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This paper introduces two broad methods of analyzing stochastic processes.  Stochastic processes have 

enormous potential for mathematical modeling across a wide variety of scientific disciplines, including 

physics, biology, and economics.  The two methods discussed in this paper are Spectral Analysis—which 

deals with the detection of cyclic behavior—and Bayesian estimation—which provides a robust 

framework for predicting stochastic processes via Monte Carlo Simulation.  MATLAB simulations are 

used throughout to guide the reader. 



Part I:  Spectral 

Estimation 
 

Fourier Foundations: 

 To provide the best explanation of the transform, we start with a wholesome definition of 

Fourier series.   We are going to approach Fourier series as an application of an inner product in the 

vector space of continuous functions.  As Lay explains, the inner product space of all continuous 

functions on an interval � � � � � is probably the most widely used inner product space for applications 

(Lay 433).  We start by defining a polynomial that exists in Ρ�.  The “length” for p can be computed in the 

interval [a,b] by evaluating p at n+1 points of length ∆� in [a,b].  The inner product of two polynomials p 

and q is: 
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As it satisfies the inner product axioms (Lay 430-435).  For large n, the inner product will be large, so we 

scale it down by diving by n+1.  Now note that 
�
���  ∆� ���, as both represent one discrete piece of the 

entire interval.  Thus we write: 
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Obviously, the final representation is a Riemann sum that converges to an integral as ∆� ! 0: 
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Where the scalar is not essential, and is often omitted (Lay 439). 

Putting polynomials in C[a,b] aside, let us consider a function in %&0,2().  A continuous function can be 

approximated by linear combinations of sine and cosine functions, otherwise known as trigonometric 

polynomial: 

��2 � �� cos 1� …�� cos �� � �� sin1� …�� sin�� 



We are going to define an inconsistent linear system 12  3, in other words an approximation of the 

function, where the A is defined as: 
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Note that the 2
nd

 and 3
rd

 columns of a are orthogonal with respect to the inner product %&0,2().  The 

function f may not exist in the column space of A, but the best approximation would be the function’s 

orthogonal projection onto the column space.   This minimizes the distance between the function 

evaluated at t and the trigonometric polynomial.  This approximation is called the Fourier approximation 

to f on &0,2().  The orthogonal projection shows that the coefficients �; , <  1,…� and �; , <  1,…� 

are: 

 �;   �3, sin <���sin <� , sin <�� ��$ �;  �3, cos <���cos<� , cos<�� 
A simple computation shows that �sin <� , sin <��  ( and �cos <� , cos <��   (.  So we are left with 

�;  1(# 3��� sin�<�� $�=>
�  ��$ �;  1(# 3��� cos�<�� $�=>

�  

Having found the value of the coefficients that minimize distance between function and polynomial, the 

best approximation to the function in terms of sines and cosines has been approximated, and can be 

written concisely as: 

3���   ��2 � � �; cos<� � �;
�

;��
sin <� 

This is known as the Fourier series for function f.  The term �; sin <� is, for example, the projection of f 

onto the one-dimensional subspace spanned by sin<�.  As n increases, the distance between function 

and trigonometric polynomial approaches zero.   The coefficient in this equation is usually dropped in 

the general form of the Fourier series. 

 

 



 

A Fourier series approximating a step-wise function, from Wolfram (wolfram.com) 

Fourier Analysis:  The Transform 

 The Fourier series can be extended to complex coefficients, and such an extension is what leads 

to the extraordinary Fourier Transform.   If we instead right the Fourier series with both sines and 

cosines multiplied by the same coefficient �;, but the sines are also multiplied by ?, the imaginary 

number, then we can right the series as: 

3���   ��; cos <� � ?�;
�

;��
sin<� 

Because the two terms still represent orthogonal columns of a matrix representing a trigonometric 

polynomial.  Now, we take advantage of Euler’s phenomenal identity: 

@�A  cosB �  ? sinB 

This allows us to write the Fourier series as: 
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Now let us take the integral of 3���, which is periodic in & (, (), multiplied by another complex variable, @��DC.  This integral represents the “amount” of the wave represented by @�DC that is represented by 

the foureier series of 3��� (Wikipedia, Fourier Transform).  
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Notice how the multiplication of the function’s Fourier series and the wave represents a difference 

between the Fourier series and the wave: the integral thus represents the total amount of the wave that 

is in the Fourier series of the function.  The above derivation is made to prove that the integral is equal 

to 2(�D.  Then, it is obvious that: 

�;   12(# 3���>
�> @��;C$2  

We now have functional representations of 3���  and �; for the function periodic in & (, ().  We can 

generalize this to a function periodic in & K
= , K=): 

3���   � �;@�=>;C/K
E
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Note that our constant,  �;, can be considered a function of 

;
K.  Written as �;  3N�;K).  Now, here is the 

ingenious part of the derivation.  For simplicity sake, write O   ;K.  Then, ∆O   �;���K   ;K  �K.  Then the 

periodic function 3��� can be written as: 

3���   � 3N�O� P @�=>CQ∆OE
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Extraordinarily, this is a Riemann sum which in the limit becomes: 

limK!E 3���   limK!E � 3N�O� P @�=>CQ∆OE

;��E
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This is the definition of the inverse Fourier Transform, ie, constructing a function in the time domain out 

of a function of frequencies—cycles per unit of time.  To construct a function of frequencies from a 

function of time, the inverse of the above function is used:  this is known as the Fourier Transform: 

3N�O�  # 3���@��=>CQ$OE
�E  

 

Understanding the Fourier Transform: 

 We have gone through great lengths to derive the Fourier Transform because it plays such an 

important role in classical signal processing techniques.  Before moving on to explain how the transform 

can be applied to stochastic processes, we want to augment the mathematical development with a 

more intuitive understanding. 

 A function of 
;
K is a function of frequency (remember kt is the angular frequency of the  

sinusoidal waves making up our initial trigonometric polynomial.  So, the Fourier transform is 



transforming our function of time into a function of frequency, or phrased differently, a function of how 

many occurrences in a unit interval of time.  Theoretically ,this is  all the values of k for which the 

integral is evaluated.  Thus, the transform measures how much of each frequency is present in our time-

valued function.  Later on, we will provide a graphical illustration with the transform of time-valued 

stochastic processes.  But first, the basics of stochastic processes must be explained. 

Stochastic Processes:  Introduction 

 A precise mathematical definition of a stochastic process is a random vector of infinite 

dimension.  However, this definition does not motivate further studies of stochastic processes, when the 

motivation should be great: stochastic processes have enormous potential for modeling phenomena 

across the hard and social sciences. 

 Consider a coin toss.  The result of the toss is obviously random, and if X represents the face of 

the coin after the toss (X = 1 if heads and X = 0 if tails), then X is a textbook example of a random 

variable.  Now suppose that every 5 seconds, you toss the same coin.  You do this indefinitely, in essence 

creating a string of random variables that are indexed in time.  This is a basic example of a stochastic 

process: a process which takes different values at different time periods, and each value at each time is 

the outcome of a random experiment. 

 
A simple stochastic process; note that there is no obvious pattern in which value it takes. 

So, a stochastic process is simply a process whose value at any given time follows a probability 

distribution. 



 As Kay says, “There are several types of random processes that have found wide application 

because of their realistic physical mdeling yet relative mathematical simplicity” (Kay, 674).  One of the 

processes he is speaking of is the Gaussian process. 

 Gaussian Processes have many very appealing properties, owing to the fact that they are 

created from the very appealing Gaussian distribution.  For instance, the joint PDF of any set of samples 

is a multivariate Gaussian distribution.  If X is a Gaussian random process, then T  &U�, U=, … , UV)W and 

its pdf is the joing pdf of the random variables  U�, U=, … , UV: 

	T�X�   1
�2(�V/= P $@��=�Y� P @2	 Z 

12 �X  [�WY�\�X  [�] 
Where [ is the vector of means, and C is the covariance matrix.  If the Gaussian random variables are 

independent, then C is just the vector of variances.   Additionally, the first two moments completely 

define it (Kay, 674).  Also, a linear transformation of a Gaussian distribution is still Gaussian, so we may 

apply linear transformations on a Gaussian process and still have a Gaussian process as a result.  

 

Simulation of a Gaussian process comprised of independent standard normal Gaussian distributions. 

Of course, stochastic processes can get much more complicated.  For instance, consider Brownian 

motion, discovered by Robert Brown in 1827 and used to describe the minute changes in position of 

microscopic pollen particles (Wiersema).  The movement of Brownian motion is continuous and each 

increment in its position follows a normal distribution with mean 0 and variance proportional to the 

time step ‘t’: 



 

A single path of Brownian motion.  Note that simulating the code for this graph again would produce a different path 

 An even more complicated stochastic process is based on a differential equation with one rate 

of change described with respect to Brownian motion.  The solution to that stochastic differential 

equation is graphed below, and is used to model the movement of stock prices. 

 Clearly, the breadth of stochastic processes and the phenomena they can model is vast.  Before 

moving on to Fourier Analysis of these processes, we are going to introduce two very important 

concepts: stationarity and autocorrelation. 

Stationarity and Autocorrelation 

One important caveat of modeling with stochastic processes is that much analysis can only be 

done on processes whose moments do not vary across time; put differently, the value of the process an 

each time ‘t’ depends on only one probability distribution.  This is called stationarity.  Luckily, the 

techniques we will be focusing on require only Wide Sense Stationarity: the first and second moments 

must be time invariant. 

^�U��  ^_U��`a ��$ ^_U�=a   ^_U=��`a, 3HJ �II � ��$ b  1,… , �  
 Autocorrelation will be a familiar term to students of time series.  A single realization of a 

stochastic process can be considered time series data.  In which case the autocorrelation of a value of 

the stochastic process at time t with its jth lag is defined as: 



%HJJ_U� , U��`a   %Hc�U� , U��`�
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Autocorelation is a ubiquitously used tool in timeseries analysis because it allows us to visualize 

periodicities.  In particular, a graph of the lag vs. autocorrelation graph, popularly known as the 

correlgram illustrates periodicity in the data.  To better portray this idea, let us take an example of a 

signal: a sine wave whose angular frequency is has been corrupted by additive noise: 

f?g��I:  U����  sin_�� � i�ja , where i�j  Gaussian noise  

 

The signal seems to be randomly alternating between positive and negative values.  Obviously, since we 

have stated the signal in functional form, we know that it is not completely random and contains strong 

periodicity in it.  Suppose we were unaware.  Then, one measure we would use is the autocorrelation 

graph: 

 



Notice that the autocorrelation with increasing lag order reveals a diminishing sinusoidal relationship 

between the present value of the function and its’ jth lag.  This is a tell tale sign of periodicity in the 

data.  Unfortunately, we can go no further in our analysis of periodicity in the signal; we have reached 

the limits of analysis in the time domain.  So how do we proceed?  In order to answer that question, we 

must combine what we have learned about the Fourier transform with what we have learned about 

stochastic processes. 

The Spectrum:  Power Spectral Density and basics of Power Spectral Estimation 

 So far, we have developed the Fourier transform and important properties of stochastic 

processes, particularly the autocorrelation.  Now, we will fuse these two concepts together to develop 

an extremely well respected method of analyzing stochastic processes, known as Spectral Analysis. 

 Spectral Analysis primarily rests on what is called the power spectrum.  Papoulis defines the 

power spectrum—also known as the spectral density—of a WSS (Weak Sense Stationary) process U��� 
as the Fourier transform r�s� of its autocorrelation, t���: 

r�s�   # t���@��u�E
�E  

And the autocorrelation of a function is defined, via the inversion formula of the Fourier transform, as: 

t���   12(# r�s�@�u�E
�E , �v�	HwI?f, 412  416� 

The above are known as the Wiener –Khintchine relations, after Norbert Wiener and Aleksandr Khinchin 

(Simon, 71).    

What is it that the power spectrum illustrates?  Technically speaking, it contains the exact same 

information as the autocorrelation function, but it is packaged differently.  Recall that the Fourier 

transform of a time-valued process returns the process in frequency space.  This is exactly what the 

transform does to the autocorrelation function.  The power spectrum describes to what degree each 

frequency is present in the data, ie, at what frequencies the data are most correlated.  As Meko 

describes, “the spectrum of a time series is the distribution of [autoco]variance of the series as a 

function of frequency” (Meko, chapter , pg 1). 

 If the autocorrelation and the spectrum contain the same information, one might ask why 

spectral analysis is so potent of a method.  The answer is that there are many phenomena—

biological,physical, and economics—which have variability that is frequency dependent, so 

understanding the frequency dependence is paramount.  For instance, the variable costs of a business 

may be dependent on the seaonsality of sales or business operations that occur every so often a year.  

Another example is the relationship between unemployment and inflation.  These are but two example 

of many.  Spectral analysis allows us to detect and describe cyclic patterns in a stochastic process.    

 



Spectral Estimation: 

 The final segment on spectral analysis deals with the problem of estimation.  If we have reason 

to believe that there are cyclic properties in a stochastic process, can we estimate what the power 

spectrum will be from a single realization of the process,ie a finite number of data points?  The answer is 

yes; in fact, there are a gamut of techniques available for doing this.  We are going to briefly summarize 

a classical, nonparametric technique known as the periodogram. 

 Papoulis defines the periodogram of a signal as the process: 

v�s�   12z {# U���@��u�$�W
�W {= , �v�	HwI?f, 539� 

 This has a discrete form as well, which is necessary if computers are to be used in evaluating the 

periodogram.  Vaseghi defines the dsicrete form as: 
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 Storey notes that one can define the power spectrum as the absolute value of the Fourier 

coefficients, which will provide us with the total amount of information contained at a given frequency: 

the square of the absolute value is considered the power of the signal (Storey, 10).  Because of its 

algorithmic simplicity, an estimation of the PSD using the periodogram is used in the MATLAB files. 

At this point, we are going to continue our simple example of a sinusoid corrupted by additive 

noise.  Taking the autocorrelation data from above and applying the Fourier transform to it, we produce 

the following power spectrum of the process: 

 

The sinusoidal shape of the correlogram is completely gone.  The reason for this is that frequency is now 

the horizontal axis.  Each stem represents the magnitude of periodicity associated with each frequency.  

Notice that the magnitude of periodicity is extremely high at values close to 17 and 85 (this represents 

the true periodic nature of the sine wave).  There are also small levels of periodicity that occur at every 



other frequency.  In spectral analysis of stochastic processes, this always happens.  These “fake 

periodicities” arise from the random variations that occur in the process.  One can distinguish between 

the fake periodicities and the true frequencies of periodicity by noting that the additive noise occurs 

throughout the process, and so it should indicate a relatively even and low level of periodicity across all 

frequencies.  The magnitude of the real periodicity, which occurs only at a few frequencies, is much 

larger.  To illustrate this point, compare the above PSD of the random signal with that of a deterministic 

sinusoid: 

 

 The estimated PSD of the signal and the sinusoid reflect a large amount of correlation occurring 

at the same frequency, but the sinusoid does not have the minute levels of periodicity at all other 

frequencies.  This is because those periodicities are caused by the noise.  This fact allows us to do 

something in the spectrum which is impossible to do in the correlogram: filter out the noise.  If we can 

detect the noise by its low-level of periodicity across all frequencies, we can cut out all the data points 

that correspond to a spectral value that is below a benchmark.   

 The algorithm can be described fairly simply in words as well.  In essence, we want to define a 

new signal.  This new signal’s power spectrum is equal to the old signal’s power spectrum only at the 

frequencies at which the old spectrum’s value was above 0.5.  If you look at the PSD of the old signal, 

you’ll notice that only the frequencies at which we believe the true periodicity is occurring are above 

this value. 

 The next step is to rely on the Fourier inversion formula developed in the first part of this paper 

to convert this power spectrum into the signal.  When we do this, we obtain the following: 



 

This has periodicities occurring at the exact same time as an uncorrupted sine function.  The above 

example was really simple, but this technique can be applied to much more complicated signals that are 

corrupted by more complicated noise.  To show this, we provide the entire process applied to a linear 

combination of trigonometric functions with their own additive noise: 

 

From top to bottom:  A signal corrupted by additive noise; the autocorrelation of the signal; the estimated Power Spectrum of 

the signal; the signal retrieved from noise; a graph of an uncorrupted version of the original periodic function; the noise that 

was filtered out.  Notice that the periodicities of the uncorrupted signal and the extracted signal occur at the exact same times. 

 This ends our brief introduction to spectral estimation techniques of stochastic processes.  If a 

mathematician is tasked with analyzing a stochastic process—be it variable costs, inflation, position of 

pollen particles, etc.—a good place to start is with a spectral analysis, because if periodicities do exist in 



the process then spectral techniques will detect it.  Of course, the breadth of such techniques goes far 

beyond the basics that were discussed above; nonetheless they serve the purpose of illustrating the 

power of spectral estimation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Part II:  Bayesian 

Estimation 
 

 

 

Introduction to Bayesian estimation: 

 The spectral estimation techniques covered above are standard techniques to process a random 

signal.  However, modern signal processing is gradually being reconceptualized in the Bayesian 

framework (Candy 2009). Bayesian methods are capable of providing estimations of a stochastic process 

that is not particularly periodic.  Since Rev. Bayes’ papers were posthumously published, a fissure has 

existed in the discipline of statistical inference.  Oddly enough, the contentious issue is philosophical, 

and makes for a good entry point for the mathematics that will be covered in this section. 

 The issue is this: in mankind’s scientific endeavor to understand his universe, can he ever 

discover its various parameters, or are the parameters themselves just abstractions?  Classical 

probabilists (known as frequentists) believe that the mean of a stochastic process, for instance, is real-

but unknown and unknowable—and can only be estimated from the data.  Bayesians, on the other 

hand, believe that only the data is real the population mean is simply a man made abstraction; some 

values of this abstraction are more believable than others, given the data. 

 How does this relate to signal processing?  Let us look at Bayes’ theorem, which serves as the 

foundation of all Bayesian analysis.  Given a set of random variables X, noisy data Y, Bayes’ theorem is: 

Pr�U|��   Pr��|U� P Pr �U�Pr ���                
Where the Pr(X|Y) refers to the conditional probability “Probability of X given Y” and similar for Pr(Y|X).  

The probability Pr(X|Y) is called the posterior distribution (probability of the random variable X = x after 

new data has been collected).    The probability Pr(Y|X) is called the likelihood; those familiar with 

mathematical statistics will understand that the likelihood function is a function of the parameters X for 

fixed observations Y.  The probability Pr(X) is the prior distribution, ie, the density function that the 

Bayesian assigns to the random vector X before there is data.  Finally Pr(Y) is known as the “evidence” 

but is really there to normalize the posterior density (ensuring that the integral over the complete space 



is 1 (Candy, 2009).  To make sense of why Bayes’ theorem is important to the processing of random 

signals, it is helpful to first consider it as 

Pr�U|��   Pr��|U�Pr ���  P Pr �U�  
In other words, Bayes’ theorem adjusts our current understanding of the density of X by multiplying it by 

the likelihood function divided by the evidence.  If it is likely that the set of observations Y would be 

observed if X equals a given value in its range, but unlikely that the observations Y would be observed 

under the Prior distribution, then the multiplying factor is large and increases the prior.  The converse is 

also true.  Thus, Bayes’ theorem allows statisticians to estimate an unknown distribution as new 

evidence presents itself. 

Sequential Bayesian Estimation 

 The above form of Bayes’ rule applies to a general set of variables X and observations Y.  

However, we are interested in sequentially (in-time) estimating the posterior distribution.  How do we 

apply this to the analysis of a stochastic process?  Recall from our definition of a stochastic process that 

it is a sequence of random variables U� which differ as time, t, changes.  So, let us call the hidden 

parameters of our stochastic process a random signal that is actually “unobserved,” U� and our set of 

observed values of this process ��.  We are interested in estimating: 

Pr�U�|���   Pr���|U��Pr ����  P Pr �U�� 
From probability theory, we know that by the Law of Total Probability, 

Pr ����  #Pr���|U�� Pr �U��$U� 
Which is integrated over the entire parameter space of U�.  This turns Bayes’ Theorem into the 

following: 

Pr�U�|���   Pr���|U��� Pr���|U�� Pr �U��$U�  P Pr �U�� 
As Candy notes, this is conceptually appealing but leaves us with few ways to analytically evaluate the 

posterior: only a small class of priors and likelihood distributions exist such that the calculation of the 

posterior distribution is analytically tractable (Candy, 30-50).  Candy also asserts that the large 

dimensionality of the integrals involved cause most numerical integration techniques to break down as 

well.  We will deal with this daunting issue in the later discussion on Monte Carlo Markov chains, 

importance sampling, and particle filtering.  The crucial development is that we can formulate the 

density of the state of an anonymous stochastic process.  Now we must further develop Bayes’ theorem 

into a method of processing random signals. 

 



Joint Posterior Estimation: 

 The posterior above has the entire n-dimensional vectors of the random variable and the data.  

This means that values of X and Y for all time values are in this vector.  After making a few assumptions, 

we will be able to formulate the posterior in terms of values of the random signal for a specific tth time.   

It is imperative that a step by step development of sequential Bayesian estimation model is offered so as 

to provide an exact understanding of how mathematicians can begin to approximate the density of a 

stochastic process at a given interval of time.  Note that this development of the Bayesian estimation 

model is largely adopted from Candy, 2009 

 The first development is the use of the Probability chain rule (see appendix).  We will also make 

the fundamental assumption in Bayesian signal processing that random signal X is a Markov process.   

Finally, we assume that the data Y are conditionally independent of the past dynamic variables. 

Let’s begin by reformulating the likelihood function Pr���|U�� by taking note of the above 

assumptions.  We can extract the t
th

 term from the likelihood function: 

Pr���|U��  Pr_����a , ����|2���, U����  
Commas are used to denote intersections of events.  From here, via the probability chain rule, this 

becomes: 

Pr���|U��  Pr_����a , ����|2���, U����  � �������|���\, X���, T��\� P ������\| X���, T��\�   
But remember we assume that y(t) is conditionally independent of the past values, namely ���� 

and U���.  Then the first and second term of the above equation become 

 Pr�����|����, 2���, U���� � ��_�����X���a and Pr�����| 2���, U����  � ������\| X���, �     
Making the final expression of the likelihood function: 

Pr���|U��   Pr_�����2���a  P Pr�����| U���� 
We follow the exact same procedure to re-formulate the Prior distribution Pr(U�).  First extract the t

th
 

term and then employ the probability chain rule: 

Pr(U��  Pr �2���, U���  Pr�2���|U���� P Pr �U���� 
But recall that we assume that the random signal X is a Markov chain, so the t

th
 term would only depend 

on the (t-1) term: 

Pr�2���|2��  1�� P Pr �U���� 
The evidence term is derived similarly: we’ll skip this derivation as the reader likely understands the 

method now: 

Pr����  Pr�����, �����  Pr�����|����� P Pr ������ 



Now that we have successfully reformulated our three distributions using Bayes’, the chain rule, and 

assumptions about independence, we can plug them back together into Bayes’ definition of the 

posterior, which yields the following messy definition of the posYtt-1erior distribution: 

Pr�U�|���   &Pr �����|U���� P Pr �����|2����)�Pr_2����2��  1�a P Pr �U�����Pr�����|����� P Pr ������  

Seemingly, we have made a relatively simply definition of our desired density even more complicated.  

But notice that Bayes’ theorem defines the posterior distribution at the previous time period, t-1, by: 

Pr�U���|�����   Pr�����|U����Pr ������  P Pr �U���� 
This definition is embedded in the above messy definition of the posterior at the current time.  We now 

extract those terms and represent them by Pr�U���|�����.  This yields: 

Pr�U�|���   �Pr_�����2���a P Pr �2���|2��  1��Pr �����|����� � P Pr �U���|����� 
 This definition explains that if we have the value of the posterior at the previous time, we can 

evaluate it at the current time by multiplying it by a weighting function, which is in brackets.  We can 

think of our initial prior distribution as our first value of Pr �U���|�����.  Then, as t increases, we gain 

more recent data that will change our evaluation of the joint posterior; for each value of t, the posterior 

is adjusted by the weighting function to yield a more current evaluation of it.  In other words: 

�@s  G@?g�� P �I$ 

Pr�U�|���   G��, �  1� P Pr �U���|����� 
Note that all the terms in the weighting function come from either the likelihood, the prior, or the 

evidence distribution which we have already stated are easy to attain.  In fact, the new formulation is 

still a form of Bayes’ theorem, just manipulated for more convenient use. 

 The last part of the development of a useful, sequential Bayesian estimator results from the 

following observation.  While we have successfully created a form for the joint posterior, this is actually 

a joint density of each x(t) for every t.  Knowing such a density is not as useful to us as the density of 

only the value of the stochastic process at the next time interval.   In other words, we must find the 

marginal density from the above joint density.  This will allow us to predict the value of the stochastic 

process. 

 Precisely, our goal is to estimate Pr(x(t)| ��), the current value of the stochastic process given all 

available data at time t.  Let us start by specifying our prediction of the stochastic process in the next 

time interval.  Specifically, 

Pr�2���|�����   #Pr�2���, 2��  1�|����� $2��  1� 



Applying Bayes’ rule to the integrand and then realizing the Markovcian assumption of conditional 

independence between X and Y, the following is achieved: 

Pr�2���, 2��  1�|�����  Pr�2���|2��  1�, ����� P Pr�2��  1�|����� Pr �2���|2��  1�� P Pr �2��  1�|����� 
  So our prediction of the value of the process at the next time interval, given the data up to the present, 

is: 

Pr�2���|�����   #Pr �2���|2��  1�� P Pr �2��  1�|������ 
We then use the definition of conditional probability to reformulate the marginal posterior distribution: 

Pr�2���|���  Pr �2���, ���Pr ����  Pr �x�t�, y�t�, Y����Pr �y�t�, Y����  

Where we just applied the definition of conditional probability twice.  Now, applying Bayes’ theorem to 

the right-most expression, we get: 

Pr�2���|���  Pr �����|2���, ����� P Pr �2���|����� P Pr ������Pr �y�t�|����� P Pr ������  

Cancelling like terms, realizing again the Markovian assumption, the following is achieved: 

Pr�2���|���  Pr �����|2���� P Pr �2���|�����Pr �y�t�|�����  

Thus, the posterior distribution of the next value of the stochastic process is an update of the previous 

posterior Pr �2���|�����, which was used to predict the value at the current time.  Like in the joint case, 

we can consider the marginal posterior, or update distribution, as an adjustment of our prediction of the 

marginal adjusted by some weighting function which takes into account the new data: 

    Update     =    Weight X Prediction 

Pr�2���|���  G���, �  1� P Pr�2���|����� 
Where weight is defined as: 

G���, �  1�   Pr �����|2����Pr �����|����� 
This completes our development of an on-line, sequential Bayesian estimator of an anonymous 

stochastic process.  The model is recursive, in that future values are dependent on previous values and a 

weighting function only.  Starting with some prior distribution, the sequential Bayesian estimator self-

corrects its density of the process’s next value as new data comes in.  This entire model works within the 

Bayesian framework, in that a previously un-estimatable distribution are broken down into a likelihood, 



a prior, and an evidence distribution, all of which can be attained.  This recursive Bayesian estimation 

model is a framework that can be expanded into many familiar state-space model techniques, such as 

the kalman filter and its’ nonlinear extensions (unscented and extended kalman filter, etc.).  This is one 

reason why understanding the general Bayesian estimation model is so important (for more information 

on the Kalman filter, see Simon or Candy). 

However, one significant problem lingers.  Even though Bayes’ theorem gives us a way of 

describing the posterior distribution, very rarely does a closed form solution exist (remember, Bayes’ 

theorem asks us to compute integrals of density’s which can become very complicated in real world 

scenarios).  The next section will examine the methods available to deal with problem, methods which 

can be generally classed as Monte Carlo simulation techniques. 

Monte Carlo Simulation: 

 First, we will offer a general explanation of what Monte Carlo simulation is.  The idea is that if 

we cannot evaluate a density—or any integral-- analytically, we can create a computer program that will 

simulate the function at values in its domain that are chosen randomly.  If we run this simulation 1000s 

of times, we will get a histogram of possible values of the function which approximates the density. 

 Here is an interesting example from quantitative finance.  The return on a stock at the end of a 

trading day is thought to follow a certain stochastic differential equation whose solution is a stochastic 

process, given by: 

r�z�   r�0�@����=���W� � �W�  
In this case the integral can be evaluated analytically but, as stated above, the solution to a stochastic 

differential equation is still a stochastic process.  This means that the above solution will generate a 

different graph each time it is computed.  To illustrate this, the following Matlab graph is provided.  

Note that coefficients were arbitrarily chosen. 

 

5 different paths of the solution 

The graph shows 5 different plausible paths of the same solution.  To navigate this obstacle, 

mathematical modelers traditionally employ Monte Carlo techniques.  In essence, the solution is 

simulated thousands of times and then averaged.  Matlab allows us to do just this.  The following Matlab 



graphs show ten thousand sample paths, the mean sample path, and a histogram of S(T) at the end of its 

trajectory—the point which represents price at the end of a trading day. 

 

The simulated paths, the mean path, and a histogram of the function at the end of the time interval 

Because each simulation of the solution is independent and identically distributed, the central 

limit theorem suggests that the distribution of multiple simulations will be normal if the number of 

simulations is sufficiently large.  This is showed by fitting a density curve on the histogram:  

 

 

 

 

 

 

 

 

 

 



 

Fitting a density curve to the histogram from the last figure.  The central limit theorem is verified, as normal distributions are the 

best fit. 

The best fits are normal and lognormal.  Note that lognormal is also accurate because the 

solution is in the form of the constant e raised to a power which contains the random variable.  Using 

Matlab to fit this density onto the data allows us to extrapolate a number of statistical properties of the 

stock price.  For instance, it gives us an approximate mean and standard deviation.  With this 

information, we can begin to formulate a plausible trading algorithm, one that buys stocks based on the 

likelihood of a given stock’s ending price being higher than the price at which it was bought.   

In this example, a stochastic process was simulated thousands of times to achieve an 

approximate density of its value.  In Bayesian estimation, the goal will be slightly different, since it is the 

density itself which cannot be solved analytically.  Nonetheless, the basic strategy is the same: we will 

generate random points from the domain of the density, propagate them through the density function 

(in other words, evaluate the density at those points), and create a histogram of this process after it has 

been repeated thousands of times.   

Mathematical Development of Monte Carlo Methods  

 Candy crystallizes our objective with Monte Carlo when he states, “The goal of Bayesian 

techniques using MC methods is to generate a set of independent samples from the target posterior 

distribution with enough samples to perform accurate inferences” (Candy 2009).  We are used to the 

idea of generating random samples from a given distribution, but the reverse is also true: we can 

approximate the distribution via samples from another distribution (in this case, from the prior 

distribution).   Consider some density f(x).  Then we know that the expectation of a function g(x) is: 

^_g�2�a   #g�2� P 3�2�$2 

Now suppose we passed an n amount of values from g(x)’s range—which we will call samples—through 

g(x), then the sample mean would be the Monte Carlo estimate of E(g(x)): 

g¡�2�   1��g�2��
�

���
 

Provided the true expectation exists, the sample mean (ie Monte Carlo estimate) and the true mean 

converge in probability according to the weak law of large numbers (C. Anderson 2, Alpaslan).  As 

Anderson notes, this revelation “comes to life and becomes useful when one realizes that very many 

quantities of interest may be cast as expectations” (C. Anderson 2).  Specifically he is speaking about 

probabilities, distributions, and integrals in general.  We are interested in the former two.  For instance, 

the probability that some random variable X takes on some value in a set A can be expressed as: 

v�U ¢ 1�   ^_£¤�U�a ¥  1��£¤�2��
�

���
  



Where £¤�U� is the indicator function that takes the value 1 when U ¢ 1 and 0 when it does not.  If we 

wanted to approximate a distribution, then we would divide the entire range of the random variable 

into N amount of discrete intervals, and perform the above probability estimation for each interval; the 

results would be a sequence of values that, when represented as individual bars in a graph that are 

adjacent to each other, form a histogram that approximates the distribution. 

Note that the evidence distribution really functions as a normalizing factor, to ensure the 

posterior equals 1 when evaluated across its range.  Then, 

Pr�U|�� ¦  Pr ��|U� P Pr �U�               
Obviously the prior is assumed to be known, so the method is simply to: 

1.  Generate samples from the prior 

2. Pass these samples through the likelihood 

3. Estimate the posterior by multiplying likelihood by prior. 

This methodology is not as simple as one might think because generating good samples is a science in 

and of itself.  Candy poses to problems related to sampling.  First, how do we in fact generate samples 

from distributions?  Second, how can we be sure that these samples are independent and identically 

distributed samples of the posterior? 

 The answer to the first question is that, with computer software such as MATLAB, we can 

generate pseudo-random numbers from a variety of different known distribution.  But the answer to the 

second question is much more complicated.  Consider using a uniform distribution to try and simulate 

the density: 

3§�2�   @��C�� 

 We sample 2000 values from a uniform distribution, pass each one through the above density, and 

create a histogram of the values obtained: 



 

Readers should be aware that the density being estimated should be a bell curve.  So, can we just 

generate random numbers from a uniform distribution and propagate them through the density and 

expect a good approximation for large enough n?  The simulation above says no.  This is because there is 

no reason to believe these samples passed through the target density are i.i.d from the target density.  

The quest of developing methods that generate iid samples from a target posterior is the topic of the 

next section.  We go over these methods, starting with rejection sampling, importance sampling, and 

then sequential importance sampling. 

Sampling: 

Rejection Sampling 

 Rejection sampling is a versatile sampling method that allows us to estimate a density up to a 

proportionality constant, which remains unknown.  Rejection sampling is also important because it is 

related to more advanced sampling techniques that will be discussed later. 

 Suppose that v��U� is the density that we are interested in, but we cannot sample from it 

directly because it has no analytical form.  We choose another another density v��U� which exists such 

that  

v��U� �  ¨ P v��U� 
Then note that with simple algebraic manipulation, the follow is made obvious: 

©ª�§�©«�§� �  ¨ and 
©ª�§�¬P©«�§� �  1 

Noting this, the rejection sampling technique is as follows: 



1. Generate a sample from v��U�, denoted as 2; 

2. Then generate a sample from a uniform distribution, w; ¢ �0,1�.  Naturally, 0 < w; < 1 

3. If w;  �  ©ª�§�¬P©«�§�, then accept the sample as a sample of v��U�: inotherwords the ?�® sample of 

v��U� is equal to 2; if w;  �  ©ª�C¯ �¬P©«�C¯ �. 
This sampling method is more effective because it makes use of density related to our target.  

Determining a related density, however is a nontrivial endeavor (Candy 2009, 63).  Because our interest 

in rejection sampling is its use in more advanced method, we will not explore this problem. 

Importance Sampling: 

 A related sampling method is called Importance Sampling and its on-line relative, Sequential 

Importance Sampling.  It is simply another way to mitigate difficulties with the inability to directly 

sample from a posterior distribution.  To understand it, let us return to our discussion about 

expectations. 

 Essentially everything we are probabilitistically interested in can be thought of as an 

expectation.  Say that we want to estimate the posterior density f(x) and we know g’(x) where g(x) = 

C*g’(x); in other words, we know g(x) up to a constant.  Then a probability of x can be written as: 

Pr�U�   #3�2�$2 

As Anderson writes, importance sampling rests on multiplying this probability by 1, which is dressed up 

in a tricky fashion: 1 = 
°±�C�
°±�C�.  Then 

Pr�U�   #3²�2�$2   #3²�2� P g³�2�g³�2� $2 

But, recalling the definition of expectation, we realize that: 

#3²�2� P g³�2�g³�2� $2  ^°±�C� �3²�2�g²�2�� 
This expectation can be estimated using the Monte Carlo estimator, where samples are generated from 

the known g’(x) distribution: 

^°±�C� ¥ 1��3²�2��g²�2��
�

���
 ´  Pr�U�  

We can estimate  the entire distribution just as we did before, by dividing the range of the random 

variable into discrete intervals and applying the Monte Carlo estimate to each interval (Anderson).  Of 

course, we usually need the density to calculate some value such as the mean or variance, which are 

functions of the density.  If such is the case, we can simply modify the procedure like so: 



Suppose it is the posterior distribution, Pr�U�|���, that we are trying to sample for in order to find the 

expectation of a function of x, 3�2�.  The importance distribution is g²�2�.  Then: 

#3�2� P Pr�U�|��� P g³�2�g³�2� $2  ^°±�C� �3�2� P Pr�U�|���g²�2� � 
Now say we apply Bayes’ theorem to the posterior and define a weighting function such that: 

#3�2� PGµ ��� P g³�2�$2 

Where Gµ ���  ¶·�§¸|¹̧ �°±�C�  ¶·�¹̧ |§¸�P¶· �§¸�¶· �¹̧ �P°±�C�  .  But in practice, as has been discussed above, we rarely know 

the evidence Pr ����.  Candy explains a fix for this.  Since the 
�

¶· �¹̧ �. is the issue, let us define a new 

weighting function that exists without it: 

G���   Pr���|U�� P Pr�U��g³�2�  

Then  

#3�2� PGµ ��� P g³�2�$2   1Pr ����. #3�2� PG��� P g³�2�$2 

Where we sampling substituted the new weight and extracted the troublesome evidence.  Now note the 

definition of the evidence probability and a simple algebraic manipulation of the definition of the 

weighting function: 

Pr ����  #Pr���|U�� Pr�U�� $U� , ��$ 

G��� P g³�2�   Pr���|U�� P Pr�U�� 
Then we can define the normalizing constant as the integral of the weight times the g’(x).  Then: 

^¶·�§¸|¹̧ �_3�2�a  1Pr ����. #3�2� PG��� P g³�2�$2 
^°±�C�&G���3�2�)�G��� P g³�2�   ^°±�C�&G���3�2�)^°±�C�&G���)  

� ^°±�C�&G���3�2�)^°±�C�&G���) ¥  
1� ∑ G�������� P 3�2��1�∑ G��������

 �G¼½½½��� P 3�
�

�
2�� 

Where the weight in the right most equation is  

G¼½½½���   G���� P 3�2��∑ G��������  

But, if the expectation is defined as ∑ G¼½½½��� P 3��� 2��, then the posterior itself must therefore be: 



Pr�U�|���   �G¼½½½��� P ¾�2  2��
�

�
 

Intuitively speaking, this is obvious because a discrete representation of an expectation of a function is 

the sum of the function multiplied by its density.  Thus importance sampling gives us a density g(x) from 

which we can generate samples to propagate through the weighting function, which is really comprised 

of the likelihood and prior divided by g(x).   Now, the only thing that remains is to show how this 

derivation can be furthered to develop an on-line, sequential  Bayesian Importance sampling algorithm. 

Sequential Importance Sampling: 

 We can now take everything we have developed above and construct a description of an 

algorithm for a sequential importance sampler.  They key ideas are the above development of a batch 

importance sampler, the Markov assumption of the stochastic process, and the condition independence 

conditions of the measurements.  Let us call the sampling distribution ��U�|���   ��U���|��� P��2���|U���, �����, which follows from Bayes’ rule.  Then the unnormalized weight, W(t), defined above 

becomes: 

G���   Pr���|U�� P Pr�U����U���|����� P ��2���|U���, ����� 
Now note that if we multiply the numerator and denominator by Pr �����|U���� P Pr �U����: 

G���   Pr���|U�� P Pr�U����U���|����� P ��2���|U���, ��� P
 Pr�����|U���� P Pr �U���� Pr�����|U���� P Pr �U���� 

By rearranging terms, we see that: 

G���   Pr�����|U���� P Pr �U������U���|, ����� P  Pr���|U�� P Pr�U�� Pr�����|U���� P Pr �U���� P ��2���|U���, ��� 
Which is obviously equal to: 

G���   G��  1� P  Pr���|U�� P Pr�U�� Pr�����|U���� P Pr �U���� P ��2���|U���, ��� 
At this point, since we are interested in a sequential sampler, we must deal with the batch variables.  

Because of the Markov property of the dynamic variable, conditional independence, and the probability 

chain rule, we can do the following: 

vJ���|U��  Pr_�����2���a¿Pr_��<��2�<�a
���

;��
, ��$ 

Pr�U��   Pr �2���|2��  1��¿Pr �2�<�|2�<  1��
���

;��
 



Where we extracted the ��® term from the product.  The product then, is an alternate definition of vJ�����|U���� and Pr�U����  Then, the equation for the weight W(t) becomes: 

G���   G��  1�
P  Pr_�����2���a∏ Pr_��<��2�<�a���;�� P Pr �2���|2��  1��∏ Pr �2�<�|2�<  1�����;�� ∏ Pr_��<��2�<�a���;�� P∏ Pr �2�<�|2�<  1�����;�� P ��2���|U���, ���  

The products cancel, yielding: 

G���   G��  1� P  Pr_�����2���a P Pr �2���|2��  1�� ��2���|U���, ���  

This defines the new weight as the likelihood of the present time multiplied by the posterior of the 

previous time divided by the sampling distribution.  With the above equations, Candy notes that we 

have finally arrived at a description of an algorithm for Bayesian sequential sampling (Candy, 86): 

1. Draw samples the proposal, ��2���|U���, ��� 
2. Evaluate the likelihood and conditional distributions: Pr_�����2���a , Pr �2���|2��  1�� 
3. Calculate the unnormalized weight: W(t) 

4. Normalize the weights as was done in the Batch scenario: GÁ����   Â���∑ Ãj���ÄjÅÆ  

5. Finally, estimate the posterior distribution: Pr�2���|���   GÁ���� P ¾�2���  2����� 
Importance sampling requires some thought as to what proposal density to begin from, and the 

algorithms can be quite complicated.  Nonetheless, they are extremely important in advanced Bayesian 

estimation techniques, one of which we will describe in the conclusion.  But first, we will discuss an 

algorithm that has a special place in the history of Monte Carlo simulation. 

Markov Chain Monte Carlo 

 We know that samples can be generated from the posterior by passing values from the 

posterior’s range through posterior, for instance by using a uniform distribution.  The problem is that 

there is no guarantee that these samples are independent, and independent samples are necessary for 

the laws of large numbers to work.  One technique to overcome this is generate random samples to pass 

through the posterior via a Markov Chain.  Recall from the above section on stochastic processes that a 

Markov chain is a discrete stochastic process whose value at the current time conditionally depends only 

on the process’s value at the previous time interval: 

Pr �U����ÇÙ ��  1�, … , U;�0��   Pr �U����|Ù ��  1�� 
A Markov chain begins with an initial distribution, Pr(U��0�) and evolves into Pr(U����) according to a 

“transition kernel” (Candy 2009, 70): 

Pr_U����a   �Pr �U����ÇÙ ��  1�� P  Pr �Ù ��  1��`
 



For Markov chains to be useful in Monte Carlo simulation, they must be both time reversible chains and 

ergodic.  That means that the transition probability from U���� to Ù ��  1� must be the same as the 

probability from Ù ��  1� to U����.  Markov chains with these properties can be used to sample from 

distributions which are analytically intractable.  One of the most powerful of these methods is known as 

Metropolis Hastings Sampling. 

Metropolis Hastings Algorithm 

 Monte Carlo simulation techniques were a byproduct of the United States’ Nuclear Armament 

projects during and after World War II.  Originally, these methods were used to try and predict when the 

bombardment of an atom by neutrinos will cause a chain reaction, leading to an explosion.  Two 

physicists, Nicholas Metropolis and W. Keith Hastings, developed a method for obtaining a sequence of 

random samples from an analytically intractable probability distribution.  This method, known as the 

Metropolis Hastings Algorithm, thus has great usefulness to Bayesian estimation.   

Having discussed rejection sampling and Markov chains, developing the M-H method will be 

relatively simple.  Essentially, we will define a Markov chain whose next value is a new sample to be 

passed through the target distribution (the posterior, for instance).  This new sample is generated from 

the previous sample according to the Markov chain’s transition kernel.  However, before this new 

sample is accepted as a sample of the target distribution, it will face a acceptance/rejection test similar 

to in rejection sampling.  First we pick a random starting point that is in the range of the target 

distribution: 

2� ! 	C�2�� 
Then, we pick a proposal distribution from which to initially sample: Q(2È�, 2� ) (the prior?).  This proposal 

is a markov chain in that : Q(2È�, 2� ) is the transition kernel of a markov chain  We then generate a 

candidate sample from the proposal:  2È�  ! ��2�.  (Unclear the relationship between proposal, Markov 

chain).  Now we must determine if this sample can in fact be considered a sample of the target.  We do 

this by calculating a value A such that: 

1  É P % 

Where  

É  	C� 2È��	C�2�� , ��@ I?<@I?�HH$ J��?H 

And 

%   Ê�2�, 2È� �Ê�2È�, 2� � , ��@ J��?H H3 ��@ 	JH	Hf�I $@�f?�� ?� �sH $?J@Ë�?H�f 
If we restricted ourselves to purely symmetric proposal densities, then C = 1 and our decision is based 

solely on the value of B.  But in generality we speak of A.  Intuitively speaking, A represents the a ratio of 

probabilities: therefore if it is greater than 1, the probability of the numerator is greater than the 



denominator.  In other words, it is more likely that  2È� is a sample of the target than 2�.  If A < 1, then A 

is the probability that 2�  2È�.   In this case, one could either accept the candidate sample if A > 1- A, or 

as is generally done, generate a value u from a Uniform distribution U(0,1) and accept the candidate if A 

> u.  The entire strategy can be summarized as follows:  Accept the candidate sample generated from 

the proposal density if, given Ì~ �0,1�, 
Ì Î F?�Ï1, 1Ð 

So, only samples which have a higher likelihood of being a sample of the target distribution than the 

previous samples are accepted.  The power of this method is obvious when one realizes that Markov 

chains converge to an invariant distribution, which in this case means that sooner or later, the likelihood 

of the next candidate sample will equal the likelihood of the last sample.  When this occurs, every 

sample there after shares the same likelihood of being a sample, and these samples thereafter can be 

considered samples of the target distribution.  Then, Monte Carlo simulation can occur as usual. 

 Because of the importance of this sampling technique, a MATLAB illustration is provided.  In this 

scenario, we make the unknown target distribution 3C�2�   @�C�.  Obviously this is a really simple case 

for illustration.  We will pick a uniform proposal distribution as Candy does in his illustration.   

 



 Once the Markov chain reached its invariant distribution, the script sampled 15,000 times more, 

the results of which are plotted in the above histogram.  Notice that the distribution looks Gaussian, 

which we would expect.  This verifies that the sampling method works and is superior to the ineffective, 

direct sampling from a uniform distribution.  In practice, it would be a more complicated posterior that 

we are estimating: it would be comprised of multi-dimensional integrals (arising from the prior and 

likelihood multiplication), the answer of which is not known analytically. 

 

Conclusion 

This paper has completed its overview of the Spectral and Bayesian estimation frameworks for 

stochastic process analysis.  The Spectral techniques are extremely well suited for detecting periodicities 

in a stochastic process, and periodicities give analysts a substantial tool for prediction.  But what if a 

stochastic process is aperiodic?  Then Bayesian estimation provides a robust framework for making 

dynamic, sequential predictions.  Bayesian estimation is grounded in simulation, which requires 

effective sampling techniques.  The development of such techniques has been quite lengthy, but 

hopefully has illustrated how the future value of a stochastic process can be given a probabilistic 

framework, ie, an analysis that provides a density function of its next value.  Using the mathematics and 

sampling techniques explained, very complicated algorithms can be set up to estimate the value of a 

stochastic process dynamically, ie, as more current data comes in.   

The methods discussed in this paper will hopefully provide readers with the foundational 

knowledge to go further in the analysis of stochastic processes.  I personally come from an economics’ 

background.  Generally, an undergraduate economics education contains nothing about stochastic 

processes; economics education at the level is unduly concentrated on regression analysis.  For many 

economic variables, such as inflation, unemployment, price trends, etc., regression analysis is not nearly 

robust or reflective of the probabilistic nature of the phenomena.  For this reason, a solid understanding 

in the basics of stochastic process analysis is critical.  With luck, this paper has provided such an 

understanding of the basics. 

 

 

 

 

 

 

All MATLAB code was created by the author using MATLAB, the Econometrics Toolbox, and the Signal 

Processing Toolbox 
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