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Multiple myeloma, an incurable clonal B-cell malignancy, is the second most common 
hematologic malignancy in the United States, afflicting close to 20,000 new people per year. 
It results in lytic bone disease, renal insufficiency, and immunodeficiency; symptoms include 
fatigue, bone pain, and recurrent infections. As in all cancers, tumor progression is the 
result of genetic mutations, epigenetic modifications, and allelic variation. With these 
considerations in mind, and given the current use of mammalian target of rapamycin 
(mTOR) and histone deacetylase (HDAC) inhibitors in clinical trials, we attempted to 
evaluate the anti-cancer properties of the mTOR inhibitor rapamycin and the HDAC 
inhibitor MS-275, alone and in combination. We treated U266, a multiple myeloma cell line, 
with graded concentrations of these drugs for 24 and 48 hours and examined the effects on 
cell proliferation, cell cycle progression, apoptosis, and gene expression. In the cellular 
proliferation studies, rapamycin had a cytostatic effect over a broad range of concentrations 
(0.001-1.0 µM) while MS-275 had a dose-dependent effect over a higher range of 
concentrations (0.5-2.0 µM). Fifty percent inhibition of cell growth was achieved at 
nanomolar concentrations (<0.1 µM) of rapamycin and micromolar concentrations (1.0-2.0 
µM) of MS-275; combining the two drugs yielded a synergistic effect. Results from the cell 
cycle analysis show an increase in GofG 1 arrest after treatment with both drugs, with a high 
degree of GofG1 arrest at nanomolar concentrations of rapamycin. Individual and 
combination treatments with the drugs induced apoptosis in as much as 37% of the cells 
over a 48-hour period. Quantitative real-time PCR data suggests that MS-275 increases p21 
expression while decreasing cyclin DI expression; importantly, rapamycin yielded opposing 
results by decreasing p21 expression while increasing cyclin DI expression. Western blotting 
shows that MS-275 increases acetylation of histones H3 and H4 while rapamycin 
significantly reduces phosphorylation of the S6 protein. Together, these data suggest that 
the drugs work synergistically through distinct mechanisms. As both rapamycin and MS-
275 show powerful anti-cancer properties, these experiments should provide a framework 
for future in vitro and in vivo studies. 

The mammalian target of rapamycin (mTOR) plays a crucial role in regulating 
critical aspects of cell growth, including cell cycle progression, membrane trafficking, 
protein degradation, and protein kinase C signaling and transcription 1. Rapamycin, an 
mTOR inhibitor that has been widely tested in vitro and in vivo, is a macrocylic lactone 
taken from Streptomyces hygroscopius, a soil bacterium from Rapa Nui (Easter Island); 
rapamycin is known for its fungicidal , immunosuppressive, and antiproliferative 
properties2• Rapamycin functions by binding to FK506-binding protein (FKBP12), 
which is ubiquitously expressed; the rapamycin-FKBP12 complex then binds to the 
FKBP12-rapamycin-binding (FRB) binding domain near the kinase domain of mTOR, 
subsequently inhibiting mTOR' s function3•4 . As inhibition of mTOR could lead to the 
subsequent inhibition of growth, it is easy to see the potential therapeutic power of this 
drug. 

Preclinical studies indicate that rapamycin can potentially be used as treatment for 
multiple myeloma (as well as a considerable number of other human cancer cell lines, 
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including those derived from osteosarcoma, neuroblastoma, breast cancer, glioblastoma, 
small-cell lung cancer, Ewing sarcoma, pancreatic cancer, leukemia, and prostate 
cancer\ Multiple myeloma cell lines have been shown to exhibit both dose-dependent 
and cytostatic responses to treatment with rapamycin. Experimentation also confirms 
that growth inhibition works in an expected and specific manner, as rapamycin treatment 
does not affect Ak.t phosphorylation but can completely inhibit P70s6

K phosphorylation6
. 

Other studies have shown that rapamycin induces G0/G1 cell cycle arrest in some cells by 
delaying the accumulation of cyclin D1 mRNA during progression through G 1 and by 
accelerated degradation of synthesized cyclin Dl protein7

. Three of rapamycin's 
analogues (CCI-779, RAD00l, and AP23573), which have more favorable 
pharmacokinetic properties due to increased water solubility and stability in solution8

•
9

, 

are currently in varying phases (I-III) of clinical trials, and are being tested on a range of 
malignancies, including advanced solid cancers, mantle cell lymphoma, and advanced 
sarcomas. Results are promising; for example, AP23573 has shown clinical efficacy 
( e.g., 56% clinical improvement) and low toxicity profiles in patients 10

• 

Histone acetylation affects transcriptional activity and repression through 
hyperacetylation and hypoacetylation, respectively. These states are controlled by the 
balance of activity between histone acetyltransferases (HATs) and histone deacetylases 
(HD A Cs) 1 

I, 
12

• 
13

• Ultimately, hi stone acetylation by HA Ts leads to the neutralization of 
the positive charge of lysine, decreasing the interaction between the histone and the 
DNA, a conformational change which gives molecules like RNA polymerase, 
transcription factors, and regulatory complexes greater access to the DNA14

·
15

• This leads 
to an increase in transcription of a specific set of genes. 

Since carcinogenesis is frequently associated with the repression of tumor 
suppression genes, HDAC inhibitors can de-repress these genes and allow growth 
inhibition and anti tumor activity16

•
17

. Other biological consequences of HDAC inhibition 
include cell differentiation, cell cycle arrest, apoptosis, cytoskeletal alterations, and 
angiogenesis18

. Microarray analyses suggest that HDAC inhibition works rather 
specifically on cancer cell lines, affecting as few as 1-2% of genes regulated in both 
normal and cancer cells within the initial hours of treatment. These analyses suggest that 
a core set of genes affected by HDAC inhibitors specifically affect cell cycle progression, 
DNA synthesis, and apoptosis19

• 

MS-275, an active benzamide derivative20
, is one such HDAC inhibitor, and is 

currently in clinical trials21
. Previous studies indicate that MS-275 induces a dose­

dependent response in cancer cells22
. At lower concentrations (1 µM), MS-275 showed 

potent antiproliferative activity, partially through the induction of p21-mediated growth 
arrest, increased levels of hypoposphorylated retinoblastoma protein, and downregulated 
levels of proteins associated with the cell cycle, including cyclin D 1. At higher 
concentrations (5 µM), MS-275 induced cell death in approximately 70% of cells within 
48 hours23

. 

While limited experiments have utilized an mTOR and HDAC inhibitor in 
combination, one such study found that temsirolimus combined with vorinostat have 
synergistic antiproliferative activity in mantle cell lymphoma cells by targeting apoptosis 
and autophag/4

• Thus, further experimentation is needed to increase understanding of 
the mechanisms by which these drugs work, both alone and in combination. 



MATERIALS AND METHODS 
Cell lines and cell culture. 
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The human multiple myeloma cell line U266 was kindly provided by Dr. W. 
Michael Kuehl (Genetics Branch, Center for Cancer Research, National Cancer Institute, 
Bethesda, MD). Cells were cultured in RPMI-1640 medium supplemented with 10% 
fetal bovine serum, 2mM L-glutamine, 100 U/mL penicillin, and 100 µg/mL 
streptomycin (all from Invitrogen Corporation, Carlsbad, CA, USA) in a humid 
environment with 5% CO2 at 37°C. 

MS-275 and rapamycin. 
MS-275 was obtained from Sigma Chemical Corporation (St. Louis, MO, USA) 

and rapamycin was obtained from the Drug Synthesis and Chemistry Branch, 
Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, 
National Cancer Institute (Bethesda, MD, USA). The drugs were dissolved in dimethyl 
sulfoxide (DMSO; Sigma Chemical Corporation) at a concentration of 10 mM and were 
stored at -20°C until use; in the culture medium, final concentrations of the drugs ranged 
from 0.1-5.0 µM for MS-275 and 0.001-2.0 µM for rapamycin with a maximum of 0.2% 
DMSO. 

In vitro cell proliferation assay. 
50,000 U266 cells per 200 µl of media per well were cultured in a 96-well plate. 

Following the addition of varying concentrations of rapamycin and MS-275, alone or in 
combination, the cells were incubated for 24 or 48 hours. Cell proliferation was 
measured by adding 20 µl of the Cell Proliferation Reagent WST-1 (Roche Diagnostics, 
Mannheim, Germany) to the 200 µl of cell suspension. The absorbance was measured at 
450 nm using a VERSAmax™ tunable microplate reader (Molecular Devices, Sunnyvale, 
CA, USA) and Softmax Pro software (Molecular Devices). Each measurement was made 
in quadruplicate and the mean value was determined. 

Cell cycle analysis and detection of apoptosis. 
U266 cells (2 x 106

) were cultured in 6 mL of media in a 6-well plate. Following 
the addition of varying concentrations of rapamycin and MS-275, alone or in 
combination, the cells were incubated for 24 or 48 hours. Cells were harvested, washed 
three times with ice-cold phosphate buffered saline (PBS), and fixed with 70% ethanol 
overnight at -20°C. The cells were washed again with PBS and stained with propidium 
iodide (Pl; BD Biosciences Pharminogen, San Diego, CA, USA). Cell cycle fractions 
were determined after incubation at room temperature for 30 minutes. Sample analysis 
was performed with a Becton Dickinson F ACSCalibur machine and data were collected 
with CellQuest Pro (BD Biosciences) and further analyzed using Mod-Fit LT (Verity 
Software House, Inc., Topsham, ME, USA). 

In addition to observing sub-G0/G1 cells by cell cycle analysis, as described 
above, apoptosis was confirmed with the Annexin V-PE Apoptosis Detection Kit l (BD 
Pharmingen ™/BD Biosciences). U266 cells (2 x 106

) were cultured in 6 mL of media in 
a 6-well plate. Following the addition of varying concentrations of rapamycin and MS-
275, alone or in combination, the cells were incubated for 24 or 48 hours. Cells were 
harvested, washed three times with ice-cold PBS, aliquoted into separate tubes, and 
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resuspended in BD Pharmingen Annexin V Binding Buffer. Cells were stained with 
Annexin V-PE and/or 7-AAD, incubated for 15 minutes in the dark, and analyzed with a 
Becton Dickinson FACSCalibur machine. Data were collected with CellQuest Pro (BD 
Biosciences). Viable cells were characterized as Annexin V and 7-AAD negative; cells 
in early apoptosis were characterized as Annexin V positive and 7-AAD negative; cells in 
late apoptosis (or already dead) were characterized as positive for both Annexin V and 7-
AAD. 

Quantitative RT-PCR. 
We performed real-time quantitative RT-PCR for p21, cyclin D1 , and ~-actin 

using the Applied Biosystems 7500 Real Time PCR System (Foster City, CA, USA). 
U266 cells (2 x 106

) were cultured in 6 mL of media in a 6-well plate. Fallowing the 
addition of varying concentrations of rapamycin and MS-275, alone or in combination, 
the ce11s were incubated for 24 or 48 hours. Ce11s were harvested and washed three times 
with ice-cold PBS. Total RNA was extracted using Trizol and phenol:chloroform 
(lnvitrogen); RNA concentration was quantified using a NanoDrop ND-1000 
Spectrophotometer (NanoDrop Technologies, Inc., Wilmington, DE, USA). cDNA was 
synthesized from 1 µg of total RNA for each sample by reverse transcription PCR using 
the TaqMan Reverse Transcription Reagents (Applied Biosystems) in a final volume of 
25 µI. The reaction profile involved sequential incubation at 25°C for 10 minutes, 48°C 
for 30 minutes, and 95°C for 5 minutes. Quantification of mRNA by quantitative real­
time PCR was done using the SYBR Green PCR Master Mix (Applied Biosystems) and 
primers designed with Primer Express Software (Applied Biosystems). Data were 
collected with Applied Biosystems Sequence Detection Software. 

Western blot analysis. 
U266 cells (2 x 106

) were cultured in 6 mL of media in a 6-well plate. Following 
the addition of varying concentrations of rapamycin and MS-275, alone or in 
combination, the cells were incubated for 24 or 48 hours. Cells were harvested and 
washed three times with ice-cold PBS. Whole-cell protein extracts were prepared by 
incubating the cells in RIP A buffer (Pierce Chemical, Rockford, IL, USA) for 60 minutes 
on ice and then centrifuging to remove cellular debris. The protein in the resulting 
supernatant was quantified by the bicinchoninic acid method (Pierce Chemical), diluted 
in SDS loading buffer, and heated for 3 minutes at 95°C. A total of 20 µg of protein was 
loaded onto 4-20% Tris-Glycine Gels (lnvitrogen), transferred to a nitrocellulose transfer 
membrane (Invitrogen), immunoblotted with antibodies, and detected using SuperSignal 
West Dura Extended Duration Substrate (Pierce Chemical). Primary antibodies to ~-actin, 
Phospho-S6 (Ser240/244), Acetyl-Histone H3 (Lys9/Lys14), and Acetyl-Histone H4 
(Lys8) were obtained from Cell Signaling Technology (Beverly, MA, USA). 

Calculation for synergism between drugs. 
To determine whether the antiproliferative effect of the drugs in combination was 
additive or synergistic, we calculated the combination index (CI) of the drugs based on 
the following equation: CI = (D)l/(Dx)l + (D)2/(Dx)2 + (D)l(D)2/(Dx)l(Dx)2, where 
(D) 1 and (D)2 are the doses of drug 1 and drug 2 that have x effect used in combination, 
and (Dx)l and (Dx)2 are the doses of drug 1 and drug 2 that have the same x effect when 
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used alone; Cl < 0.1 indicates very strong synergism; Cl = 0.1 to 0.3 indicates strong 
synergism; and CI= 0.3 to 0.85 indicates synergism25

,
26

'
27

. 

RESULTS 
Rapamycin, MS-275, and combination treatments inhibit U266 proliferation. 

We studied the antiproliferative effect of rapamycin and MS-275 on U266 cells 
after 24 hours and 48 hours of treatment (Figures lA-B). Rapamycin demonstrated a 
cytostatic effect over a broad range of concentrations (0.001-1.0 µM) while MS-275 had 
a dose-dependent effect over a higher range of concentrations (0.1-5.0 µM). Fifty percent 
inhibition of cell growth (lCso) was achieved after 48 hours at nanomolar concentrations 
of rapamycin (<0.1 µM rapamycin) and micromolar concentrations of MS-275 (1.0-2.0 
µM). 

Because these drugs work via distinct mechanisms, we assessed their potential for 
use in combination (Figure 1 C). When examining the antiproliferative effect of these 
drugs, approximately 70% growth inhibition was seen at concentrations of 0.001 µM 
rapamycin and 0.5 µM MS-275. This level of growth inhibition was much higher than 
what we saw when either of the drugs were used alone. Our calculations indicate that 
these drugs have a synergistic effect (CI= 0.375) when used together. 

Rapamycin and MS-275 induce cell cycle arrest on U266 cells. 
To further characterize the effects of rapamycin and MS-275, alone and in 

combination, we performed a cell cycle analysis on the U266 cells after treating them for 
24 and 48 hours (Figures 2A-B). Both rapamycin and MS-275 induced G0/G1 cell cycle 
arrest and decreased the percentage of cells in the S and G2/M phases. In fact, after 48 
hours of treatment, the percentage of cells in the G0/G1 phase went from 58.09% to as 
high as 85.18% with 0.01 µM rapamycin treatment, 89.86% with 1.0 µM MS-275 
treatment, and 92.41 % with a combination treatment of 0.01 µM rapamycin and 0.5 µM 
MS-275. 

After observing a large population of sub-G1 cells, we used Annexin V-PE/7-
AAD staining to gauge the effect of rapamycin and MS-275 on apoptosis (Figures 3A-B). 
With a 0.01 µM rapamycin treatment, we saw the percentage of late-stage apoptotic cells 
increase from 0.66% to 9.25% after 48 hours. With a 5.0 µM MS-275 treatment, we saw 
the percentage of apoptotic cells increase from 0.27% to 37.42% after 48 hours. Though 
we did not extensively investigate the mechanism by which apoptosis was induced, we 
did notice increasing amounts of P ARP cleavage in our Western blot analysis ( data not 
shown). 

Rapamycin decreases p21 expression while MS-275 increases p21 expression and 
decreases cyclin D1 expression. 

We tested the mRNA expression of p21 and cyclin D1 using quantitative real­
time PCR. To compare the relative mRNA expression between samples, we divided the 
amount of mRNA of the gene of interest by the amount of mRNA of ~-actin expressed in 
the same sample. Our results indicate that rapamycin decreases p21 expression by less 
than a two-fold change (0.001 µM treatment of rapamycin) while MS-275 increases p21 
expression by as much as a nine-fold change (2.0 µM treatment of MS-275) (Figure 3C). 
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Figure 1. We treated U266 cells with rapamycin, MS-275, and combination for 24 or 48 hours. (A) 
Rapamycin had a cytostatic effect across a range of concentrations (0.001-0.01 µM) with a greater effect 
after 48 hours of treatment. (B) MS-275 had a dose-dependent effect across a higher range of 
concentrations (0.1-2.0 µM) with a greater effect after 48 hours of treatment. (C) We observed synergy (CI 
= 0.375) after combining a range of concentrations of rapamycin (0.001-0.01 µM) with the lowest effective 
dose ofMS-275 (0.5 µM). 

Finally, we found that increasing concentrations of MS-275 decreased the relative 
expression of cyclin D1 , while rapamycin increased the relative expression of cyclin D1 
(Figure 3D). 

Rapamycin reduces S6 phosphorylation and MS-275 increases acetylation of histone 
H3 and histone H4. 

We performed a western blot analysis to confirm that rapamycin and MS-275 
work via their proposed mechanisms. Typically, mTOR phosphorylates p7056\ which 
subsequently phosphorylates S6. To assess mTOR function after inhibition with 
rapamycin, we probed for the phospho-S6 protein (Figure 4) and noted that the presence 
of phospho-S6 was dramatically reduced after treatment with rapamycin (alone and in 
combination). 

Since MS-275 works by inhibiting histone deacetylases, we tested for changes in 
histone acetylation among MS-275 treated cells (Figure 4). We observed that increasing 
concentrations of both of these drugs resulted in an increase in acetylation of histone H3 
and histone H4. Acetylation was most prominent with a treatment of 2.0 µM MS-275. 
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Figure 2. Treating cells with rapamycin and MS-275 led to G0/G1 arrest. (A) We incubated U266 cells 
with rapamycin, MS-275, and combination treatments for 48 hours before cell cycle fractions were 
determined by propidium iodide staining. Rapamycin and MS-275 both induced cell cycle arrest and 
apoptosis (sub-G 1 fraction). (B) The cell cycle fractions from a single experiment represented in graphical 
form . Rapamycin (Rapa), MS-275 (MS), and combination (Rapa+MS) treatments all increased the fraction 
of cells in G0/G I while decreasing the S-phase and Gi/M fractions. Note that a treatment of 0.5 µM MS-
275 induced the highest degree of cell cycle arrest. 
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Figure 3. Treatment of U266 cells with rapamycin and MS-275 induced apoptosis and changes in gene 
expression. (A) After observing a large population of cells in the sub-G0/G I phase, we tested for apoptosis 
using Annexin-VPE and 7-AAD staining (X axis, Annexin V-PE; Y axis, 7 AAD). Each sample was 
measured unstained (top row of histograms) or stained (bottom row of histograms); cells in the lower right 
quadrant are in early-stage apoptosis and cells in the upper right quadrant are in late-stage apoptosis. (B) 
This graphical representation indicates the increasing levels of apoptosis after rapamycin (Rapa), MS-275 
(MS), or combination (R+M) treatment. (C) We used quantitative real-time PCR to detect changes in p21 
expression levels. p21 decreased after rapamycin treatments and increased after MS-275 treatments. (D) 
Treating U266 cells with increasing levels of MS-275 led to decreasing expression of cyclin Dl. In a 
separate trial, rapamycin increased cyclin Dl expression (data not shown). 
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Figure 4. U266 cells were incubated with rapamycin (Rapa), MS-275 (MS), or combination (R+M) 
treatments for 48 hours. Increasing levels of acetyl-histone H3 and acetyl-histone H4 with increasing 
treatments of MS-275 indicate that the drug is successfully inhibiting the histone deacetylases, a process 
that leads to an increase in the transcription levels of specific genes. Decreased phosphorylation of S6 in 
cells treated with rapamycin (alone and in combination) indicates that the mTOR pathway has been 
blocked. 

DISCUSSION 
In this study, we examined the individual and combined effects of rapamycin and 

MS-275 on U266, a multiple myeloma cell line. Our study demonstrates that these dmgs 
work synergistically together to inhibit cellular proliferation, primarily through 0 0/0 1 cell 
cycle arrest and apoptosis. 

Rapamycin demonstrated a cytostatic effect over a range of concentrations. This 
was associated with a high degree of cell cycle arrest and a decrease in relative cyclin­
dependent kinase inhibitor p21 mRNA expression, as determined through quantitative 
real-time PCR. The decrease in p21 expression is consistent with data from other 
experiments28

•
29

•
30 and several authors have suggested that this may be an important event 

after treating tumor cells with raparnycin. Interestingly, it has been postulated that this 
may be the result of the selective inhibition of p21 transcription as cells commit to 
apoptosis31

; however, we only observed a minor increase in apoptosis levels after 
treatment with raparnycin. 

Other authors suggest that a decrease in p2 l expression levels may be 
advantageous in sensitizing tumor cells to treatment with other drngs32

•
33

•
34

. Reasoning 
along these lines is consistent with the notion that an optimal basal level of p21 exists and 
that either a higher or lower level of p21 will inhibit cell £roliferation35

. Ultimately, due 
to the fact that p21 has numerous roles within a cell 6

, it is difficult to accurately 
speculate about the exact causes and effects of a slight change in its expression without 
further investigation. 

MS-275 demonstrated a dose-dependent effect over a range of concentrations. As 
quantitative real-time PCR indicated that increasing concentrations of MS-275 
upregulated cyclin-dependent kinase inhibitor p2 l while decreasing cyclin D 1 
expression, these data potentially provide a partial explanation for the increase in Go/G 1 

arrest. Additionally, the opposing effects of rapamycin and MS-275 on p21 and cyclin 
D1 expression is a reminder that the drngs are likely to work via distinct mechanisms. 
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We observed significant levels of apoptosis after treatment with MS-275, alone 
and in combination with rapamycin. Previous studies have shown that rapamycin does 
not typically induce apoptosis37 while MS-275 typically does38

• It is also important to 
note that we were unable to confirm the exact mechanisms by which apoptosis was 
induced. Previous studies indicate that MS-275 mediates caspase-dependent apoptosis39

, 

and while we did see an increase in poly(ADP-ribose) polymerase (PARP) cleavage, we 
did not check for the activation of any of the cleaved caspases that lie upstream of 
PARP40

. 

Increased acetylation of histone H3 and histone H4 in our Western blot analysis 
indicates that MS-275 is effectively inhibiting the histone deacetylases. It is particularly 
comforting that acetylation increases with increasing concentrations of MS-275. 
Similarly, the lack of phospho-S6 in rapamycin-treated cells indicates that rapamycin is 
effectively inhibiting mTOR and blocking activation of its downstream targets. 

While we have a great deal of evidence to suggest that both of these drugs have 
powerful anticancer properties, additional studies are needed to fll11her elucidate the 
specific mechanisms by which they work. As other authors have suggested, thorough 
characterization of the various signaling pathways within a variety of tumor cell lines is a 
logical step, as this would allow for the potential clinical application of being able to 
select drugs that may be particularly effective in slowing the growth of a given tumor 4 1

. 

For example, tumors with a PTEN deletion, mutation, or hypermethylation that results in 
AKT phosphorylation (and, subsequently, mTOR activation, cell growth, and 
proliferation) can potentially be targeted with rapamycin and its derivatives 42

. 

Similarly, overexpression of bcl-2 is frequently associated with resistance to 
rapamycin, and thus, previous authors have suggested that bcl-2 may be used as a 
molecular marker to indicate that a given tumor type will not benefit from rapamycin 
treatment43

·
44

• Interestingly, a recent study indicates that histone deacetylase inhibitors 
down-regulate bcl-2 expression and induce apoptosis in some lymphomas45

, which 
implies that histone deacetylases may be able to sensitize tumor cells to subsequent 
treatment with rapamycin (particularly in tumor cells with upregulated bcl-2). Thus, for 
our studies, it would be particularly prudent to examine the effect of MS-275 on bcl-2 
expression. An upregulation of bcl-2 would indicate that the sequential treatment ofMS-
275 followed by rapamycin could yield increased inhibition against cell proliferation. 

Previous experiments have also indicated that rapamycin and its derivatives 
induce autophagy in tumor cells46

; in fact, downregulation of p21 has been linked to this 
process47

. Thus, it might also be worthwhile to examine the effects of rapamycin and 
MS-275 on this process within this and other cell lines to gain a stronger understanding 
of the mechanisms by which these drugs work. 

In summary, both of these drugs appear to be potent inhibitors of multiple 
myeloma, particularly in combination. Their synergistic effect is likely due to the fact 
that the drugs work via distinct mechanisms. And, while rapamycin and MS-275 have 
promising clinical applications, much more work should be done to further characterize 
their effects in vitro and in vivo to further elucidate how they can be used most 
effectively. 
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