2

∑
abcd

Kabcdâ
†
aâ
†
bâcâd. (5)

Here, the function Kabcd represents an integral of wave functions:

Kabcd = K−1
0000

∫
d~r φaφbφcφd. (6)

The operator Ĥ2 acting on |N〉 yields

Ĥ2 |N〉 =
U2

2

∑
abcd

Kabcdâ
†
aâ
†
bâcâd =

U2

2

∑
ab

Kab00â
†
aâ
†
bâ0â0

=
U2

2

∑
ab

Kab00 |χab〉
(7)

where |χab〉 is defined as

|χab〉 = â†aâ
†
bâ0â0 |N〉 = N(N − 1)â†aâ

†
b |N − 2〉 . (8)

Note that∑
α 6=0

|α〉 〈α| Ĥ2 |N〉
Eα

=
U2

2

∑
α 6=0

∑
ab

Kabcd

Eα
|α〉 〈α| χab〉 =

U2

2

∑
ab 6=0

Kab00

Eab
|χab〉 (9)

using the fact that, taking |α〉 as a normalized Fock state, |α〉 〈α| χab〉 = |χab〉, for the single

state |α〉 ∝ |χab〉, and |α〉 〈α| χab〉 = 0 for the rest of the |α〉. The notation ab 6= 0 means

the sum over all a, b except a = b = 0. Taking the adjoint gives∑
β 6=0

〈N | Ĥ2 |β〉 〈β|
Eβ

=
U2

2

∑
ab 6=0

K00ab

Eab
〈χab| , (10)

using the fact that K∗ab00 = K00ab.
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The Bose-Hubbard Hamiltonian only approximates the energy between interacting bosons

for it only considers the energy of pairwise interactions. However, given any N particles,

there exists an intrinsic N -body interact which describes an interaction that cannot be ex-

plained by the superposition of pairwise interactions. One can imagine the N -body intrinsic

interaction to occur when the wave functions of all N particles overlap. Intrinsic interactions

are the lowest-order approximation for interactions between N particles. The use of Per-

turbation theory allows for more accurate, higher-order approximations of the interaction

between N bodies. To calculate the energy of an N -body interaction, these higher-order

corrections for N body interaction energy are simply added to the N -body intrinsic inter-

action energy, also know as the bare parameter interaction energy. Thus, the task becomes

to calculate the interaction energy correction at higher-orders.

Additionally, higher-order perturbation allows nontrivial higher-body effective interac-

tions to occur. Effective interaction are interactions that occur between “linked” pairwise

interactions – pairwise interactions that are entangled via excitation of particles to forbidden

excited states. The Heisenberg uncertainty principle can be written

∆Eδt ≥ ~
2
, (11)

stating that for small amounts of time, the energies of bosons in the lattice are uncertain.

Therefore, despite not having enough energy to excite to higher vibrational states via colli-

sions alone, bosons can excite to virtual excited states via collisions for these small amounts

of time. However, for these atoms to de-excite, a collision must occur. If more than two

bosons are present at a single lattice site, then it is possible for an atom to excite to and

de-excite from a virtual state with interactions between two other, completely independent

atoms. This is the basis for effective all interactions. It must be noted that in the long

term, all particles must be in the ground state. This forces all effective interactions to end

by recreating all atoms in the ground state. Higher-order effective interactions take place

given sufficient atoms at a single lattice site and sufficiently high-order perturbation theory.

PERTURBATION THEORY

In order to quantify the four-body interaction energy, the analytic expression describ-

ing it must first be derived using perturbation theory. To begin, first and second-order
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perturbation is described. Let E
(n)
m be the nth-order correction to the m-body energy, so

that

Em = E1
m + E2

m + E3
m + . . . =

1

m!
UmN(N − 1) . . . (N −m+!), (12)

where Um are the m-body “interaction” energies, and

Um = Um(1) + Um(2) + Um(3) + . . . . (13)

At a given order in perturbation theory, we can write

E(n) = E
(n)
2 + E

(n)
3 + . . .+ E

(n)
n+1. (14)

In general, E
(n)
m = 0 for m > n + 1. In other words, at nth-order, there will be only a

maximum of m = n+ 1 body effective interactions.

Feynman Diagrams

When discussing higher-order, multiparticle interactions, it is most efficient to use Feyn-

man diagrams to describe specific interactions. This allows for distinctions to be made

between interactions that share the same mathematical form. An example of a simple Feyn-

man diagram is found below.

FIG. 1: Feynman Diagram representing an intrinsic two-body interaction.

The number of nodes in a given diagram represents the number of pairwise interactions

in the effective interaction where m = n pairwise interactions exist given nth-order pertur-

bation. Solid lines represent bosons in the ground state and dotted liens represent bosons in

virtual states. Not all Feynman diagrams must be fully connected. Often given higher-order

perturbation, many diagrams exist with a disconnected segment (see Figure 2).

In the following subsections, first-, second- and third- order perturbation theory is

derivated, as are the applicable effective interaction energies for these orders.
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FIG. 2: A disconnected Feynman Diagram.

Derivation of first-order interaction energy

The first-order energy is

E(1) = E
(1)
2 =

〈
N
∣∣∣Ĥ2

∣∣∣N〉 =
1

2
U2N(N − 1), (15)

with N atoms in the ground state φ0 (~r), and using
〈
N
∣∣∣â†0â†0â0â0

∣∣∣N〉 = N(N−1). Therefore

U
(1)
2 = U2, the bare parameter interaction energy.

Derivation of second-order interaction energies

If we set the ground state energy to zero, i.e. E0 = 0, the second-order energy is given

by

E(2) = −
∑
α 6=0

〈
N
∣∣∣Ĥ2

∣∣∣α〉〈α ∣∣∣Ĥ2

∣∣∣N〉
Eα

= −
(
U2

2

)2∑
ab

∑
cd 6= 0

K00abKcd00

Ecd
〈χab | χcd〉

(16)

Note that the sum
∑

ab is unrestricted. Using the definition

〈χab | χcd〉 =
〈
N
∣∣∣â†0â†0â0â0â

†
0â
†
0â0â0

∣∣∣N〉
= N(N − 1)

〈
N − 2

∣∣∣â0â0â
†
câ
†
d

∣∣∣N − 2
〉
,

(17)

we have

E(2) = −
(
U2

2

)2

N(N − 1)
∑
ab

∑
cd6=0

K00abKcd00

Ecd

〈
âaâbâ

†
câ
†
d

〉
. (18)

where 〈. . .〉 is shorthand for 〈N − 2| . . . |N − 2〉.

In order to evaluate
〈
âaâbâ

†
câ
†
d

〉
, we can employ Wick’s theorem to turn this into a

counting exercise; we use contractions between operators to achieve a sum of normal or-

dered operators and commutation relations. Often these normal ordered terms give rise to
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numerical substitutions which drastically simplify the result. Thus, we evaluate
〈
âaâbâ

†
câ
†
d

〉
using Wick’s theorem, which gives〈

âaâbâ
†
câ
†
d

〉
=
〈

: âaâbâ
†
câ
†
d :
〉

+

〈
: âaâbâ

†
c â
†
d :

〉
+

〈
: âaâbâ

†
câ
†
d :

〉
+

〈
: âa âbâ

†
c â
†
d :

〉
+

〈
: âa âbâ

†
câ
†
d :

〉
+

〈
: âa âbâ

†
câ
†
d :

〉
+

〈
: âaâbâ

†
câ
†
d :

〉
.

(19)

The double colons :: denote the normal ordering, which is when all annihilation operators

are to the right of all creation operators in a product of creation and annihilation operators.

The contractions give the Kronecker δ terms, e.g.,

âbâ
†
c = δac, (20)

and all normal-ordered, uncontracted operators have indices set to zero since the initial

and final state have all atoms in the a = 0 state. The term
〈
â†0â

†
0â0â0

〉
doest not appear,

however, because of the restriction c = d 6= 0. The four single contractions

〈
: âaâbâ

†
c â
†
d :

〉
are all identical under the symmetries a ←→ b and c ←→ d, and similarly the two double

contractions are likewise identical.

Therefore, 〈
âaâbâ

†
câ
†
d

〉
= 4

〈
â†0â0

〉
δac + 2δacδbd. (21)

Using
〈
â†0â0

〉
=
〈
N − 2

∣∣∣â†0â0

∣∣∣N − 2
〉

= N − 2, the second-order energy becomes

E(2) = − 1

2!
U2

2N(N − 1)
∑
cd6=0

K00cdKcd00

Ecd
− 1

3!
6U2

2N(N − 1)(N − 2)
∑
a6=0

K000aKa000

Ea
(22)

and

U
(2)
2 = −U2

2

∑
cd6=0

K00cdKcd00

Ecd
(23)

U
(2)
3 = −6U2

2

∑
a6=0

K000aKa000

Ea
(24)

Derivation of third-order interaction energies

The formula for the third-order energy is

E(3) =
∑
α 6=0

∑
β 6=0

〈
N
∣∣∣Ĥ2

∣∣∣α〉〈α ∣∣∣Ĥ2

∣∣∣ β〉〈β ∣∣∣Ĥ2

∣∣∣N〉
EαEβ

−
〈
N
∣∣∣Ĥ2

∣∣∣N〉∑
α 6=0

〈
N
∣∣∣Ĥ2

∣∣∣α〉〈α ∣∣∣Ĥ2

∣∣∣N〉
E2
α

.

(25)
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The right hand side (RHS) of the above expression has the effect of subtracting away from

disconnected diagrams.

The left hand side (LHS) can be written as

E
(3)
LHS =

∑
α 6=0

〈
N
∣∣∣Ĥ2

∣∣∣α〉 〈α|
Eα

 Ĥ2

∑
α 6=0

|β〉
〈
β
∣∣∣Ĥ2

∣∣∣N〉
Eβ

 (26)

Using our previous results and definition, and relabeling indices when helpful for clarity,

gives

E
(3)
LHS =

(
1

2
U2

∑
ab6=0

K00ab
〈χab|
Eab

)
1

2
U2

∑
cdef

Kcdef â
†
câ
†
dâeâf

(
1

2
U2

∑
gh6=0

Kgh00
|χgh〉
Egh

)

=

(
U2

2

)3 ∑
ab 6=0

∑
cdef

∑
gh

K00abKcdefKgh00

EabEgh
〈χab| â†câ

†
dâeâf |χgh〉

(27)

Since

〈χab| â†câ
†
dâeâf |χgh〉 = 〈N | â†0â

†
0âaâbâ

†
câ
†
dâeâf â

†
gâ
†
hâ0â0 |N〉 = N(N − 1)

〈
âaâbâ

†
câ
†
dâeâf â

†
gâ
†
h

〉
,

(28)

and the shorthand 〈. . .〉 = 〈N − 2| . . . |N − 2〉, we have that

E
(3)
LHS =

(
U2

2

)3

N(N − 1)
∑
ab 6=0

∑
cdef

∑
gf 6=0

K00abKcdefKgh00

EabEgh

〈
âaâbâ

†
câ
†
dâeâf â

†
gâ
†
h

〉
(29)

Using the first- and second-order results, we have the RHS

E
(3)
RHS = −

(
U2

2

)3

N2(N − 1)2
∑
ab

∑
cd6=0

K00abKcd00

E2
cd

〈
âaâbâ

†
câ
†
d

〉
(30)

RHS terms

We previously found that〈
âaâbâ

†
câ
†
d

〉
= 4(N − 2)δac + 2δacδbd, (31)

using
〈
hata†0â0

〉
= N − 2, which gives

E
(3)
RHS = −U

3
2

2
N2(N − 1)2(N − 2)

∑
a6=0

K000aKa000

E2
a

− U3
2

4
N2(N − 1)2

∑
ab6=0

K00abKab00

E2
ab

. (32)
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To express this as separate N -body terms, we note that

N2(N − 1)2(N − 2) = N(N − 1)(N − 2)(N − 3)(N − 4)

+ 6N(N − 1)(N − 2)(N − 3)

+ 6N(N − 1)(N − 2)

(33)

and

N2(N − 1)2 = N(N − 1)(N − 2)(N − 3) + 4N(N − 1)(N − 2) + 2N(N − 1). (34)

Therefore, the contribution to the five-body interaction energy is (after factoring out

N(N − 1)(N − 2)(N − 3)(N − 4)/5!)

U
(3)
RHS,5 = −60U3

2

∑
a6=0

K000aKa000

E2
a

. (35)

The contribution to the four-body interaction energy, after factoring out N(N − 1)(N −

2)(N − 3)/4!, is

U
(3)
RHS,4 = −72U3

2

∑
a6=0

K000aKa000

E2
a

− 6U3
2

∑
ab6=0

K00abKab00

E2
ab

. (36)

The contribution to the three-body interaction energy, after factoring out N(N − 1)(N −

2)/3!, is

U
(3)
RHS,3 = −18U3

2

∑
a6=0

K000aKa000

E2
a

− 6U3
2

∑
ab6=0

K00abKab00

E2
ab

. (37)

The contribution to the two-body interaction energy, after factoring out N(N − 1)/2!, is

U
(3)
RHS,2 = −U3

2

∑
ab6=0

K00abKab00

E2
ab

. (38)

Five-body interaction energy

Apply Wick’s Theorem to
〈
âaâbâ

†
câ
†
dâeâf â

†
gâ
†
h

〉
, we obtain two, three, four and five-body

terms. The six-body term corresponding to
〈

: âaâbâ
†
câ
†
dâeâf â

†
gâ
†
h :
〉

with no contractions

vanishes because of the restriction of a = b 6= 0 and g = h 6= 0. Five-body terms are

generated by a single contraction. However, the restrictions a = b 6= 0 and g = h 6= 0 imply
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that either a or b must be contracted with either g or h. Therefore, the five-body term is

given by 〈
: âaâbâ

†
câ
†
dâeâf â

†
g â
†
h :

〉
=
〈
4â3

0

〉
δag = 4(N − 2)(N − 3)(N − 4)δag, (39)

with b = c = d = e = f = h = 0, and the factor of 4 from the four equivalent contractions.

This gives

E
(3)
LHS,5 = 4

(
U2

2

)3

N(N − 1)(N − 2)(N − 3)(N − 4)
∑
a6=0

K000aKa000

E2
a

(40)

using K0000 = 1. Factoring out N(N − 1)(N − 2)(N − 3)(N − 4)/5!, we obtain

U
(3)
LHS,5 = 60U3

2

∑
a6=0

K000aKa000

E2
a

. (41)

Adding the LHS and the RHS contributions gives

U
(3)
LHS,5 + U

(3)
RHS,5 = 60U3

2

∑
a6=0

K000aKa000

E2
a

− 60U3
2

∑
a6=0

K000aKa000

E2
a

= 0 (42)

Four-body interaction energy

Four-body terms are generated by double contractions of
〈
âaâbâ

†
câ
†
dâeâf â

†
gâ
†
h

〉
. Because

of the restriction a = b 6= 0 and g = h 6= 0, either a or b and also either g or h must be

contracted. This gives the following terms:

〈
âaâbâ

†
câ
†
dâeâf â

†
gâ
†
h

〉
= 8

〈
: âa âbâ

†
câ
†
dâeâf â

†
g â
†
h :

〉
+ 8

〈
: âaâbâ

†
câ
†
dâeâf â

†
g â
†
h :

〉
+ 2

〈
: âa âbâ

†
câ
†
dâeâf â

†
g â
†
h :

〉
+ 16

〈
: âa âbâ

†
c â
†
dâe âf â

†
g â
†
h :

〉
= (8δacδbg + 8δacδeh + 2δahδbg + 16δbcδfg(N − 2)(N − 3),

(43)

where the factors 8,8,2, and 16 are the number of equivalent contractions and
〈
â†20 â

2
0

〉
=

(N − 2)(N − 3). Inserting Kronecker deltas for the contractions, setting all other indicies to

zero, and dividing by N(N − 1)(N − 2)(N − 3)/4! gives

U
(3)
LHS,4 = 24U3

2

∑
a,b 6=0

K00abKa000Kb000

EabEb
+ 24U3

2

∑
a,b6=0

K000aK000bKab00

EaEab

+ 6U3
2

∑
ab6=0

K00abK0000Kab00

E2
ab

+ 48U3
2

∑
a,b 6=0

K000aKa00bKb000

EaEb
.

(44)
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The first two terms are equal. Meanwhile,

U
(3)
RHS,4 = −72U

(3)
2

∑
a6=0

K000aK0000Ka000

E2
a

− 6U3
2

∑
ab 6=0

K00abK0000Kab00

E2
ab

. (45)

Adding the LHS and RHS gives

U
(3)
4 = 48U3

2

∑
a,b 6=0

K00abKa000Kb000

EabEb
+ 48U3

2

∑
a,b 6=0

K000aKa00bKb000

EaEb
−72U3

2

∑
a6=0

K000aK0000Ka000

E2
a

.

(46)

Three-body interaction energy

Three-body terms are generated by triple contractions of
〈
âaâbâ

†
câ
†
dâeâf â

†
gâ
†
h

〉
. This gives

the following terms:〈
âaâbâ

†
câ
†
dâeâf â

†
gâ
†
h

〉
= 8

〈
: âa âbâ

†
c â
†
d âe âf â

†
g â
†
h :

〉
+ 8

〈
: âaâbâ

†
c â
†
d âe âf â

†
g â
†
h :

〉
+ 16

〈
: âa âbâ

†
c â
†
dâe âf â

†
g â
†
h :

〉
.

(47)

Using
〈
â†0â0

〉
= N − 2, and dividing by N(N − 1)(N − 2)/3! gives

U
(3)
LHS,3 = 6U3

2

∑
ab 6=0

∑
c 6=0

K00abKba0cKc000

EabEc
+ 6U3

2

∑
a6=0

∑
bc6=0

K00a0Ka0bcKbc00

EaEbc

+ 12U3
2

∑
ab 6=0

∑
c 6=0

K00abKb00cKca00

EabEca

(48)

Using
〈
â†0â0

〉
= N − 2, and dividing by N(N − 1)(N − 2)/3! gives

U
(3)
RHS,3 = −18U3

2

∑
a6=0

K000aK0000Ka000

E2
a

− 6U3
2

∑
ab6=0

K00abK0000Kab00

E2
ab

(49)

These are produced by triple contractions of
〈
âaâbâ

†
câ
†
dâeâf â

†
gâ
†
h

〉
and these contractions

give rise rise to three types of terms:

〈
âaâbâ

†
câ
†
dâeâf â

†
gâ
†
h

〉
→ 1

2
× 4×

〈
: âf â

†
h :
〉(

âȧ̂a
†
c

)(
âḃ̂a
†
d

)(
âė̂a
†
g

)
+

1

2
× 4×

〈
: âbâ

†
d :
〉(

âė̂a
†
g

)(
âf˙̂a

†
h

)(
âȧ̂a

†
c

)
+

1

2
× 4×

〈
: â†dâf :

〉(
âȧ̂a

†
c

)(
âė̂a
†
g

)(
âḃ̂a
†
h

)
→ 2

〈
â†hâf

〉
δacδbdδeg + 2

〈
â†dâb

〉
δefδfgδac + 2

〈
â†dâf

〉
δacδegδbh.

(50)
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They are all proportional to (U2/2)3N(N − 1)
〈
â†0â0

〉
= (U2/2)3N(N − 1)(N − 2), and

so we can write

E
(3)
3 =

1

6
δU

(3)
3 N(N − 1)(N − 2), (51)

with

δU
(3)
3 = δU

(3)
3,1 + δU

(3)
3,2 + δU

(3)
3,3 , (52)

and

δU
(3)
3,1 =

3U3
2

4
× 2

∑
ab 6=0

∑
c 6=0

K00abKabc0Kc000

EabEc
(53)

δU
(3)
3,2 =

3U3
2

4
× 2

∑
a6=0

∑
bc6=0

K000aKa0bcKbc00

EaEbc
(54)

δU
(3)
3,3 =

3U3
2

4
× 8

∑
ab 6=0

∑
cb 6=0

K00abKa0c0Kbc00

EabEbc
(55)

Two-body energy

These are produced by quadruple contractions of
〈
âaâbâ

†
câ
†
dâeâf â

†
gâ
†
h

〉
. There are four

equivalent terms to yield 〈
âaâbâ

†
câ
†
dâeâf â

†
gâ
†
h

〉
→ 4δacδbdδegδfh (56)

giving

E
(3)
2 = 4×

(
U2

2

)3

N(N − 1)
∑
ab 6=0

∑
ef 6=0

K00abKabcfKef00

EabEef
. (57)

DERIVATION OF FOUR-BODY INTERACTION ENERGY

In order to find an analytic form describing the 4-body effective interaction energy, we

must simplify the terms given in Equation 46 in the previous section. There we are given

U
(3)
4 = 48U3

2

∑
a,b 6=0

K00abKa000Kb000

EabEb
+ 48U3

2

∑
a,b 6=0

K000aKa00bKb000

EaEb
−72U3

2

∑
a6=0

K000aK0000Ka000

E2
a

.

(58)

It is apparent that before these sums be evaluated, the quantity Kabcd should be calculated.

To achieve this, recall

Knm =

∫
d3xϕn00 (~r)ϕm00 (~r)ϕ000 (~r)ϕ000 (~r) (59)
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where

ϕnlm (~r) = Nnlr
le−r

2/2Ll+1/2
n

(
r2
)
Ylm (θ, φ) . (60)

Here, Lαn(X) is the generalized Laguerre polynomial of degree n and Ylm(θ, φ) represent the

spherical harmonics. The constants Nnl are given by

Nnl =

√
22n+2l+2n!(n+ l)!

(2n+ 2l + 1)!
(61)

Notice that Y 0
0 (θ, φ) = 1

2
√
π
, Lα0 (r2) = 1 and N00 = 2. This reveals that ϕ(~r) = π−3/4e−x

2/2.

Given these facts, we convert Kmn to spherical coordinates and simplify

Knm =

∫
dφdθdr

4

16π3
Nn0Nm0r

2 sin θe−2r2L1/2
n

(
r2
)
L1/2
m

(
r2
)

(62)

We can integrate to with respect to θ and φ:

Knm =
Nn0Nm0

4π3

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ ∞
0

dr r2e−2r2L1/2
n

(
r2
)
L1/2
m

(
r2
)

=
Nn0Nm0

π2

∫ ∞
0

drr2e−2r2L1/2
n

(
r2
)
L1/2
m

(
r2
) (63)

To integrate the Laguerre polynomials, we will use their complex formulation, where Lαn(z) =

1
2πi

∮
γ
dt 1

(1−t)α+1tn+1 e
−zt/(1−t), where γ is some contour in the complex plane. Thus

Knm =
Nn0Nm0

π2

∫ ∞
0

dr r2e−2r2
(

1

2πi

∮
γ1

dt
1

(1− t)3/2tn+1
e−r

2t/(1−t)
)

×
(

1

2πi

∮
γ2

dT
1

(1− T )3/2Tm+1
e−r

2T/(1−T )

)
=
Nn0Nm0

π2

(
1

2πi

)2 ∮
γ1

dt

∮
γ2

dT
1

(1− t)3/2(1− T )3/2

1

tn+1Tm+1

×
∫ ∞

0

dr r2e−2r2e−r
2t/(1−t)e−r

2T/(1−T )

(64)

Take γ1 : |t| < 1 and γ2 : |T | < |t| < 1. Then, we have∫ ∞
0

dr r2e−2r2e−r
2t/(1−t)e−r

2T/(1−T ) =
π1/2

4

(t− 1)3/2(T − 1)3/2

(2− t− T )3/2
. (65)

Using this, we have

Knm =
Nn0Nm0

π3/2

(
1

2πi

)2 ∮
γ1

dt

∮
γ2

dT
1

(1− t)3/2(1− T )3/2

1

tn+1Tm+1

× π1/2

4

(t− 1)3/2(T − 1)3/2

(2− t− T )3/2
.

(66)
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To compute the contour integrals, the Cauchy Residue Theorem is used. Recall, given a

function f with discontinuity z0,

f (n)(z0) =
n!

2πi

∮
γ

f(z)dz

(z − z0)n+1
(67)

where f (n) denotes the n-th derivative of f . Our paths γ1 and γ2 only contain a single

discontinuity each, at t = T = 0. Therefore,

1

2πi

∮
gamma2

(2− t− T )−3/2

(T − 0)m+1
=

1

m!
(2− t− T )−3/2

∣∣
T=0

=
2

(2− t)3/2+m

Γ(m+ 3/2)√
(π)m!

(68)

Moving on to the second contour integral, we have

1

2πi

∮
gamma1

(2− t)−3/2−m

(t− 0)n+1
=

1

n!
(2− t)−3/2−m∣∣

t=0
=

1

23/2+m+n

Γ(m+ n+ 3/2)

n! Γ(m+ 3/2)
(69)

Combining these two results, we have have

Knm =
Nn0Nm0

m!n! π2

Γ(m+ n+ 3/2)

25/2+m+n
(70)

However, there exist some relationships between gamma functions and factorials, which can

be used to manipulate the formula for Knm into a form more easily comparable to related

results in the literature.

Knm =
Nn0Nm0

m!n! π2

Γ(m+ n+ 3/2)

23/2+m+n

=

√
22n+2(n!)2

(2n+ 1)!

√
22m+2(m!)2

(2m+ 1)!

√
2

2m+n+22π2m!n!
Γ(m+ n+ 3/2)

=
2n+1n!√
(2n+ 1)!

2m+1m!√
(2m+ 1)!

√
2

2m+n+22π2m!n!

(2n+ 2m+ 1)!!
√
π

2n+m+1

=
1

(2π)3/2

(2n+ 2m+ 1)!!

2n2m
√

(2n+ 1)!(2m+ 1)!

(71)

ESTIMATE OF EFFECTIVE FOUR-BODY INTERACTION ENERGY

Using the results from Equations 46 and 71, it is now possible to evaluate U
(3)
4 . We have

that

U
(3)
4 = 48U3

2

∑
a,b 6=0

K00abKa000Kb000

EabEb
+ 48U3

2

∑
a,b 6=0

K000aKa00bKb000

EaEb
−72U3

2

∑
a6=0

K000aK0000Ka000

E2
a

.

(72)
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FIG. 3: Four-body Feynman Diagrams.

where the Kabcd are given above in Eq 71. The first two terms can be described in terms

of the following Feynman diagrams. Using Wolfram Mathematica, preliminary estimates for

two of the sums have been calculated.∑
a,b 6=0

K00abKa000Kb000

EabEb
≈ 0.144138 (73)

∑
a,b 6=0

K000aKa00bKb000

EaEb
≈ 0.0968428 (74)

(75)

Using these results, an estimate for U
(3)
4 has been determined:

U
(3)
4 = 48U3

2 (0.144138)+48U3
2 (0.0968428)−72U3

2

∑
a6=0

K000aK0000Ka000

E2
a

= 11.5671U3
2−72U3

2

∑
a6=0

K000aK0000Ka000

E2
a

.

(76)

INSIGHT INTO THREE-BODY CORRECTION AT THIRD-ORDER

It has been realized that the third-order perturbations allow interactions like that show

in Figure 4 to exist.

Up to this point, because each virtual states must excite from and de-excite to the

ground state, all wave function had zero angular momentum, i.e., l = m = 0, due to

conservation of angular momentum. But this third-order, effective three-body interaction

allows for all excited states to have some angular momentum associated with it. At the first

pairwise interaction, one excited state may take the form ânlm but the other other excited

state exiting that interaction must then take the form ânl−m due to conservation of angular

momentum. At the intermediate interaction, the exiting excited state must have the same

17



FIG. 4: Three-body correction Feynman Diagram.

angular momentum as the incoming excited state. This ensures that angular momentum

is conserved. A similar procedure can be followed to calculate this energy correction; like

the four-body correction, it involves evaluating the terms Kabcd. However, these terms are

complicated by the addition of l and m:

Knν =

∫
dφdθdr

NnlNνl

π
r2l sin θe−2r2Ll+1/2

n

(
r2
)
Ll+1/2
ν

(
r2
)
Ylm (θ, φ)Yl−m (θ, φ) (77)

CONCLUSION

The work presented in this article displays a framework with which to calculate the four-

body and higher-body effective interactions as to more accurately represent the interaction

energy of interacting neutral bosons in optical lattices. The methods employed were used

due to the ability to be generalized to calculate higher-body effects. The current results can

be used to better describe the collapse and revival mechanics of scattering of Bose-Einstein

condensates.

This work, however, represents a preliminary venture into a project where there is much

more to be researched. More rigorous estimates of the four-body correction must be calcu-

lated and compared to work presented by Bloch [2], as well as the third-order three-body

correction evaluated. One could then attempt to calculate the five- and six-body correc-

tions using fourth- and fifth-order perturbation theory. These results should similarly be

compared to experimental results. Lastly, the Bose-Hubbard Hamiltonian may be replaced

by one that accounts for tunneling – only then can a robust model of high temperature

superconductors be achieved.
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