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Of all the classes, the rich are the most noticed and the least studied. So it was,
and so it largely remains.

—John Kenneth Galbraith (1977, p. 44)
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ABSTRACT

In every year since 1982, the popular magazine Forbes Magazine has published

a list of the 400 wealthiest Americans. That list has attracted attention from the press

and public, but it has been largely ignored by economists, at least in their professional

capacities. Although a list published by a popular magazine may seem like a dubious

source of data, the magazine’s list is arguably the best source of data on the very top

of the wealth distribution in the United States. This dissertation is a series of essays

that use the magazine’s list to study the wealthiest Americans. The essays study

inequality between the wealthiest Americans and everyone else, inequality among

the wealthiest Americans themselves, and mobility among the wealthiest Americans

over time. Taken together, the essays offer insight into some basic empirical facts

about a much noticed but little studied group.
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CHAPTER 1

INTRODUCTION

The study of wealth is in the domain of economics. Indeed, economics has

sometimes been called “the science of wealth” (Clark 2002, p. 415).1 At least one

reason why economists study wealth is because it can be a source of well-being

(Davies 2009, p. 127). A person’s wealth—or, equivalently, their net worth or their

assets net of their debts—can be a source of well-being because it can be a source

of consumption in either the present or future. Wealth may also improve a person’s

well-being in other ways. It may confer other powers besides its purchasing power

over present or future goods and services, for example (Davies and Shorrocks 2000,

pp. 606–7; Davies 2009, pp. 127–8).

This dissertation is a study of wealth. The dissertation is a series of essays

that study a particular part of the personal distribution of wealth in a particular

place over a particular period of time. The particular part of the wealth distribution

is the very top, the particular place is the United States, and the particular period

of time is recent decades. Each essay is self-contained, but this introductory chapter

summarizes the essays and their relation to one another. This chapter also justifies

the scope of the essays. The chapter starts with a justification for the scope of the

essays and ends with a summary of the essays.

1Economics has been called other things besides the science of wealth, of course. For a
discussion of alternative definitions of economics, including wealth-based definitions, see Backhouse
and Medema (2009).
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Part of the reason why the essays in this dissertation study the subject they

study is that data on that subject has not been fully exploited by previous studies.

Yet, if that somewhat practical reason is set aside for the moment, there are more

principled reasons to study the subject studied by the essays in this dissertation.

Those reasons can be organized into reasons to study the very top of the wealth

distribution in the United States over recent decades, rather than another part of

the wealth distribution in the same place over the same period of time, the same

part of the wealth distribution in another place over the same period of time, or the

same part of the wealth distribution in the same place over another period of time.

Each of those sets of reasons can be taken up in turn.

Assuming for the moment that it seems reasonable to study the United States

over recent decades, there are reasons to study the very top of the wealth distribution

in that place over that period of time. The exact extent to which the distribution of

wealth in the United States has been unequal at different points in time over recent

decades can only be estimated, but, by all estimates, the distribution of wealth has

been extremely unequal at every point in time. Wealth inequality has been more

extreme than income or consumption inequality, for example (Davies and Shorrocks

2000, p. 607; Davies 2009, p. 127). Such extreme inequality implies that a small

proportion of people own a disproportionately large share of wealth. The large share

of wealth held by people at the very top of the wealth distribution is a reason to

study that part of the distribution, even if the proportion of people at the very top

might seem too small to be worthy of study.

Extreme inequality in the distribution of wealth also implies that, if an empir-

ical study is not designed to try to capture the small proportion of people who own

a large share of wealth, then the study will almost surely fail to capture the very top

of the wealth distribution (Davies and Shorrocks 2000, pp. 629–30). The intentional
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or inadvertent failure of some empirical studies to capture the very top of the wealth

distribution is another reason to study that part of the distribution, in particular, at

least as a supplement to the study of other parts.

A final reason to study the very top of the wealth distribution relates to the

failure of some theoretical models to predict or explain the large share of wealth held

by the small number of people at the very top of the wealth distribution. The life-

cycle model fails in that regard, for example, at least in its simplest form (Cagetti

and De Nardi 2008). Dissertations like this one have been devoted to modifying such

models so that they might generate levels of wealth inequality that match certain

summary statistics more closely (Francis 2007), but actually studying the empirical

realities of the part of the wealth distribution that some models fail to predict or

explain could suggest which models and modifications thereof have a basis in reality

and which are baseless.

A reason to study the very top of the wealth distribution in the United States

over recent decades, rather than the same part of the wealth distribution in another

country over the same period of time, is that many of the wealthiest people in the

world have been Americans over recent decades. According to the inaugural year of

Forbes Magazine’s list of the world’s billionaires (which started as an extension to the

magazine’s list of the 400 wealthiest Americans), the United States was the country

with the most billionaires in 1987 (Seneker 1987). By the most-recent year of the list,

the United States was still the country with the most billionaires (Kroll 2014). In

both years, Americans accounted for about one third of the world’s billionaires (40

out of 140 and 492 out of 1,645, respectively). The wealth of those at the very top of

the wealth distribution in the United States has therefore been relatively large, not

only relative to other people in the same country, but also relative to everyone in the

world. Again, the large share of wealth held by people at the very top of the wealth
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distribution in the United States over recent decades is a reason to study that part

of the wealth distribution in that place over that period of time.

It should perhaps be admitted that the wealthiest people in the entire world,

rather than in any one particular country, would also seem to be worthy of study

for similar reasons. By studying the wealthiest Americans over recent decades, this

dissertation studies some of the wealthiest people in the world over the same period

of time, although obviously not a random sample of them. Studying a random or

complete sample of the wealthiest people in the world is outside the scope of the

essays in this dissertation. Of note, however, Forbes Magazine’s list of the world’s

billionaires has been used to study aspects related to the wealthiest people in the

world, including the size or distribution of their wealth (Atkinson 2008; Davies et al.

2008; Ogwang 2013; Piketty 2014), their prevalence in particular countries at partic-

ular points in time, as well as the possible causes or consequences of their prevalence

(Neumayer 2004; Sanandaji and Leeson 2013; Torgler and Piatti 2013), and their

movements between countries over time (Sanandaji 2012).

Reasons to study the very top of the wealth distribution in the United States

over recent decades, rather than the same part of the wealth distribution in the same

place over another period of time, are as follows. Recent decades have seen a series

of booms and busts in the markets for stocks, homes, and other assets. Those at

the very top of the wealth distribution own a disproportionately large share of assets

almost by definition, so they should be disproportionately affected by asset-market

booms and busts, although some assets like stocks are more unequally distributed

than other assets like homes (Wolff 2012, sec. 7.2), so maybe not. The extent to

which different groups have been affected by recent asset-market booms and busts,

especially by the most-recent recent bust in the housing market and its broader

effects, is an active area of research (Kennickell 2011; Wolff 2012).
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Another active area of research is on longer-term trends in inequality in the

United States and the possible causes or consequences of any trends. While it is

relatively well-established that those at the very top of the income distribution took

home a larger share of income over recent decades (Piketty and Saez 2003 and the

updates to that article), whether those at the very top of the wealth distribution took

home a larger share of wealth over recent decades is less established (Kennickell 2003;

Kopczuk and Saez 2004a). Despite the need for further research on whether there

were actually any trends in inequality with respect to the distributions of income,

wealth, or other sources of economic well-being, researchers have not been reticent

about suggesting possible explanations for any such trends (Kaplan and Rauh 2013;

Piketty 2014) or suggesting that increased inequality may have contributed to recent

crises (Krugman 2010; Stiglitz 2012).

There are a number of reasons to study the very top of the wealth distribution

in the United States over recent decades, therefore. The particular subject studied

by the essays in this dissertation is also at least partly driven by the fact that data

on that subject is available and, moreover, that the available data has not been fully

exploited by previous studies. The primary source of data used by each essay is a

list of the 400 wealthiest Americans that has been published annually since 1982 by

Forbes Magazine. Lists of named wealth-holders like the magazine’s are one source

of data on wealth, as Davies and Shorrocks (2000, pp. 628–43) point out in their

review of the theory and empirics of wealth and its distribution. Such lists have

been largely neglected by academic researchers, however, as Davies and Shorrocks

(2000) also point out in their review.

The neglect of such lists of named wealth-holders by academic researchers is

understandable to some extent, as discussed below, but the neglect is nevertheless

difficult to understand. The neglect of Forbes Magazine’s list of the 400 wealthiest
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Americans is especially puzzling because it is arguably the best source of data on the

very top of the wealth distribution in the United States over recent decades. Other

sources of data like surveys or estate-tax records offer only incomplete accounts of

that part of the wealth distribution in that place over that period of time. Consider

surveys. Surveys that are not designed to try to over-sample the very top of the

wealth distribution often fail to capture that part of the wealth distribution (Davies

and Shorrocks 2000, pp. 629–30). The wealth survey conducted as part of the Panel

Survey of Income Dynamics (PSID) is an example of a survey that often fails in that

regard (Juster et al. 1999). Even if such surveys did try to over-sample the very top

of the wealth distribution, the surveys could still be inaccurate accounts due to the

non-response and misreporting problems that plague surveys of the wealthy (Davies

2009, pp. 129–30; Davies and Shorrocks 2000, pp. 630–1). Forbes Magazine may miss

some of the 400 wealthiest Americans or misestimate what some of them are worth,

of course, but there is no guarantee that the wealthy would response accurately or

respond at all to a survey.

The Federal Reserve’s Survey of Consumer Finances (SCF) is generally seen as

the best survey on wealth in the United States at least partly because it is designed

to try to over-sample the very top of the wealth distribution (Davies and Shorrocks

2000, p. 632). The SCF is still an incomplete account of the very top of the wealth

distribution, however, given that the survey is explicitly designed to exclude the

people (or, to be more precise, the households of the people) who appear on Forbes

Magazine’s list of the 400 wealthiest Americans (Kennickell 2006, p. 84). Some of

the reasons that have been given for excluding the (households of the) people who

appear on the magazine’s list are that it would be too difficult to get them to respond

and, even if they did respond, it would be too difficult to protect their confidentiality

(Kennickell 2007, p. 2). Yet, even if the SCF was not designed to exclude part of the
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very top of the wealth distribution, the survey might still be an inaccurate account

due to non-response or misreporting errors.2

Another source of data on the very top of the wealth distribution is estate-tax

records from the International Revenue Service (IRS). Estate-tax records provide

data on some of the wealthiest Americans, but only those who die and pay the

estate or so-called “death” tax. The wealth of the wealthiest living Americans must

be inferred by using the dead as a sample for the living. Such inferences have

potential problems, even if tax avoidance and evasion are assumed away (Atkinson

2008, sec. 2.3; Davies and Shorrocks 2000, sec. 3.3). Forbes Magazine’s list, in

contrast, is reserved for Americans who are still alive.

The magazine’s list of the 400 wealthiest Americans is therefore arguably the

best source of data on the very top of the wealth distribution, at least in a cross-

sectional sense. The list is also arguably the best source of data for studying mobility

throughout that part of the wealth distribution over time. People only die once,

so estate-tax records cannot be used to study wealth mobility, except at an inter-

generational level. The SCF is typically only a cross-sectional survey conducted

every three years, so it cannot be used to study wealth mobility, either. The 2009

SCF was atypical because it was conducted only two years after the previous survey

and it tried to re-survey the same households from before. Again, however, the SCF

is typically only a triennial, cross-sectional survey. The wealth survey conducted as

part of the PSID is a panel survey, so it can be used to study mobility throughout

some parts of the wealth distribution (Diaz-Gimenez et al. 2011, pp. 27–28), but that

survey cannot be used to study mobility throughout the very top of the distribution,

given that it often fails to capture that part of the distribution.

2Due to its design, the SCF can adjust for non-response errors (Kennickell 2007, p. 7), but
there is no guarantee that those adjustments eliminate non-response errors.
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While Forbes Magazine’s list is arguably the best source of cross-sectional and

panel data on the very top of the wealth distribution, it is not an ideal source of

data. The most notable and serious limitation of the list is that Forbes Magazine

only provides limited details about its methods for identifying the 400 wealthiest

Americans and estimating what each of them is worth. The details provided by the

magazine are discussed in this dissertation (see, especially, sec. 2.3), but the details

are limited. A closely related limitation is that, except in rare instances like Fitch’s

(2006) breakdown of Donald Trump’s assets, the magazine does not provide details

about the assets owned and debts owed by the people on its list. The failure to

provide such details severely limits the ability of researchers to assess the magazine’s

methods and the accuracy of its estimates.

That said, no source of data on wealth is ideal, and other sources of data

have similar limitations. In terms of the SCF, that survey tries to over-sample the

very top of the wealth distribution, but the Federal Reserve only provides limited

details about how it does so. Income-tax records are apparently used to try to

identify wealthy households, but the exact manner in which those records are used

is not revealed because of concerns over inadvertently violating the confidentiality

of income-tax records (Kennickell 1999, 2001). In terms of estate-tax records, such

records are also confidential, so access to them is severely limited. Analyzing such

records requires befriending someone at the IRS and having them analyze the records

for you (Kopczuk and Saez 2004a, p. 484; Kopczuk and Saez 2004b, p. 47).3

Other limitations of Forbes Magazine’s list are notable but less concerning. An

obvious limitation is that, even if researchers accepted that the magazine’s list was an

3The author’s attempts to befriend someone at Forbes Magazine who can provide access to
any additional details behind its wealth estimates have been unsuccessful, but gaining access to
such data could open up new lines of research. Without trying to disparage the work of Emmanuel
Saez and his colleagues, it can be noted that one of the great innovations of their work has simply
been gaining access to confidential income- and estate-tax records.
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accurate account of the 400 wealthiest Americans, it would still only be an account

of a small number of people. The notion that a group of people can be too small

to be worthy of study seems ultimately indefensible, but, even if the 400 wealthiest

Americans were seen as insignificant in human terms, they would still be significant

in economic terms. Again, extreme inequality in the distribution of wealth implies

that small proportions of people own large shares of wealth. Information on a larger

group of the wealthiest Americans could provide more insights, of course, but that

does not imply that any insights offered by the magazine’s list should be ignored.

Such limitations may explain why academic researchers have largely neglected

Forbes Magazine’s list of the 400 wealthiest Americans as a source of data, but it

should be emphasized that the list has not been entirely neglected. Previous studies

that have used the magazine’s list to study the 400 wealthiest Americans include

studies on the size of their wealth (Mishel et al. 2012, pp. 382–4), the distribu-

tion of their wealth (Brzezinski 2012; Clauset et al. 2009; Klass et al. 2006; Levy

and Solomon 1997), their mobility throughout the distribution of wealth over time

(Castaldi and Milakovic 2007; Choi 2002; Hertz 2008; Keister 2005; Kennickell 2006),

the sources of their wealth (Blitz and Siegfried 1992; Broom and Shay 2000; Can-

terbery and Nosari 1985; Foster and Holleman 2010; Kaplan and Rauh 2013; Petras

and Davenport 1990; Potts 2006), which political parties they tend to contribute to

(Republicans, according to Burris 2000), whether they are celebrities (only a few of

them are, according to Cagetti and De Nardi 2006, p. 841), whether they are happier

than their less-wealthy counterparts (they are, according to Diener et al. 1985), and

whether they tend to have more children than their less-wealthy counterparts (they

do, according to Essock-Vitale 1984, which should make Gregory Clark optimistic).

The ability to add to that literature is yet another reason to study the particular

subject studied by the essays in this dissertation.



10

Each of the essays can be summarized as follows. The first essay is on the

distribution of wealth between the wealthiest Americans and everyone else. The

essay compares what different data sources, including Forbes Magazine’s list of the

400 wealthiest Americans, suggest about recent trends in wealth inequality. Different

data sources suggest different trends over certain periods. The essay attempts to

reconcile the conflicting trends by considering potential problems with the different

data sources. The essay argues that, while it may be unclear whether the magazine’s

list is an accurate account, it is clear that other sources of data would fail to capture

the 400 wealthiest Americans, if the magazine’s list was an accurate account.

The second essay is on the distribution of wealth among the wealthiest Ameri-

cans themselves. The essay replicates and extends previous studies that used Forbes

Magazine’s list to claim that the wealth of the 400 wealthiest Americans follows a

particular distribution called a Pareto distribution. Although it would be captivating

if their wealth followed that distribution, the essay argues that such a claim is not

supported by the magazine’s list. The magazine’s list suggests that the distribution

of wealth among the 400 wealthiest Americans deviates from a Pareto distribution

to a statistically and substantively significant extent at almost every point in time.

The third and final essay is on mobility among the wealthiest Americans over

time. The essay studies the amount of time that people who appear on the magazine’s

list remain there. The essay finds that most people remain for a relatively short

amount of time, while some people remain for a relatively long amount of time,

which can perhaps reconciling conflicting opinions about the persistence of wealth.

The essay also finds that a person is less likely to remain on the list, if he or she is

older and therefore closer to death or poorer and therefore closer to poverty. The

recent crisis appears to have had little if any effect on mobility, however, even for

those in the finance, insurance, or real estate industries.
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Taken together, the essays offer insight into some basic empirical facts about

the very top of the wealth distribution in the United States over recent decades.

While the same source of data could surely be used to discover other empirical facts

about the same part of the wealth distribution in the same place over the same period

of time, this dissertation leaves the discovery of such facts as a direction for future

research. Indeed, if nothing else, this dissertation has hopefully laid the foundation

for such research by collecting data that was spread across several decades of a

magazine, assembling that disparate data in a manner that is amenable to analysis,

and sharing the data for others to study.
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CHAPTER 2

ON THE ESTIMATION OF THEIR WEALTH

2.1 Introduction

For almost every year in the twentieth century, the economists Wojciech Kop-

czuk and Emmanuel Saez have estimated the shares of wealth held by some of the

wealthiest Americans. They have estimated the shares of wealth held by groups

ranging from the wealthiest two percent of Americans to the wealthiest 0.01 percent

of Americans (Kopczuk and Saez 2004a,b). Kopczuk and Saez estimated the shares

of wealth held by those different groups by applying the estate-multiplier method

to estate-tax records, as discussed below. According to their estimates, the wealth

shares of the different groups followed qualitatively similar trends over the twentieth

century. The wealth shares were relatively high before the Great Depression of the

1930s, fell after the Depression, and then remained relatively stable for the rest of

the century. The wealth shares were “remarkably stable” in the 1990s, in particular

(Kopczuk and Saez 2004a, p. 453).

One reason why that stability in the 1990s was remarkable was because other

estimates suggest that the share of wealth held by the 400 wealthiest Americans

increased dramatically during that decade (Kopczuk and Saez 2004a, pp. 479–83).

Those estimates were not made by applying the estate-multiplier method to estate-

tax records, but rather by directly estimating the wealth of the 400 wealthiest Amer-

icans from whatever information was available, as discussed below. The estimates
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were also not made by economists as part of their academic work, but rather by the

popular magazine Forbes Magazine as part of an annual list. Although one might

presume that the direct estimates made by the magazine are erroneous, Kopczuk and

Saez recognized that their estate-multiplier estimates might have failed to capture a

dramatic increase in the share of wealth held by those at the very top of the wealth

distribution during the 1990s (Kopczuk and Saez 2004a, pp. 480, 482).

This essay begins by comparing direct estimates of the wealth of the 400 wealth-

iest Americans based on Forbes Magazine’s list, on the one hand, to estate-multiplier

estimates of their wealth based on the Kopczuk-Saez estimates, on the other hand.

The essay shows that the estate-multiplier estimates were smaller than the direct

estimates, especially by the end of the 1990s. Possible explanations for why the

estate-multiplier estimates might have been smaller are then discussed. Next, the

essay performs a simple exercise. The exercise involves applying the estate-multiplier

method, not to estate-tax records, but to the magazine’s list by only using informa-

tion about people who died shortly after appearing on the list. The exercise suggests

that it is possible and arguably probable that the Kopczuk-Saez estimates failed

to capture a dramatic increase in the share of wealth held by the 400 wealthiest

Americans during the 1990s.

2.2 Top Wealths from Death Taxes

As part of levying the estate tax, a person’s wealth is estimated and recorded,

so estate-tax records are a source of data on personal wealth (Davies and Shorrocks

2000, p 628). Estate-tax records are only a source of data on the wealth of people

who died, however, given that the estate tax or so-called “death tax” is a tax levied

on a person’s wealth when he or she dies. Moreover, at least in the Untied States,

estate-tax records are only a source of data on the wealth of people who died while
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relatively wealthy. The rules and regulations related to the estate tax are always

changing, but only about one or two percent of the Americans who die in a given

year are wealthy enough to be subject to the tax (Graetz 2011).

Although estate-tax records are only a source of data on the wealth of people

who died while wealthy, the wealth of people who were alive and wealthy can be

estimated by applying the “estate-multiplier method” to those records. That method

assumes that the people who died while wealthy were a random sample of the people

who were alive and wealthy. A wealthy person’s probability of being sampled was

his or her probability of dying. A person only dies once, so the sampling is assumed

to be without replacement (Kopczuk and Saez 2004a and references therein).1

Given those assumptions, the total wealth of the people who were alive and

wealthy can be estimated by multiplying the wealth of each person who died while

wealthy by a multiple—the inverse of his or her mortality rate—and summing over

those wealths. Formally, the estate-multiplier estimate of the total wealth of people

who were alive and wealthy is
∑

i∈D wi/mi, where i indexes wealthy people, D denotes

the set of wealthy people who died, wi is the wealth of the i-th wealthy person, and

mi is his or her mortality rate.

Similarly, the total number of people who were alive and wealthy can be esti-

mated by multiplying each wealthy person who died by a multiple—again, the inverse

of his or her mortality rate—and summing over those people. The estate-multiplier

estimate of the total number of people who were alive and wealthy is
∑

i∈D 1/mi,

where the variables have the same meanings as before.2

In principal, when the estate-multiplier method is applied to someone’s estate-

tax record, that method should only be used to estimate the wealth of people who

1On the history of the estate-multiplier method, see Atkinson and Harrison (1978, pp. 7–11).

2The variances of these estimators are given in section A.1 of this essay’s appendix.
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were alive and wealthy at the point in time just before the person died. In practice,

however, too few people die at any given point in time to make it tenable to look at

given points in time or even relatively short periods of time. Estate-tax records over

longer periods of time like a year are therefore often used. Estate-tax records from

over the course of a year were used by Kopczuk and Saez (2004a,b), in particular.

Ignoring any biases that might arise from using estate-tax records from a period

of time that is longer than a point in time, the estate-multiplier estimates of the total

number and total wealth of people who were alive and wealthy are unbiased, if each

wealthy person dies with a non-zero probability, and if mortality rates are known

with certainty (Horvitz and Thompson 1952).

Mortality rates are not known with certainty, so estimates must be used.

Kopczuk and Saez used nationally representative age-, gender-, and year-specific

mortality rates (Kopczuk and Saez 2004a, p. 448–9; Kopczuk and Saez 2004b, p. 37).

Those estimates were made by the Social Security Administration, and the estimates

are available from Wilmoth (1997).

A wealthy person is perhaps less likely to die in any given year than an average

American, even after controlling for age and gender. As such, Kopczuk and Saez

deflated the nationally representative mortality rates by age- and gender- (but not

year-) specific social-differential factors (Kopczuk and Saez 2004a, p. 471). Social-

differential factors for wealthy people were “not available,” according to Kopczuk and

Saez, so they used factors for a group with high socioeconomic status, specifically,

white college graduates (Kopczuk and Saez 2004a, p. 449; Kopczuk and Saez 2004b,

p. 39). Those factors are available from Brown et al. (2002).

Kopczuk and Saez assumed that the social-differential factors were constant

over the twentieth century. They made that assumption because evidence for year-

specific factors was “very sketchy,” and also because the sketchy evidence did not
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suggest that there was any discernible trend over time in the social-differential factors

for groups with high socioeconomic status (Kopczuk and Saez 2004b, p. 39).

Using those social-differential factors and nationally representative mortality

rates, Kopczuk and Saez applied the estate-multiplier method to estate-tax records

from various year between 1916 and 2000. The estate-tax records that they used were

not available to the public, and those records are still not available to the public. The

records were not even available to Kopczuk and Saez. Instead, Kopczuk and Saez

submitted their desired calculations to an employee at the International Revenue

Service (IRS) named Barry Johnson who made the calculations and reported his

results (Kopczuk and Saez 2004a, p. 484; Kopczuk and Saez 2004b, p. 47).

Applying the estate-multiplier method to estate-tax records yields an estimate

of the total number and total wealth of the people who were alive and wealthy,

yet Kopczuk and Saez wanted to estimate the wealth of groups ranging from the

wealthiest two percent of Americans to the wealthiest 0.01 percent of Americans.

For years in which the estate-multiplier estimate of the total number of wealthy

people was larger than the largest group for whom Kopczuk and Saez wanted a

wealth estimate, the wealth of each group could simply be interpolated. Instead of

summing over all of the people who were estimated to be alive and wealthy, Kopczuk

and Saez (and Johnson) only needed to sum over some of them.3

For some years, the estate-multiplier estimates of the total number of wealthy

people was smaller than largest group for whom Kopczuk and Saez wanted a wealth

estimate. In order to estimate the wealth of a larger group, Kopczuk and Saez

extrapolated the wealth of a smaller group by assuming that wealth followed a Pareto

distribution (Kopczuk and Saez 2004a, p. 452; Kopczuk and Saez 2004b, p. 52). That

extrapolation method is relatively straightforward, but a discussion of the method

3An example of this interpolation method is given in a subsequent section.
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is relegated to the appendix (see section A.2). Kopczuk and Saez claimed that the

extrapolation method could be “checked,” and they did not indicate that the method

failed any of their checks (see Kopczuk and Saez 2004b, p. 52).

After estimating the wealth of a given group, the wealth of the given group

as a share of the total wealth of all Americans can be estimated. The total wealth

of all Americans cannot be (or, at least, should not be) estimated from estate-tax

records. Only a small percentage of the Americans who die in a given year are

wealthy enough to be subject to the estate tax, as noted above, and estate-multiplier

estimates suggest that only a similarly small percentage of the population would

be wealthy enough to be subject to the tax if they died (Kopczuk and Saez 2004a,

p. 450). The wealth of all Americans could be extrapolated, perhaps, but it is

unclear what distributional form, if any, might be an accurate approximation across

the entire distribution of wealth. To the extent that wealth is thought to follow a

Pareto distribution, it is only thought to follow that particular distribution at the

very top of the wealth distribution (Klass et al. 2006).

Instead of using estate-tax records, Kopczuk and Saez used another source of

data to estimate the total wealth of all Americans. (They used a measure based on

the total wealth of households and non-profit organizations, according to the Federal

Reserve’s Flow of Funds Accounts; Kopczuk and Saez 2004b, pp. 44–47.)

Note that, given an estimate of the wealth of some of the wealthiest Americans,

estimating their share of wealth is a distinct issue that depends on estimating the

total wealth of all Americans. As such, this essay focuses on estimates of wealth,

rather than shares of wealth.

This essay also focuses on the wealth of the 400 wealthiest Americans, rather

than a particular percentage of the population, in order to compare estate-multiplier

and direct estimates of the wealth of that group. The 400 wealthiest Americans are
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a smaller group than the smallest group for whom Kopczuk and Saez estimated a

wealth share. The smallest group for whom they estimated a wealth share was the

wealthiest 0.01 percent of Americans. The number of people in that group increased

over time as the population grew, but the number of people in that group was much

larger than the 400 wealthiest Americans, even at the beginning of the century, and

especially by the end of the century. In the year 2000, for example, the 400 wealthiest

Americans were only about the wealthiest 0.0002 percent of Americans, if their share

of the population is calculated by using the measure of population used by Kopczuk

and Saez. (They used the number of people who were 20 years of age or older,

according to the Census Bureau; Kopczuk and Saez 2004a, p. 448.)

Kopczuk and Saez could have estimated the wealth of the 400 wealthiest Amer-

icans, but they did not. It is somewhat strange that they did not, given that they

made some attempt to compare their estate-multiplier estimates to Forbes Mag-

azine’s direct estimates of the wealth of that group (see Kopczuk and Saez 2004a,

pp. 479–83). Nevertheless, estate-multiplier estimates of the wealth of the 400 wealth-

iest Americans can be constructed as follows. Using the estimates that Kopczuk and

Saez (2004a,b) made for a larger group and using the same extrapolation method

that they used, the wealth of the 400 wealthiest Americans can be extrapolated from

the wealth of the larger group. The wealth of the 400 wealthiest Americans can

be extrapolated from the wealth of the smallest group for whom Kopczuk and Saez

(2004a,b) estimated a wealth share, in particular.4

Part of figure 2.1 shows estate-multiplier estimates of the wealth of the 400

wealthiest Americans based on the Kopczuk-Saez estimates. Again, the wealth of

4If Kopczuk and Saez (2004a,b) had estimated the wealth of the 400 wealthiest Americans,
then we could simply use those estimates without using their extrapolation method, but, again,
they did not make such estimates. Estate-multiplier estimates could also be obtained by befriending
an employee at the IRS and having him or her make the same calculations that Johnson made for
Kopczuk and Saez, but that is beyond the scope of this essay.
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the 400 wealthiest Americans was extrapolated from the wealth of the smallest group

for whom Kopczuk and Saez (2004a,b) estimated a wealth share by using the same

extrapolation method that they used. Estimates are shown for as recently as the year

2000, which is the most-recent year for which Kopczuk and Saez (2004a,b) estimated

wealth shares. Estimates are only shown for as far back as the year 1982 for a reason

that will become obvious. (The direct estimates shown as another part of the same

figure are discussed in the next section.)

As shown in the figure: The estate-multiplier estimates suggest that, between

the years 1990 and 2000, the wealth of the 400 wealthiest Americans increased from

about 154 to 285 billion constant dollars, if current dollars are converted to constant

dollars by using a version of the price index used by Kopczuk and Saez with the year

2000 as the base year. (The price index that they used was the Consumer Price Index

for All Urban Consumers—the CPI-U—but since the 2008 update of Piketty and

Saez 2003, Saez has used the Consumer Price Index Research Series Using Current

Method—the CPI-U-RS—so this essay uses the latter index, although the results are

quantitatively similar with either index.)

It can be noted that the estate-multiplier estimates suggest that the share

of wealth held by the 400 wealthiest Americans increased from about 0.74 to 0.86

percent over the same period of time, if their wealth share is calculated by using the

measure of total wealth used by Kopczuk and Saez.

The wealth of the 400 wealthiest Americans therefore increased by about 131

billion constant dollars and their share of wealth increased by about one tenth of a

percentage point during the 1990s, at least according to estimates based on applying

the estate-multiplier method to estate-tax records.
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Figure 2.1. Direct and Estate-multiplier Estimates of the Wealth of the 400 Wealth-
iest Americans, 1982–2000

Source: Data adapted from Forbes Magazine (1982–2000); Kopczuk and Saez (2004a,b).

Note: This figure shows, for each year from 1982 to 2000, direct estimates of the wealth
of the 400 wealthiest Americans based on Forbes Magazine’s list and estate-multiplier
estimates of their wealth based on the Kopczuk-Saez estimates.

2.3 Top Wealths from Rich Lists

Estate-tax records are only one source of data on personal wealth. Lists of

named wealth-holders or so-called “rich lists” are another source of data (Davies and

Shorrocks 2000, p. 628). Perhaps the most-notable example of such a list is Forbes

Magazine’s annual list of the 400 wealthiest Americans. Unlike estate-tax records,

which are only supposed to provide information about people who died while wealthy

enough to be subject to the estate tax, the magazine’s list is supposed to provide

information about people who were alive and wealthy enough to be one of the 400

wealthiest living Americans when the magazine made its list.
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In order to make its list of the 400 wealthiest Americans, the magazine appar-

ently uses whatever information is available. For example: As the magazine said on

the 30th anniversary of its inaugural list:

While we’ve been at it a long time, it is never an easy task [to make our list of
the 400 wealthiest Americans]. Our reporters dig deep. [. . . ] When possible we
met with [people who we thought might be one of the 400 wealthiest Americans]
in person [. . . ] We also interviewed their employees, handlers, rivals, peers, and
attorneys. We poured over hundreds of Security and Exchange Commission
documents, court records, probate records, federal financial disclosures, and
Web and print stories. (Forbes Magazine 2012, p. 226)

Other years of the magazine’s list have offered similar descriptions of the varied

sources that were used, although Web stories were obviously not a source of infor-

mation before the advent of the World Wide Web.

When estimating a person’s wealth, the magazine apparently takes into ac-

count all the assets and debts it can identify. “We took into account all assets: stakes

in public and private companies, real estate, art, yachts, planes, ranches, vineyards,

jewelry, car collections, and more,” the magazine said on the 30th anniversary of its

list, again, for example (Forbes Magazine 2012, p. 226). “We also factored in debt,”

the magazine said, while admitting that “we don’t pretend to know what is listed on

each [person’s] private balance sheet” (ibid.).

The wealth of family members is also apparently taken into account when

estimating a person’s wealth. According to the inaugural year of the magazine’s

list, a person’s wealth “generally” includes the wealth of his or her spouse, children,

or other family members, “especially if family ties are manifestly close or they all

share interests in an ongoing business” (Forbes Magazine 1982, p. 101). If “family

or business ties” are “broken or at least notably frayed,” then a person’s wealth does

not include the wealth of family members (ibid.). A person’s wealth also excludes

the wealth of a spouse, a child, or other family member, if the family member is
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wealthy enough to be one of the 400 wealthiest Americans themselves. In that case,

the member is listed as a separate person on the magazine’s list (ibid.). That way

of assigning the ownership of wealth has not changed in any obvious way over time

(cf. Forbes Magazine 1982, p. 101, and Forbes Magazine 2012, p. 226).

The magazine also offers some information about how it values assets. Publicly

traded stocks are valued at the close of the stock market on a particular day of the

year, while privately held companies are valued based on the value of similar public

companies, for example (Forbes Magazine 2012, p. 226). The magazine’s treatment of

trusts is of particular interest to this essay. “Common sense,” rather than trust law,

is apparently applied to determine whether a trust should count towards someone’s

wealth (Forbes Magazine 1982, p. 101). “Most trusts are plainly set up to carry

out a normal pattern of inheritance and exist to minimize inheritance taxes,” the

magazine said in one year. Trusts that are set up as such are “generally attributed

to the person who created the wealth [. . . ] or else the principal controlling family

member” (ibid.). Some trusts like irrevocable charitable trusts are not attributed to

the person who created the wealth, however (ibid.).

The magazine’s estimates for the wealth of some of the wealthiest Americans

are obviously made in a different way than estate-multiplier estimates. The estimates

are even made in a different way than survey estimates. The magazine talks to people

about how much they are worth, but the magazine also relies on other sources, and

does not necessarily rely on what a person says he or she is worth. (The magazine

does not rely on what Donald Trump says he is worth, for example; Fitch 2006.) The

magazine’s estimates can be said to be “direct” estimates (following the terminology

of Davies and Shorrocks 2000, p. 642), rather than estate-multiplier, survey, or any

other sort of estimates, given that the magazine tries to directly estimate a person’s

wealth from whatever information is available.
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Along with estate-multiplier estimates based on the Kopczuk-Saez estimates,

figure 2.1 also shows direct estimates of the wealth of the 400 wealthiest Americans

based on Forbes Magazine’s list. For each year, except for a few years, the direct

estimate of the wealth of the 400 wealthiest Americans is simply the sum of what

the magazine estimated each person on its list was worth.

The exceptions are that, for the years 1982 to 1989, Forbes Magazine did not

report an estimate of the wealth of one person on its list, Malcolm Stevenson Forbes,

who was the editor-in-chief of the magazine. “People would have assumed that the

printed figure [for my wealth] was real, not an estimate, as all the rest are,” he

explained (quoted in Forbes Magazine 1983, p. 168; also see Forbes Magazine 1982,

p. 170). This essay imputed his wealth in a given year as the median wealth of the

other 399 people on the list in the given year.

The direct estimates suggest that, between 1990 and 2000, the wealth of the

400 wealthiest Americans increased by almost a trillion constant dollars from about

360 to 1,198 billion constant dollars, if current dollars are converted to constant

dollars by using the same price index that was used above.

It can be noted that the direct estimates suggest that, over the same period of

time, the share of wealth held by the 400 wealthiest Americans increased by almost

two percentage points from about 1.7 to 3.6 percent, if their share of wealth is

calculated by using the same measure of the total wealth of all Americans that was

used by Kopczuk and Saez.

The largest difference between the estate-multiplier and direct estimates occurs

in the year 2000. In that year, Forbes Magazine estimated that the 400 wealthiest

Americans were worth about 1,198 billion dollars in total, while the estate-multiplier

estimates suggest that they were only worth about 285 billion dollars. The difference

between those two estimates is about 913 billion dollars.
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It is unclear whether that difference is statistically significant, given that nei-

ther Forbes Magazine nor Kopczuk and Saez (2004a,b) quantified the uncertainty

associated with their estimates, but the difference is clearly substantively significant.

The difference is almost a trillion dollars, which about 2.8 percent of the total wealth

of all Americans, if the measure of total wealth used by Kopczuk and Saez is used.

The difference is also equal to about 76 percent of the total wealth of the 400 wealth-

iest Americans, if Forbes Magazine’s direct estimates are to be believed. Or, if the

estate-multiplier estimates are to be believed, then the difference is equal to over four

times (about 321 percent of) the wealth of the 400 wealthiest Americans, about 71

percent of the wealth of the smallest group for whom Kopczuk and Saez estimated a

wealth share (the wealthiest 0.01 percent of Americans), and about 10 percent of the

wealth of the largest group for whom they estimated a wealth share (the wealthiest

two percent of Americans).

2.4 Possible Explanations for the Differences

Possible explanations for why direct estimates of the total wealth of the 400

wealthiest Americans based on Forbes Magazine’s list might be substantially larger

or simply different than estate-multiplier estimates of their wealth based on the

Kopczuk-Saez estimates are as follows. A person’s wealth as it is reported by the

magazine and the person’s wealth as it is reported for estate-tax purposes may be

different because the magazine and estate taxes might not be measuring the same

concept of wealth. Even if they were trying to measure the same concept, they

might mismeasure it. Moreover, even if their estimates of a person’s wealth were

always the same and always equal to what a person was actually worth, direct and

estate-multiplier estimates of the wealth of the 400 wealthiest Americans might still

be different. The direct estimates could be wrong because the magazine might miss
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some people. The estate-multiplier estimates could also be wrong because mortality

rates might be misestimted and, even if they were not, the dead might be too poor

or too wealthy to be representative of the living. These reasons are expanded upon

below. Although one might hope that other sources of data could suggest which

estimates are more accurate, other sources like surveys are not helpful in that regard,

but a discussion of that point is relegated to section A.4 of this essay’s appendix.

2.4.1 Timing, Ownership, and Valuation Issues

The differences between the direct and estate-multiplier estimates may ulti-

mately be due to differences between a person’s wealth as it is reported by the

magazine and the person’s wealth as it is reported for estate-tax purposes. There

are a number of issues that may generate the latter differences and that may, in turn,

generate the former differences. First of all, there may be a timing issue (McCubbin

1994, p. 368). Whereas Forbes Magazine’s list is supposed to be snapshot of wealth

at the close of the stock market on one day of the year, people die all year long.

For estate-tax purposes, a person’s wealth can be valued on either the day that he

or she died or an alternative date, whichever date would result in a lower valuation.

The alternative date for valuation has changed over time, but, in recent years, the

alternative date has been six months after the day that a person died (Kopczuk and

Saez 2004b, p. 43; Raub et al. 2010, p. 4). Thus, if a person died after the close

of the stock market on the day that the magazine made its list, and if the person’s

wealth did not fall over the next six months, then his or her wealth would be valued

at the same point in time. Otherwise, a person’s wealth would be valued at different

points in time. That timing issue may explain differences between the direct and

estate-multiplier estimates of the wealth of the 400 wealthiest Americans, although

it probably cannot explain large and ever-larger differences. There are other issues

that may explain differences between the estimates, however.
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Even if wealth was valued at the same point in time, there may be issues

related to the way that the ownership of wealth is assigned (McCubbin 1994, p. 368).

Whereas a person’s wealth as it is reported by Forbes Magazine can include the

wealth of the person’s family members, a person’s wealth for estate-tax purposes

does not include the wealth of family members. Assets that were solely owned by a

person’s spouse or other family member are excluded from the person’s estate, for

example (Raub et al. 2010, p. 12).Also, whereas a trust can count towards a person’s

wealth as it is reported by the magazine, trusts do not count towards a person’s

wealth as it is reported for estate-tax purpose, which is the purpose of most trusts,

at least according to Forbes Magazine (1982, p. 101). Those ownership issues may

explain why the direct estimates of the wealth of the 400 wealthiest Americans are,

not only different, but larger than the estate-multiplier estimates of their wealth.

Finally, even if wealth was valued at the same point in time and assigned in the

same way, there may be issues related to the way that wealth is valued. Whereas the

magazine apparently tries to estimate the market value of every asset, some assets

do not need to be reported at their market values for estate-tax purposes (McCubbin

1994, p. 368). The assets that can be discounted and the amounts by which they can

be discounted have changed over time (Kopczuk and Saez 2004b, p. 43; Raub et al.

2010, p. 13), but an example of a valuation discount is as follows. If a person owned

a large amount of a certain type of asset like a company’s stock, then the value of

that type of asset can be discounted, given that selling off a large amount of the

asset may drive its price down (Kopczuk and Saez 2004b, p. 42). Those valuation

issues may also explain why the direct estimates of the wealth of the 400 wealthiest

Americans are larger than the estate-multiplier estimates.

Interestingly, for people who appeared on Forbes Magazine’s list of the 400

wealthiest Americans while they were alive and then died while they were still wealthy
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enough to be subject to the estate tax, the extent to which a person’s wealth as it was

reported by the magazine was different than the person’s wealth as it was reported

for estate-tax purposes has actually been studied by a group of employees at the IRS

(Raub et al. 2010). The group, which included the employee who helped Kopzuk

and Saez construct their estate-multiplier estimates, were updating and extending

an earlier study by another IRS employee (McCubbin 1994). For one part of their

study, the group collected the estate-tax records of 181 people who died shortly after

appearing on the magazine’s list in any year between 1982 and 2008. Those people

died in either the same year they were on the list or in the year after they were on

the list (Raub et al. 2010, p. 9). Note that up to about a year and a half could

have past between the time when the magazine estimated a person’s wealth and the

time when his or her wealth was estimated for estate-tax purposes. There may be

a timing issue when comparing the wealth estimates, therefore, but the comparison

still seems interesting.

Using those estate-tax returns, the group of IRS employees calculated the ratio

between a person’s wealth as it was reported for estate-tax purposes and the person’s

wealth as it was reported by the magazine. They called that ratio the “Forbes ratio”

(Raub et al. 2010, p. 11). They found that, across the 181 people, the Forbes ratio

was 50 percent on average (ibid.). So, on average, a person’s wealth as it was reported

for estate-tax purposes was only half of the person’s wealth as it was reported by the

magazine. For 28 of the 181 people, their estate-tax records said they were worth

more than what the magazine said they were worth (ibid., pp. 11–12). However,

for most of the 181 people, their estate-tax records said they were worth less. That

could explain why the direct estimates of the wealth of the 400 wealthiest Americans

were larger. The Forbes ratio also apparently fell slightly over time (ibid., p. 11),

which may explain why the direct estimates were ever-larger.



28

The group of IRS employees found that the difference between what the maga-

zine and the estate-tax records said someone was worth could be partially explained

by an ownership issue. For people who were married, when a person’s wealth for

estate-tax purposes was recalculated to include the (other half of the) assets that

the person owned jointly with his or her spouse, the Forbes ratio rose, albeit only

slightly from 46 to 53 percent on average (Raub et al. 2010, p. 12). Other ownership

issues may also explain the difference. The Forbes ratio might move closer to unity,

if a person’s wealth for estate-tax purposes was recalculated to include assets solely

owned by his or her spouse or other family members. The group at the IRS did not

have any data to study the effect of assigning wealth in that way, however. The only

ownership issue that they could study was the effect of including assets jointly owned

with a spouse.

The difference could also be partially explained by a valuation issue. Data

on valuation discounts has apparently only been collected since 2004 (Raub et al.

2010, p. 13), so the effect of such discounts can only be studied for people who died

since then. Yet, at least for people who died since then and claimed such discounts,

when a person’s wealth was recalculated without the discounts, the Forbes ratio rose

slightly. The ratio rose from 47 to 54 percent on average. The ratio rose slightly

more, to 58 percent on average, if a person’s wealth was recalculated to also include

assets that the person owned jointly with his or her spouse (ibid. pp. 12–13).

Thus, for people who died shortly after appearing on the magazine’s list, the

difference between their wealth as it was reported by the magazine and their wealth

as it was reported for estate-tax purposes could be partially, but only partially,

explained by certain ownership and valuation issues. The other ownership and val-

uation issues discussed above, as well as the timing issue discussed above, could

explain the rest of the difference, perhaps.
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2.4.2 A Person’s Wealth Might Be Misestimated

Yet, even if the above-discussed issues did not exist, a person’s wealth as it

was reported by the magazine might still not be the same as the person’s wealth as

it was reported for estate-tax purposes. Audits suggest that estate taxes are evaded

to at least some extent (Kopczuk and Saez 2004a, p. 470), so a person’s wealth as it

is reported for estate-tax purposes may underestimate whatever concept of wealth it

is that the estate tax is trying to tax.

A person’s wealth as it is reported by Forbes Magazine may also misestimate

whatever concept of wealth the magazine is trying to capture, if some assets or debts

are difficult for the magazine to either identify or value (Atkinson 2008, p. 69; Blitz

and Siegfried 1992, p. 5). The magazine may overestimate a person’s wealth, in

particular, if assets are easier to identify than debts (Atkinson 2008, p. 70).

2.4.3 The Magazine Might Miss Some People

Even if a person’s wealth as it was reported by the magazine was always the

same as the person’s wealth as it was reported for estate-tax purposes, and even if

that amount was what the person was actually worth, direct and estate-multiplier

estimates of the wealth of the 400 wealthiest Americans might still be different. The

estimates might still be different because the magazine might miss some of the 400

wealthiest Americans. According to the group of IRS employees, between 1982 and

2008, there were 26 people whose estate-tax records suggested that they should have

been on the magazine’s list in the year that they died, yet they did not appear on the

list in any year (Raub et al. 2010, pp. 6–7). The magazine might have missed some

people in some years, therefore. Of course, the direct estimates of the wealth of the

400 wealthiest Americans would actually be too small, if the people the magazine

missed were wealthier than the people it identified.
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2.4.4 Mortality Rates Might Be Misestimated

There are other reasons why direct and estate-multiplier estimates of the wealth

of the 400 wealthiest Americans might still be different, even if a person’s wealth as

it was reported by the magazine was always the same as the person’s wealth as it

was reported for estate-tax purposes, and even if that amount was what the person

was actually worth.

Like other scholars who have applied the estate-multiplier method (e.g., Lamp-

man 1962, p. 14), Kopzuk and Saez recognized that their estate-multiplier estimates

could be wrong, if the mortality rates they used were wrong (Kopczuk and Saez

2004a, pp. 449, 471). Their estate-multiplier estimates could have been too small, in

particular, if the mortality rates they used were too high.

Whether the Kopzuk-Saez mortality rates were too high, too low, or just right

is unknown, given that the rates at which wealthy people died can only be estimated.

The mortality rates used by Kopzuk and Saez were apparently the best estimates

that were available. There is at least one other source of data that can be used to

make such estimates, however. Forbes Magazine’s list can be used.

For each person who appears on the magazine’s list in any given year, the

magazine reports an estimate of his or her age. The magazine also reports the names

of people who appeared on its list in the previous year but died since then. Using

that information, we can estimate the probability that a person on the list in a given

year at a given age would die by the time the magazine made its list in the next year.

A non-parametric approach to estimating those mortality rates is ultimately

unappealing because of the relatively small number of people on the magazine’s list in

any given year and the even smaller number of people who died, so we estimated the

mortality rates by assuming that people lived and died according to the Gompertz-

Makeham law of mortality (Gompertz 1825; Makeham 1860). That assumption is
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the same assumption that Brown et al. (2002) made in order to construct the social-

differential factors used by Kopczuk and Saez (2004a,b).5

We estimated year- and age- but not gender-specific mortality rates. We did

not estimate gender-specific mortality rates for two reasons. One reason is that the

number of women on the list has been small and shrinking since 1982. Only about one

eighth of the people on the list were women by the year 2000, for example (Edlund

and Kopczuk 2009, p. 164, table 4). Another reason we did not try to estimate

gender-specific mortality rates is because, if we did try to do that, then we would

not be able to estimate year-specific mortality rates for some years. In some years,

only men died. To the extent that women have lower mortality rates than men of the

same age, ignoring gender differences would bias our estimates downward, although

any bias should shrink over time as the number of women on the list shrunk.

Estimated mortality rates for two years, 1990 and 2000, are shown in figure

2.2 of this essay. For comparison, the Kopzuk-Saez mortality rates for men in the

same years are also shown in the figure. The Kopzuk-Saez mortality rates for women

were lower, but, again, most of the people on the magazine’s list in those years were

men. As shown in the figure, in both of the years and for each age past about 50

years of age, the mortality rates estimated from the magazine’s list are lower than

the mortality rates used by Kopzuk and Saez for men. Most of the people on the

magazine’s list in those years were at least 50 years of age. (To be more specific,

about 87 and 76 percent of them were over the hill in 1990 and 2000, respectively.)

The Kopzuk-Saez mortality rates may have been too high, therefore, at least for

most of the 400 wealthiest Americans. If so, then estate-multiplier estimates of the

wealth of the 400 wealthiest Americans may have been too small.

5See section A.3 of the appendix for more details on the way in which we estimated the
mortality rates and the way in which Brown et al. (2002) estimated the social-differential factors.
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Figure 2.2. Mortality Rates, 1990 and 2000

Source: Data adapted from Brown et al. (2002); Forbes Magazine (1990, 1991, 2000, 2001);
Wilmoth (1997).

Note: This figure shows, for the years 1990 and 2000, the mortality rates for males that
were used by (Kopczuk and Saez 2004a,b). The figure also shows mortality rates that were
estimated by using information about the people who appeared on Forbes Magazine’s list
in a given year and then were either alive or dead by the next year.

2.4.5 The Dead Might Not Be Representative of the Living

There is at least one other reason why the estate-multiplier estimates may have

been too small, even if estate-tax records always reported what a person was actually

worth, and even if the mortality rates used by Kopzuk and Saez were actually the

rates at which people died. The dead may have been too poor to be representative

of the living (Atkinson 2008, p. 71). Scholars who have applied the estate-multiplier

method have often recognized that people may deaccumulate wealth before dying for

a variety of reasons, including bequest motives, tax avoidance, and end-of-life care
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(ibid.; Davies and Shorrocks 2000, p. 638; Kopczuk and Saez 2004a, pp. 471–2). Yet,

even if people do not deaccumulate wealth before dying, the dead could still be too

poor to representative of the living for the same reason that many of the living are

too poor to be representative. The distribution of wealth is highly skewed, so most

people are too poor to be representative (which is exactly why the best surveys on

wealth try to over-sample the wealthy; Kennickell 2007).

There are all sorts of possible explanations for why the direct estimates of the

wealth of the 400 wealthiest Americans might be different than the estate-multiplier

estimates of their wealth, therefore. Not all of the reasons imply that one set of

estimates was right and the other wrong. They may have both been right because

they may have been measuring different things. Of course, both sets of estimates

could have been wrong. Or, one set could have been wrong and the other right.

Kopczuk and Saez (2004a,b) did not dismiss the possibility that their estimates

might have been wrong and the magazine’s estimates might have been right. After

pointing out that the increase in Forbes Magazine’s direct estimate of the wealth of

the 400 wealthiest Americans in the late 1990s was largely due to an increase in the

wealth of an even smaller number of people (the 100 wealthiest or so), they noted

in a footnote that, “It seems possible that a few-year long surge of [the] wealth of

a few individuals can remain unnoticed [by estate-multiplier estimates]” (Kopczuk

and Saez 2004a, p. 480; Kopczuk and Saez 2004b, p. 31).

The possibility or impossibility, as well as probability or improbability, that the

estate-multiplier estimates may have been right or wrong can be explored through

a simple exercise implemented in the next section. The exercise involves assuming

that Forbes Magazine’s list was an accurate account of the 400 wealthiest Americans

and then trying to estimate what the 400 wealthiest Americans were assumed to be

worth by only using information about people on the list who died.
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2.5 What If Forbes Was Right?

In every year since 1982, Forbes Magazine has published a list of the 400

wealthiest Americans. If we look at the magazine’s list in any given year, then we

can see the name, estimated wealth, and estimated age of each person who was on

the list in that year. And if we look at the list in any given year, except the inaugural

year, then we can also see the name of each person who was on the list in the previous

year but died. The names of the people who were on the list in the previous year

but died are reported by the magazine, regardless of whether a person would have

made it onto the list again if only he or she had lived. The magazine does not report

any sort of estimate of what a person was worth at the point in time when he or

she died, although we can look at the previous year’s list in order to see what the

magazine said he or she was worth at that point in time.

Whether Forbes Magazine’s list of the 400 wealthiest Americans in any given

year was an accurate account of the 400 wealthiest Americans when the magazine

made its list in that year is unknown. Yet, for the sake of an exercise to evaluate the

estate-multiplier method, suppose that the magazine’s list was an accurate account

in every year. That is to say, suppose that the 400 people on the list were actually the

400 wealthiest Americans, suppose that they were actually worth what the magazine

said they were worth, and suppose that they were actually as young or old as the

magazine said they were.

For the sake of the same exercise, suppose we want to know the total wealth

of the 400 wealthiest Americans in any given year at the point in time when the

magazine made its list in that year. If we could see what the magazine said each

person was worth, then the task would be trivial. We could simply sum up what the

magazine said each person was worth, and we would arrive at what we assumed the

400 wealthiest Americans were worth in total.



35

Suppose, however, that we cannot see information about each person on the

magazine’s list. Suppose we can only see information about some of them. Suppose

we can only see information about the people who were on the list in a given year but

died by the time the magazine made its list in the next year. Estate-tax records only

provide information about the people who died while wealthy enough to be subject

to the estate tax. So, we are similarly assuming that we can only see information

about people who died shortly after appearing on the magazine’s list.

Suppose, moreover, that we do not know that the people for whom we see

information must have been one of the 400 wealthiest Americans. Suppose we only

know that, in order to see the name, wealth, and age of a person, he or she must

have been worth at least a given amount of wealth. The given amount of wealth

corresponds to the minimum wealth of the 400 wealthiest Americans, but we will

assume that we only know the amount, not what it corresponds to. When working

with estate-tax records, we do not know the number of people who would have been

subject to the estate tax in the event of their death. We only know that a decedent

must have been worth at least a given amount in order to be subject to the tax.

If that is all the information we have, then we do not know what the 400

wealthiest Americans were assumed to be worth in total, but we can estimate their

total wealth by applying the estate-multiplier method to that information in the

same way that Kopczuk and Saez (2004a,b) applied the method to estate-tax records.

The estate-multiplier method as it was applied by Kopczuk and Saez can then be

evaluated by dropping the pretense that we do not know what the 400 wealthiest

Americans were assumed to be worth, and comparing the estate-multiplier estimate

of their wealth to their assumed wealth.

This exercise cannot tell us whether Forbes Magazine’s list in any given year

was an accurate account of the 400 wealthiest Americans when the magazine made
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its list in that year, of course. That said, the exercise can tell us whether the

estate-multiplier method would have correctly estimated the total wealth of the 400

wealthiest Americans, if the magazine’s list was an accurate account. Any differences

cannot be attributed to any timing, ownership, or valuation issues, given that we are

taking everyone’s information directly from the magazine’s list, although we will

explore the effect of misvaluing wealth in just a moment.

The magazine’s list from the year 2000 can used to illustrate this exercise.

When its list for the next year came out, Forbes Magazine informed its readers

that, out of the 400 people who were on its list in 2000, three people had died. The

three people who died were William Redington Hewlett, Randolph Apperson Hearst,

and Michael Chowdry. It can be noted that Hewlett was one of the co-founders of

the Hewlett-Packard Company, Hearst was one of the sons of the newspaper mogul

William Randolph Hearst, and Chowdry was the founder of a cargo airline company.

In order to estimate the total wealth of the 400 wealthiest Americans in 2000,

we would only use information about these three people who died. According to the

magazine’s list from 2000, the ages, sexes, and wealths of the three people were as

follows. Hewlett was an 87-year-old male who was worth nine billion dollars, Hearst

was an 84-year-old male who was worth 1.8 billion dollars, and Chowdry was a 45-

year-old male who was worth 920 million dollars (Forbes Magazine 2000). It can be

noted that Hewlett and Hearst died of natural causes related to their advanced ages,

while Chowdry died in a plane crash.

If we use the nationally representative mortality rates that Kopczuk and Saez

used (again, Wilmoth 1997), as well as the social-differential factors that they used

(again, Brown et al. 2002), then we would estimate that Hearst, Hewlett, and

Chowdry should have died with about a 1-in-7, 1-in-9, and 1-in-464 chance, respec-

tively. The estate-multiplier method therefore implies that there should have been
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about seven people like Hewlett, about nine people like Hearst, and about 464 people

like Chowdry. That is to say, there should have been about seven 87-year-old males

worth nine billion dollars, about nine 84-year-old males worth 1.8 billion dollars, and

about 464 45-year-old males worth 920 million dollars. If that is all the information

we have, then the estate-multiplier estimate of the total number and total wealth of

the people who were alive and wealthier than the given amount of wealth would be

about 481 people and 507 billion dollars, respectively.6

Four hundred and eighty one people is obviously greater than 400 people,

so, if we knew that the given amount of wealth was the minimum wealth of the

400 wealthiest Americans, then we would know that something was amiss with our

estate-multiplier estimates. Yet, again, when working with estate-tax records, we do

not know how many people were wealthy enough to be subject to the estate tax in

the event of their death. So, we are similarly assuming that we do not know that

only 400 people should have been worth at least as much as the given amount.

Given that 481 people is greater than 400 people, the wealth of the 400 wealthi-

est people can be interpolated. We would estimate that the 400 wealthiest Americans

were comprised of about seven people worth nine billion dollars, about nine people

worth 1.8 billion dollars, and about 384 people worth 920 million dollars. Their total

wealth would be estimated to be about 432 billion dollars.

That estate-multiplier estimate is wrong in the context of the exercise. The 400

wealthiest Americans were assumed to worth about 1,198 billion dollars in 2000. The

estate-multiplier method therefore underestimates their wealth by about 765 billion

dollars, which is over half (about 64 percent) of what the 400 wealthiest Americans

were assumed to be worth in that year.

6Standard errors for those point estimates could be calculated by using the expression given
in section A.1 of the appendix; but, again, the estate-multiplier method as it was applied by Kopczuk
and Saez (2004a,b) did not account for any uncertainty associated with such estimates.
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The same exercise can be repeated for the other years of Forbes Magazine’s

list. It can be noted that the number of people who died shortly after appearing

on the magazine’s list in a given year varied by year. Between the years 1982 and

2000, as few as two and as many as 13 people died after appearing on the list. The

percentage of the 400 wealthiest Americans who died varied from about one-half of

one percent to 3.25 percent, therefore. Over the same period of time, the percentage

of people who died while wealthy enough to be subject to the estate tax varied from

about one to two percent, according to estimates made by Kopczuk and Saez (2004a,

p. 450). So, the percentage of people who died while wealthy enough to be one of

the 400 wealthiest Americans was similar to the percentage of people who died while

wealthy enough to be subject to the estate-tax, if the magazine’s list and Kopczuk

and Saez’s estimates are to be believed.

When repeating the exercise for other years, if the estate-multiplier estimate

of the total number of people is greater than or equal to 400, like it is in the year

2000, then the total wealth of the 400 wealthiest Americans can be interpolated. In

addition to the year 2000, for the years between 1982 and 2000, their wealth can

be interpolated in the years 1986, 1989, 1992, and 1994. In the years in which the

estate-multiplier estimate of the number of people is less than 400, the total wealth

of the 400 wealthiest Americans cannot be interpolated, but it can be extrapolated

by using the same extrapolation method used by Kopczuk and Saez, specifically, by

assuming that wealth followed a Pareto distribution.

The results of this exercise for the years 1982 to 2000 are shown in figure 2.3

of this essay. As shown in the figure, in each year, the estate-multiplier method

underestimates what the 400 wealthiest Americans were assumed to be worth. The

smallest underestimation occurs in 1994. In that year, the estate-multiplier method

underestimates their wealth by only about one billion constant dollars or less than
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Figure 2.3. Assumed and Estimated Wealth of the 400 Wealthiest Americans, 1982–
2000

Source: Data adapted from Brown et al. (2002); Forbes Magazine (1982–2001); Wilmoth
(1997).

Note: This figure shows what the 400 wealthiest Americans were assumed to be worth for
the sake of the exercise discussed in the text and what the 400 wealthiest Americans were
estimated to be worth as part of the same exercise.

one percent of their wealth. The underestimation is more substantial in other years.

In 1990, the estate-multiplier method underestimates their wealth by about 87 billion

or 25 percent, and the method underestimates their wealth by about 765 billion or

64 percent in 2000, as noted above.

This figure of the assumed and estimated wealth of the 400 wealthiest Ameri-

cans (again, fig. 2.3) is similar to the earlier figure of the direct and estate-multiplier

estimates of the wealth of the 400 wealthiest Americans (fig. 2.1). Such similarity is

suggestive. The similarity suggests that, if Forbes Magazine’s list was an accurate

account of 400 wealthiest Americans, then the estate-multiplier method as it was
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applied by Kopczuk and Saez (2004a,b) may have substantially underestimated the

wealth of the 400 wealthiest Americans, especially by the end of the 1990s.

The differences that were generated by the exercise are not actually quite as

large as the differences that were observed between the direct and estate-multiplier

estimates of the wealth of the 400 wealthiest Americans. In the year 2000, the

exercise generates a difference of only about 765 billion dollars, rather than about

913 billion dollars. A difference of 765 billion dollars still seems substantial, but it

is obviously smaller than 913 billion dollars.

However, if we make a realistic assumption about how wealth is valued during

the exercise, then the differences generated by the exercise are at least as large the

differences that were observed. The assumption is that, for each person who dies, his

or her wealth is undervalued by half. That assumption is erroneous in the context of

the exercise, but it is realistic for the reason noted above. As noted above, for people

who died shortly after appearing on Forbes Magazine’s list, when the magazine’s

estimate of a person’s wealth was compared to the wealth that was reported on his

or her estate-tax records, the wealth reported on the estate-tax records was about

half as much, at least on average.

Figure 2.4 shows the results of performing the exercise again while undervaluing

what the people who died were worth by half. For comparison, the figure also shows

the results from the earlier exercise, in which the wealth of the people who died was

valued in full. As shown in the figure, the differences generated by the exercise are

larger when wealth is undervalued by half. The differences generated by the exercise

when wealth is undervalued by half are also at least as large as the differences that

were observed. In the year 2000, again for example, the estate-multiplier method

underestimate what the 400 wealthiest Americans were assumed to be worth by

about 982 billion dollars, which is obviously greater than 913 billion dollars.
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Figure 2.4. Misestimation of the Assumed Wealth of the 400 Wealthiest Americans
with Different Assumptions about the Valuation of Wealth, 1982–2000

Source: Data adapted from Brown et al. (2002); Forbes Magazine (1982–2001); Wilmoth
(1997).

Note: This figure shows, for different assumptions about the valuation of wealth, the dif-
ference between what the 400 wealthiest Americans were estimated to be worth as part of
the exercise discussed in the text and what they were assumed to be worth as part of the
same exercise. The wealth of someone who was sampled was either valued in full (“right
wealths”) or undervalued by half (“wrong wealths”).

2.6 Extensions to the Exercise

2.6.1 The Probability of Substantially Smaller Estimates

In the exercise discussed above, we assumed that Forbes Magazine’s list was

an accurate account of the 400 wealthiest Americans. We then applied the estate-

multiplier method to the magazine’s list by only using information about the people

who died shortly after appearing on the list. The estate-multiplier method was

applied to that information in the same way that Kopczuk and Saez (2004a,b) applied

the method to estate-tax records. We used the mortality rates that they used, in
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particular. The main result of the exercise was that the estate-multiplier method

underestimated what the 400 wealthiest Americans were assumed to be worth by a

substantial amount, especially by the end of the 1990s. Such underestimation cannot

be attributed to any timing, ownership, or valuation issues related to wealth because

we took everyone’s information directly from the magazine’s list, although we did see

that undervaluing wealths by a realistic proportion (namely, one half) led to even

more severe underestimation.

The source of the underestimation in the exercised discussed above could be

that the people who died were less likely to die than the Kopczuk-Saez mortality

rates implied. Unfortunately, whether those mortality rates were the source of the

misestimation or not is difficult to determine in the above-discussed exercise, given

that we do not know how likely it was that a given person on the magazine’s list in

a given year would die. The probability that a person would die can be estimated,

as discussed above, but it cannot be known with certainty, either in the real world

or in the exercise.

In order to study the source of the underestimation, as well as the probability

of such underestimation, the exercise discussed above can be extended as follows.

Instead of using information about the people who actually died shortly after ap-

pearing on the magazine’s list in a given year, we can draw a different sample from

the people who were on the list in the given year and might have died, and then only

use their information to apply the estate-multiplier method. People on the list can be

sampled without replacement according to the mortality rates estimated earlier. By

drawing our own sample, we obviously know the rates at which people are sampled.

We therefore do not need to use estimates of the rates at which people were sampled.

We do not need to use Kopczuk-Saez mortality rates, in particular, although we will

explore the effect of using those rates in just a moment.
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An issue that arises when drawing our own sample is that we might not sample

anyone. That issue did not arise before because, although it was presumably possible

that everyone who appeared on the magazine’s list in any given year could have lived

until the magazine made its list in the next year, at least one person died in every

year. (Indeed, at least two people died in every year, as noted above.) Yet when we

draw our own sample, we might not sample anyone. For the year 2000, for example,

we would expect to draw an empty sample with a probability of about six percent,

given the ages of the people who were on the list in that year and the mortality

rates estimated earlier. We will treat an empty sample in the following way. Recall

that we assumed we knew the minimum amount that a decedent must be worth in

order to be observed. If we do not sample anyone, then we will assume that the

400 wealthiest Americans were all worth exactly that amount. That assumption is

erroneous in the context of the exercise, but it is less erroneous than assuming that

no one was worth that much. Also, even if we correctly assumed that that the 400

wealthiest Americans were all worth at least that much, we would not have any basis

for guessing what they were worth beyond that amount.

If a large number of samples (such as 10,000 samples) are repeatedly redrawn

for any given year, and if the estate-multiplier method is repeatedly reapplied in

the way discussed above, then the probability that the method would substantially

underestimate what the 400 wealthiest Americans were assumed to be worth in that

year can be estimated. This extension to the exercise cannot tell us how likely

it was that Forbes Magazine’s list was an accurate account of the 400 wealthiest

Americans, but it can tell us how likely it was that the estate-multiplier method would

underestimate the wealth of the 400 wealthiest Americans, if the magazine’s list was

an accurate account of the 400 wealthiest Americans, and if they died at the rates at

which we are sampling them. The source of any underestimation can also be studied
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by studying how certain changes that occurred to the 400 wealthiest Americans over

the years affected the probability of underestimating their total wealth.

Part of figure 2.5 shows, for each year between 1982 and 2000, the probabil-

ity that the estate-multiplier method would underestimate what the 400 wealthiest

Americans were assumed to be worth by at least a specific percentage of their wealth.

The results are similar for similar percentages, but, for the figure, the specific per-

centage is the same percentage by which the direct and estate-multiplier estimates of

the wealth of the 400 wealthiest Americans differed in 2000. Again, that percentage

was about 76 percent of the direct estimate of their wealth. As shown in the figure,

the probability of underestimating what the 400 wealthiest Americans were assumed

to be worth by at least 76 percent is small. The probability is only as large as about

six percent in 1998, the probability is about a quarter of a percent in 2000, and the

probability is almost zero (about 0.02 percent) in 1990.

Although the probability of underestimating their wealth by at least 76 percent

is small, the median amount by which their wealth would be misestimated is arguably

large, at least by the end of the 1990s, as shown as part of figure 2.6 of this essay.

In 1990, the estate-multiplier method would underestimate what the 400 wealthiest

Americans were assumed to be worth by at least about 80 billion constant dollars

half of the time, while the method would underestimate their wealth by at least

about half a trillion dollars (about 438 billion dollars) half of the time in 2000.

Also, as shown in figure 2.5, if we made the same assumption about the un-

dervaluation of wealth that we made earlier, then the probability of underestimating

what the 400 wealthiest Americans were assumed to be worth by at least 76 percent

would be larger, especially by the end of the 1990s. The probability would be about

33 percent or more in every year between 1996 and 2000. In one of those years,

underestimating their wealth by at least 76 percent would be more probable than
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not. The probability would be about 52 percent in 1999. The median misestimation

would also be larger in every year, as shown in figure 2.6 of this essay.

The probability of underestimating their wealth by a substantial percentage or

amount would be even larger, if we made another realistic assumption about what we

know about the rates at which people are sampled. Although we obviously know the

rates at which we are sampling people, we can pretend we do not know those rates,

and use the mortality rates used by Kopczuk and Saez instead. When applying the

estate-multiplier method to estate-tax records, we do not actually known the rates at

which people were sampled by Death. We can only use estimates like the Kopczuk-

Saez mortality rates. So, we are similarly assuming that our knowledge about the

rates at which people are sampled is imperfect.

If wealth is undervalued by half instead of valued in full, and if the Kopczuk-

Saez mortality rates are used instead of the actual sampling rates, then underesti-

mating what the 400 wealthiest Americans were assumed to be worth by at least 76

percent would be about 50 percent or more in every year between 1996 and 2000, as

shown as part of figure 2.7 of this essay. The median amount by which their wealth

would be misestimated would also be at least about 423 billion dollars in every year

between 1996 and 2000, as shown as part of figure 2.8 of this essay.7

Recall that 76 percent is the percentage by which, in the year 2000, the direct

estimate of the wealth of the 400 wealthiest Americans based on Forbes Magazine’s

list differed from the estate-multiplier estimate of their wealth based on the Kopczuk-

Saez estimates. The percentages by which those estimates differed were different

in different years. As a percentage of the direct estimate, the estimates differed

by about 54, 64, 68, 76, and 76 percent in each year from 1996 to 2000. In the

7The Kopczuk-Saez mortality rates for males, rather than females, were used. The mis-
estimation would be similar, but less severe, if the rates for females were used.
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context of the exercise, the probability of underestimating what the 400 wealthiest

Americans were assumed to be worth in each of those years by at least each of those

percentages can be estimated. Undervaluing wealths by half and using the Kopczuk-

Saez mortality rates, those probabilities would be estimated to be about 98, 93, 86,

73, and 48 percent. Of course, the probability of underestimating their wealth year

after year would be smaller than the probability of underestimating their wealth in

a given year. The probability would not be infinitesimal, however. The probability

of underestimating their wealth by at least each of those percentages in each of the

years between 1996 and 2000 would be almost 30 percent.

These results are suggestive. They suggest that, in the years towards the end

of the 1990s when there were substantial differences between the direct estimates

of the wealth of the 400 wealthiest Americans based on Forbes Magazine’s list and

the estate-multiplier estimates of their wealth based on the Kopczuk-Saez estimates,

it was possible and arguably probable that the estate-multiplier method as it was

applied by Kopczuk and Saez (2004a,b) would have underestimated the wealth of

the 400 wealthiest Americans by at least the amount by which the direct and estate-

multiplier estimates differed, if Forbes Magazine’s list was an accurate account of

400 wealthiest Americans in those years.

Admittedly, the exercise also suggests that the probability of underestimating

the wealth of the 400 wealthiest Americans by at least each of those amounts in each

of those years would have been essentially zero, if the mortality rates used by Kopczuk

and Saez (2004a,b) were accurate estimates of the rates at which people died, or if

estate-tax records were accurate estimates of a decedent’s wealth. Again, however, if

Forbes Magazine’s list was an accurate account of the 400 wealthiest Americans, then

it appears that the Kopczuk-Saez mortality rates were generally too high (sec. 2.4.4)

and that the wealths of decedents were generally too low (sec. 2.4.1).
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Figure 2.5. Probability of Underestimating the Assumed Wealth of the 400 Wealthi-
est Americans by at least 76 Percent with Different Assumptions about the Valuation
of Wealth, 1982–2000
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Figure 2.6. Median Misestimation of the Assumed Wealth of the 400 Wealthiest
Americans with Different Assumptions about the Valuation of Wealth, 1982–2000
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Figure 2.7. Probability of Underestimating the Assumed Wealth of the 400 Wealthi-
est Americans by at least 76 Percent with Different Assumptions about the Valuation
of Wealth and the Rates at Which People Were Sampled, 1982–2000
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Figure 2.8. Median Misestimation of the Assumed Wealth of the 400 Wealthiest
Americans with Different Valuation and Sampling Assumptions, 1982–2000
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2.6.2 The Source of the Substantially Smaller Estimates

The probability of underestimating what the 400 wealthiest Americans were

assumed to be worth varies by year in the exercise discussed above. The source of that

underestimation can therefore be studied by studying how changes that occurred over

those years would have affected the probability of underestimation. Changes that

occurred between the years 1990 and 2000 can be studied, in particular. Maintaining

our assumption that Forbes Magazine’s list was an accurate account of the 400

wealthiest Americans in every year, the relevant changes that occurred between the

years 1990 and 2000 were the following. The ages of the 400 wealthiest Americans

changed. They became younger on average as their average age fell from about 64

to 60 years of age, for example. (The standard deviation of their ages was about 13

years of age in both years.) Their wealths also changed, as discussed in more detail

below. And the rates at which they died changed, at least according to the estimates

we made earlier.

The net effect of all of those changes to the 400 wealthiest Americans—again,

the changes to their ages, their wealths, and the rates at which they died—was that

it was more likely that their total wealth would be substantially underestimated in

our exercise. The probability of underestimating what the 400 wealthiest Americans

were assumed to be worth by at least 76 percent would have almost doubled from

about 26 to 48 percent, assuming that wealths were undervalued by half instead of

valued in full, and also assuming that the Kopczuk-Saez mortality rates were used

instead of the actual sampling rates, as shown as part of table 2.1 of this essay. We

will focus on the implementation of the exercise in which wealths are undervalued

and the Kopczuk-Saez mortality rates are used, which seems like the most realistic

implementation, although some of the results for other implementations are reported

in the same table for completeness.
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The effect of each change can be studied by starting with the ages and wealths

of the 400 wealthiest Americans in 1990, as well as our estimates of the rates at

which they died in that year. Starting with those ages, wealths, and rates, the effect

of changing the ages of the 400 wealthiest Americans can be studied by taking the

ages of the wealthiest to the poorest of the 400 wealthiest Americans in 2000, and

assigning those ages to the wealthiest to the poorest of the 400 wealthiest Americans

in 1990. (When people have the same wealth, ties can be broken by the alphabetical

order of a person’s name, which should be a random way of breaking ties.) By doing

that, the ages of the 400 wealthiest Americans change, and any association between

a person’s age and his or her rank in the distribution of wealth also changes, but

everything else is held constant.

That change in the ages of the 400 wealthiest Americans has a relatively small

effect on the probability of underestimating their wealth by at least 76 percent, as

shown in the table. The probability is only about two percentage points lower. Note

that, if a person with a given amount of wealth was less likely because he or she was

younger, then the person’s wealth would be inflated by a larger factor in the event of

his or her death, which would tend to decrease the probability of underestimation.

Changing the rates at which people are sampled—either in isolation or in con-

cert with a change in their ages—also has a relatively small effect on the probability

of underestimating their wealth by at least 76 percent, as shown in the same table.

The probability is about four percentage points higher. It seems that, at least for

the set of ages associated with the people on the magazine’s list in the year 1990, the

difference between the estimated mortality rates and the Kopczuk-Saez mortality

rates was greater in 2000 than 1990.

Changing the ages of the 400 wealthiest Americans or the rates at which they

died has a relatively small effect, relative to the effect of changing the wealths of the
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400 wealthiest Americans. The effect of that change can be studied by taking the

wealths of the wealthiest to the poorest of the 400 wealthiest Americans in 2000,

and assigning those wealths to the wealthiest to the poorest of the 400 wealthiest

Americans in 1990. When the wealths of the 400 wealthiest Americans are changed

in that way, the probability of underestimating their wealth by at least 76 percent

almost doubles from about 26 to 53 percent. The net effect of all of the changes that

occurred to the 400 wealthiest Americans between 1990 and 2000 is therefore about

the same as the effect of just changing their wealths.

The change that occurred to their wealths between 1990 and 2000 could be

characterized in different ways. In anticipation of another exercise, we can charac-

terize the change as follows. If the wealth of the 400 wealthiest Americans follows

a Pareto distribution, then there should be a percentage p ∈ (0, 50) such that the

wealthiest p percent of the 400 wealthiest Americans own (100−p) percent of the to-

tal wealth of the 400 wealthiest Americans (assuming that their mean wealth is finite;

Hardy 2010, p. 42, proposition 2). Whether the wealth of the 400 wealthiest Ameri-

cans actually follows a Pareto distribution is a subject of scholarly debate (Clauset

et al. 2009), but the percentage of the wealth of the 400 wealthiest Americans owned

by different percentages of the 400 wealthiest Americans can still be calculated. In

1990, the wealthiest 36 percent of the 400 wealthiest Americans owned about 64

percent of the wealth of the 400 wealthiest Americans (again, maintaining our as-

sumption that the magazine’s list was an accurate account). In 2000, in contrast,

that same percentage of the 400 wealthiest Americans owned about 75 percent of

the wealth of the 400 wealthiest Americans.

The effect of even more dramatic changes to the distribution of the wealth

among the 400 wealthiest Americans on the probability of underestimating their to-

tal wealth can be illustrated as follows. Consider the 400 wealthiest Americans in
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2000. Holding everything else constant—their total wealth, their ages, any associ-

ation between ranks and ages, and the rates at which we are sampling them—we

can change the distribution of their wealth. It is straightforward to distribute their

wealth with different degrees of inequality, if we assume that their wealth follows a

Pareto distribution. Note that the estate-multiplier estimates can only be improved

by assuming that their wealth follows a Pareto distribution, given that the extrap-

olation method used by Kopczuk and Saez (2004a,b) assumes that wealth follows

that particular distribution.

The probability of underestimating what the 400 wealthiest Americans were

assumed to be worth by at least 76 percent can be calculated for Pareto distributions

of wealth that range from almost perfect equality (i.e., slightly less than half of the

400 wealthiest Americans owning slightly more than half of the total wealth of the 400

wealthiest Americans) to almost perfect inequality (i.e., one person owning almost

all of the wealth of the 400 wealthiest Americans). Those probabilities are shown in

the top half of figure 2.9 of this essay. The median misestimation for each wealth

distribution is shown in the bottom half of that figure.

As shown in the figure, if the distribution of wealth among the 400 wealthi-

est Americans was almost perfectly equal, then the estate-multiplier method would

almost never overestimate their wealth by 76 percent. However, if the distribution

of their wealth was almost perfectly unequal, then the method would almost always

underestimate their wealth by at least that much. Like before, the estate-multiplier

method was applied by undervaluing wealths and using the Kopczuk-Saez mortality

rates, but, even under different assumptions about the valuation of wealth and rates

at which people are sampled, the probability of underestimating their wealth by at

least 76 percent would still approach certainty as the distribution of their wealth

approached perfect inequality.
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When the distribution of wealth among the 400 wealthiest Americans is almost

perfectly unequal, their wealth will be substantially underestimated whenever the

wealthiest person is not sampled. Given the age of the wealthiest person in 2000,

and given the mortality rates estimated earlier, the wealthiest person should only

be sampled with about a 1-in-240 chance. Yet, even in the unlikely event that the

wealthiest person was sampled, the wealth of the 400 wealthiest Americans would still

be substantially misestimated. Their wealth would be overestimated for the same

reason that it would be underestimated whenever that person was not sampled. The

wealth of the wealthiest person is unlike the wealth of anyone else.

Figure 2.10 shows a frequency distribution of estimates of the total wealth

of the 400 wealthiest Americans when almost all of their total wealth is owned by

just one person. The estimates form a bimodal distribution. At one mode, which

reflects samples where the wealthiest person was not sampled, the estimates are at

least one trillion dollars less than what the 400 wealthiest Americans were assumed

to be worth. At the other mode, which reflects samples where the wealthiest person

was sampled, the estimates are trillions of dollars too large. Again, the estate-

multiplier method would over- or under-estimate what the 400 wealthiest Americans

were assumed to be worth, depending on whether the wealthiest person was sampled

or not, and the method would misestimate their wealth in either case.

The distribution of wealth among the 400 wealthiest Americans did not evolve

from almost perfect equality to almost perfect inequality over the 1990s, of course,

but the distribution of their wealth did become more unequal over that decade, at

least according to Forbes Magazine’s list. If that list was an accurate account, then

the increase in inequality among the 400 wealthiest Americans over the 1990s was

apparently dramatic enough to have a relatively large effect on the probability that

the estate-multiplier method would underestimate their total wealth.
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Table 2.1. Effect of Changes between 1990 and 2000 on Misestimation

Probability of
underestimating by

Changes at least 76%

Right wealths and rates

No changes %0.02%
Wealths 0.79
All changes 0.27

Right wealths, but wrong rates

No changes %1%
Wealths 7
All changes 5

Wrong wealths, but right rates

No changes %9%
Wealths 34
All changes 33

Wrong wealths and rates

No changes %26%
Ages 23
Sampling rates 22
Ages and sampling rates 22
Wealths 53
All changes 48

Sources: Data adapted from Brown et al. (2002); Forbes Magazine (1990, 2000); Wilmoth (1997).

Note: This table shows how certain changes that occurred between 1990 and 2000 would
have affected the probability that the estate-multiplier method would underestimate what the
400 wealthiest Americans were assumed to be worth by at least 76 percent of their wealth, given
different assumptions about the valuation of wealth and the rates at which people are sampled.



55

50.25 60 70 80 90 99.75

Percentage of wealth held by inverse percentage of population

0

.5

1.0

P
ro

b
ab

il
it

y

Misestimation ≤ −76%

Misestimation ≥ +76%

50.25 60 70 80 90 99.75

Percentage of wealth held by inverse percentage of population

−1.5

−1.0

−0.5

0

M
is

es
ti

m
at

io
n

($
T

s)

Median

95% CI
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400 Wealthiest Americans in 2000
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Figure 2.10. Frequency Distribution of Estimates of the Assumed Wealth of the 400
Wealthiest Americans in 2000 Under Extreme Inequality

Note: This figure shows the frequency distribution of estimates of the assumed wealth of
the 400 wealthiest Americans in 2000, if their wealth was distributed so that one of them
owned 99.75 percent of their total wealth. An estimate of their total wealth was rounded to
the nearest one billion dollars, if it was greater than five billion, and the nearest 100 million,
otherwise. The dashed line denotes what the 400 wealthiest Americans were assumed to
be worth. The closest estimates are all at least one trillion dollars off.
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2.7 Conclusion

The estate-multiplier estimator of the total wealth of people who were alive

and wealthy enough to be subject to the estate tax is a specific type of estimator,

specifically, a Horvitz-Thompson estimator (Scheuren and McCubbin 1987, p. 29).

A fairly famous critique of that type of estimator comes in the form of a parable due

to Basu ([1971] 2011, pp. 176–7). The parable can be paraphrased as follows.

An owner of a circus has a herd of 50 elephants. The owner wants to estimate

the total weight of the herd because she wants to transport them, but weighing even

one elephant is a laborious task, so she does not want to weigh each elephant. The

owner did weigh each elephant in the not-too-distant past, however. When the owner

weighed them in the past, one elephant named Sambo weighed the average amount,

while another elephant named Jumbo weighed the most.

After consulting with the elephant trainer to make sure that Sambo still seemed

to be an average-sized elephant, the owner was going to weigh Sambo again and

estimate the total weight of the herd as 50 times his weight, but the owner decided

to consult a statistician before doing anything.

The statistician suggested a different approach. The statistician suggested

drawing a random sample of the elephants, weighing those elephants, and then using

the Horvitz-Thompson estimator to estimate the total weight of the herd. The sam-

pling scheme suggested by the statistician was to sample Sambo with a probability of

99 percent and sample the other 49 elephants with equal probabilities that summed

to one percent (i.e., probabilities of 1/4,900).

After some discussion with the statistician, the owner realized that, in the likely

event that Sambo and only Sambo was sampled, the estimate of the total weight of

the herd would only be slightly larger than just Sambo’s weight, specifically, just

100/99 times Sambo’s weight. The owner also realized that, in the unlikely event
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that Jumbo and only Jumbo was sampled, the estimate would be 4,900 times Jumbo’s

weight. After realizing those things, the owner fired the statistician.

At least one lesson that can be drawn from this parable is that, although the

Horvitz-Thompson estimator should be right on average across all possible samples

(and although it is the “unique hyperadmissible estimator in the class of all general-

ized polynomial unbiased estimators,” in the words of the statistician; ibid., p. 177),

its estimates can be wildly inaccurate for any given sample (Welsh 2011).

If we extend the parable of Basu’s elephants slightly, then a similar lesson

can be drawn. Suppose that Jumbo is so heavy that he accounts for a substantial

amount of the total weight of the herd. Then any random sample of the elephants will

misestimate their total weight by a substantial amount, unless Jumbo is sampled with

a probability close to 100 percent. To the extent that substantially misestimating

the weight of the herd is something worth firing people over, it would be wise for the

owner to either consult with the trainer or simply look at the herd for herself. Even

a cursory look would surely reveal that Jumbo is a jumbo-sized elephant who must

be weighed in order to come close to estimating the total weight of the herd.

To connect this parable about estimating the weight of a herd of pachyderms to

the preceding study about estimating the wealth of a group of plutocrats, consider

Bill Gates. There is almost no doubt that Gates has been blessed with extraor-

dinary wealth. Forbes Magazine has taken note of that fact. Estate-tax records

have been blind to that fact, however, given that Gates has also been blessed with

longevity (and, even if he had died, estate-tax records may have still been blind

to his extraordinary wealth, given that Gates has presumably been blessed with an

estate planner). Anyone who uses estate-tax records to estimate the total wealth of

the wealthiest Americans while overlooking the fact that Gates has been alive and

wealthy is therefore ignoring an elephant in the room, so to speak.
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The preceding study suggests that, when they applied the estate-multiplier

method to estate-tax records, Kopczuk and Saez (2004a,b) may have overlooked some

elephants in the room, especially by the end of the 1990s. The study suggests that,

if Forbes Magazine’s list was an accurate account of the 400 wealthiest Americans,

then, as the distribution of their wealth became increasingly unequal over the 1990s,

it became increasingly likely that the estate-multiplier method as it was applied

by Kopczuk and Saez (2004a,b) would have underestimated the wealth of the 400

wealthiest Americans by a substantial amount.

One direction for future research is to try to rescue the estate-multiplier method

by accounting for the extraordinarily wealthy individuals who are the proverbial ele-

phants in the room. Forbes Magazine’s list could perhaps be useful in that respect,

although researchers will need to think carefully about how the information con-

tained in that list might be incorporated into the estate-multiplier method. Indeed,

a lesson that has been drawn from Basu’s parable is that the statistician did not

think carefully enough about how to incorporate information about the weights of

the elephants during their earlier weigh in (Welsh 2011).

Instead of trying to improve the accuracy of estimates made by applying the

estate-multiplier method to estate-tax records, an alternative direction for future

research is to simply use direct estimates. To that extent that Forbes Magazine’s

estimates are seen as somehow flawed, there is no reason why direct estimation of the

wealth of the wealthiest Americans (400 or otherwise) must be left to a popular mag-

azine. Such a project is well beyond the scope of this essay, but academic economists

and others could devote time and resources to directly estimating the wealth of the

wealthy in the same way that they devote time and resources to conducting surveys

or creating other sources of data.



60

2.8 A Postscript on the 2000s

Unlike the top income share estimates that Saez and another colleague have

continued to update on an annual basis since first publishing them (Piketty and Saez

2003), Saez and Kopczuk have not updated their top wealth share estimates since

first publishing them. As such, the most-recent year for which their top wealth share

estimates are available is the year 2000, which was over a decade ago, as of writing.

Whether their top wealth share estimates would have remained as stable in the 2000s

as they were in the 1990s is therefore unknown. Kopczuk and Saez or anyone else

(or, at least, anyone else who befriends an employee at the IRS) could update their

estimates, but that is beyond the scope of this essay.

Although top wealth estimates based on applying the estate-multiplier method

to estate-tax records are not currently available for the years since 2000, the exercise

that was performed in this essay for earlier years can also be performed for more-

recent years because Forbes Magazine has continued to publish its list of the 400

wealthiest Americans. This postscript reports the results of performing the exercise

for the 2000s. The results are reported mostly for completeness, although there is at

least one interesting thing to note.

Figure 2.11 shows, for the years from 1982 to 2010, estate-multiplier estimates

of what the 400 wealthiest Americans were assumed to be worth in a given year based

on applying the estate-multiplier method to Forbes Magazine’s list from that year by

only using information about the people who died by the time the magazine made

its list in the next year. The figure also shows what the 400 wealthiest Americans

were assumed to be worth in each year. This figure is the same as figure 2.3 for

the years from 1982 to 2000. As shown in figure, in each year between 1982 and

2010, except one year, the estate-multiplier method underestimates what the 400

wealthiest Americans were assumed to be worth, often by a substantial amount.
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Figure 2.11. Assumed and Estimated Wealth of the 400 Wealthiest Americans, 1982–
2010

Source: Data adapted from Forbes Magazine (1982–2011); Wilmoth (1997).

Note: This figure is identical to figure 2.3 except that it includes more-recent years.

The one exception is that, in the year 2004, the estate-multiplier method over-

estimates their wealth. The estimate is literally off the chart at about three trillion

constant dollars. That overestimation occurred for the following reason. Out of the

400 people who appeared on the magazine’s list in 2004, five of them died by the

time the magazine made its list in the next year. One of those five decedents was the

Walmart heir John Walton, who died after the experimental ultralight aircraft that

he was piloting crashed (Associated Press 2005). In 2004, Walton was 58 years old

and the fourth wealthiest American with a wealth of about 18 billion dollars, accord-

ing to the magazine’s list from the year. Using the mortality rates used by Kopczuk

and Saez, Walton’s probability of death was relatively small, given his relatively

young age. He should have died with about a 1-in-158 chance. The estate-multiplier
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method therefore implies that there should have been about 158 people worth 18

billion dollars, but only a few people were worth at least that much. If Walton had

not died in that year, then the estate-multiplier estimate would have underestimate

what the 400 wealthiest Americans were assumed to be worth by about half a trillion

constant dollars (specifically, about 536 billion constant dollars).

Scholars who have applied the estate-multiplier method to estate-tax records

have often recognized that the death of someone like Walton could have a substan-

tial affect on estate-multiplier estimates. For example: One noted scholar once noted

that, “A wealthy young man crashing his sports car could add [a large number of

people] to the estimate of the number of people with wealth over [a certain amount of

wealth]” (Tony Atkinson quoted in Polanyi and Wood 1974, p. 231). For our exercise,

Walton crashing his plane led to a substantial overestimation of what the 400 wealth-

iest Americans were assumed to be worth. A similar overestimation should occur

when applying the estate-multiplier method to estate-tax records, unless Walton’s

wealth for estate-tax purposes was much smaller than the magazine’s estimate.
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CHAPTER 3

ON THE DISTRIBUTION OF THEIR WEALTH

3.1 Introduction

Over a century ago, Vilfredo Pareto discovered that the upper tail of the income

distribution looked approximately like a distribution that is now named after him,

namely, a “Pareto” distribution. Ever since Pareto’s discovery, scholars have debated

the extent to which income, wealth, and other variables follow Pareto distributions

(Persky 1992). Relatively recently, Levy and Solomon (1997) studied whether wealth

follows a Pareto distribution among the 400 wealthiest Americans. Their study used

a list of the 400 wealthiest Americans published by Forbes Magazine. That magazine

has published a list of the 400 wealthiest Americans in every year since 1982, but

Levy and Solomon (1997) only used the magazine’s list from one year, 1996. Based

on their study of that year’s list, they concluded that wealth appeared to follow a

Pareto distribution among the 400 wealthiest Americans in at least that year.1

In a subsequent study, Klass et al. (2006), the same researchers and their

colleagues used the magazine’s list from each year between the years 1988 and 2003.

They concluded that wealth appeared to follow a Pareto distribution among the

400 wealthiest Americans in each of those years. Other researchers have reached

1Wealth is a stock variable, so it should be measured at a point in time. According to Forbes
Magazine (1996, p. 104), its 1996 list was a snapshot of wealth at the close of the stock market on
one day of that year, August 23rd. When this essay speaks of the 400 wealthiest Americans on the
magazine’s list in a given year, the essay is speaking about the 400 wealthiest Americans at the
point in time when the magazine made its list in the given year. We omit the point in time partly
for readability and also partly because the magazine did not always report the point in time.
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the same conclusion by studying the list from similar years (specifically, 1996 to

2004; Castaldi and Milakovic 2007). The conclusion has also been contradicted,

however. Clauset et al. (2009, pp. 685–6) studied one year of the magazine’s list and

concluded that wealth almost certainly did not follow a Pareto distribution among

the 400 wealthiest Americans in at least that year. Unlike previous studies, which

based their conclusions on visual inspection or other forms of casual empiricism, the

conclusion of Clauset et al. (2009) was based on a formal goodness-of-fit test.

This essay replicates and extends the study by Klass et al. (2006) in order to

critically examine the extent to which wealth follows a Pareto distribution among

the 400 wealthiest Americans. The essay begins by replicating their study. Issues

identified during the replication are discussed next. The essay then extends their

study. Using Forbes Magazine’s list but using every available year of that list, the

essay examines the statistical and substantive significance of deviations between the

distribution of wealth among the 400 wealthiest Americans and a Pareto distribution.

A goodness-of-fit test like the one in Clauset et al. (2009) is applied as part of

that examination. The essay argues that the distribution of wealth among the 400

wealthiest Americans appears to deviate from a Pareto distribution to a statistically

and substantively significant extent at almost every point in time. Whether scholars

should continue to see a Pareto distribution as even a crude approximation to the

upper tail of the wealth distribution is debated to conclude.

3.2 Replication of Previous Work

What Pareto discovered over a century ago was that, at least in its upper tail,

the empirical complementary cumulative distribution function (CCDF) for income

looked approximately like a straight line on a double logarithmic scale (Pareto [1896]

2001). A Pareto distribution is simply a formalization of that sort of shape. The
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CCDF for a Pareto distribution is (xmin/x)α for x ≥ xmin, where xmin > 0 is a

lower-bound parameter and α is a shape parameter (Arnold 1983). If that CCDF is

drawn on a double logarithmic scale, then, for levels greater than the lower-bound

parameter, it looks exactly like a straight line with a slope equal to the negative

of the shape parameter. The empirical CCDF for a variable that follows a Pareto

distribution should therefore tend to look like a straight line when it is drawn on a

double logarithmic scale.2

Following a figure in Klass et al. (2006, p. 292, fig. 1), part of figure 3.1 of this

essay shows the empirical CCDF for the wealth of the 400 wealthiest Americans on

Forbes Magazine’s list in the year 2003. Note that the empirical CCDF evaluated at

a given amount of wealth is drawn as the proportion of the 400 wealthiest Americans

who were worth strictly more than that amount (as opposed to that amount or more),

although the figure would look essentially the same if the alternative convention was

used. Also note that the empirical CCDF is drawn on a double logarithmic scale.

As seen in the figure, each of the 400 wealthiest Americans was worth at least 600

million current dollars in 2003, while the wealthiest one of them (Bill Gates) was

worth 46 billion current dollars.

Based on a similar figure, Klass et al. (2006, p. 291) suggested that the empir-

ical CCDF for the wealth of the 400 wealthiest Americans on the magazine’s list in

the same year looked “very close” to a straight line on a double logarithmic scale.

The empirical CCDF for their wealth does look somewhat like a straight line on a

double logarithmic scale, as the figure in this essay shows. Visual inspection might

therefore suggest that wealth follows a Pareto distribution among the 400 wealthiest

Americans on the magazine’s list in at least that year (Klass et al. 2006, p. 291).

2Other distributions can also look like straight lines over certain ranges when they are drawn
on a double logarithmic scale, as discussed below. The fact that a Pareto distribution looks like a
straight line on that scale is shown formally in appendix B.1 and visually in the figure that follows.
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Figure 3.1. Distribution of Wealth Among the 400 Wealthiest Americans in 2003

Source: Data adapted from Forbes Magazine (2003).

Note: This figure shows the empirical CCDF for the wealth of the 400 wealthiest Americans
on Forbes Magazine’s list in 2003, the CCDF for a Pareto distribution that was fit to the
distribution of their wealth by maximum likelihood, and the largest absolute difference
between the empirical and fitted CCDFs, which occurs once at a wealth of about 900
million current dollars. The difference between the empirical and fitted CDFs at that
wealth is about 11 percent.

Regardless of whether or not someone sees something that looks like a straight

line when he or she looks at the empirical CCDF for their wealth on a double log-

arithmic scale, and regardless of whether or not their wealth actually followed a

Pareto distribution, the parameters of a Pareto distribution can be estimated from

the distribution of their wealth. As part of their study, Klass et al. (2006) estimated

the shape parameter of a Pareto distribution from the distribution of wealth among

some of the wealthiest Americans on the magazine’s list in 2003. They estimated

the shape parameter in the following way.
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Using the magazine’s list from that year, they began by ranking the 400 wealth-

iest Americans from the wealthiest to the 400th wealthiest. The nine wealthiest were

then ignored (Klass et al. 2006, p. 291). No explicit reason was given for why those

nine were ignored, but it was perhaps because wealth did not appear to follow a

Pareto distribution as closely among the nine wealthiest Americans as it did among

the 391 Americans who were slightly less wealthy. As seen in figure 3.1 of this essay,

although the empirical CCDF for the wealth of the 400 wealthiest Americans in 2003

looks somewhat like a straight line on a double logarithmic scale, it looks less like a

straight line among the wealthiest of the 400 wealthiest.

Using the ranks and wealths of the 10th to 400th wealthiest Americans on the

magazine’s list in 2003, Klass et al. (2006) used a popular method for estimating

the shape parameter of a Pareto distribution. They ran an ordinary least-squares

regression of the logarithm of ranks against the logarithm of wealths, and they took

the estimated slope parameter from that log-log rank-wealth regression as their es-

timate for the shape parameter of a Pareto distribution (Klass et al. 2006, p. 291).

For more on that method and its popularity, see Gabaix and Ibragimov (2011).

In that way, Klass et al. (2006) estimated the shape parameter of a Pareto

distribution from the distribution of wealth among some of the wealthiest Americans

on the magazine’s list in 2003. They reported that their point estimate for the shape

parameter was about 1.22 (Klass et al. 2006, p. 291). We were able to replicate that

result. The replication was aided by the corresponding author of Klass et al. (2006)

sharing their dataset.

In addition to estimating the shape parameter of a Pareto distribution from

the wealths of some of the wealthiest Americans on the magazine’s list in 2003, Klass

et al. (2006) also estimated the shape parameters of Pareto distributions from the

distribution of wealth among some of the wealthiest Americans on the list in earlier
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Table 3.1. Pareto Indexes for Some of the Wealthiest Americans, 1988–2003

Year Pareto index

1988 1.60
1989 1.55
1990 1.54
1991 1.51
1992 1.50
1993 1.48
1994 1.44
1995 1.44
1996 1.49
1997 1.34
1998 1.29
1999 1.20
2000 1.13
2001 1.23
2002 1.20
2003 1.22

Source: Data adapted from Klass et al. (2006).

Note: This table shows, for the years 1988 to 2003, a point estimate for the shape parame-
ter of a Pareto distribution fitted to the distribution of wealth among some of the wealthiest
Americans in Klass et al.’s (2006) dataset in a given year. Following Klass et al. (2006), the
estimates are based on log-log rank-wealth regressions for Americans who ranked between the 10th
and 400th wealthiest in a given year.

years, specifically, each year between 1988 and 2003. For some of those years, they

reported their point estimates for the shape parameters. They reported that, “The

value of [the shape parameter of a Pareto distribution] gradually decrease[d] from

about 1.6 in 1988, followed by a faster decline in the late 1990s down to about 1.1,

after which it start[ed] to increase again” (Klass et al. 2006, p. 291).

We were able to replicate those results by using their dataset and their method

for estimating the shape parameter of a Pareto distribution. Table 3.1 of this essay

shows, for each year between 1988 and 2003, our point estimate for a Pareto index

(i.e., the shape parameter of a Pareto distribution) estimated from the distribution of

wealth among the 10th to 400th wealthiest Americans in their dataset in a given year.
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As shown in the table, our estimate of the shape parameter of a Pareto distribution

was about 1.6 in 1988, it decreased to about 1.1 by 2000, and it increased to about

1.22 by 2003.

3.3 Issues Identified During Replication

3.3.1 An Issue with Their Dataset

The dataset used by Klass et al. (2006) was constructed by the authors of that

study and their research assistant from various issues of Forbes Magazine (Klass et al.

2006, p. 295). During the replication discussed in the previous section, we identified

some relatively minor errors in their dataset. Those minor errors are discussed in a

subsequent section. We also identified a more serious issue with their dataset. That

issue is discussed in this section.

As noted in the introduction to this essay, in every year since 1982, Forbes

Magazine has published a list of the 400 wealthiest Americans. The magazine’s list

in any given year is supposed to be a list of the 400 wealthiest individuals in America

in that year. Although it is supposed to be a list of the 400 wealthiest individuals,

the magazine’s estimate of an individual’s wealth can include the wealth of family

members. According to the magazine, the wealth of an individual “generally” in-

cludes the wealth of his or her spouse, children, or other family members, “especially

if family ties are manifestly close or they all share interests in an ongoing business”

(Forbes Magazine 1982, p. 101). If “family or business ties” are “broken or at least

noticeably frayed,” however, then the wealth of an individual does not include the

wealth of family members (ibid.). The wealth of an individual also excludes the

wealth of a spouse, a child, or other family member, if the family member is wealthy

enough to be one of the 400 wealthiest Americans themselves. In that case, the

family member is listed as a distinct individual on the list.
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In the years 1982 to 1999, alongside its list of the 400 wealthiest individuals in

America, Forbes Magazine also published a list of some of the wealthiest families in

America. Those families were so wealthy that many of the families were wealthier

than many of the 400 wealthiest individuals (see below). Although the families were

wealthy, the wealth of each family was so dispersed among the members of the family

that none of the family members were wealthy enough to be one of the 400 wealthiest

individuals. As the magazine said in one year, “Some of the largest fortunes in

America are so divided among family members that no one individual qualifies for

our rankings [of the 400 wealthiest individuals]” (Forbes Magazine 1999, p. 400).

After the year 1999, the magazine stopped publishing a list of some of the wealthiest

families alongside its list of the 400 wealthiest individuals. The magazine stopped

publishing the list without explanation (at least to the best of our knowledge).

Forbes Magazine’s list of the 400 wealthiest individuals in America is different

than its discontinued list of some of the wealthiest families in America, therefore.

Yet, in the dataset that they and their research assistant constructed, Klass et al.

(2006) included the individuals on the magazine’s list of the 400 wealthiest individ-

uals as well as the families on its list of some of the wealthiest families. That seems

like a mistake. It could be argued that it is difficult to draw a distinction between

individuals and families. It could also be argued that the magazine does not draw

a sharp enough distinction between individuals and families, given that the maga-

zine’s estimate of an individual’s wealth can include the wealth of his or her family

members. The magazine tried to draw such a distinction, however, so it seems like

a mistake to ignore that distinction and conflate the two lists.3

3That mistake has been made by other studies, too. While it is unclear whether they
constructed their own dataset or used Klass et al.’s (2006), Castaldi and Milakovic (2007) mistakenly
claimed that “the size of the Forbes list [of the wealthiest individuals in America] was fixed at exactly
400 after the year 2000 and included more observations in the years before then” (p. 548).
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Moreover, unlike its list of the 400 wealthiest individuals, the magazine’s list

of some of the wealthiest families was not intended to be a list of any particular

number of the wealthiest families. As the magazine said in one year, its list of some

of the wealthiest families was “extensive, but not intended to be as complete as our

listing of the richest [i.e., wealthiest] individuals in America” (Forbes Magazine 1988,

p. 285). The list was arguably extensive, therefore, but intentionally incomplete.

3.3.2 Other Issues with Their Dataset

As noted above, the dataset constructed by the authors of Klass et al. (2006)

and their research assistant also contains some relatively minor errors. Those errors

were identified by comparing their dataset to their data source. The errors are as

follows, organized by year. All dollars values are reported in current dollars.

• Richard Alexander Manoogian was worth 625 million dollars in 1988, according

to Forbes Magazine (1988, pp. 188, 340), not 885 million dollars, as in Klass et al.’s

(2006) dataset.

• Klass et al.’s (2006) dataset includes the family of Charles E. Smith with a wealth

of 290 million dollars in the year 1988, but Charles E. Smith and Robert H. Smith

appeared on the magazine’s list in that year, each with a wealth of 290 million dollars

(Forbes Magazine 1988, pp. 258, 344–5).

• Henry Ross Perot Sr. was worth was 2,500 million dollars in 1989 (Forbes Maga-

zine 1989, pp. 156, 352), not 500 million dollars, as in Klass et al.’s (2006) dataset.

• Klass et al.’s (2006) dataset does not include Shelby Cullom Davis for the year

1993, but he appeared on the magazine’s list in that year with a wealth of 800 million

dollars (Forbes Magazine 1993, p. 180).
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• Klass et al.’s (2006) dataset includes Roy Michael Huffington with a wealth of

400 million dollars in the year 1994, but he was not wealthy enough to appear on

the magazine’s list in that year (Forbes Magazine 1994, pp. 331, 310).

• Leonard Samuel Skaggs Jr. was worth 950 million dollars in 1996, according to

Forbes Magazine (1996, pp. 204, 354), not 945 million dollars, as in Klass et al.’s

(2006) dataset.

• Klass et al.’s (2006) dataset includes a Frank Batten with a wealth of 1.6 billion

dollars in the year 1999, but there was a Frank Batten Sr. who was worth 2.1 billion

dollars and a Frank Batten Jr. who was worth 1.1 billion dollars on the magazine’s

list in that year (Forbes Magazine 1999, p. 242). The authors of Klass et al. (2006)

and/or their research assistant apparently took the average wealth of the junior and

senior Frank Batten and attributed that average to one individual.

Although studies like Brzezinski (2012) that have used Klass et al.’s (2006)

dataset should probably still be aware of the errors noted above, this essay will not

emphasize those errors because they do not seem to have either a statistically or

substantively significant effect on the results reported by Klass et al. (2006). Table

3.2 shows, for each year in which errors were identified, the effect of the errors on the

estimated Pareto index. Specifically, the table shows: the Pareto index estimated

from a dataset with the errors; the Pareto index estimated from a dataset without

the errors; and the difference between those two estimates, where the standard error

of the difference was simply calculated as the squared sum of the variances of the

estimated Pareto indexes (cf. Gelman and Stern 2006, p. 328). As seen in the table,

none of the differences are significantly significant at conventional levels, nor would

they be for almost any way in which their standard errors might be calculated, given

that the differences are so small.
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Table 3.2. Effect of Errors in Klass et al.’s (2006) Dataset on the Pareto Index for
Some of the Wealthiest Americans, 1988–2003

Pareto index

Year With errors Without errors Difference

1988 1.60 (0.11) 1.60 (0.11) −0.00 (0.16)−
1989 1.55 (0.11) 1.54 (0.11) 0.01 (0.16)
1990
1991
1992
1993 1.48 (0.11) 1.49 (0.11) −0.00 (0.15)−
1994 1.44 (0.10) 1.44 (0.10) 0.00 (0.15)
1995
1996 1.49 (0.11) 1.49 (0.11) 0.00 (0.15)
1997
1998
1999 1.20 (0.09) 1.21 (0.09) −0.00 (0.12)−
2000
2001
2002
2003

Sources: Data adapted from Forbes Magazine (1988–2003); Klass et al. (2006).

Note: This table shows, for years in which errors were identified in Klass et al.’s (2006)
dataset, a Pareto index estimated from their dataset with the errors, a Pareto index estimated
from a dataset without the errors, and the difference between the two estimated indexes. Following
Klass et al. (2006), the point estimates for the Pareto indexes are based on log-log rank-wealth
regressions for Americans who ranked between the 10th and 400th wealthiest in their dataset in a
given year. Standard errors are reported in parentheses. The standard error of an estimated index
was calculated in the manner suggested by Gabaix and Ibragimov (2011), while the standard error
of the difference between two indexes was calculated as the squared sum of the variances of each
index. None of the differences are statistically significant at conventional levels.
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3.3.3 An Issue with Ignoring Some of the Wealthiest Americans

The other issues identified during the replication discussed above relate to the

method used by Klass et al. (2006) to estimate the shape parameter of a Pareto

distribution. Recall that, for any given year, they estimated the shape parameter of

a Pareto distribution from the wealths of individuals or families who ranked between

the 10th and 400th wealthiest in their dataset. In doing so, they ignored many of the

400 wealthiest individuals, as detailed in table 3.3 of this essay. They ignored most

of those individuals because their dataset included a mix of individuals and families,

and many of the families were wealthier than many of the individuals.

Some of the 400 wealthiest individuals were ignored by Klass et al. (2006)

because the individuals were among the nine wealthiest individuals or families in

their dataset (again, as detailed in table 3.3). Even if their dataset had only included

individuals, rather than a mix of individuals and families, Klass et al. (2006) would

have presumably still ignored the nine wealthiest individuals. Indeed, in the years

after the magazine discontinued its list of some of the wealthiest families, they ignored

the nine wealthiest individuals in each year.

It seems like a mistake to ignore the nine wealthiest Americans. Although

wealth may not appear to follow a Pareto distribution as closely among the nine

wealthiest Americans as it does among slightly less-wealthy Americans, it would be

peculiar, if wealth followed a Pareto distribution among the 10th to 400th wealthiest

Americans (and perhaps even less-wealthy Americans; Klass et al. 2006, p. 294),

but not the nine wealthiest. Moreover, it is not clear that the worst fit between

the distribution of their wealth and a Pareto distribution occurs among the nine

wealthiest Americans. Thus, to the extent that wealth is thought to actually follow

a Pareto distribution among the 400 wealthiest Americans, it seems like a mistake

to ignore an arguably ad hoc number of the wealthiest of the 400 wealthiest.
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Table 3.3. Number of the 400 Wealthiest Individuals in America Ignored by Klass
et al.’s (2006) Study, 1988–2003

Ignored because

Year Rank < 10 Rank > 400

1988a 6 100
1989a 5 95
1990 6 100
1991 7 94
1992 7 100
1993b 6 97
1994 6 98
1995 6 99
1996 6 91
1997 7 50
1998 8 50
1999 9 39
2000 9 0
2001 9 0
2002 9 0
2003 9 0

Sources: Data adapted from Forbes Magazine (1988–2003); Klass et al. (2006).

Note: Some of the 400 wealthiest individuals on Forbes Magazine’s list in the years 1988 to
2003 were ignored by Klass et al.’s (2006) study on some of the wealthiest individuals and families
in the same years. This table shows the number of individuals ignored by their study. Some of the
400 wealthiest individuals were ignored because they were one of the nine wealthiest individuals
or families in Klass et al.’s (2006) dataset in a given year. Other individuals were ignored because
they were not one of the 400 wealthiest individuals or families in their dataset in the given year.

aFor the years 1988 and 1989, Klass et al. (2006) also ignored one of the 400 wealthiest in-
dividuals on Forbes Magazine’s list in those years (namely, Malcolm Stevenson Forbes) presumably
because the magazine did not report an estimate of that individual’s wealth in any of those years.

bFor the year 1993, Klass et al. (2006) also ignored one of the 400 wealthiest individuals on
the magazine’s list in that year (namely, Shelby Cullom Davis) presumably because of an error.
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3.3.4 An Issue with the Estimator

Another issue identified during the replication discussed above also relates

to the method used by Klass et al. (2006) to estimate the shape parameter of a

Pareto distribution. Recall that they took the estimated slope parameter from a

log-log rank-wealth regression as their estimate for the shape parameter of a Pareto

distribution. That is a popular method, but undeservedly so, given that its estimates

are “strongly” biased in small samples (Gabaix and Ibragimov 2011, p. 30).4

Of course, the small-sample bias of that least-squares estimator might not be

an issue for a sample of the size that was of interest to Klass et al. (2006) and that

is of interest to this essay, specifically, a sample of 400 observations. Four-hundred

observations might be a large enough number to largely eliminate any small-sample

bias. Yet Monte Carlo simulations suggest that, for sample sizes that are on the same

order of magnitude as those that are of interest to this essay (specifically, samples

of 200 observations), and even for samples that are larger than those that are of

interest to this essay (specifically, samples of 500 observations), the least-squares

estimator is still biased to a statistically significant extent (Gabaix and Ibragimov

2011, pp. 27–28, tables 1–2).

Moreover, even if the least-squares estimator of the shape parameter of a Pareto

distribution was unbiased, an estimate of lower-bound parameter of that distribution

would still be needed in order to test whether a variable actually follows a Pareto

distribution. For studies like Ogwang (2013) that have used the least-squares es-

timate of the shape parameter and then tried to test whether a variable follows a

Pareto distribution, they have used the biased version of the maximum-likelihood

estimator for the lower-bound parameter, which is simply the smallest observation

4The bias is downwards. Gabaix and Ibragimov (2011) offer two proofs, several simulations,
and zero intuition for why the bias is in that direction, in particular. The author of this essay is
unable to offer any intuition, either.
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(Arnold 1983, p. 194). The smallest observation is an obvious choice for the lower

bound, but it nevertheless seems inconsistent to use different types of estimators for

different parameters of the same distribution.

A different estimator than the least-squares estimator for the shape parameter

of a Pareto distribution and the same type of estimator for the lower-bound parameter

should be used, therefore, although there are a number of alternative estimators from

which to choose. Rahman and Pearson (2003) discuss seven different estimators, for

example. This essay adopts the (unbiased modification of the) maximum-likelihood

estimator (Arnold 1983, pp. 196–7). Monte Carlo simulations suggest, for sample

sizes on the same order of magnitude as those of interest to this essay or even smaller

(specifically, samples as large as 100 and even as small as 10 observations), the

maximum-likelihood estimator outperforms a number of other estimators in a number

of areas (Rahman and Pearson 2003, p. 305, table 2).5

It should be noted that the a least-squares estimator for the shape parameter

of a Pareto distribution might be more robust to deviations from a Pareto distribu-

tion than the maximum-likelihood estimator (in whatever way robustness might be

measured), although it can also be noted that other estimators might be even more

robust than either of those estimators (see, for example, Brazauskas and Serfling

2000). Yet, even if the maximum-likelihood estimator is less robust, if a more robust

estimator is seen as somehow necessary due to deviations between the distribution of

a variable and a Pareto distribution, then one should presumably try to test whether

that variable actually follows a Pareto distribution.

5The performance of the (unbiased modification of the) maximum-likelihood estimator is
especially good in terms of minimizing the differences between the true and fitted cumulative
distributions, for example, at least relative to the performance of the other estimators considered
by Rahman and Pearson (2003). For more details on the maximum-likelihood estimators, see section
B.4.1 of this essay’s appendix.
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3.4 Extensions of Previous Work

3.4.1 Variation over Time in the Pareto Index

This essay now turns to extending the study by Klass et al. (2006). Like their

study, this essay uses Forbes Magazine’s lists of the 400 wealthiest Americans, but

this essay uses older lists from as far back as 1982 and more-recent lists from as

recently as 2013. Aside from using older and newer data, this essay extends their

study by critically examining the extent to which wealth follows a Pareto distribu-

tion among the 400 wealthiest Americans. The essay examines the statistical and

substantive significance of variations over time in the shape parameter of a Pareto

distribution fit to the distribution of wealth among the 400 wealthiest Americans

on the magazine’s list, as well as the statistical and substantive significance of the

deviations from a Pareto distribution at each point in time.

The variation over time in the shape parameter of a Pareto distribution fit to

the distribution of wealth among the 400 wealthiest Americans on the magazine’s

list is shown in figure 3.2 of this essay. As shown in the figure, the estimated shape

parameter varied over time. That variation (or, really, the variation in the shape

parameter of a Pareto distribution fit to the distribution of wealth among the 10th

to 400th wealthiest individuals or families in their dataset) was recognized by Klass

et al. (2006), but they did not examine the statistical or substantive significance of

the variation. The estimated shape parameter was as large as 1.84 in the year 1984

and as small as about 1.06 in the year 2012 (with standard errors of about 0.09

and 0.05, respectively). The difference between those two estimates is statistically

significant at less than the one percent level, at least when the standard error of

the difference is calculated as the sum of squared variances of each estimated shape

parameter, although the difference would be statistically significant at that level for

almost any way in which its standard error might be calculated.
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Figure 3.2. Pareto Index for the 400 Wealthiest Americans, 1982–2013

Source: Data adapted from Forbes Magazine (1982–2013).

Note: This figure shows, for the years 1982 to 2013, the maximum-likelihood estimate for
the shape parameter of a Pareto distribution fit to the distribution of wealth among the
400 wealthiest Americans on Forbes Magazine’s list in a given year.

The difference also seems to be substantively significant. Following the inter-

pretation of Hardy (2010), a shape parameter of 1.84 would imply that the wealthiest

37 percent of the 400 wealthiest Americans should hold about 63 percent of the total

wealth of the 400 wealthiest Americans. A shape parameter of 1.06, on the other

hand, would imply that the same 37 percent should hold over 90 percent (about

94 percent) of the total wealth of the 400 wealthiest Americans. Thus, if wealth

actually followed a Pareto distribution among the 400 wealthiest Americans on the

magazine’s list in those years, then the shape parameter of that distribution seems

to have varied over time to a statistically and substantively significant extent.
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3.4.2 Deviations from a Pareto Distribution

A standard test. After fitting a Pareto distribution to the distribution of wealth

among the 400 wealthiest Americans on Forbes Magazine’s list in any given year,

the goodness of that fit should be tested. A standard goodness-of-fit test is the

Kolmogorov-Smirnov test (Hollander and Wolfe 1999, pp. 526–35). That test was

applied by Clauset et al. (2009) in the same context and similar studies in similar

contexts (see, for example, Ogwang 2013). In the current context, the intuition

behind the test is that, if wealth actually followed a Pareto distribution among the

400 wealthiest Americans on the magazine’s list in a given year, then there is only

a small chance that there would be a large difference between the empirical CCDF

for their wealth, on the one hand, and the CCDF for a Pareto distribution that

was fit to the distribution of their wealth, on the other hand. The test statistic

is simply the largest absolute difference between the empirical and fitted CCDFs

(or, equivalently, the largest absolute difference between the empirical and fitted

cumulative distribution functions). If the largest difference is larger than a critical

value, then the null hypothesis that wealth follows a Pareto distribution is rejected.

That test can be illustrated by applying it to the magazine’s list from the year 2003.

Along with the empirical CCDF for the wealth of the 400 wealthiest Americans

on Forbes Magazine’s list in 2003, figure 3.1 shows the CCDF for a Pareto distribution

that was fit to the distribution of their wealth by maximum likelihood. The figure

also shows the largest absolute difference between the empirical and fitted CCDFs.

The largest absolute difference between those two CCDFs is about 11 percent. That

difference occurs once at a wealth of about 900 million current dollars, as shown in

the figure. The fitted CCDF implies that about 64 percent of the 400 wealthiest

Americans should have been worth at least 900 million dollars, but the empirical

CCDF implies that about 76 percent of them were worth at least that much. Whether
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that 11-percent difference between the empirical and fitted CCDFs is larger than a

critical value or not is the critical question for the goodness-of-fit test. The critical

value for the test can be found in the following way.

If we were trying to test whether their wealth followed a Pareto distribution

with a lower-bound and shape parameter that had been specified independently of the

data, then, in order to calculate the critical value for the test, we could perform a large

number of Monte Carlo simulations like the following.6 We could perform simulations

in which, for each simulation, we calculate the largest absolute difference between

the empirical CCDF for 400 random samples drawn from a Pareto distribution, on

the one hand, and the CCDF for the hypothesized Pareto distribution, on the other

hand. Those simulations could then be used to calculate the critical value for any

desired level of statistical significance. If the desired level of statistical significance

was one percent, for example, then the critical value would be the difference for

which only one percent of the simulations had a difference that was at least as large

as that difference. Of note, the critical values for such a test would be independent

of the parameters of the Pareto distribution from which the random samples are

drawn. That can be shown formally (see Lilliefors 1969, p. 387, and the reference

therein) or through simulations (not shown). Also of note, the critical values would

be independent of the parameters of the hypothesized Pareto distribution, again,

assuming those parameters were specified independently of the data.

However, if the parameters of the hypothesized Pareto distribution are esti-

mated from the data, rather than specified independently of the data, then critical

6Monte Carlo simulations are not actually necessary to calculate the critical value, if the
parameters of the hypothesized distribution are specified independently of the data, and if the
number of observations is large enough. The critical value should be approximately equal to
(
√
− ln{α/2}/2)/

√
n, where α denotes the desired level of statistical significance and n denotes

the number of observations (see, for example, Miller 1956, p. 115, eq. 3). Monte Carlos simulations
are necessary in other circumstances, however, as discussed in just a moment.
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values based on the above-described simulations will generally be too large in the

sense that, for any given level of statistical significance, they will generally fail to re-

ject the null hypothesis frequently enough. They will generally be too large because,

by fitting the hypothesized distribution to the data, the hypothesized distribution

should tend to be a better fit to the empirical distribution than it would have been

otherwise. To find the correct critical value, the Monte Carlo simulations described

above should be performed in a slightly different way. We should perform simulations

in which, for each simulation, we calculate the largest absolute difference between the

empirical CCDF for 400 random samples drawn from a Pareto distribution, on the

one hand, and the CCDF for a Pareto distribution whose parameters were estimated

from the random samples, on the other hand. Like before, the critical values for such

a test are independent of the parameters of the Pareto distribution from which the

random samples are drawn.7

Accounting for the fact that the Pareto distribution in figure 3.1 was fit to the

distribution of their wealth, a large number of Mote Carlo simulations (specifically,

10,000 simulations) like the above-described simulations suggest that the one-percent

critical value would be about 6.5 percent. We would therefore expect to observe a

difference at least as large as that difference with a probability of only one percent,

if the wealth of the 400 wealthiest Americans on the magazine’s list in 2003 actu-

ally followed a Pareto distribution. The 11-percent difference that was observed is

obviously larger than 6.5 percent, so the null hypothesis that their wealth follows a

Pareto distribution is rejected at the one-percent level of statistical significance.8

7It was therefore unnecessary when, in a similar context, Goldstein et al. (2004, p. 257)
drew random samples from Pareto distributions with shape parameters that varied from one half
to three. Any given shape parameter would have sufficed.

8If we follow Ogwang (2013) in a similar context and fail to account for the fact that the
Pareto distribution was fit to the data, then the one-percent critical value would be erroneously
calculated to be about 8.2 percent. As expected, that percentage is too large.
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Accounting for rounding errors. The goodness-of-fit test applied above is a stan-

dard test, but it is not necessarily an appropriate test. The Kolmogorov-Smirnov

goodness-of-fit test is only appropriate for continuous variables. Wealth is a continu-

ous variable, so the test could be appropriate. Yet, the wealth estimates reported by

Forbes Magazine are not reported down to fractions of pennies. In the year 2003, for

example, it appears that the magazine rounded its estimate of someone’s wealth to

the nearest 100 million dollars, if he or she was a billionaire, and to the nearest five

million dollars, otherwise. Such rounding can be incorporated into the simulations

described above by simply rounding the random samples that we draw in the same

way that the magazine appears to have rounded its wealth estimates.

Unfortunately, unlike before, the critical values for such a test are not indepen-

dent of the parameters of the Pareto distribution from which the random samples

are drawn, at least for a given rounding scheme. If the Pareto distribution is rel-

atively equal, then it will be relatively more likely that more samples will be the

same after rounding, and it will therefore be more likely that the largest absolute

difference between the empirical and hypothesized distributions will be larger. An

entirely different goodness-of-fit may be more appropriate, therefore. We leave that

as a direction for future research, however, and we simply draw random samples from

the Pareto distribution that was fit to the empirical data in order to get some sense

of how rounding errors may affect conclusions about the goodness of the fit.

Accounting for rounding errors in that way, while also accounting for the fact

that the Pareto distribution was fit to the data, the one-percent critical value would

be estimated to be slightly larger than before. The one-percent critical value would

be estimated to be about 7.7 percent. An 11-percent difference is still larger than

that difference, so the null hypothesis is still rejected at the one-percent level of

statistical significance.
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Table 3.4 reports the results of applying that same test for each year between

1982 and 2013 while rounding the random samples in the same way the magazine

seems to have rounded its wealth estimates in a given year. As shown in the table, for

each year except two years (1994 and 2008), the test rejects the null hypothesis that

wealth followed a Pareto distribution among the 400 wealthiest Americans on the

magazine’s list at the 10 percent level of statistical significance or less. The deviations

from a Pareto distribution are statistically significant at conventional levels in 29 out

of the 32 years, therefore.

In addition to being statistically significant at conventional levels, the devi-

ations also seem to be substantively significant. For the year 2003, for example,

the fitted CCDF implies that about 257 of the 400 wealthiest Americans (or, again,

about 64 percent of them) should have been worth 900 million dollars, but there were

almost 50 more Americans (or, again, about 11 percent more of the 400 wealthiest

Americans) worth at least that much. There were 302 Americans (or, again, about

76 percent of the 400 wealthiest Americans) worth at least that much. A devia-

tion of 50 multi-millionaires seems substantial. Similar deviations occur in the other

years. Deviations from a Pareto distribution therefore seem to be statistically and

substantively significant at almost every point in time.

It can be noted that Klass et al. (2006) did not draw much attention to de-

viations from a Pareto distribution, but Levy and Solomon (1997) did draw some

attention to deviations. They suggested that the deviations might be due to round-

ing errors. “Most of the deviations from the theoretical fit occur at round values of

wealth [which is] probably due to the rounding-off of estimated wealth values,” they

said (p. 92). However, the goodness-of-fit test we have applied made some attempt to

account for rounding, and it still rejects a Pareto distribution at conventional levels

of statistical significance.
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Table 3.4. Goodness-of-fit Tests Against a Pareto Distribution, 1982–2013

p-value accounting for

Test Rounding Rounding and other
Year statistic errors measurement errors

1982 0.26 0.00 0.00
1983 0.10 0.00 0.00
1984 0.23 0.00 0.00
1985 0.11 0.00 0.00
1986 0.11 0.00 0.00
1987 0.10 0.00 0.00
1988 0.08 0.00 0.03
1989 0.08 0.00 0.00
1990 0.09 0.00 0.00
1991 0.06 0.06 0.18
1992 0.10 0.00 0.00
1993 0.09 0.00 0.00
1994 0.05 0.19 0.35
1995 0.06 0.04 0.04
1996 0.07 0.01 0.01
1997 0.07 0.01 0.00
1998 0.09 0.00 0.00
1999 0.07 0.06 0.04
2000 0.07 0.07 0.04
2001 0.10 0.00 0.00
2002 0.10 0.00 0.00
2003 0.11 0.00 0.00
2004 0.09 0.01 0.00
2005 0.11 0.00 0.00
2006 0.10 0.01 0.92
2007 0.09 0.01 0.80
2008 0.06 0.56 1.00
2009 0.10 0.00 0.00
2010 0.09 0.00 0.01
2011 0.11 0.00 0.00
2012 0.12 0.00 0.00
2013 0.12 0.00 0.00

Note: This table shows, for the years 1982 to 2013, the test statistic for a test of the goodness of
the fit between the empirical CCDF for the wealth of the 400 wealthiest Americans in a given year
and the CCDF for a Pareto distribution estimated from their wealths.
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Accounting for other measurement errors. While some previous studies have

suggested that rounding errors may explain deviations between the distribution of

wealth among the 400 wealthiest Americans on Forbes Magazine’s list and a Pareto

distribution, other studies seem to suggest that other measurement errors may also

explain such deviations (Castaldi and Milakovic 2007, p. 544).9

To the extent that we know the ways (if any) in which Forbes Magazine mis-

estimates what each of the 400 wealthiest Americans are worth, those measurement

errors could perhaps be incorporated into the goodness-of-fit test discussed above in

much the same way that rounding errors were incorporated into the test. Again, an

entirely different goodness-of-fit test might be more appropriate, but, as part of the

simulations, the random samples drawn from a Pareto distribution fit the empirical

data could be subjected to such measurement errors.10

Aside from the way in which it appears to round its wealth estimates, we do

not actually know the ways in which the magazine might misestimate wealth, but

we can get some sense by making the following comparison between the magazine’s

list and another source of data on some of the wealthiest Americans.

Recently, the media corporation Bloomberg began publishing a daily list of

some of the wealthiest people in the entire world. The list began as a list of the 20

9To quote Castaldi and Milakovic (2007) at length, they said the following in the context
of discussing why wealth appeared to deviate from a Pareto distribution, especially among the
least-wealthy of the 400 wealthiest Americans on Forbes Magazine’s list. They said, “One could
speculate that measurement error is more pronounced for the lower part of the lists [i.e., among the
least wealthy on the lists] because less effort might be devoted to the compilation of lower ranks
and there is probably less publicly available information on lower-ranked agents” (p. 544).

10Except for Capehart (2014) who suggests exactly same thing in a slightly different context,
we ares unaware of a goodness-of-fit test that accounts for measurement errors. If one is willing to
assume that a variable follows a Pareto distribution, and if one is willing to assume that observations
of the variable are subject to additive, normally distributed measurement errors, then Kondlo (2010)
suggests how to fit the parameters of the Pareto distribution to the observations. Kondlo (2010)
defends such assumptions on the basis that they are “common” (p. 50), but does not suggest
how to test whether a variable actually follows a Pareto distribution, does not suggest whether
measurement errors are actually additive or normally distributed, and thereby does not suggest
whether it is actually appropriate for such assumptions to be so common.
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wealthiest people in the world on March 5, 2012 (Miller and Newcomb 2012), and

it has since expanded to a list of the 200 wealthiest. That list can be compared to

Forbes Magazine’s annual list of the 400 wealthiest Americans for two days as of

writing—August 24, 2012, and August 23, 2013.

Comparing those lists for the most-recent day on which they can be compared,

all but one of the 64 Americans on Bloomberg ’s list were also on Forbes Magazine’s

list. The one exception was the grocery wholesaler Rick Cohen (on him and his

wealth, see Coffey and Siraj 2013). Forbes Magazine apparently either failed to

identify him or it estimated that he was worth much less than what Bloomberg

estimated he was worth.

There were also 67 people on Forbes Magazine’s list who were wealthier by

the magazine’s account than the least-wealthy person on Bloomberg ’s list but not on

the latter list. One of those people was excluded from the list by design (namely,

Michael Bloomberg), but Bloomberg must have either failed to identify the 66 other

people on Forbes Magazine’s list or it must have estimated that those people were

worth less than the least-wealthy person on its list.

Even for the 63 people who appeared on both lists, the lists disagreed about

how much they were worth. Part of figure 3.3 shows kernel density estimates of the

ratio between someone’s wealth on August 23, 2013, according to Bloomberg ’s list,

and the same person’s wealth on the same day, according to Forbes Magazine’s list.

Only part of the range of ratios is shown in that figure. The ratios were as low as

about 52 percent (Fidelty CEO Abigail Johnson was worth only 9.0 billion according

to Bloomberg but 17.2 billion dollars according to Forbes Magazine) and as high as

about 188 percent (Koch Industries shareholder Elaine Marshall was worth 15.6

billion according to Bloomberg but only 8.3 billion according to Forbes Magazine; on

her and her wealth, see de Jong 2012).
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Figure 3.3. Ratios Between Wealth Estimates from Bloomberg ’s and Forbes Maga-
zine’s Lists, 2012 and 2013

Source: Data adapted from Bloomberg Billionaires Index (August 24, 2012; August 23,
2013); Forbes Magazine (2012, 2013).

Note: This figure shows, for the two days on which the lists can be compared in 2012 and
2013, and for people on both lists, kernel density estimates of the ratio between a person’s
wealth according to Bloomberg ’s list of some of the world’s wealthiest people and the
same person’s wealth according to Forbes Magazine’s list of the 400 wealthiest Americans.
Normal kernels with bandwidths equal to the Silverman plug-in estimate were used. People
who were not on both of the lists on a given day were ignored.

For the same reason that repeated, independent measurements of the same

thing can reveal the imprecision of an instrument, the differences between Forbes

Magazine’s and Bloomberg ’s estimates of the wealth of the same people on the same

day would seem to reveal the sorts of errors associated with trying to estimate the

wealth of one of the wealthiest Americans. As such, those differences would seem to

be our best estimate of any measurement errors associated with Forbes Magazine’s

list (or Bloomberg ’s list for that matter).
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In order to account for such errors as part of the simulations discussed above,

we could draw 400 samples from a Pareto distribution that was fit to the empirical

data, mismeasure those samples by multiplying them by draws from one of the sets

of kernel density estimates, and then do everything that we did before. Yet at least

one problem with that approach is that we would essentially eliminate the possibility

that someone who was not one of the 400 wealthiest Americans made it onto Forbes

Magazine’s list because his or her wealth was overestimated.

So, instead, we will draw a larger number of samples from a Pareto distribution

that extends over a wider range than the Pareto distribution that was fit to the

empirical data, mismeasure those samples, and then take only the 400 largest. For

simplicity, we will draw an order of magnitude more samples than 400 (i.e., 4,000

samples) from a Pareto distribution with a lower-bound parameter that is an order

of magnitude lower than the lower-bound parameter of the Pareto distribution that

was fit to the empirical data (about 60 million rather than about 600 million dollars

in 2003, for example), and we will drawn from the most-recent set of kernel density

estimates. Note that we are assuming that measurement errors are constant across

people and time, but we have little evidence to suggest otherwise.

Part of table 3.4 reports the results of a goodness-of-fit test based on such

simulations. As shown in the table, after accounting for rounding and other mea-

surement errors in the manner discussed above, for 27 out of the 32 years, the test

rejects the null hypothesis that wealth followed a Pareto distribution among the 400

wealthiest Americans on Forbes Magazine’s list at the 10 percent level of statistical

significance or less. If an even more severe form of measurement errors was assumed,

then the deviations between the distribution of wealth and a Pareto distribution

might become insignificant, but there is no evidence to suggest assuming a more

severe form of measurement error would be a reasonable assumption.
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3.4.3 Other Distributions besides an Untruncated Pareto

The notion that wealth might follow a distribution as simple as a Pareto dis-

tribution is somewhat captivating (Schumpeter 1949, p. 156), so deviations from a

Pareto distribution could perhaps be dismissed or deemphasized if similarly simple

distributions cannot fit the distribution of wealth any better. The extent to which

other distributions are a better or worse fit to the distribution of wealth among

the 400 wealthiest Americans on Forbes Magazine’s list should therefore perhaps

be explored. This essay will now turn to a brief exploration of a few alternative

distributions, including the two-parameter versions of the gamma and log-normal

distributions, as well as a slightly more general version of the Pareto distribution

that only involves one additional parameter.

Gamma and log-normal. When its CCDF is graphed on a double logarithmic

scale, the Pareto distributions looks like a straight line, but other distributions can

look like straight lines, too, at least over certain ranges. The upper tails of the

gamma and log-normal distributions can look like straight lines over certain ranges,

for example. The two-parameter versions of those distributions (Cohen 1991, pp. 97,

114) are also as parsimonious as the Pareto distribution in terms of their number of

parameters. Only looking at the upper tails of those distributions requires another

parameter, a lower-truncation point, but the truncation point can be specified based

on the wealth of the least-wealthy individual on the magazine’s list in a given year

and the way in which the magazine appears to round its wealth estimates.11

The lower-truncated (or even untruncated) gamma and log-normal distribu-

tions are not nested in the Pareto distribution or vice versa, so a conventional

11For the year 2003, for example, the truncation point can be specified as 597.5 million dollars,
given that the minimum wealth in that year was 600 million dollars, and given that wealths less
than one billion dollars were apparently rounded to the nearest five million. Formal expressions for
the untrucuated and lower-truncated versions of the gamma and log-normal distributions can be
found in appendices B.4.3 and B.4.4.
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likelihood-ratio test of nested models cannot be applied, but a Vuong (1989) like-

lihood-ratio test of non-nested model can be applied (Cameron and Trivedi 2005,

pp. 280–4; Clauset et al. 2009, pp. 679–80). Unlike a likelihood-ratio test of nested

models, in which a nested model is specified as the “true” model, the true model is

unspecified for a likelihood-ratio test of non-nested models, and the test is simply a

test of which specified model is closer to the true, unknown model.

The first column of table 3.5 shows, for each year between 1982 and 2013, the

results of a likelihood-ratio test for a Pareto distribution against a gamma distribu-

tion. If the test statistic is statistically significantly greater than zero at conventional

levels, then the test favors the Pareto distribution; the test favors the gamma, if the

test statistic is significantly less than zero; and neither distribution is favored over

the other, if the test statistic is not significantly different than zero. As shown in the

table, the Pareto distribution is favored in 23 of the years, the gamma is favored in

one year (1982), and neither distribution is favored in eight of the years. Thus the

Pareto distribution is favored over the gamma in most of the years.

The results are more ambiguous when a Pareto distribution is compared to

a log-normal distribution. The Pareto is favored in eight years, the log-normal in

four, and neither distribution is favored in 20 of the years (table 3.5, middle column).

Neither distribution is favored over the other in most of the years, therefore.

Upper-truncated Pareto. The final alternative distribution this essay will explore

is an upper-truncated Pareto distribution (Aban et al. 2006; Zhang 2013). That

version of a Pareto distribution has one additional parameter, an upper-truncation

parameter. If the truncation parameter is finite, then the truncated Pareto distribu-

tion looks like an untruncated one over most of its range, but it decays more rapidly

in the upper tail. If the truncation parameter is infinite, on the other hand, then

the truncated Pareto distribution is identical to the untruncated one. To the extent
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that wealth does not seem to follow an untruncated Pareto distribution as closely

among the wealthiest (say, the nine wealthiest) of the 400 wealthiest Americans, the

upper-truncated version of that distribution may offer a better fit.12

Given that the truncated Pareto distribution nests the untruncated one, a con-

ventional likelihood-ratio test can be applied. The last column of table 3.5 shows the

results of a likelihood-ratio test for each year between 1982 and 2013. For each year,

except one year (1984), the test rejects the untruncated Pareto at the 10 percent level

of statistical significance or less. An untruncated Pareto distribution was therefore

almost always rejected in favor of an upper-truncated one.

Although there are an almost infinite number of other distributions that could

be explored, the three distributions explored above reflect the range of ways in which

other distributions might be a better or worse fit than the untruncated version of the

Pareto distribution to the distribution of wealth among the 400 wealthiest Americans.

The gamma seems to be a worse fit at almost every point in time; the log-normal

seems to be neither better nor worse fit at most points in time; and the upper-

truncated Pareto seems to be a better fit at almost every point in time.

Yet, even if another distribution is found to be a better fit than the untruncated

version of the Pareto distribution (as appears to be the case with the upper-truncated

version of that distribution), the extent to which it is actually a good fit should still be

studied. For completeness, we will test the goodness of the fit of the upper-truncated

version of the Pareto distribution before turning to some concluding comments about

the extent to which the truncated version of that distribution is a good fit. That

is, after all, the particular distribution that previous studies including Klass et al.

(2006) have suggested is a good fit.

12For more on the upper-truncated Pareto distribution, see appendix B.4.2.
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Table 3.5. Likelihood-ratio Tests, 1982–2013

Distribution

Lower-truncated Lower-truncated Upper-truncated
Year gamma log-normal Pareto

1982 −3.90
∗∗∗ −6.32

∗∗∗
24.01

∗∗∗

1983 1.08 −0.85 11.18
∗∗∗

1984 2.82
∗∗∗

2.46
∗∗

1.79
1985 1.28 −0.08 7.45

∗∗∗

1986 3.04
∗∗∗

2.01
∗∗

2.97
∗

1987 1.41 −0.72 3.49
∗

1988 1.85
∗

0.73 5.30
∗∗

1989 0.96 −0.64 12.10
∗∗∗

1990 −0.13 −0.68 14.21
∗∗∗

1991 2.89
∗∗∗

1.83
∗

11.01
∗∗∗

1992 2.02
∗∗

0.84 13.87
∗∗∗

1993 3.54
∗∗∗

2.09
∗∗

7.78
∗∗∗

1994 3.23
∗∗∗

1.90
∗

7.89
∗∗∗

1995 2.38
∗∗

0.59 5.32
∗∗

1996 1.56 0.75 5.75
∗∗

1997 1.64 −1.00 3.65
∗

1998 2.06
∗∗ −1.08 3.27

∗

1999 1.83
∗ −2.10

∗∗
4.13

∗∗

2000 2.47
∗∗ −0.96 6.63

∗∗∗

2001 1.94
∗ −0.43 6.26

∗∗

2002 2.38
∗∗ −0.96 6.91

∗∗∗

2003 2.11
∗∗ −3.02

∗∗∗
7.77

∗∗∗

2004 2.29
∗∗

0.07 4.94
∗∗

2005 2.28
∗∗

0.27 4.69
∗∗

2006 3.35
∗∗∗

4.21
∗∗∗

5.38
∗∗

2007 3.40
∗∗∗

8.85
∗∗∗

5.28
∗∗

2008 3.50
∗∗∗

8.35
∗∗∗

6.16
∗∗

2009 1.68
∗ −0.69 7.90

∗∗∗

2010 2.06
∗∗

0.87 8.56
∗∗∗

2011 1.88
∗ −0.22 10.14

∗∗∗

2012 1.43 −1.82
∗

11.59
∗∗∗

2013 1.79
∗ −0.75 12.62

∗∗∗

Note: This table shows, for the years 1982 to 2013 and for different distributions, the test statistic
for a likelihood-ratio test of a Pareto distribution against another distribution.

∗p < .10 ∗∗p < .05 ∗∗∗p < 0.01
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3.4.4 Deviations from a Truncated Pareto Distribution, Too

Although the upper-truncated version of the Pareto distribution may be a

better fit to the wealth of the 400 wealthiest Americans than the untruncated version

of that distribution, the truncated version could still be a poor fit. The goodness-of-

fit test that was applied before can be applied again in order to test the goodness of

the fit between the empirical CCDF for the wealths of the 400 wealthiest Americans,

on the one hand, and the CCDF for an upper-truncated Pareto distribution fit to

the distribution of their wealth, on the other hand.

The goodness-of-fit tests discussed above—including the ones that account for

rounding and other measurement errors, as well as the ones that only account for

rounding errors—can be performed in exactly the same way as before, except that

the upper-truncated version of the Pareto distribution should be used rather than

the untruncated one.

The results of such goodness-of-fit tests are reported in table 3.6 of this essay.

As seen in the table, in 28 out of the 32 years, the test that only accounts for

rounding errors rejects, at the 10 percent level of statistical significance or less, the

null hypothesis that wealth followed an upper-truncated Pareto distribution among

the 400 wealthiest Americans on Forbes Magazine’s list. Similarly, the test that

accounts for rounding and other measurement errors rejects that hypothesis in 25

out of the 32 years.

The substantive significance of the deviations from a truncated Pareto distri-

bution are about the same as the deviations from an untruncated Pareto distribution

discussed above. For the year 2003, again for example, the largest difference between

the empirical and fitted CCDFs occurs at the same wealth as before (which is about

900 million dollars) and the difference is almost the same as before (a difference of

about 39 multimillionaires).
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Table 3.6. Same Tests Against a Truncated Pareto Distributions, 1982–2013

p-value accounting for

Test Rounding Rounding and other
Year statistic errors measurement errors

1982 0.24 0.00 0.00
1983 0.08 0.00 0.00
1984 0.23 0.00 0.00
1985 0.11 0.00 0.00
1986 0.12 0.00 0.00
1987 0.09 0.00 0.00
1988 0.07 0.00 0.04
1989 0.07 0.00 0.00
1990 0.08 0.00 0.00
1991 0.05 0.09 0.21
1992 0.09 0.00 0.00
1993 0.09 0.00 0.00
1994 0.04 0.51 0.66
1995 0.05 0.08 0.08
1996 0.06 0.01 0.02
1997 0.07 0.01 0.01
1998 0.08 0.00 0.00
1999 0.06 0.15 0.12
2000 0.06 0.22 0.19
2001 0.09 0.00 0.00
2002 0.10 0.00 0.00
2003 0.10 0.00 0.00
2004 0.08 0.03 0.00
2005 0.10 0.00 0.00
2006 0.09 0.02 0.77
2007 0.08 0.03 0.86
2008 0.06 0.47 1.00
2009 0.09 0.00 0.00
2010 0.08 0.00 0.01
2011 0.09 0.00 0.00
2012 0.10 0.00 0.00
2013 0.10 0.00 0.00

Note: This table shows, for the years 1982 to 2013, the test statistic for a test of the goodness of
the fit between the empirical CCDF for the wealth of the 400 wealthiest Americans in a given year
and the CCDF for a truncated Pareto distribution estimated from their wealths.



96

3.5 Conclusion

This essay was able to replicate the study by Klass et al. (2006), although the

essay identified some issues with their study. The essay suggested that any future

studies based on their data or methods should carefully consider whether individuals

and families should be conflated, whether some of the wealthiest Americans should

simply be ignored, and whether a strongly biased estimator should be used.

The essay also extended the study by Klass et al. (2006). The essay suggested

that, to the extent that wealth actually follows a Pareto distribution among the 400

wealthiest Americans, the shape parameter of the Pareto distribution varies over time

to a statistically and substantively significant extent. The essay also suggested that

their wealth deviates from a Pareto distribution to a statistically and substantively

significant extent at almost every point in time. The deviations would obviously be

even worse (or, at least, not any better) if their wealth was thought to follow the

exact same Pareto distribution at every point in time.

Deviations from a (time-varying or time-invariant) Pareto distribution could

perhaps be dismissed by arguing that wealth truly follows a Pareto distribution,

but Forbes Magazine’s lists are not accurate enough to reveal the true distribution.

Some previous studies seem to have suggested as much (Castaldi and Milakovic

2007, p. 544; Levy and Solomon 1997, p. 92). Yet, this essay showed that, even

after accounting for rounding errors and other possible measurement errors, the

distribution of wealth among the 400 wealthiest Americans still seems to deviate

from a Pareto distribution at almost every point in time.

Deviations from a Pareto distribution could also perhaps be dismissed by ar-

guing that a Pareto distribution is nevertheless a close approximation to the upper

tail of the distribution of wealth. Those who might make such an argument must be

clear about what constitutes a close approximation. If the argument is that there
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are no distributions that are as simple as a Pareto distribution and that still offer

as good a fit, then that argument would seem to be wrong, given that this essay

identified at least one distribution that is similar in its simplicity and that offers a

better fit (albeit still not an especially good fit).

Whether an approximation is adequate or not should ultimately depend on

the purpose to which the approximation will be put, of course, yet empirical and

theoretical studies that have assumed that wealth follows a Pareto distribution have

not always seemed concerned with considering the adequacy of the approximation.

Instead, they been content to appeal to previous studies that asserted it was adequate

(see, for example, Kopczuk and Saez 2004b, p. 52). The results of this essay suggest

that such studies should consider the adequacy of the approximation and not just

appeal to previous studies that asserted that it was adequate.

A direction for future research is to consider whether previous empirical and

theoretical studies that assumed that wealth follows a Pareto distribution would be

affected if wealth did not actually follow that distribution in the real world. In terms

of previous empirical studies, the effects may matter. Even in terms of something as

simple as extrapolating or interpolating the number of people with a given amount

of wealth, assuming a Pareto distribution can lead to significant misestimation, as

the example in this essay showed.

In terms of previous theoretical studies that assumed that wealth follows a

Pareto distribution, it may or may not matter whether wealth actually follows that

distribution in the real world. Models are abstractions from reality, after all, and

they are sometimes disconnected from reality altogether. Yet, if any attempt is made

to apply conclusions drawn from such models to the real world, then the extent to

which those conclusions rely on the assumption of a Pareto distribution of wealth

should be considered.
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CHAPTER 4

ON THE DURATION OF THEIR WEALTH

4.1 Introduction

Great wealth can persist, both within and across generations. The wealth

accumulated by John D. Rockefeller during his lifetime (1839–1937) seems to have

persisted for generations, for example, if we look at popular magazines that have

kept track of such things. Rockefeller was the wealthiest American in 1918, accord-

ing to a list of the 30 wealthiest Americans that was published by Forbes Magazine

in that year (Forbes Magazine 1918). According to similar lists published by another

magazine, some of Rockefeller’s family members—including his sole son, his oldest

grandson, and other relatives—were some of the wealthiest Americans decades after

his death (Fortune Magazine 1957, 1968). And when Forbes Magazine published

its first annual list of the 400 wealthiest Americans in 1982, 14 of the 400 wealth-

iest Americans were members of the Rockefeller family (Bernstein and Swan 2007,

p. 231). One of them—John D. Rockefeller’s oldest grandson, David Rockefeller—has

appeared on the list in every year since then (Forbes Magazine 1982–2013).

Although great wealth can be persistent and perhaps permanent, it can also

be more ephemeral. As pointed out by Steve Forbes, the current editor of Forbes

Magazine, “When [our list of the 400 wealthiest Americans] appeared in 1982, it was

populated by Rockefellers [but now] there is only one Rockefeller—ninety-four-year-

old David” (Forbes and Ames [2009] 2011, p. 115). The wealthy are not a “fixed
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aristocracy,” Forbes inferred. The fact that the current editor of Forbes Magazine

is the son of the former editor, who was the son of the founding editor, might lead

one to infer otherwise, but his point—that the wealthiest people and families are not

always exactly the same people or families—is well taken. That point has also been

made by other members of the staff at Forbes Magazine, perhaps at the behest of its

editor. “For proof that America lacks a permanent overclass, look no further than

[our list of the 400 wealthiest Americans],” a staff member wrote in one year (Lewis

2002). The proof was that, out of the 400 people who were on the list in 1982, “only”

58 of them were still on the list 20 years later.

The staff at Forbes Magazine are not the only ones who have used the mag-

azine’s list of the 400 wealthiest Americans to study wealth mobility, but the list

has only been used in relatively anecdotal ways, as this essay elaborates upon below.

Other sources of data like panel surveys have been used in relatively sophisticated

ways to study inter- or intra-generational mobility throughout parts of the wealth

distribution, but Forbes Magazine’s list is the only source of data that can be used

to study inter- and intra-generational mobility throughout the part of the wealth

distribution where great wealth is at its greatest, as this essay also elaborates upon

below. This essay therefore studies what the magazine’s list suggests about wealth

mobility among the wealthiest Americans.

The rest of this essay is organized as follows. The essay begins by discussing

the magazine’s list as a source of data on wealth mobility. The list is then studied

for what it suggests about wealth mobility, especially for what it suggests about

the persistence of great wealth on an intra-generational time scale. The last section

summarizes the results and suggests some directions for future research.
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4.2 A Magazine as a Data Source

A popular magazine may seem like a dubious source of data on mobility

throughout the distribution of wealth, but Forbes Magazine’s list of the 400 wealthi-

est Americans has already been used to study wealth mobility, at least in somewhat

anecdotal ways. For example: As part of a wide-ranging defense of inequality in

America, an academic economist by the name of Young Back Choi used the maga-

zine’s list from select years (1983, 1995, and 1999) to argue that mobility is “high”

among the 10 wealthiest Americans (Choi 2002, p. 129). The economist pointed out

that, “In 1983, only 12 years before [the year 1995], five out of the 10 [wealthiest

Americans in 1995] were not even ranked among the [wealthiest] four hundred. By

1999, only four years later, some of them were already elbowed out by newcomers”

(ibid.). All 10 of them were actually still ranked among the 400 wealthiest Americans

in 1999, but six of them were no longer ranked among the 10 wealthiest, so in that

sense they were elbowed out (ibid., p. 130, table 2).1

Another economist who has used Forbes Magazine’s list to study wealth mo-

bility is Arthur Kennickell of the Federal Reserve. Kennickell (2006) studied whether

people on the magazine’s list in a select year (2001) were on the list in other, select

years (1989, 1992, 1995, and 1998). He found that, out of the 400 people who ap-

peared on the magazine’s list in 2001, only about three-quarters of them (305 people

or about 76 percent of them) were on the list three years before in 1998, and less

than half of them (170 people or about 43 percent of them) were on the list 12 years

before in 1989 (Kennickell 2006, p. 21, table 2.2). He also found that less-wealthy

people were less likely to remain on the list. Whereas 68 people in the top quartile of

the magazine’s list in 1989 were still somewhere on the list by 2001, only 29 people

1The same economist made similar points (and a few of the exact same points) in an earlier
paper by using the magazine’s list from similar years (1983, 1989, and 1995; Choi 1999, pp. 246–7).
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in the bottom quartile of the list in 1989 were still on the list by 2001.2

Even if Forbes Magazine’s list is assumed to be an accurate account of the

400 wealthiest Americans, the magazine’s list can only provide a limited amount

of information about wealth mobility. The list can only provide information about

mobility into, out of, and throughout the part of the distribution of wealth that

corresponds to the 400 wealthiest Americans. Yet, the information that the list

can provide is greater than the information contained in the anecdotes discussed

above. The list can provide more information than information about whether the

400 wealthiest Americans have always been exactly the same people, or about how

many of the 400 wealthiest Americans in 1982 were still one of the 400 wealthiest

Americans 20 years later, or about how an arbitrary number of the 400 wealthiest

Americans (the 10 wealthiest, 100 wealthiest, etc.) in an arbitrary year (1995, 2001,

etc.) were faring an arbitrary number of years before or after (12 years before, four

years after, etc.), again, assuming that the list is an accurate account.

Whether Forbes Magazine’s list is an accurate account of the 400 wealthiest

Americans is unknown. Several years of the Survey of Consumer Finances (SCF)

conducted by the Federal Reserve have turned up people (or, really, households)

who were apparently wealthy enough to appear on Forbes Magazine’s list in the

same year but did not appear (see Kennickell 2007, p. 2, and the codebooks of the

surveys since 1998). Estate-tax records have also been filed for people who were

apparently wealthy enough to appear on Forbes Magazine’s list but did not appear

2The author of this essay and Arthur Kennickell both counted 305 people on the list in
both 1998 and 2001, but the author of this essay counted only 169 people on the list in both 1989
and 2001, whereas Kennickell counted 170 people. That discrepancy is almost surely due to the
misidentification of unique individuals, either by Kennickell or by the author of this essay. (Both
the author of this essay and Kennickell counted 68 people who were in the top quartile in 1989 and
still on the list by 2001, as well as 29 people who were in the bottom quartile in 1989 and still on
the list by 2001.) It can be noted that, in another paper, Kennickell pointed out that, out of the
400 people on the list in 2007, 61 of them dropped off the list by 2009 (Kennickell 2011, p. 15). By
the author’s count, there were actually 62 people who dropped off the list between 2007 and 2009.
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while they were still alive (Raub et al. 2010, pp. 11–12). The magazine’s list may

not be a completely accurate account of the 400 wealthiest Americans, therefore,

although it may still be an approximately accurate account.

Of note, if a study is sophisticated enough that it accounts for sampling errors,

then, in order for the magazine’s list to be a useful source of data on the wealthiest

Americans, all that is required of the list is that it be a representative sample of the

those Americans. Of course, to the extent that the list is random sample, it may not

be a representative sample. Scholars have suggested that, even if two people were

worth the same amount, Forbes Magazine’s list might be biased towards including

someone who has his or her wealth concentrated in a single or small number of assets

rather than someone who has his or her wealth diversified across many assets (Blitz

and Siegfried 1992, p. 7; Raub et al. 2010, p. 14). Scholars have also suggested that

(again, even if two people were worth the same amount) the list might be biased

towards including someone who owns more assets and owes more debt rather than

someone who owns fewer assets and owes less debt (Atkinson 2008, p. 70).

Despite any systematic or unsystematic biases, the magazine’s list has been

used to study wealth mobility because it is the only source of data that can be used

to study mobility at the very top of the wealth distribution in the United States on a

frequency that is faster than an inter-generational time scale. Other sources of data

like surveys and estate-tax records cannot be used. Estate-tax records could be used

to study mobility at the very top of the wealth distribution, if those records were

ever made available to the public; but, even if they were made publicly available, the

records could only be used to study inter-generational wealth mobility, given that a

person has to die before he or she has to pay estate taxes.

Surveys can be used—and, indeed, have been used—to study intra- or inter-

generational wealth mobility; but, in order to study mobility at the very top of the
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wealth distribution, a survey would obviously need to be a panel survey that captures

the very top of the wealth distribution. Unfortunately, no such survey exists for the

United States. The wealth survey conducted as part of the Panel Survey of Income

Dynamics (PSID) and similar panel surveys of wealth have been used to study wealth

mobility (Diaz-Gimenez et al. 2011; Keister 2005). Those surveys were not designed

to capture the very top of the wealth distribution, however, so they almost always

fail to do so (Juster et al. 1999). The surveys cannot be used to study mobility at

the very top of the wealth distribution, therefore.

A survey that might seem like it could be used to study mobility at the very

top of the wealth distribution is the SCF, given that the SCF is designed to try

to capture the very top of the wealth distribution, and given that a panel survey

has sometimes been conducted as part of that survey. The SCF is typically only a

cross-sectional survey, but, recently, a panel survey was conducted to study changes

to household wealth between the years 2007 and 2009. That survey was conducted

because those years were thought to be atypical (Bricker et al. 2011). Whether

changes to household wealth between those years were atypical or not is unclear,

however, given that the SCF’s most-recent panel survey before that was back in the

1980s (ibid., p. 3).3 Even if the panel survey had been conducted on a more-frequent

basis, the SCF is designed to exclude the (households of the) people who appear on

Forbes Magazine’s list of the 400 wealthiest Americans (Kennickell 2006, p. 84), so,

to the extent that the magazine’s list captures the very top of the wealth distribution,

the SCF cannot be used to study mobility throughout that part of the distribution.

The magazine’s list therefore seems to be the best source of data, if only because it

is the only source of data, on mobility at the very top of the wealth distribution.

3Studies of the SCF’s earlier (1983–1989) panel survey and studies of its most-recent (2007–
2009) panel survey include Kennickell and Starr (1997) and Bricker et al. (2011), respectively.
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Although Forbes Magazine’s list seems to be the best source of data source on

mobility at the very top of the wealth distribution in the United States over recent

decades, the list does not seem to be a particularly good source of data on intra- or

even inter-generational mobility among less-wealthy Americans, even though some

studies have tried to use the list to study mobility from other parts of the wealth

distribution into the very top (Blitz and Siegfried, 1992; Broom and Shay, 2000).

A relatively recent and representative example of such a study is Kaplan and Rauh

(2013). That study calculated (among other things) the percentage of people on

Forbes Magazine’s list in select years (1982, 1992, 2001, and 2011) who grew up

in families that were “wealthy,” families that had “some wealth,” or families that

had “little or no wealth.” Forbes Magazine does not systematically report such

information, so the study apparently used the Who’s Who in America book series

and “internet searches” in order to classify people into those three categories (Kaplan

and Rauh 2013, p. 44). The study found that the percentage of people who grew up

in a wealthy family has fallen since 1982, which suggests that both intra- and inter-

generational wealth mobility may have risen since then (Kaplan and Rauh 2013,

p. 46). Such a finding could be correct, of course, but the problem with that study

and similar studies that try to trace the origin of great wealth is that they require

finding other sources of information that can supplement the information contained

in Forbes Magazine’s list. Thus, while there is an obvious interest in studying how

people are able to appear on Forbes Magazine’s list in the first place, the magazine’s

list is much better suited towards studying what happens once they get there. This

essay will therefore focus on how long someone who appears on the list is able to

remain there—the duration of their wealth, so to speak. We will now briefly look

at some basic statistics about the duration of their wealth before looking at factors

associated with longer or shorter durations.
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4.3 A Brief Look at the Duration of Wealth

In every year since 1982, Forbes Magazine has published a list of the 400

wealthiest Americans. The list was published as recently as 2013, as of writing. For

each person on the magazine’s list in any given year, an interested reader can read

about who the person is and how much he or she is estimated to be worth. The

people on the magazine’s list have not been the same people every year, so, for any

given year except the inaugural year, the interested reader can also read about who

came onto the list and who dropped off of it since the previous year.

Between the magazine’s inaugural list in 1982 and its most-recent list in 2013,

only about 1,500 (specifically, 1,474) unique individuals appeared on the list. That

number of people is small relative to the number of people who would have appeared,

if there had been complete turnover every year. If there had been complete turnover

every year—with everyone coming onto the magazine’s list in one year, dropping off

by the next year, and then never reappearing again—then 12,800 people would have

appeared on the list between 1982 and 2013.

The number of unique individuals who have been one of the 400 wealthiest

Americans, according to Forbes Magazine’s list, is also small relative to the number

of unique individuals who have been one of the 400 highest-income Americans, ac-

cording to the International Revenue Service (IRS), at least over comparable periods

of time. According to the IRS, almost 4,000 (specifically, 3,869) people were among

the 400 highest-income Americans in any year between 1992 and 2009 (IRS 2012,

p. 13). Over those same years, only about 1,000 (specifically, 1,027) people appeared

on the magazine’s list of the 400 wealthiest Americans, by comparison.4

4For the information about the 400 highest-income Americans released by the IRS, an in-
dividual could be either a primary or secondary taxpayer on either an individual or a joint tax
return. Individuals were identified by their Social Security numbers. The author of this essay has
been unable to find any account of why information about the 400 highest-income Americans was
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The number of people who have appeared on the magazine’s list over the years

has been relatively small, therefore, but there has been turnover. Between 1982 and

2013, out of the 400 people on the list in any given year, as many as 376 and as few

as 320 people appeared again in the next year, as part of figure 4.1 shows. About

352 people appeared again on average. So, as few as 24, as many as 80, and about

48 people on average have dropped off the list between any one year and the next.

The people who have dropped off the magazine’s list have done so for different

reasons. The reasons are as follows. One reason is that people have died. Although

great wealth may afford a degree of immortality, even the wealthiest Americans

eventually die. Out of the 1,474 people who appeared on the magazine’s list in any

year between 1982 and 2013, there were 219 people who dropped off the list because

they died. The number of people who dropped off the list per year due to death

is shown as a part of figure 4.1 of this essay. As shown in that figure, about seven

people died on average per year, as many as 13 people died in some years (1982,

1992, and 1994), and as few as two people died in one year (1999).

Another reason why people have dropped off the list is that they have remained

among the living but they have become too poor to remain among the 400 wealthiest

Americans (at least by the magazine’s account). That is to say, they dropped off

the list because of an absolute or relative decline in their wealth. The number of

people who dropped off per year due to such a decline in their wealth is shown as

another part of figure 4.1 of this essay. About 41 people dropped off for that reason

on average per year, as many as 72 people dropped off in one year (1986), and as

few as 20 people dropped off in another year (2002).

released, rather than information about another number of the highest-income Americans, except
that the information was released “in response to requests” (IRS 2003, p. 7). Information on the
400 highest-income Americans may have been requested because Forbes Magazine publishes a list
of that number of the wealthiest Americans, but that could also just be a coincidence.
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Figure 4.1. Number of People who Appeared Again or Dropped Off Per Year, 1982–
2013

Source: Data adapted from Forbes Magazine (1982–2013).

Note: This figure shows, for each year between 1982 and 2013, the number of people on
Forbes Magazine’s list who appeared on the list again in the next year, dropped off due to
an absolute or relative decline in their wealth, or dropped off due to death.

There is one other reason why people have dropped off of Forbes Magazine’s

list of the 400 wealthiest Americans. A few people have dropped off the list because

they have renounced their American citizenship. The Facebook co-founder Eduardo

Saverin recently dropped off the list because he renounced his citizenship (Forbes

Magazine 2012), but the Carnival Cruise Line founder Ted Arison (Forbes Magazine

1994), the Dart Container Company heir Robert Dart (Forbes Magazine 1995), and

the Campbell Soup Company heir John Thompson Dorrance III (ibid.) also dropped

off the list in earlier years because they renounced their citizenship.

Given that only four people have dropped off the list because they renounced

their American citizenship, the rest of this essay largely ignores those people. The
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inferences that could be drawn from such a small number of people are severely

limited. We could do little more than conclude that a person was more likely to drop

off the list due to a renunciation of his or her American citizenship, if he or she was

Edwardo Saverin or another one of the other people listed above. The fact that a

few people dropped off the magazine’s list because they renounced their citizenship

is nevertheless of note.5

The 219 people who dropped off Forbes Magazine’s list due to death obviously

never reappeared on the list again. They were dead. The four people who dropped

off the magazine’s list because they renounced their American citizenship also never

reappeared again. None of them regained their American citizenship. Some of the

people who dropped off the list due to an absolute or relative decline in their wealth

did reappear again, however. Between 1982 and 2013, out of the 1,474 people who

appeared at least once on the list, there were 344 people who reappeared on the

list again after dropping off at least once before. Out of those people with several

sets of consecutive appearances on the list, about half of them (177 people or about

51 percent of them) experienced a pattern wherein all of their sets of consecutive

appearances on the list (of which the median number was two and the maximum

number was four) only lasted one year.6 Roughly a quarter of them (90 people or

about 26 percent of them) experience a pattern wherein they appeared on the list

twice in a row at least once, but, in between at least one of their sets of consecutive

appearances, they were off the list for more than one year.7 The remaining quarter or

5It is also perhaps of note that at least a few people who have appeared on the magazine’s
list were not born as American citizens. Edwardo Saverin only became an American citizen in 1998,
for example. Almost all of the people who have appeared on the list were born as American citizens,
however. Only 97 immigrants appeared in any year over the first 25 years of the magazine’s list,
for example, at least according to Bernstein and Swan (2007, pp. 34–37).

6That is to say, 177 people experienced an “occasional” pattern of appearing on the list,
using the terminology used by Ashworth et al. (1994) in the context of repeated spells of poverty.

7I.e., 90 people experienced a “recurrent” pattern, using Ashworth et al.’s (1994) terminology.
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so of them (77 people or about 22 percent of them) experience a pattern wherein they

appeared on the list twice in a row at least once and they never disappeared from

the list for more than one year in between their sets of consecutive appearances.8

Although some people reappeared on the list again after dropping off at least

once before, most of the 1,474 people who appeared at least once on the list between

1982 and 2013 (specifically, 1,130 people or about 77 percent of them) came onto the

list, appeared for some number of consecutive years, and then dropped off without

ever reappearing again. Out of those people with a single set of consecutive appear-

ances, a minority (254 people or about 22 percent of them) only appeared in one

year, a majority (876 people or about 78 percent of them) appeared in more than

one year, and a small fraction (25 people or about two percent of them) appeared in

every single year since 1982 or 32 times in total.9

Some people have therefore appeared on Forbes Magazine’s list for longer than

others. The probability that a person who appears on the magazine’s list in a given

year will appear on the list again in the next year (rather than drop off due to either

death, decline, or a renunciation of his or her American citizenship) may depend

on a number of factors. A host of other factors will be considered in the next

section—including a person’s age and their rank in the distribution of wealth—but

one factor that may matter is the number of consecutive years that a person has

already appeared on the list. There may be duration dependence such that, the

longer a person has already appeared on the list, the more or less likely it is that he

or she will appear again.

The longest time between any two sets of consecutive appearances was 23 years. The oilman
Kenneth Stanley “Bud” Adams Jr. was off the list for that many years between his two sets of
consecutive appearances in 1982 to 1985 and 2009 to 2012.

8I.e., 77 people experienced a “chronic” pattern, using Ashworth et al.’s (1994) terminology.

9I.e., 254, 876, and 25 people experienced “transient,” “persistent,” and “permanent” pat-
terns of appearing on the magazine’s list, respectively, using Ashworth et al.’s (1994) terminology.
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A simple and perhaps overly simplistic way to estimate the probability that a

person who has appeared on the magazine’s list for a given number of consecutive

years will appear again in the next year is as follows. That probability can be

estimated as the total number of (possibly non-unique) people who appeared again

after appearing for a given number of consecutive years, on the one hand, all over the

total number of (again, possibly non-unique) people who either appeared again or

dropped off after the given number of consecutive years, on the other hand. Such an

estimate obviously assumes that everyone who appeared for a given number of years

had the same probability of appearing again and, moreover, that the probability was

equal to the proportion who appeared again rather than dropped off.10

Point estimates for those probabilities are shown as part of figure 4.2, although

a point estimates for the probability of appearing again after either 30 or 31 con-

secutive years are not shown as part of that figure. At least for the data used by

this essay, everyone who appeared on the list for either 30 or 31 consecutive years

appeared again. The probability of appearing again after those many years would

therefore simply be estimated to be 100 percent.

A point estimate for the probability of appearing again after 32 years is not

shown as a part of that figure, either. Everyone who appeared on the magazine’s

list for 32 years was on the list in 2013 because they had appeared on the list in

every year since 1982. Given that they were on the list in its most-recent year, it is

unknown as of writing whether they will appear on the list again in the next year or

not. Their sets of consecutive appearances are therefore said to be “right censored.”

The sets of consecutive appearances for everyone else on the list in its most-recent

year are also right censored. Again, it is unknown whether they will appear again or

not. Some people might appear again, but some might drop off due to a decline in

10A formal expression of the estimate is given as part of section C.2 of this essay’s appendix.
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Figure 4.2. Probability of Appearing Again After a Given Number of Years

Source: Data adapted from Forbes Magazine (1982–2013).

Note: This figure shows the estimated probability that a person who has appeared on
Forbes Magazine’s list for a given number of consecutive years up to 29 years will appear
again in the next year. A 95 percent confidence interval (CI) is also shown. Everyone who
appeared for 30 or more consecutive years either appeared on the list again or was subject
to right censoring.

their wealth, others might drop off due to death, and some might even drop off due

to a renounced their American citizenship.

Ninety-five percent confidence intervals for each point estimate are also shown

as part of figure 4.2 of this essay. At least for the data used by this essay, 95 percent

Wald confidence intervals (i.e., confidence intervals based on the variance p(1− p)/n

where p is the estimated probability of appearing again and n is the number of people

who either appeared again or dropped off) would include values greater than unity

for some durations. The fact that that the Wald intervals for those years include

values greater than unity is not surprising, given that the estimated probabilities in

those years are close to unity. A value greater than unity is impossible for a proper
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probability, however, so we used another method (the Clopper-Pearson method) for

calculating those intervals.11

Figure 4.2 suggests that, without controlling for any other factors, the longer

someone has appeared on the list, the more likely it is that he or she will appear again,

at least up until around 15 consecutive appearances. After that, the probability of

appearing again is approximately constant, although there is greater uncertainty

associated with those estimates, given that fewer people have appeared for that

many consecutive years.

Using the estimates shown in figure 4.2, the probability that someone who

appears at least once on the magazine’s list will appear again and again for at least a

given number of consecutive years can be estimated in a similarly simple way. That

probability can be estimated as the product of the probabilities of appearing again

after each year up to the given number of years. Figure 4.3 shows such estimates.12

As shown in that figure, the probability that someone who appears at least

once on the list will appear at least once is 100 percent with perfect certainty. Most

Americans will never appear on the magazine’s list, of course, but, for those who do

appear at least once, they will obviously appear at least once.

For the other probabilities, there is uncertainty. For those probabilities, figure

4.3 shows 95 percent confidence intervals along with each point estimate. The con-

fidence intervals are based on the Greenwood formula for variance of the product of

binomial proportions (Hollander and Wolfe 1999, pp. 541–42). The intervals for all

the point estimates were relatively small at roughly one percentage point.

11Many methods for calculating such intervals have been suggested. Indeed, Pires and Amado
(2008) compare 20 different methods. The method that we used is favored by Pires and Amado
(2008, sec. 4.1) and Vos and Hudson (2005, sec. 5), at least in certain circumstances. That said,
other methods yield similar intervals for our dataset. The Clopper-Pearson intervals are essentially
the same as the Wald intervals, for example, except that there are no impossible values.

12Section C.2 of the appendix gives a formal expression for the estimates.
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Figure 4.3. Probability of Appearing for at least a Given Number of Years

Source: Data adapted from Forbes Magazine (1982–2013).

Note: This figure shows the estimated probability that a person who appears at least once
on Forbes Magazine’s list would appear for at least a given number of consecutive years.
A 95 percent confidence interval (CI) is also shown.

After appearing once, there are two extreme cases that could occur. In one

extreme case, everyone who made it onto the list in a given year could appear again in

the next year. In the other extreme case, everyone could disappear. The probability

of appearing twice in a row was estimated to fall between those two extremes. The

probability was estimated to be about 77 percent. That probability suggests that, if

400 people appeared on the list in a given year, then about 100 of them would drop

off by the next year, while about 300 of them would appear again.

The probability of appearing at least five times in a row was estimated to be

about 50 percent. So, again, if a group of 400 people appeared on the list in a given

year, then only half of them would appear on the list at least five times in a row.

Most people appear on the list for a relatively short amount of time, therefore.
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Yet, the probability of appearing more than 10 times in a row was estimated

to be about 30 percent. So, out of 400 people, about 120 would appear year after

year for at least a decade. And the probability of appearing 30 times in a row was

estimated to be about seven percent. So, out of 400 people, about 27 would appear

year after year for at least three decades. Some people therefore stay on the list for

a relatively long amount of time.

It can be noted that, if people who were on the list in 1982 were ignored—

on the basis that their spells are “left-censored” because we do not know how long

they might have already been the magazine’s list if only it had made its list in earlier

years—then the estimated probabilities of appearing on the list for a given number of

consecutive years would be slightly different. The largest difference in the estimated

probabilities would be associated with the probability of appearing at least three

times in a row. The estimate would be about 2.7 percentage points lower. So, out of

a group of 400 people, about 11 fewer people would be expected to appear year after

year for three years. That difference is not statistically significant at the 10 percent

level, however.

It can also be noted that another magazine published a list of the 66 wealthiest

Americans back in the year 1968 (Fortune Magazine 1968) and a list of the 76

wealthiest Americans even further back in time in the year 1957 (Fortune Magazine

1957). One person, David Rockefeller, appeared on each of those lists in each of those

years, as well as Forbes Magazine’s list in every year between 1982 and 2013. Thus,

at least one person may have appeared on a list of the 400 wealthiest Americans in

every year between 1957 and 2013, if such a list had existed over that entire period.

As such, there may be at least a 0.25 percent chance that someone could appear on a

list of the 400 wealthiest Americans year after year for 57 years or more. That chance

is small, of course, but that period of time is also long. It is over half a century.



115

Figures 4.2 and 4.3 both suggest that the probability that a person who appears

on Forbes Magazine’s list of the 400 wealthiest Americans will appear again may

depend on the number of consecutive years that the person has already appeared.

However, there may be other factors that affect the probability of appearing again,

or, at least, there may be other factors that are associated with appearing again.

The probability that a person will appear again is presumably associated with the

person’s age, for example. Younger people are presumably less likely to drop off the

list due to death, given that they are presumably less likely to die, although being

young and wealthy could be a lethal combination. Younger people may also be less

likely to drop off of the list due to decline because they may be in an accumulation

rather than a deaccumulation phase of life-cycle savings.

The probability that a person will appear again is also presumably associated

with the person’s rank in the distribution of wealth, as another example. Wealthier

people are presumably less likely to drop off the list due to decline, given that they

would need to experience a larger drop in their wealth in order to become the 401rst

wealthiest American or worse. Wealthier people may also be less likely to die, given

that there may be a social gradient to health even among the 400 wealthiest Ameri-

cans, although more wealth may afford more ways to kill oneself (jet-setting around

the world, flying into outer space, etc.).

Of course, young people become older over time. Wealthier people could also

presumably become more or less wealthy over time. So, at least some of the factors

that may be associated with appearing again may be time-varying factors. This essay

therefore now turns to modeling, as a function of time-varying covariates, the number

of consecutive years that a person who appears at least once on Forbes Magazine’s

list of the 400 wealthiest Americans continues to appear.
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4.4 Factors Associated with Appearing Again

4.4.1 Model

The number of consecutive years that a person appears on Forbes Magazine’s

list can be modeled by using a discrete-time duration model with time-varying co-

variates and competing risks to appearing again. We assume that, for a person who

appears on the list in any given year, there are R = 2 competing risks to appearing

again. Let r index those risks. The risks are that he or she could drop off the list due

to an absolute or relative decline in his or her wealth (r = 1) or drop off the list due

to death (r = 2). For the reason noted above, we ignore the people who dropped off

the list due to a renunciation of their American citizenship, and we therefore ignore

the possibility of dropping off the list for that reason.

Suppose we observe N people who appear on the list for some number of con-

secutive years. Let i = 1, 2, . . . , N index those individuals. Some of the individuals

may not be unique, given that some people reappeared on the list again after drop-

ping off at least once before, but recall that most people (again, over three-quarters

of the people who appeared at least once on the magazine’s list) came onto the list,

appeared for some number of consecutive years, and then dropped off without ever

reappearing again.13

Let T denote a discrete random variable for the number of (uncensored but

possibly unknown) consecutive years that a person appears on the list. Let t =

1, 2, . . . , T index those consecutive years. If a person came onto the list in one year

but dropped off by the next year, then the person’s realization of T would be one

year, for example.

The conditional probability that the i-th person will drop off after his or her

13Modeling re-entry to the list is difficult, given that Forbes Magazine does not continue to
cover people who drop off its list, except in cases when those people remain newsworthy.
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t-th consecutive year on the list due to the r-th risk, conditional on the fact that he

or she has appeared on the list for that many consecutive years, and conditional on

any possibly time-varying covariates xit, can be denoted by

Pitr ≡ P (T = t, R = r | T ≥ t, xit) (4.1)

The probability of dropping off due to either death or decline can be denoted by

Pit ≡ Pit1 + Pit2. The probability of appearing on the list again in the next year is

then the inverse of that probability (i.e., 1− Pit).

If it is assumed, for the moment, that the i-th person came onto the list,

remained there for t consecutive years, and then dropped off due to either death or

decline, then his or her contribution to the likelihood of the data would be

Pitr

t−1∏
k=1

(1− Pik) (4.2)

which is the conditional probability that he or she drops off the list after his or her

t-th year due to the r-th risk, conditional on the fact that he or she has appeared

for that many years, multiplied by the probability that that he or she will appear

for that many years.

For people who came onto the list, remained there for some number of years,

and then dropped off due to either death or decline, the number of consecutive years

that they appeared on the list is obviously known. However, for people who were

still on the list in its most-recent year, we do not know whether they will appear

again or drop off. We only know that they will appear for at least as many years as

they have already appeared. Again, the observations associated with those people

are said to be right-censored. Letting dit = 1 if the i-th person was right-censored

in his or her t-th year on the list, and letting dit = 0 otherwise, the i-th person’s

contribution to the likelihood of the data would be



118

[
Pitr

t−1∏
k=1

(1− Pik)
]1−dit [ t∏

k=1

(1− Pik)
]dit

(4.3)

which reduces to the previous equation, if his or her number of years on the list was

not right-censored.

A convenient choice for the functional form of the conditional probabilities in

the above-given equation given above is the logistic function

Pitr =
exp{βrxit}

1 + exp{βrxit}
(4.4)

where βr are parameters that reflect the association between the covariates and the

probability of dropping off due to the r-th competing risk. That functional form

is convenient because then a discrete-time duration model of the number of years

that a person appears on the magazine’s list before dropping off due to either death

or decline is identical to a multinomial logit model where each year that a person

appears on the list is treated as a separate observation that could result in the person

appearing again in the next year, dropping off due to decline, or dropping off due

to death. That identity between a discrete-time duration model and a multinomial

logit model was emphasized by Allison (1982, esp. p. 89), reemphasized by Jenkins

(1995), and derived for the case of more than one competing risk by Lauer (2005,

pp. 119–24). The identity has also been exploited by a range of studies on a range

of topics (see Esteve-Perez et al. 2013 for a recent example).

As with any multinomial logit model, the relative probability of one alterna-

tive rather than another is a log-linear function of covariates. If the alternative of

appearing again is taken as the base case (i.e., if the parameters associated with that

outcome are normalized to zero for identification purposes), then the probability that

the i-th person will drop off after his or her t-th year on the list due to the r-th risk

(Pitr) relative to the probability that he or she will appear again in the next year
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(1− Pit) is a log-linear function of covariates such that

ln

{
Pitr

1− Pit

}
= βrxit (4.5)

The model that we will consider is therefore no different than a standard multi-

nominal logit model. Such a model is perhaps the simplest model that allows for

time-varying covariates to affect (or at least be associated with) the probability that

someone will appear on Forbes Magazine’s list again, but even such a simple model

has not been applied to the magazine’s list before. Thus, while the model is simple, a

study that relies on the model is still more sophisticated than previous studies. The

model can be used to more carefully quantify associations that previous studies have

only hinted at. Kennickell’s (2006) finding that less-wealthy people seem to be less

likely to remain on the list can be more carefully quantified, for example. The model

can also hopefully be used to identify new associations, or, at least, it can be used to

suggest associations that future studies could perhaps quantify more carefully with

even more sophisticated models.

As a final note on our model, it can be noted that we have not explicitly

modeled the competing risk of right censoring. We have not done so because, for a

person on the list in a given year, whether the observation associated with that person

in that year was right censored or not is completely determined by whether the year

was the most-recent year or not. A dummy variable for whether someone was on the

list in the most-recent year would therefore perfectly predict whether an observation

was right censored. Some of the covariates we will consider are year-specific dummies,

so will restrict our attention to the person-year observations associated with every

year except the most-recent one, and we will thereby restrict our attention to the

competing risk that cannot be completely explained by a single dummy.
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4.4.2 Covariates

For our model of the probability that someone on the magazine’s list in a

given year will appear again, drop off due to a decline in wealth, or drop off due to

death, the covariates we will consider include the person’s age, his or her rank in the

distribution of wealth, the calendar year, the number of consecutive years for which

he or she has already appeared, and whether his or her number of consecutive years

is left censored. Those covariates, a few of the other covariates we will consider, and

some covariates we will not consider can be discussed in more detail as follows.

Age. One of the covariates we will consider is a person’s age. Again, younger people

are presumably less likely to drop off due to death. Younger people may also be

less likely to drop off due to a decline in wealth. Out of all of the people who have

appeared on Forbes Magazine’s list between 1982 and 2012, their minimum age was

22 years of age. Daniel Ziff was that young in 1994 when he came onto the list after

inheriting part of his father’s fortune (Wingfield 2007). He has been on the list ever

since then. The maximum age of the people who appeared on the list was 99 years

of age. The widow of an oil baron, Irene Wells Pennington, was that old in 1998.

She dropped off the list in the next year due to a decline in her wealth. The median

age of the people who appeared on the list was 64 years of age.

Rank. A person’s rank in the distribution of wealth will also be considered as a

covariate. Again, wealthier people are presumably less likely to drop off the list

due to a decline in their wealth. They may also be less likely to drop off due to

death. Out of the people who appeared on the magazine’s list between 1982 and

2012, their ranks were obviously as high as the 1rst wealthiest. Their ranks were as

low as the 399th wealthiest. The lowest rank was not the 400th wealthiest due to

ties. Their median rank was the 194th wealthiest. The median rank was not the

200th wealthiest due to ties.
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Year-specific dummies. A person’s probability of appearing again after appearing

in a given year could be associated with the given year in which he or she appeared.

Some years may simply involve more or less turnover than others. A non-parametric

approach to modeling any years-specific effects is to include dummy variables for

each year as covariates. Dummies for each year (except an arbitrary year in order to

avoid the well-known dummy variable trap) can be included because, after each year,

some people appeared on the list again, some people dropped off due to a decline in

wealth, and some people died.

Duration-specific dummies. A person’s probability of appearing again could

be associated with the number of years that the person has already appeared. A

non-parametric approach to modeling any duration dependence would be to include

dummy variables for each duration (again, except an arbitrary duration to avoid

the dummy variable trap) as covariates. For the data used by this essay, duration

dummies can be included for almost all of the durations, but not all of them. There

would be a perfect prediction problem if dummy variables for durations of 30 or 31

years were included. Each person who appeared on the list for 30 or 31 years (of

which there were 25 people) appeared again. None of them dropped off due to death

or decline. There would also be a perfect prediction problem, if a dummy variable

for a duration of 29 years was included. None of the people who appeared on the

list for at least 29 consecutive years died by the next year. They all either appeared

again or dropped off due to decline. In order to adopt a non-parametric approach to

modeling any duration dependence while avoiding those perfect prediction problems,

a dummy variable for a duration of 28 or more years can be included instead of

separate dummies for 28 to 31 years. That approach seems preferable to adopting

a parametric approach. The inferences that can be drawn about durations that are

that long are also fairly limited anyway, as seen below.
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Left-censored dummy. To the extent that the number of consecutive years that

someone has appeared on the magazine’s list affects the probability that he or she

will appear again, a dummy variable for whether the person’s number of consecutive

years on the list is left censored or not should perhaps be considered as a covariate.

If a person’s number of consecutive years on the list are left censored, then he or she

might have been on the list for many more consecutive years, if only the magazine

had made its list in earlier years. We will consider such a left-censored dummy as a

covariate.

Other covariates. Other covariates besides those discussed above could also be

considered. Men may be more likely to die than women, other things being equal,

for example. Unfortunately, Forbes Magazine has not systematically reported de-

mographic information like the genders, races, or ethnicities of the people who have

appeared on its list over the years. Such information could perhaps be found through

other sources of data, but we leave that as a direction for future research, and do

not include any demographic information as covariates.

It should also perhaps be noted that, even if such information was readily

available, it would likely generate a number of perfect prediction problems for our

model. According to Bernstein and Swan’s (2007, p. 13) analysis of the first 25 years

of Forbes Magazine’s list, out of the roughly 1,300 unique individuals who appeared

on the magazine’s list over those years, only about 200 were women, only about

30 were Asian Americans, only about 10 were Hispanic Americans, and only about

10 were African Americans with only one African American woman ever appearing

(namely, Oprah Winfrey). That lack of diversity among the people on the magazine’s

list has fairly clear implications about who is more likely to move into the very top

of the wealth distribution, but it could confound attempts to explain the probability

of moving out of that part of the distribution.
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While Forbes Magazine has not systematically reported demographic informa-

tion about the people who have appeared on its list, the magazine has systematically

reported other information, at least in the years since its list went online in 1996. For

the people who have appeared on its list since that year, the magazine has reported

the primary industry in which someone’s fortune was made, as well as whether some-

one’s fortune was self-made. We will initially ignore that information so that we can

estimate the model across a larger number of years, but, after that, we will look at

a smaller number of years in order to use that information.

Similarly, we will initially ignore the philanthropic activities of the people who

have appeared on Forbes Magazine’s list so that we can estimate the model across a

larger number of years, but we will consider those activities over a smaller number of

year after that. In order to consider such activities, we must draw on other sources

of data that are also limited to the years since 1996.

4.4.3 Results and Discussion

Table 4.1 reports the results of estimating the model discussed above with

the covariates discussed above for people who appeared at least once on Forbes

Magazine’s list in any year between the years 1982 and 2012. In total, there were

a little less than 12,400 person-year observations (specifically, 12,379 observations)

associated with 1,451 unique people. The remaining 21 observations were associated

with the four people who dropped off the list because they renounced their American

citizenship. One reason to ignore those observations is that any inferences drawn

from such a small number of observations would be severely limited, as noted above.

Another reason to ignore those observations, which was not noted above, is that

they would create perfect prediction problems with some of the year and duration

dummies, given that almost all of the people who appeared on the magazine’s list

never dropped off of it due to a renunciation of their citizenship.
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Table 4.1. Multinomial Logit Model of the Competing Risks to Appearing Again

Competing risks

Covariates Decline Death

Constant −3.58
∗∗∗ −3.72

∗

(0.62) (2.20)
Age −0.04

∗∗ −0.10
∗

(0.02) (0.06)
Age squared 0.00

∗∗
0.00

∗∗∗

(0.00) (0.00)
Rank 0.01

∗∗∗
0.00

(0.00) (0.00)
Left-censored dummy −0.11 −0.02

(0.12) (0.21)
Year dummies ∗∗∗Yes ∗∗∗Yes
Duration dummies ∗∗∗Yes ∗∗∗Yes

Number of observations 12, 379
Percent correctly predicted 88.25
Log-likelihood −3, 965.22
Test for non-constant variables 2, 407.25

∗∗∗

Test for age variables 321.09
∗∗∗

Test for rank variables 1, 416.29
∗∗∗

Test for left-censored dummies 0.91
Test for year dummies 181.79

∗∗∗

Test for duration dummies 69.54
∗

Source: Data adapted from Forbes Magazine (1982–2013).

Note: This table shows the maximum-likelihood estimates for the multinomial logit model
described in the text, in which the unit of observation is a person on Forbes Magazine’s list in a
given year who could either appear on the list again in the next year, drop off due to an absolute
or relative decline in his or her wealth, or drop off due to death. Appearing again was taken as the
base case. The covariates, the number of observations, the percentage of those observations that
were correctly predicted, the likelihood-ratio tests, and the independence-of-irrelevant-alternatives
tests are all described in the text.

∗p < .10 ∗∗p < .05 ∗∗∗p < 0.01
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The results reported in that table are difficult to interpret in a direct manner,

given that the model is a model of relative probabilities, and given that the rela-

tive probabilities are modeled as nonlinear functions of the covariates. The series of

figures that follow aid in the interpretation. The figures that follow show the prob-

ability that a particular person would appear again, drop off due to decline, or drop

off due to death. Unless otherwise stated, the person’s age is assumed to be equal to

the median age of 64 years of age. The person’s rank is assumed to be equal to the

median rank of the 194th wealthiest. The person is also be assumed to have come

onto the list for the first time in 1996. Note that, if a person came onto the list in

1996, then he or she would obviously be on the list in that year, he or she would have

only appeared on the list for one consecutive year, and his or her consecutive years

on the list would not be left-censored (which would only be the case if he or she had

been on the list in every year since 1982). This basis for comparison is somewhat

arbitrary, but the results are similar with similar ages, ranks, years, and durations.

Ninety-five percent confidence intervals for the probabilities are shown as part

of the figures that follow. Those intervals are Krinsky-Robb or “parametric boot-

strap” intervals (Krinsky and Robb 1986). The intervals were constructed as follows.

Given the point estimates for the parameters of the trinomial logit model, and given

the estimated covariances for those parameters, the probabilities were repeatedly

recalculated by repeatedly redrawing the parameters of the trinomial logit model

from a multivariate normal distribution whose expected values were equal to the

point estimates and whose covariances were equal to the estimated covariances. The

parameters were redrawn and the probabilities were recalculated a large number

of times (specifically, 10,000 times). The confidence intervals for the probabilities

were then constructed by taking certain percentiles of those recalculated probabili-

ties. Such intervals are computationally intensive to construct, but, unlike linearly
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approximated or “Delta-method” confidence intervals, the intervals cannot include

impossible probabilities that are greater than unity or less than zero.

Effect of age. Holding a person’s rank constant at the 194th wealthiest, holding his

or her calendar year on the list constant at 1996, and holding his or her number of

consecutive appearances on the list constant at one appearance, figure 4.4 shows the

association between the person’s age and his or her probability of appearing again,

dropping off due to decline, or dropping off due to death. As seen in that figure,

the probability that the person will appear again is approximately constant until

about 70 years of age. After that, the probability of appearing again decreases at an

accelerating rate as the person ages. The decrease in the probability of appearing

again is almost entirely attributable to an increase in the probability of dropping off

due to death. There is little, if any, association between the person’s age and his or

her probability of dropping off due to decline. Younger people are therefore more

likely to remain on the list, but because they are less likely to die, and not because

they are less likely to drop off due to decline.

Effect of rank. Holding the person’s age constant at 64 years of age and holding the

other covariates constant, figure 4.5 shows the association between the person’s rank

in the distribution of wealth and his or her probability of appearing again, dropping

off due to decline, or dropping off due to death. As seen in that figure, if the person

was the wealthiest person, then he or she would be expected to appear again with

almost a 100 percent chance. If he or she was the least-wealthiest person among the

400 wealthiest Americans, on the other hand, then he or she would be expected to

appear again with only about a 50 percent chance. That decrease in the probability

of appearing again is almost entirely attributable to an increase in the probability of

dropping off due to decline. There is therefore very little, if any, association between

a person’s wealth and his or her mortality rate.
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Figure 4.4. Effect of Age

Source: Data adapted from Forbes Magazine (1982–2013).

Note: This figure shows 95 percent confidence intervals for the probability that a person
on Forbes Magazine’s list in a given year would appear on the list again in the next year,
drop off due to a decline in wealth, or drop off due to death as a function of the person’s
age in the given year.

Effect of the calendar year. Holding a person’s age, rank, and consecutive ap-

pearances on the list constant, and also holding the left-censored dummy constant

at zero for simplicity, figure 4.6 shows the association between the calendar year in

which the person appears on the list and his or her probability of appearing again,

dropping off due to decline, or dropping off due to death. The probability of appear-

ing again is relatively high for each year, while the probabilities of dropping off due

to death or decline are relatively low for each year, so the figure was split into two

for the benefit of the reader. As seen in the figure, the probabilities of appearing

again or dropping off due to either death or decline are approximately the same in

each year, although there are some notable exceptions.
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Figure 4.5. Effect of Rank

Source: Data adapted from Forbes Magazine (1982–2013).

Note: This figure shows 95 percent confidence intervals for the probability that a person
on Forbes Magazine’s list in a given year would appear on the list again in the next year,
drop off due to a decline in wealth, or drop off due to death as a function of the person’s
rank in the distribution of wealth.

The probability of dropping off due to an absolute or relative decline in wealth

appears to have been relatively high during the stock-market boom that collapsed

with Black Monday in 1987, relatively high during the stock-market boom of the late

1990s that collapsed with the dot-com bubble, and relatively high during the recovery

that followed the 2001 recession but preceded the crisis of recent years. Turnover

therefore seems to have been higher during booms and lower during busts. Of course,

certain booms or certain busts may be better or worse for certain people in certain

industries. During the recent crisis, for example, people who made their fortunes in

either finance, insurance, or real estate—the so-called FIRE industry—may not have

fared as people well as people who made their fortunes in other industries.
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Figure 4.6. Effect of the Calendar Year

Source: Data adapted from Forbes Magazine (1982–2013).

Note: This figure shows 95 percent confidence intervals for the probability that a person
on Forbes Magazine’s list in a given calendar year would appear on the list again in the
next year, drop off due to a decline in wealth, or drop off due to death as a function of the
given year.

Effect of duration. Holding the other covariates constant, figure 4.7 shows the

association between the number of consecutive years that a person has appeared on

the list and his or her probability of appearing again, dropping off due to decline,

or dropping off due to death. The figure was again split into two for the benefit

of the reader. As seen in the figure, the probabilities are approximately the same

for each duration. There is greater uncertainty about the effects of durations longer

than about 20 years, but that uncertainty can be attributed to the relatively small

number of people who appeared year after year for that many years. Thus, after

controlling for covariates like a person’s age and his or rank in the distribution of

wealth, there does not appear to be any duration dependence. Figures 4.2 and 4.3
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Figure 4.7. Effect of Duration

Source: Data adapted from Forbes Magazine (1982–2013).

Note: This figure shows 95 percent confidence intervals for the probability that a person
on Forbes Magazine’s list in a given year would appear on the list again in the next year,
drop off due to a decline in wealth, or drop off due to death as a function of the number
of consecutive years that the person has already appeared.

from before suggested otherwise, but recall that those figures did not control for any

other covariates besides duration.

Effect of left-censoring. The only other covariate included in the model discussed

above was a dummy variable for whether a person’s consecutive appearances on the

list were left-censored or not. That dummy variable was included as a covariate,

but, as shown in the table, a likelihood-ratio test suggests that the likelihood of

a model with the dummy variable is not statistically significantly different than a

model without that dummy variable (X2
2 ≈ 0.91 p ≈ 0.64). Such a finding seems

to be consistent with the finding that, after controlling for covariates like a person’s

age and rank, there does not appear to be any duration dependence.
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Correct and incorrect predictions. The extent to which the above-discussed

model is a good model should be assessed. One measure of the goodness of the fit of

the model to the data is the percentage of observations that were correctly predicted,

in the sense that the outcome that actually occurred was the outcome that the model

predicted was the most likely to occur. The percentage of observations that were

correctly predicted by the model is relatively high at about 88 percent.14

Although many observations are correctly predicted by the model, the model

incorrectly predicts some observations. Indeed, for 14 observations, the model even

predicts that the outcome that actually occurred would occur with a probability of

less than one half of one percent. For each of those 14 observations, the model predicts

that a person would appear on the list again in the next year with a probability of

more than 99.5 percent, but he or she did not appear again. Nine of the 14 people

did not appear again because they died. The people who died all did so at relatively

young ages in relatively unusual ways. One person, Tyson Foods heir Randal William

Tyson, died at 34 years of age when he choked on a cookie (Associated Press 1986).

Another person, Quad Graphics founder Harry Quadracci, died at 66 years of age

when he drowned in a lake near his home (New York Times 2002). Three people

died in plane crashes. The Heinz heir Henry John Heinz III died at 52 years of

age when there was a mid-air collision between his plane and a helicopter (New

York Times 1991); the Atlas Air founder Michael Chowdry died at 46 years of age

when the demilitarized fighter jet that he was flying crashed (Flying Magazine 2001);

and the Walmart heir John Walton died at 58 years of age when the experimental

14Admittedly, that percentage is only slightly higher than the percentage of observations
that would have been correctly predicted by a constant-only model. Out of the almost 12,400
observations, a constant-only model would have correctly predict only 34 fewer observations. That
said, the full model still performs better than a constant-only model in terms of the percentage of
observations correctly predicted. The model also performs better in terms of other goodness-of-fit
measures. The log-likelihood of the full model is statistically significantly greater than that of the
constant-only model at less than the one percent level, as shown in the table.
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ultralight aircraft that he was flying crashed (Associated Press 2005). Cancer killed

four others. The real-estate magnate Robert Harris Lurie died at 48 years of age

from colon cancer (New York Times 1990a); the Disney heir Sharon Disney Lund

died at 56 from breast cancer (Los Angeles Times 1993); the Oracle co-founder Bob

Miner died at 52 from lung cancer (New York Times 1994); and the Apple co-founder

Steve Jobs died at 56 from pancreatic cancer (New York Times 2011).

Given that those nine people all died at relatively young ages in relatively

unusual ways, it is not surprising that the model would incorrectly predict whether

they appeared again. The people who died from cancer may have deaccumulated

wealth, either because of medical expenses or bequest motives, but recall that the

model found little if any association between wealth and mortality. Even if the model

did find such an association, the model would almost surely still fail to predict the

deaths of people who accidentally choked on cookies, drowned in lakes, or crashed

their planes, given that such deaths do not afford the opportunity to deaccumulate

wealth. Also, even though it seems like the wealthy might be at a higher risk of

dying in demilitarized fighter jets or experimental ultralight aircrafts, such deaths

presumably only occur with very small probabilities.

The other five people remained among the living, but they apparently became

too poor to remain on the list. One person, William Bernard Ziff Jr., appears to have

become too poor on his own accord. He was estimated to be worth about 1.5 billion

dollars in 1993, but he fell off the list by the next year because he transfered ownership

of Ziff Communications—a company that he himself had inherited after his father

died in the 1950s—to his three sons. In the same year that William Jr. dropped off

Forbes Magazine’s list, his three sons appear on the magazine’s list for the first time

with a combined wealth equal to their father’s wealth in the previous year. Although

William Jr. had a bout with prostate cancer about a decade earlier and eventually
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died from that form of cancer about a decade later, the transfer of ownership was

apparently not in anticipation of his death. He transfered ownership because he was

retiring (Forbes Magazine 1993, 1994; New York Times 2006). It can be noted as

an aside that William Jr. appeared on the magazine’s list in every year from 1982 to

1993, while his three sons—Daniel, Dirk, and Robert—have appeared on the list in

every year from 1994 to the most-recent list.

The other four people who remained among the living but became too poor

to remain on the list do not appear to have become too poor on their own accord.

The real-estate and gambling mogul Donald Trump was estimated to be worth 1.7

billion current dollars in 1989, but he dropped off the list by the next year amid a

downturn in the real-estate and gambling markets (Forbes Magazine 1989, 1990); the

“King of Malls” Edward John DeBartolo Sr. was estimated to be worth 1.4 billion

current dollars in 1991, but he dropped off the list by the next year amid the same

downturn in the real-estate market (Forbes Magazine 1991, 1992); the Cablevision

founder Charles Francis Dolan was estimated to be 2.6 billion current dollars in 2001,

but he dropped off the list by the next year amid a dramatic decline in the price of

his company’s stock (specifically, a decline of over 90 percent over two years; Forbes

Magazine 2001, 2002); and one of the members of the Pritzker family, Robert Alan

Pritzker, was estimated to be worth 7.6 billion current dollars in 2003, but he fell

off the list by the next year amid a legal fight with other family members (Bernstein

and Swan 2007, pp. 259–61; Forbes Magazine 2003, 2004).In the case of Robert Alan

Pritzker, it is somewhat unclear whether he actually became too poor amid the legal

battles or, instead, whether he was already too poor and Forbes Magazine’s estimate

of what he was worth was simply revised down when the legal battles revealed new

information. Either way, 10 new members of the Pritzker family appeared on the list

for the first time in the same year that Robert fell off of it (Forbes Magazine 2004).
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We relate the details of those especially egregious prediction errors, not to

suggest that a parsimonious model should necessarily be able to predict all of the

outcomes, but rather to suggest some ways in which our model might be extended.

For example, just like people in the FIRE industry were presumably more likely to

drop off the list amid the recent crisis, it is not surprising that people like Donald

Trump and the so-called King of Malls were apparently more likely to drop off the

list amid a downturn in the real-estate market in the early 1990s (although there

may have been other reasons why Trump was more likely to drop off; see Capehart

forthcoming). Our model could therefore be extended to account for the possibility

that people in certain industries at certain times may be more likely to drop off the

list. We will now turn to considering a few such extensions.

4.4.4 Some Quick Extensions

The model discussed above can be extended to consider how other factors might

affect the probability that a person on Forbes Magazine’s list in a given year will

appear again. We will extend the model to consider the affect of whether someone

was philanthropic, whether someone’s wealth was self-made, and whether someone’s

wealth was made in certain industries rather than others. Each of those factors will

be considered in turn.

Giving it away? One reason why someone might be more likely to drop off the

magazine’s list is that they may be more philanthropic. Other things being equal,

a more philanthropic person would be more likely to give away more wealth and

therefore more likely to drop off due to an absolute or relative decline in wealth.

None of the especially egregious prediction errors discussed above could be attributed

to philanthropy, unless the children of William Bernard Ziff Jr. or Robert Alan

Pritzker are seen as charity cases, but wealthy people have been known to engage in

philanthropy, so that might be something that matters.
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While the philanthropy of the people who appear on its list has sometimes

been the focus of Forbes Magazine’s coverage (see, for example, Adams 2014), the

magazine has never systematically reported information about their philanthropy.

Some relatively systematic information is available from other sources, however.

For every since 2000, the newspaper The Chronicle of Philanthropy has pub-

lished the “Philanthropy 50,” which is a list of the 50 Americans who were the most

generous in terms of the total dollar value of their new commitments of money, stock,

or other assets to charities and foundations over the course of the year. New com-

mitments include donations that were paid out during the year, as well as pledges

to pay out donations in the future, although pledges must be specific commitments

to specific organizations in order to count towards the rankings (Di Mento 2014).

Note that, if someone is simply paying off a pledge made in an earlier year, then

those payments do not count because they reflect old rather than new commitments.

Also note that if someone makes a pledge to give away money but does not specify

who they will give money to or when they will give it away, then that pledge does

not count, either. Signing the so-called “Giving Pledge” without making any further

commitments does not count, for example.15

The Philanthropy 50 only goes back to 2000, but, before that, The Chronicle

of Philanthropy worked in conjunction with the magazine Slate to publish a similar

list, the “Slate 60,” which was an annual list of the 60 most-generous Americans

where a person’s generosity was measured in the same manner (or, at least, there is

no indication that it was measured in a different manner). The inaugural year of that

list included the 60 most-generous Americans of 1996 (Allen 1996; Plotz 2006).16

15On the Giving Pledge and some of its signatories who are and are not on the most-recent
year of the Philanthropy 50, see Lewis (2014).

16As an aside, it can be noted that Slate was apparently inspired to start its list after a
wealthy American suggested that, whereas Forbes Magazine’s list of the 400 wealthiest Americans
discourages philanthropy, a list of the most-generous Americans could encourage it (Plotz 2006).
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Thus, information is available on some of the most-generous Americans in every

year since 1996. Over those years, some of the most-generous Americans according

to the Slate 60 and Philanthropy 50 lists were also some of the wealthiest Americans

according to Forbes Magazine’s list. Those people were presumably less likely to

continue to appear on Forbes Magazine’s list. If someone made a donation that was

generous enough to make them one of the most-generous Americans, then he or she

was presumably more likely to drop off due to a decline in wealth.

In order to account for that possibility, we can incorporate the information

contained in the Slate 60 and Philanthropy 50 lists into our model. There are various

ways in which we might incorporate that information, but we will incorporate it as

follows. We will include a dummy variable that reflects people who were one of the

wealthiest Americans in a given year according to Forbes Magazine’s list and also

one of the most-generous Americans in the same year or any earlier year according

to either the Philanthropy 50 list for the years since 2000 or the Slate 60 for the

years between 1996 and 1999. By defining the dummy in that way, we allow for the

possibility that someone paying off a previous commitment would be more likely to

drop off Forbes Magazine’s list even though those payments would not count towards

either the Philanthropy 50 or Slate 60 lists.17

Including that philanthropic dummy obviously constrains the analysis to the

years since 1996, but the model can otherwise be the same as it was before, except

for one slight change. The slight change arises from the fact that a dummy variable

for a duration of 14 years cannot be included in the model. For the people who

appeared on any year of Forbes Magazine’s list since 1996 and who also appeared on

17Again, there are other ways in which we might incorporate the information contained in
the Philanthropy 50 and Slate 60 lists. There is a bit of an inconsistency in looking at the 60 most-
generous Americans in some years and only the 50 most generous in other years, but the results
presented below are qualitatively similar if we only look at the 50 most generous on the Slate 60.
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any year of the list since 1982 for at least 14 consecutive years, none of them died

after their 14th consecutive year on the list. Including a dummy for a duration of

14 years would therefore create a perfect prediction problem. In order to maintain a

non-parametric approach while avoiding that problem, a dummy variable for 13, 14,

or 15 years can be included, rather than dummy variables for each of those years.

If the above-discussed model is re-estimated with that slight change and with

the philanthropic dummy variable included as a covariate, then the results are as

follows. A likelihood-ratio test suggests that the likelihood of a model with the

philanthropic dummy is not significantly greater than a model without that dummy

at conventional levels of statistical significance (X2
2 ≈ 1.68, p ≈ 0.43). Moreover, the

difference that the philanthropic dummy would make for the sort of typical person

we considered above—again, a person who is 64 years of age, the 194th wealthiest

American, and on the list for the first time in 1996—would not be statistically

significant at conventional levels and, even if it was statistically significant, it would

be arguably small. If the person ever appeared on the Philanthropy 50 or Slate 60

lists, then his or her probability of appearing on Forbes Magazine’s list again would

differ by less than two tenths of a percentage point.

Given its lack of statistical or substantive significance, we should perhaps ig-

nore the direction of that two tenths of a percentage point difference, but its direction

can be noted. If our typical person ever appeared on the Philanthropy 50 or Slate 60

lists, then the person would actually be less likely to drop off Forbes Magazine’s list

mostly because he or she would be less likely to drop off due to a decline in wealth.

The philanthropic are those who can afford it the most, it seems. The direction of

that effect is even more pronounced if we re-define the dummy variable so that it only

reflects people who were on the Philanthropy 50 (or, in the years before 2000, the

Slate 60) in the same year that they were on Forbes Magazine’s list. The likelihood
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of a model with that re-defined dummy is still not statistically significant greater

than the likelihood of a model without it, and the effect for the typical person is

also still not statistically significant, but the person would be about one percentage

point less likely to drop off because he or she would be about one percentage point

less likely to drop off due to decline.

It is of course possible that we have failed to find a negative effect of philan-

thropy on the probability of appearing again because our measure of philanthropy

fails to reflect people who donated enough to drop off Forbes Magazine’s list but

never donated enough to appear on the Philanthropy 50 or Slate 60 lists. Yet, if

we look at the wealth of even the least-wealthy of the 400 wealthiest Americans

in any given year and compare that to the largest amount that someone could have

committed without appearing on the Philanthropy 50 or Slate 60 lists, then the com-

mitments seem to be too small to have an effect that is discernible from any of the

other varied forces that might affect the rise and fall of wealth. For the year 2013,

for example, the least generous of the 50 most-generous Americans committed about

38 million current dollars over the course of that year according to the Philanthropy

50 list. That amount may seem like a hefty sum, but it is less than three percent

of the wealth of even the least-wealthy of the 400 wealthiest Americans on Forbes

Magazine’s list in the same year, who was worth about 1.3 billion current dollars.

Appearing on any of the Philanthropy 50 or Slate 60 lists does not seem to have

a statistically or substantively significant effect on (or, at least, an association with)

the probability of appearing on Forbes Magazine’s list again, therefore. If anything,

a person is more likely to appear again because he or she is less likely to drop off due

to a decline in wealth. Even though philanthropy does not seem to have an effect

on the persistence of wealth, other factors might matter. The source of someone’s

wealth might matter, for example. We now turn to considering that possibility.
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Profligate heirs? As discussed above, after its list went online in 1996, Forbes

Magazine started systematically reporting whether someone’s fortune was self-made.

According to at least one year of the magazine’s list, someone’s fortune should be

considered self-made if they “built [their] fortunes themselves,” although someone’s

fortune could still be considered self-made, even if they did not build their fortunes

“entirely from scratch” because they “borrowed money from in-laws or parents” or

“started businesses with spouses or other relatives” (Kroll 2012). A dummy variable

for whether someone’s fortune was self-made can be included as a covariate in the

above-discussed model. Including that dummy variable again constrains the analysis

to the years since 1996, so the slight change discussed above must be made again.

If the above-discussed model is re-estimated with that slight change and with

a self-made dummy variable included as a covariate, then a likelihood-ratio test

suggests that the likelihood of a model with the self-made dummy is statistically

significantly greater than a model without that dummy (X2
2 ≈ 12, p < 0.01). How-

ever, the difference that the dummy would make for the sort of typical person we

have been considering would not be statistically significant at conventional levels.

The difference would also seem to be small. If the person’s wealth was self-made,

then he or she would only be about one percentage point less likely to appear again

because he or she would be about one percentage point more likely to drop off due to

decline. Only if the person was barely one of the 400 wealthiest Americans would the

difference be statistically and arguably substantively significant, as figure 4.8 shows.

Thus, to the extent that there is any association between whether someone’s

wealth is self-made or not and whether they appear again or not, it seems that the

self-made are more likely to drop off. Those who inherit a fortune may actually be

less profligate then those who make their own fortunes, perhaps. That said, the

self-made may tend to hold their wealth in a single or small number of assets and, as
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Figure 4.8. Effect of Being Self-made

Source: Data adapted from Chronicle of Philanthropy ; Forbes Magazine (1982–2013); Slate.

Note: This figure shows, as a function of the person’s rank in the distribution of wealth,
point estimates and 95 percent confidence intervals for the difference between the prob-
ability that a person on Forbes Magazine’s list in a given year would appear on the list
again in the next year if their wealth was self-made, on the one hand, and the probability
that they would appear again if their wealth was not self-made, on the other hand. The
probabilities correspond to a person who appeared on the list for the first time in 1996 at
63 years of age.

such, they may be more susceptible to a dramatic decline in their wealth. A person

who became rich by building a company may hold almost all of his or her wealth in

that single company instead of a well-diversified portfolio, for example.

A Great Recession? At the same time that Forbes Magazine began systemati-

cally reporting whether someone’s wealth was self-made, the magazine also began

systematically reporting the primary industry in which someone’s wealth was made.

Dummy variables for all the industries identified by the magazine could be included

in the model discussed above, perhaps, but industries presumably rise and fall over

time. The years around the recent crisis were years in which people who made their
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fortunes from the FIRE industry presumably saw their fortunes rise, fall, and then

perhaps rise again, for example.

In order to study how people in the FIRE industry fared in the years around

the recent crisis, the model discussed above with the slight changed discussed above

can be re-estimated with a dummy variable for whether someone was in the FIRE

industry or not and interaction terms between that industry-specific dummy and

year-specific dummies. No one in the FIRE industry died after appearing on the list

in either 1999, 2000, or 2012, so we will only include industry-year interaction terms

for the years between 2001 and 2011.

Figure 4.9 shows, for a person who is 64 years of age, who is the 194th wealthiest

American, and who came onto the list for the first time in a given year, 95 percent

confidence intervals for the difference between—on the one hand—the probability

that the person would drop off due to an absolute or relative decline in his or her

wealth, if his or her fortune was made in the FIRE industry, and—on the other

hand—the probability that the person would drop off due to decline, if his or her

fortune was made in any other industry besides the FIRE industry.

As shown in that figure, the model suggests that, if a person’s fortune was

made in the FIRE industry rather than another industry, then the person would

have been slightly less likely to drop off due to decline in the years leading up to the

crisis (with the year 2005 as the only exception). The model also suggests that he

or she would have been slightly more likely to drop off due to decline in each year

between 2007 to 2010. By 2011, he or she would have again been slightly less likely

to drop off due to decline.

The differences are so slight that there is almost no difference, however. The

differences are not statistically significant at the five percent level, for example, and

the differences are all on the order of only about one percentage point. Only back
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Figure 4.9. Effect of the FIRE Industry

Source: Data adapted from Forbes Magazine (1982–2013).

Note: This figure shows, for select years, point estimates and 95 percent confidence intervals
for the difference between the probability that a person on Forbes Magazine’s list in a given
year would drop off by the next year due to a decline in wealth if he or she was in the
FIRE industry, on the one hand, and the probability that the person would drop off due
to a decline in wealth if he or she was in any other industry, on the other hand. The
probabilities for a given year correspond to a person with the median age and rank who
appeared on the list for the first time in the given year.

in the year 2003 was the difference statistically significant at that level; but, even in

that year, the person would have only been about four percentage points less likely

to drop off due to decline. In 2008, which appears to have been the worst year of

the crisis for people who made their fortunes in the FIRE industry, a typical person

would have been expected to drop off due to decline with a probability of about

five percent rather than about three percent, if his or her fortune was made in the

FIRE industry rather than another industry. Thus, even in its worst year, the Great

Recession does not appear to have been much worse for the people who made their

fortunes in the FIRE industry than any other industry, other things being equal.
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4.5 Conclusion

This essay studied the extent to which wealth persists among some of the

wealthiest Americans by using a data source that was well-suited to certain tasks.

Specifically, this essay used Forbes Magazine’s annual list of the 400 wealthiest Amer-

icans in order to study the extent to which people who appear on that list continue to

appear. The study found that, while most people have remained on the magazine’s

list for a relatively short amount of time, some have remained on the list for longer

amounts of time, and a few have even remained on the list in every year since it

started over 30 years ago. Thus, while the wealth of most people seems to be more

ephemeral, the wealth of a few seems to be almost permanent.

This essay also studied some of the factors associated with the continuing to

appear on the list. Some of the findings were hardly surprising. Younger, wealthier

people were found to be less likely to drop off the magazine’s list compared to their

older and poorer counterparts. Wealthier people were less likely to drop off the list

because they were less likely to become too poor stay there, while younger people were

less likely to drop off because they were less likely to die. Although those findings

are not surprising, there is nevertheless value in identifying or at least confirming

those associations, as well as quantifying them.

Some findings were more surprising. The finding that older people were not

any more or less likely to become too poor to stay on the list is surprising, perhaps,

although that finding should only be surprising to someone who is familiar with

the life-cycle theory of savings but unfamiliar with all of its empirical failures. The

more surprising results were related to whether appearing on the magazine’s list for

more years helps one’s chances of appearing again for yet another year (it seems

to neither help nor hurt, after controlling for other factors), whether philanthropy

hurts one’s chances of appearing again (it seems to help if anything, perhaps because
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the philanthropic are those who can afford it the most), whether building rather

than inheriting a fortune helps one’s chances of appearing again (it seems to hurt if

anything, perhaps because the portfolios of the self-made are riskier), and whether

being in the wrong industry at the wrong time hurts one’s chances of appearing again

(it seems to hurt, but not as much as one might expect in at least some cases).

Directions for future research to which Forbes Magazine’s list may be well-

suited include more fully exploring possible explanations for this essay’s findings,

especially its more surprising ones. The fact that the more surprising findings are

all findings of little or no association suggests one possible explanation. It could

be the case that the experiences of the wealthiest Americans are too varied for a

simple model to identify strong associations. This essay argued that recent crises

presumably hurt people in the FIRE industry, and that industry was indeed the

wrong industry for some people during the crises; yet that industry was also the

right industry for other people during that time. John Paulson saw his wealth rise

by betting against the housing market, for example (Forbes Magazine 2007).

Some other directions for future research into the persistence of wealth involve

tasks to which the magazine’s list is not especially well-suited, but which are of

interest. There is an interest in studying, not just whether someone falls off the list,

but also how far down the distribution of wealth they fall. Someone who becomes

poor relative to the 400 wealthiest Americans could still be extraordinarily wealthy,

although the fact that most people who drop off the list never return again suggests

that their falls may be dramatic. There is also an interest in studying how people

make it onto the magazine’s list in the first place and, in particular, whether they

tend to start from the bottom of the wealth distribution or from loftier heights.

Studying mobility throughout other parts of the wealth distribution besides the very

top would seem to require other sources of data besides the magazine’s list, however.
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CHAPTER 5

CONCLUSION

On the occasion of the 10th anniversary of its annual list of the 400 wealthiest

Americans, Forbes Magazine asked the question, “What has [our list] accomplished

in 10 years?” (Forbes Magazine 1991, p. 145). The magazine claimed that the

accomplishment of its list was that it “fill[ed] what was once an important blank

spot in the portrait of American society” (ibid., p. 146). The metaphorical blank

spot that the list filled was the very top of the wealth distribution. According to

the magazine, its list filled that blank spot by “showing what concentrated private

wealth in this country is really like, as opposed to what ideologues and political

opportunists of every stripe want people to believe it is like” (ibid.).

The magazine’s list might not be an accurate representation of the part of the

American portrait that it purports to fill, of course, either because of inadvertent

mistakes or perhaps even ideology, opportunism, or some other nefarious force. Yet

Forbes Magazine’s list is arguably the best source of data on the very top of the

wealth distribution in the United States over recent decades, as this dissertation

has tried to argue. The list would therefore seem to deserve the attention of social

scientists and not just casual readers.

Using that list, the essays in this dissertation studied inequality and mobility

among the wealthiest Americans. The contributions that each essay makes are admit-

tedly modest with many directions for future research that remain open, but trying

to understand some basic empirical facts about the wealthiest Americans would seem
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to be a meaningful contribution to the so-called science of wealth. If nothing else,

by arguing that the information contained in Forbes Magazine’s list deserves serious

study, and by compiling that information in a dataset that others can study, this

dissertation has hopefully laid the foundation for further research.

The directions for future research vary widely from relatively narrow and tech-

nical questions like the ones considered by this dissertation—questions like whether

wealth inequality and mobility have risen, fallen, or stayed the same—to grander

questions like whether inequality and mobility are too low, too high, or just right.

Answers to the narrower questions can offer insight into the world in which we live

and, in doing so, inform debates about the world in which we wish to live.
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APPENDIX A

APPENDIX TO THE FIRST ESSAY

A.1 Variances of the Estate-multiplier Estimators

Suppose there are N people who are worth W in total. Let i = 1, 2, . . . , N

index those people, and let wi denote the i-th person’s wealth. Suppose that the i-th

person dies with a non-zero probability mi. Using information about people who die,

the total wealth of the people who were alive can be estimated as

Ŵ =
N∑
i=1

di

(
wi
mi

)
=
∑
i∈D

wi
mi

(A.1)

where di is an indicator variable that the i-th person died and D is the set of people

who died. Similarly, the total number of people who were alive can be estimated as

N̂ =
N∑
i=1

di

(
1

mi

)
=
∑
i∈D

1

mi

(A.2)

The unbiasedness of those estimators is obvious once it is recognized that the indi-

cator variable di should be unity with probability mi.

If everyone’s probability of dying is independent of everyone else’s, then the

variance of the estimator for the total wealth of the people who were alive is

Var(Ŵ ) =
∑
i∈D

mi (1−mi)

(
wi
mi

)2

(A.3)

(see, for example, Stehman and Overton 1994, p. 30, eq. 2). That variance can be

derived in the same way that the variance of any binomial random variable can be
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derived. (If mortality rates are not independent, then the expression for the variance

is much more complicated; see Stehman and Overton 1994.) Similarly, the variance

of the estimator for the total number of people who were alive is

Var(N̂) =
∑
i∈D

mi (1−mi)

(
1

mi

)2

(A.4)

A.2 The Pareto Extrapolation Method

Suppose we know that the N -th wealthiest people are worth W in total and

that each of them is worth at least w. Now suppose we want to know what the

N ′-th wealthiest people in the same population are worth in total. Let W ′ denote

their unknown total wealth. If we are willing to assume that personal wealth follows

a Pareto distribution with a lower-bound parameter that is lower than any level of

interest and a shape parameter α that is greater than unity, then we can extrapolate

the wealth of the latter group based on the wealth of the former group.

Given what we assumed we knew about the N -th wealthiest people, and given

our assumption about the distribution of wealth, the total wealth W ′ of the N ′-th

wealthiest people can be extrapolated as

W ′ = W

(
N ′

N

)(1− 1
α)

(A.5)

where

α =
W

W − wN (A.6)

Both of those equations follow from the properties of a Pareto distribution. The

latter equation (eq. A.6) follows from the fact that, if personal wealth follows a

Pareto distribution with a shape parameter α > 1, then the mean wealth of people
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with wealth above a given level is proportional to that given level of wealth, where

the proportion is α/(α − 1). So, for the N -th wealthiest people whose minimum

wealth is w and whose total wealth is W , their mean wealth can be expressed as

W

N
= w

(
α

α− 1

)
(A.7)

That property of a Pareto distribution is derived below as part of a lemma in the

appendix to the second essay.

The former equation (eq. A.5) follows from the fact that, if personal wealth

follows a Pareto distribution with a shape parameter α > 1, then the share of wealth

held by the wealthiest 100 ∗ p ∈ [0, 100] percent of people is p1−
1
α . That property is

also derived as a lemma in the appendix to the second essay.

A.3 Estimating Mortality Rates

As discussed in the text, the age-, gender-, and year-specific mortality rates

used by Kopczuk and Saez (2004a,b) were constructed by taking nationally repre-

sentative age-, gender-, and year-specific mortality rates from Wilmoth (1997) and

deflating those mortality rates by age- and gender-specific social-differential factors

for white college graduates taken from Brown et al. (2002). Those social-differential

factors were estimated by Brown et al. (2002) as the ratio between age- and gender-

specific mortality rates for white college graduates, on the one hand, and nationally

representative age- and gender-specific mortality rates, on the other hand. The latter

mortality rates were taken from somewhere else (although exactly where is unclear;

see ibid., p. 453), while the former were estimated as follows.

Brown et al. (2002) started with non-parametric estimates of age- and gender-

specific mortality rates for white college graduates. Those non-parametric estimates

were constructed by an unnamed employee at the Census Bureau (ibid., p. 448).
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Brown et al. (2002) could have used those estimates to directly construct social-

differential factors, but they did not do that for various reasons (including a desire

for smoother estimates; ibid., pp. 450–2). Instead, for each gender of white college

graduates, they fit a parametric function to the non-parametric estimates. Specifi-

cally, they ran a non-linear regression of the form

q{x} = 1− sg(cx+1−cx) (A.8)

where q{x} is the mortality rate at age x and s, g, and c are reduced-form parameters

(ibid., p. 453). That function was derived by assuming that white college graduates of

a given gender lived and died according to the Gompertz-Makeham law of mortality

(ibid., pp. 452–3.). The function can be derived from that law as follows.

Under the Gompertz-Makeham law, the probability of living to age x is

p{x} = exp{(α/β) (1− exp{βx} − γx)} (A.9)

where α is scaling parameter, β is a parameter that captures any age-dependent

component to mortality, and γ is Makeham’s (1860) parameter that captures any

age-independent component to mortality. Or, in the notation of Brown et al. (2002),

p{x} = (1/g)sxgc
x

(A.10)

where s ≡ exp{−γ}, g ≡ exp{−α/β}, and c ≡ exp{β}.

The probability of dying by age x+ 1, conditional on living to age x, is then

q{x} = (p{x} − p{x+ 1}) /p{x} (A.11)

(ibid., p. 453), or, substituting in the expression for p{x} and simplifying,

q{x} = 1− exp{(α/β) (exp{βx} − cβ (x+ 1)})− γ} (A.12)
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which is equivalent to the function estimated by Brown et al. (2002) when s, g, and

c are defined in the same way as before.

In order to estimate the mortality rates for people who appeared on Forbes

Magazine’s list of the 400 wealthiest Americans, we made the same assumption about

them that Brown et al. (2002) made about white college graduates. We assumed that

they lived and died according to the Gompertz-Makeham law of mortality. Although

we made the same assumption that Brown et al. (2002) made, we did not use the

same method that they used to estimate the parameters associated with that law.

Instead of minimizing the squared differences between non-parametric estimates, on

the one hand, and fitted values from a parametric function fit to those non-parametric

estimates, on the other hand, we simply maximized the probability of observing the

deaths that were observed. By assuming that the people who appeared on Forbes

Magazine’s list in any given year lived and died according to the Gompertz-Makeham

law of mortality, the probability of observing the deaths that were observed between

any one year of the magazine’s list and the next can be expressed as

400∏
i=1

(1− q{xi})1−di q{xi}di (A.13)

where xi is the age of the i-th person on the list in a given year, di is an indicator

variable that the i-th person died by the next year, and q{·} is defined above. That

expression is simply the sum of the probabilities that each person on the list would

either live, if he or she lived, or die, if he or she died. The sum of those probabilities

is the probability of observing all the deaths that were observed. The parameters

that maximize that probability can be found by using numerical methods.

Thus, while we used a different estimation method, we still made the same

assumption about mortality rates that Brown et al. (2002) made. Aside from the

fact that they also made that assumption, we can defend the assumption as follows.
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The Gompertz law of mortality is the prototypical example of a law of mortality

(Olshansky and Carnes 1997). Other laws of mortality, including Makeham’s (1860)

modification of that law, were suggested in order to account for ways in which that

law fails. Makeham suggested his modification to the Gompertz law because that

law fails to account for any age-independent component to mortality.

While other laws that account for other ways in which the Gompertz-Makeham

law fails could be used, other ways in which that law fails can be ignored for this

study. One way in which the law fails is that it fails to account for the complex

relationship between age and mortality at very young ages. The Heligman-Pollard

law of mortality modified the Gompertz-Makeham law to try to account for that

complex relationship (Heligman and Pollard 1980). The complexity of the relation-

ship is reflected in the fact that the Heligman-Pollard law involves eight parameters.

The failure of the Gompertz-Makeham law to account for the complex relationship

between age and mortality at very young ages can be ignored for this study, however,

given that the youngest person to appear on Forbes Magazine’s list since 1982 was

relatively old at 22 years of age.

Another way in which the law fails is that it fails to account for the deceleration

of mortality at very old ages. Other laws that account for that deceleration like a

logistic law have been suggested (see Olshansky and Carnes 1997, p. 10). The failure

of the Gompertz-Makeham law to account for the deceleration of mortality at very

old ages can be ignored for this study, however, given that any failure to account

for that deceleration should bias the estate-multiplier estimates upwards. The essay

in this dissertation suggests that the Kopczuk-Saez estimates may be biased in the

other direction. The assumption that people on Forbes Magazine’s list lived and died

according to the Gompertz-Makeham law of mortality seems defensible, therefore.
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A.4 Top Wealths from Surveys

Although one might hope that other sources of data could suggest whether the

direct or estate-multiplier estimates of the total wealth of the 400 wealthiest Amer-

icans were more accurate, other sources like surveys are not helpful in that regard.

Some surveys are especially unhelpful. The exact extent to which the distribution

of wealth is skewed can only be estimated, but, by all estimates, the distribution is

highly skewed. Given that the distribution of wealth is highly skewed, surveys that

do not try to over-sample the top of the wealth distribution often fail to capture

that part of the distribution (Davies and Shorrocks 2000, pp. 629–35; Juster et al.

1999). For example, in a recent year of a household survey of wealth that does not

try to over-sample wealthy households—the wealth survey conducted as part of the

Panel Study of Income Dynamics (PSID)—the wealthiest household in the survey

was estimated to be worth only about 50 million current dollars (PSID 2007). A

household worth 50 million dollars would have been worth more than most house-

holds in that year. According to estimates based on a household survey of wealth

that does try to over-sample wealthy households—the Survey of Consumer Finances

(SCF)—a wealth of 50 million dollars would have placed a household in the wealthi-

est one percent of households in that year (Kennickell 2011, p. 27, table A1). Yet the

wealthiest household in the SCF in the same year was worth much more than a mere

50 million. The wealthiest household in the SCF was worth over one billion dollars

(SCF 2007). Surveys like the PSID that do not try to over-sample the wealthy are

therefore especially unhelpful for estimating the wealth of relatively wealthy groups,

let alone the 400 wealthiest Americans.

The SCF is generally recognized as the best survey on wealth in the United

States, at least partly because it tries to over-sample wealthy households (Davies

and Shorrocks 2000, p. 632). The survey uses two sampling mechanisms. For one
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sampling mechanism, data from the Census Bureau is used to sample households

with equal probabilities (conditional on their geographic area in order to capture

certain areas of the country; Bricker et al. 2012, p. 78). It is unlikely that this

sampling mechanism would sample any of the relatively small number of households

that own a relatively large amount of wealth, but the mechanism should sample a

large number of households with small amounts of wealth.

For the other sampling mechanism, which generates the so-called “supplemen-

tal” or “list” sample, income-tax returns are used to try to sample wealthy households

(Bricker et al. 2012, p. 78). A flow of income is obviously not a stock of wealth,

and a tax-filing unit may not be a household, but the staff at the SCF apparently

use the income-tax returns to predict how much the household of a tax-filing unit

may be worth. The staff then samples households that are predicted to be wealthy

(Kennickell 1999, 2001). Interestingly, some of the households with the most wealth

are apparently sometimes some of the households with the smallest incomes, per-

haps because the wealthy can afford to minimize their income, or perhaps because

of variability in their income (Kennickell 1999, pp. 7–8).

Despite the fact that the SCF tries to over-sample wealthy households, the

survey is still not especially helpful for estimating the wealth of the 400 wealthiest

Americans for the following reason. By design, the SCF excludes the households

of people on Forbes Magazine’s list of the 400 wealthiest Americans (Kennickell

2006, p. 84). To belabor this point: One of the directors of the SCF in some of

his publications (ibid.), other members of the staff at the SCF in some of their

publications (Bertaut and Starr 2002, p. 214; Bricker et al. 2012, p. 78; etc.), and

the codebooks for the publicly available datasets (see, for example, SCF 2010a)

all emphasize that the survey is designed to exclude the households of people who

appear on the magazine’s list. The income-tax returns that are used to generate the
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supplement or list sample specifically exclude the income-tax returns of people who

appear on the magazine’s list, so their households can never be part of that sample.

Also, in the unlikely event that one of the households of the people who appear on

the magazine’s list was ever sampled as part of the equal-probability sample, that

household would presumably be excluded, although it is somewhat unclear what

would happen, perhaps because it has never happened.

It is somewhat strange that the SCF would be designed to try to over-sample

wealthy households, while also designed to exclude households that may have been

some of the wealthiest households, but that is how the survey was designed. Some

reasons for excluding those households have been offered. One reason is that attempt-

ing to survey them would be prohibitively expensive and frequently unsuccessful. To

quote the director of the SCF at length:

The argument for excluding this group [i.e., the households of people who appear
on the magazine’s list] from the SCF sample is that because such people are
typically surrounded with levels of staff intended to keep other people away, they
would be extraordinarily expensive to attempt to interview, and the success rate
could reasonably be expected to be quite low. (Kennickell 2007, p. 2)

Another reason is that it would be difficult to protect their confidentiality. To con-

tinue the quote from above:

Moreover, because these people are so well known, it would be almost impossible
to protect their confidentiality without destroying the statistical utility of the
data they would provide. (ibid.)

Whether it is reasonable to exclude them or not, the survey excludes them. As

such, the SCF is not especially helpful for determining the accuracy of direct or

estate-multiplier estimates of the wealth of the 400 wealthiest Americans.

That said, according to the codebook for the most-recent year of the survey

(which was the year 2010, as of writing), there were 10 households that were es-

timated to be worth more than the minimum wealth that it took to make it onto
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Forbes Magazine’s list in the same year (SCF 2010a). In earlier years of the survey,

there were a similar number of such households. (There were four, three, seven, and

four such households in 2007, 2004, 2001, and 1998, respectively, according to the

codebooks from those years. The numbers were not reported for other years of the

triennial survey, to the author’s knowledge, perhaps because the number was zero.)

Exactly how much those households were estimated to be worth is not known, at

least to the public, because the households were removed from the public dataset.

They were removed because “it would be very difficult to obscure sufficiently the

identity of [those households] without rendering their data virtually useless” (see, for

example, SCF 2010a).

The fact that some households in the SCF were estimated to be worth more

than the minimum wealth that it took to make it onto Forbes Magazine’s list suggests

that the magazine may have missed some of the 400 wealthiest Americans (Kennickell

2007, p. 2). If so, then the magazine would have at least not overestimated the total

wealth of the 400 wealthiest Americans, and would have underestimated their wealth,

if the people it missed were wealthier than the people it identified. Thus, even if the

SCF suggests that the magazine missed some of the 400 wealthiest Americans, this

does not suggest that the magazine’s direct estimates of the total wealth of the 400

wealthiest Americans were too large relative to the estate-multiplier estimates. The

fact that the survey found some households that were credibly estimated to be worth

at least as much as what the magazine estimated the 400th wealthiest American was

worth also suggests that the magazine’s estimate for the wealth of at least the 400th

wealthiest American was credible or at least not incredibly large.

Even if the SCF did somehow capture the 400 wealthiest households in America

without sampling any of the households of people on the magazine’s list, survey

estimates of the wealth of 400 wealthiest households in America based on the SCF
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may not be directly comparable to either the direct estimates of the wealth of the

400 wealthiest Americans based on Forbes Magazine’s list or the estate-multiplier

estimates of their wealth based on the Kopczuk-Saez estimates.

Especially when trying to compare the survey and estate-multiplier estimates,

there is an issue about the assignment of ownership. For any given person, his or

her wealth for estate-tax purposes excludes the wealth of any family members, as

discussed above, so if a person had family members who were worth something, then

his or her wealth according to estate-tax records would be different than his or her

wealth according to the survey, even if any other issues were assumed away. The

magazine and the survey both account for the wealth of family members, so the

person’s wealth according to the magazine should be relatively similar to the wealth

of the person’s household according to the survey (relative to the similarity between

the estimates according to estate-tax records and the survey), although perhaps not

the same. There may also be other issues.

Even if wealth was assigned in the same way, there may be a timing issue.

For the most-recent year of the SCF, the interviews for that survey were “largely”

conducted between the months of May and December (Bricker et al. 2012, p. 79),

but the magazine’s list in the same year was suppose to be a snapshot of wealth at

the close of the stock market on one day of that year (August 25th; Forbes Magazine

2010), and people died all throughout that year (although, again, the valuation date

for estate-tax records could have been either the day a person died or six months

thereafter; Kopczuk and Saez 2004b, p. 43). Thus, the survey, direct, and estate-

multiplier estimates may not reflect the same point in time.

And even if wealth was assigned in the same way and valued at the same time,

there may be a valuation issue. Although misreporting may plague the SCF and

other surveys of wealth (Davies 2009, pp. 129–30), even if households accurately
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responded to the questions that they were asked, the questions asked by the SCF

limit the value of certain types of assets and debts that a household can report.

In terms of assets: As of the most-recent year of the survey, a household can

only include up to two “investment real estate” or “second (or vacation) homes”

(sec. E of SCF 2010b), only up to two businesses in which they have an “active

management interest” (sec. F), only up to four “cars, trucks, vans, minivans, [or]

jeep-type (sport-utility) vehicles” (sec. G), only up to two “motorhomes, RVs, mo-

torcycles, boats, airplanes, [or] helicopters” (sec. G), only up to six checking accounts,

which would only add up to 1.5 million dollars, assuming that each account held the

maximum amount that was insured by the Federal Deposit Insurance Corporation in

that year (sec. N), only up to five “saving or money-market accounts,” which would

only add another 1.25 million under the same assumption (sec. N), only up to three

other “important” financial assets that are not covered by another part of the survey

(sec. N), only up to 10 pension plans (up to two that are owned, up to four that

are currently paying out or being drawn from, and up to four others; sec. R), only

up to three “inheritance[s], substantial gift[s], or trust[s]” that have already been re-

ceived (sec. X), apparently only up to one “substantial inheritance or transfer” that

is expected in the future (sec. X), and apparently only up to one “personal trust

or foundation” (so possibly no personal trusts if the household would rather speak

about a foundation; sec. X).

In terms of debts: A household can only include up to three mortgages on homes

that are currently owned (sec. D), only up to six lines of credit (including home-equity

lines of credit; sec. D), only up to two loans on homes that were previously owned

(sec. E), only up to six loans for “educational purposes” (sec. H), and only up to six

other loans not covered by another part of the survey (sec. I).

Those limits on the number of assets and debts may not be binding for most



159

households, of course, but if some of the limits bind for some wealthy households,

then survey, direct, and estate-multiplier estimates may not be comparable. The

total value of real estate is recorded for estate-tax purposes, for example, rather

than just the value of up to two homes, as even a cursory glance at an estate-tax

form would show. Likewise, the magazine would apparently account for all the real

estate it could identify, rather than just up to two homes.

Having said all of that, survey and estate-multiplier estimates for the wealth

of a slightly less-wealthy group than the 400 wealthiest Americans can be compared.

Figure A.1 shows the wealth of the wealthiest one percent of households, according

to survey estimates made by Kennickell (2011, p. 12, table 5) based on the trien-

nial SCF.1 The wealthiest one percent of households was the smallest group that

Kennickell (2011) considered. The figure also shows the wealth of the wealthiest one

percent of people, according to the estate-multiplier estimates made by Kopczuk and

Saez (2004a,b). As shown in the figure (which is loosely based on fig. 11 of Kopczuk

and Saez 2004a), the survey estimates were larger and increasingly larger than the

estate-multiplier estimates in the years in which those estimates can be compared.

Yet, again, it is unclear what conclusions could be drawn from such a comparison.

The discrepancy may simply be due to people increasingly pairing up along class

lines to form households, for example (as pointed out by Kopczuk and Saez 2004a,

p. 476, among others).

In summary, even the SCF is not especially helpful for suggesting whether the

direct or estate-multiplier estimates of the wealth of the 400 wealthiest Americans

were right or wrong.

1Kennickell (2011) only reports the share of wealth held by the wealthiest one percent of
households. He does not report their total wealth or the total wealth of all households. However,
the mean wealth of all households is reported elsewhere (Kennickell 2012, p. 4, table 2) and the
number of households represented by the SCF is also reported elsewhere (Bricker et al. 2012, p. 78,
table A.3), so the total wealth of the wealthiest one percent of households can be calculated.
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Figure A.1. Household Survey and Estate-multiplier Estimates of the Wealth of the
Wealthiest One Percent of Households or People, 1989–2001

Source: Data adapted from Bricker et al. (2012); Kennickell (2011, 2012); Kennickell and
Starr (1994); Kennickell et al. (2000); Kopczuk and Saez (2004a,b).

Note: This figure shows, for every three years from 1989 to 2001, estimates of the wealth
of the wealthiest one percent of households based on the Survey of Consumer Finances.
The figure also shows, for every year from 1989 to 2000, estimates of the wealth of the
wealthiest one percent of people based on the Kopczuk-Saez estimates.
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A.5 A Similar Exercise with a Longer View

An exercise that is similar to the exercise discussed in the text can be performed

in order to study how changes that occurred over the course of the 20th century, and

not just the last decade of that century, may have affected the probability that the

estate-multiplier method would underestimate what some of the wealthiest Ameri-

cans were worth. Forbes Magazine’s list of the 400 wealthiest Americans only goes

back to 1982, so we cannot perform the same exercise for years before that year. We

can perform a similar exercise for one year towards the start of the 20th century,

however. In 1918, Forbes Magazine published what would eventually prove to be

the precursor to its list of the 400 wealthiest Americans. In that year, the magazine

published a list of the 30 wealthiest Americans (Forbes Magazine 1918).

Using that list, we can perform an exercise that is almost identical the exercise

discussed in the text. We can assume that the list was an accurate account of the

30 wealthiest Americans in 1918. We can then try to estimate the total wealth of

the 30 wealthiest Americans by only using information about certain people on the

list.2 For simplicity, we can sample people on the list at the mortality rates used by

Kopzcuk and Saez for that year, and we can inflate the people who are sampled by

the rates at which they were sampled. A person’s wealth can also be valued in full,

given that we do not have a basis for assuming otherwise for that year.

Such an exercise suggests that the estate-multiplier method would underesti-

mate what the 30 wealthiest Americans were assumed to be worth by at least about

43 percent of their wealth half of the time, as shown as part of table A.1 of this

appendix. The same exercise suggests that this median misestimation would be even

2The magazine’s list of the 30 wealthiest Americans in 1918 did not report their ages, but a
person’s age in that year can be calculated as difference between 1918 and the year in which they
were born. Their birth years were reported by Forbes Magazine (1983, pp. 56–64).
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more severe by the end of the 20th century. If we use information about just the 30

wealthiest Americans from Forbes Magazine’s list of the 400 wealthiest Americans in

2000, and if we use the Kopzcuk-Saez mortality rates from the same year, then the

same exercise suggests that the estate-multiplier method would underestimate what

the 30 wealthiest Americans were assumed to be worth by at least about 55 percent

half of the time, as shown in the same table.

Unlike the exercise discussed in the text, the more severe underestimation in

more-recent years cannot be attributed to a change in their wealths. If we take

the wealths of the wealthiest to the poorest of the 30 wealthiest Americans in 2000,

assign those wealths to the wealthiest to the poorest of the 30 wealthiest Americans in

1918, and repeat the exercise again for 1918, then the median misestimation would

actually be less severe. The estate-multiplier method would only underestimate

their wealth by at least about 36 percent half of the time, as shown in the table.

The underestimation would be less severe because, although inequality among the

wealthiest Americans may have been greater in 2000 than it was in 1990, inequality

among the 30 wealthiest Americans was greater in 1918 than it was in 2000, at least

according to Forbes Magazine’s lists from those years. The wealthiest person in 1918,

John D. Rockefeller, was much wealthier relative to his peers than the wealthiest

person in 2000, Bill Gates. Rockefeller was over five times wealthier (about 433

percent wealthier) than the next-wealthiest American, while Gates was only slightly

wealthier (about eight percent wealthier). Rockefeller’s wealth also accounted for

about one third of the total wealth of the 30 wealthiest Americans in 1918, while

Gates’ wealth only accounted for about 12 percent in 2000.

The increase in the severity of the underestimation also cannot be attributed

to a change in the ages of the 30 wealthiest Americans or a change in any association

between a person’s age and his or her rank in the distribution of wealth. The median
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misestimation would be about the same, if we took the ages of the wealthiest to the

poorest of the 30 wealthiest Americans in 2000, assigned those ages to the wealthiest

to the poorest of the 30 wealthiest Americans in 1918, and repeated the exercise again

for 1918. The median misestimation would be about the same because, somewhat

surprisingly, the ages of the 30 wealthiest Americans were about the same in both

years. In 1918 and 2000, the average age of the 30 wealthiest Americans was about

59 and 60 years of age, respectively, while the standard deviation of their ages was

about 16 and 15 years of age, respectively. There was also no obvious change in any

association between a person’s age and his or her rank in the distribution of wealth.

The more severe underestimation can instead be attributed to the change in

the rates at which people were sampled. If we repeat the exercise for 1918, but sam-

ple people at the Kopzcuk-Saez mortality rates for 2000, then the estate-multiplier

method would underestimate what the 30 wealthiest Americans were assumed to

be worth by at least about 59 percent half of the time. The net effect of all of

the changes that occurred to the 30 wealthiest Americans between 1918 and 2000 is

therefore about the same as the effect of just changing the rates at which they are

sampled. To the extent that the change in the Kopzcuk-Saez mortality rates between

1918 and 2000 captures the change in the rates at which people died, it seems that

people were simply less likely to die at any given age by the end of the century.

Thus, between the start and end of the twentieth century, unlike between the

start and end of the last decade of that century, the increase in the probability

of underestimating what the some of the wealthiest Americans were assumed to

be worth was not driven by greater inequality in the distribution of their wealth.

Again, however, the increase in inequality among the 400 wealthiest Americans over

the 1990s was apparently dramatic enough to have a relatively large effect on the

probability that the estate-multiplier method would underestimate their total wealth.
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Table A.1. Effect of Changes between 1918 and 2000 on Misestimation

Median
Changes misestimation

No changes %−43%
Ages −43
Sampling rates −59
Ages and sampling rates −59
Wealths −36
All changes −55

Sources: Data adapted from Brown et al. (2002); Forbes Magazine (1918, 1983); Wilmoth (1997).

Note: This table shows how certain changes that occurred between 1918 and 2000 would
have affected the median amount by which the estate-multiplier method would underestimate
what the 30 wealthiest Americans were assumed to be worth. The median amount is reported as
a percentage of their wealth. For both years, people were sampled at the Kopzuk-Saez mortality
rates, the people who were sampled were inflated by the rates at which they were sampled, and
their fully valued wealths were also inflated by those rates.
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APPENDIX B

APPENDIX TO THE SECOND ESSAY

B.1 The Definition of a Pareto Distribution

Over a century ago, Vilfredo Pareto discovered that, if the number of peo-

ple with income greater than a given level of income was plotted against income

on a double logarithmic scale, then the plot looked approximately like a straight

line, at least at the highest levels of income (see, for example, Pareto [1896] 2001).

What is now called a (type I) Pareto distribution has the complementary cumulative

distribution function

P (X > x) =
(xmin

x

)α
(B.1)

for x ≥ xmin, where xmin > 0 is a lower-bound parameter and α is a shape parameter

(Arnold 1983). This function is is simply a formalization of the sort of distribution

that Pareto discovered for the distribution of income. If the function was drawn on

a double logarithmic scale, then it would be a straight line. The slope of the line

would be equal to the negative of the shape parameter, given that

∂ ln{P (X > x)}
∂α

= −α (B.2)

for x > xmin.
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B.2 An Interpretation of a Pareto Index

A lemma and a theorem on interpreting the shape parameter of a Pareto

distribution (or, equivalently, a Pareto index) are as follows.

Lemma 1. If personal wealth follows a Pareto distribution with a shape parameter

α > 1, then the share of wealth held by the wealthiest 100 ∗ p ∈ [0, 100] percent of

people is

p1−
1
α (B.3)

Proof. Suppose that personal wealth follows a Pareto distribution. The probability

density function for that distribution evaluated at a level of wealth w would be

αwαminw
−1−α (B.4)

for w ≥ wmin, where wmin > 0 is a lower-bound parameter and α > 0 is a shape

parameter. The percentage of people with wealth greater than a level of wealth wp

would be

p ≡
∫ ∞
wp

αwαminw
−1−αdw = αwαmin

[
1

−αw
−α
]∞
wp

= wαminw
−α
p (B.5)

where the shape parameter α was assumed to be strictly greater than unity. So, for a

percentage of people 100 ∗ p, the wealth of the least-wealthy person in the wealthiest

100 ∗ p percent of people would be

wp = wminp
−1/α (B.6)

The total wealth of everyone—or, at least, the total wealth of the people whose

wealth follows the Pareto distribution—would be
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W ≡
∫ ∞
wmin

wN
(
αwαminw

−1−α) dw = Nαwαmin

[
1

1− αw
1−α
]∞
wmin

= N
α

α− 1
wmin

(B.7)

where N is the total number of people. As before, the shape parameter α was

assumed to be strictly greater than unity. It can be noted, tangentially, that this

equation can be rewritten to show that the mean wealth of people with wealth above

the minimum level of wealth is proportional to that minimum level of wealth, where

the proportion is α/(α− 1).

Similarly, the wealth of the wealthiest 100 ∗ p percent of people would be

Wp ≡
∫ ∞
wp

wN
(
αwαminw

−1−α) dw = Nαwαmin

[
1

1− αw
1−α
]∞
wp

= N
α

α− 1
wminp

1− 1
α

(B.8)

where the expression for wp was substituted into the equation.

The share of wealth held by the wealthiest 100 ∗ p percent of people is then

Wp/W = p1−
1
α (B.9)

Theorem 1. (Hardy 2010, proposition 2) If personal wealth follows a Pareto distri-

bution with a shape parameter α > 1 and the wealthiest 100 ∗ p ∈ (0, 50] percent of

people own (1− p) ∈ [50, 100) percent of the total wealth of the population, then

α = logp/(1−p) p (B.10)

Proof. If personal wealth follows a Pareto distribution with a shape parameter α > 1,

then the share of wealth held by the wealthiest 100 ∗ p ∈ [0, 100] percent of people is

p1−
1
α (B.11)
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by lemma 1. So, if the wealthiest 100 ∗ p percent of people own 100 ∗ (1− p) percent

of the population’s wealth, then

p1−
1
α = 1− p (B.12)

Taking the logarithm of both sides and solving for the shape parameter,

α =
ln p

ln {p/ (1− p)} (B.13)

where it was assumed that p is not equal to zero. The right-hand side of this equation

can be expressed as the logarithm of p to base p/ (1− p) by using the change-of-base

rule.

Note that, as a Pareto distribution of wealth approaches perfect equality with

the wealthiest 50 percent of people owning almost half of the population’s wealth, the

shape parameter approaches positive infinity. Also note that, as a Pareto distribution

of wealth approaches perfect inequality with a infinitesimally small percentage of

people owning almost all of the population’s wealth, the shape parameter approaches

unity from above.

The shape parameters for other situations besides perfect equality and per-

fect inequality include the following. The wealthiest 49 percent of people owning

51 percent of the population’s wealth corresponds to a shape parameter of about

17.83; the wealthiest 40 percent owning 60 percent corresponds to about 2.26; the

wealthiest 30 percent owning 70 percent corresponds to about 1.42; the wealthiest

20 percent owning 80 percent corresponds to about 1.16; the wealthiest 10 percent

owning 90 percent corresponds to about 1.05; and, as a final example, the wealthiest

one percent of people owning 99 percent of the population’s wealth corresponds to a

shape parameter that is almost unity (about 1.002).
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B.3 A Relationship between the Pareto and Gini Indexes

For those who prefer to interpret inequality in terms of the Gini index, it can be

noted that there is an inverse relationship between the shape parameter of a Pareto

distribution (or, again, a Pareto index) and the Gini index.

Theorem 2. If personal wealth follows a Pareto distribution with a shape parameter

α > 1, then the Gini index is

1

2α− 1
(B.14)

Proof. The Gini index can be expressed in different ways, but one expression for the

Gini index is as unity minus two times the area under a Lorenz curve (Cowell 2000,

p. 112, eq. 26). In the context of the personal distribution of wealth, the Lorenz

curve shows the proportions of wealth held by the least-wealthy proportions of the

population. If personal wealth follows a Pareto distribution with a shape parameter

α > 1, then the percentage of wealth held by the poorest 100 ∗ p percent of the

population is

1− (1− p)(1− 1
α) (B.15)

by lemma 1 with a slight change of notation. The Gini index is then

1− 2

∫ 1

0

(
1− (1− p)(1− 1

α)
)
dp = 1− 2

(
α− 1

2α− 1

)
=

1

2α− 1
(B.16)

Note that this relationship between the Pareto and Gini indexes is an inverse re-

lationship. As a Pareto distribution approaches perfect equality with its shape pa-

rameter approaching unity from above, the Gini index approaches unity from below.
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Conversely, as the Pareto distribution approaches perfect inequality with its shape

parameter approaching infinity from below, the Gini index approaches zero from

above. The same relationship can be seen by rewriting the expression given above

as α = (1 +G)/2G where G denotes the Gini index.

It should be emphasized that this relationship only holds if wealth (or whatever

variable is under consideration) follows a Pareto distribution. However, to the extent

that wealth is thought to follow a Pareto distribution, it is only thought to follow

that particular distribution at the very top of the wealth distribution. Assuming that

wealth actually follows a Pareto distribution at the top of the wealth distribution, but

assuming that wealth does not follow that distribution elsewhere, the relationship

between the Pareto and Gini indexes would only be a relationship between the Pareto

index and the within-group Gini index for wealth inequality among those at the top

of the wealth distribution.

Interestingly, as shown by Alvaredo (2011), the overall Gini index for the distri-

bution of wealth among a given population can be decomposed into the contributions

of inequality among the wealthiest 100∗p percent of the population, inequality among

the least-wealthy 100∗(1−p) percent of the population, and inequality between those

two groups as

(Gps) + [G′(1− p)(1− s)] + (s− p) (B.17)

respectively, where G is the within-group Gini index for the distribution of wealth

among the former group, s is their share of wealth, and G′ is the within-group Gini

index for the distribution of wealth among the latter group (ibid., p. 275, eq. 4).

Thus, if the wealth of the wealthiest 100 ∗ p percent of the population follows a

Pareto distribution with a shape parameter α > 1, then G = [1/(2α − 1)] and

s = p1−
1
α by theorem 2 and lemma 1, respectively.
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Although it is somewhat off topic, it can be noted that the Gini index for the

distribution of wealth among all American households increased from about 83 to 87

percent between the years 1989 and 2010, according to estimates that Edward Wolff

made by using the Survey of Consumer Finances (Wolff 2012, p. 50, table 2). That

survey is designed to exclude the (households of the) people who appear on Forbes

Magazine’s list of the 400 wealthiest Americans, however (Kennickell 2006, p. 84).

The estimates made by Wolff are therefore actually estimates for the within-group

Gini index for the distribution of wealth among all American households, except the

400 wealthiest, if it is assumed that the magazine’s list captures the 400 wealthiest

households (which may be an incorrect assumption, even if the list captures the

400 wealthiest Americans). Under the same assumption, the Gini index for the

distribution of wealth among all American households can be estimated by using the

estimates from Wolff (2012), information from the magazine’s list, and equation B.17

from above, as well as information on the total number of households, which can be

taken from various reports on the Survey of Consumer Finances (Bricker et al. 2012,

p. 78, table A.3; Kennickell and Starr 1994, p. 880; Kennickell et al. 2000, p. 27).

Making those estimates, the Gini index would be slightly larger in each year between

1989 and 2010, but it would still only increase from about 83 to 87 percent between

those years (Author’s calculations).

That change in the Gini index can be interpreted as follows. In the context

of the household distribution of wealth, twice the Gini index is the average absolute

difference between the wealth of each household as a proportion of the average wealth

of all households. This interpretation has been pointed out by at least Tony Atkinson

(quoted in Raskall and Matheson 1992, p. 11), and the interpretation is obvious once

the Gini index is expressed in terms of an average absolute difference (Cowell 2000,

p. 111, eq. 25). The mean wealth of all American households was about 464 thousand
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current dollars in 2010, according to Wolff (2012, p. 49, table 1). If that is taken as

their mean wealth, then a Gini index of 87 percent in the year 2010 boils down to

an average absolute difference of about 36 thousand dollars more than it would have

been if the Gini index was only 83 percent. Thirty-six thousand dollars may seem

like a small amount of wealth, but just that amount of wealth would have placed a

household somewhere between the wealthiest 20 to 40 percent of households in the

year 2010 (based on the figures reported by Kennickell 2012, p. 4, table 2).

B.4 Parameter Estimates for Different Distributions

B.4.1 Pareto Distribution

The probability density function for a Pareto distribution is

f(x;α, xmin) ≡ αxαminx
−1−α (B.18)

for x ≥ xmin, where xmin > 0 is a lower-bound parameter and α > 0 is a shape param-

eter. Let x1, x2, . . . , xn be independent samples from the same Pareto distribution.

Then the likelihood function is

L(α, xmin;x1, x2, . . . , xn) ≡
n∏
i=1

f(xi;α, xmin)

= αxαminx
−1−α
i

= αnxαnmin

(
n∏
i=1

xi

)−1−α (B.19)

(Arnold 1983, p. 194, eq. 5.2.1). The logarithm of that likelihood function is

lnL(α, xmin;x1, x2, . . . , xn) =
n∑
i=1

ln f(xi;α, xmin)

= n ln{α}+ nα ln{xmin}+ (−1− α)
n∑
i=1

ln{xi}
(B.20)
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(Arnold 1983, p. 194, eq. 5.2.2). That log-likelihood function is obviously an increas-

ing function of the lower-bound parameter, but the lower-bound parameter cannot

be larger than the smallest of the n samples, so the maximum-likelihood estimator

for the lower-bound parameter is

x̂min ≡ x(n) (B.21)

where x(n) denotes the smallest of the n samples (Arnold 1983, p. 194, eq. 5.2.3).

Substituting that estimator into the likelihood function and using a little bit of

calculus, the maximum-likelihood estimator for the shape parameter is

α̂ ≡ n

/
n∑
i=1

ln

{
xi
x(n)

}
(B.22)

(ibid.). It can be noted, tangentially, that the reciprocal of this maximum-likelihood

estimator for the shape parameter of a Pareto distribution falls into the class of

concave “richness” measures suggested by Peichl et al. (2010), if the “richness line”

is defined as the smallest of the n samples.

The maximum-likelihood estimators for the parameters of a Pareto distribution

are consistent, but biased (Arnold 1983, pp. 194–5). Unbiased estimators for the

lower-bound and shape parameters are

(
1− 1

α̂(n− 1)

)
x̂min (B.23)

(Arnold 1983, p. 197, eq. 5.2.18) and

(
n− 2

n

)
α̂ (B.24)

(Arnold 1983, p. 196, eq. 5.2.13), respectively. Monte Carlo simulations suggests

that these biased-corrected maximum-likelihood estimators perform better along a
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range of dimensions than a range of other estimators, even for samples that are an

order of magnitude smaller than those considered in this dissertation (i.e., sample

sizes closer to 40 than 400; Rahman and Pearson 2003).

The variances of the bias-corrected maximum-likelihood estimators for the

lower-bound and shape parameters are

x2min

α(n− 1)(αn− 2)
(B.25)

(Arnold 1983, p. 197, eq. 5.2.19) and

α2

n− 3
(B.26)

(Arnold 1983, p. 196, eq. 5.2.16), respectively.

B.4.2 Truncated Pareto Distribution

The probability density function for an upper-truncated Pareto distribution is

f(x;α, xmin, xmax) ≡
αxαminx

−1−α

1− (xmin/xmax)α
(B.27)

for x ≥ xmin, where xmin > 0 is a lower-bound parameter, xmax > xmin is an

upper-truncation parameter, and α > 0 is a shape parameter (Aban et al. 2006,

p. 271, eq. 2). Note that, as the upper-truncation parameter approaches infinity,

the probability density function for a truncated Pareto distribution (again, eq. B.27)

approaches the probability density function for an untruncated Pareto distribution

(eq. B.18). The maximum-likelihood estimators for the lower-bound and truncation

parameters are

x̂min ≡ x(n) (B.28)

and
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x̂max ≡ x(1) (B.29)

respectively, where x(n) denotes the smallest of the n samples and x(1) denotes the

largest (Aban et al. 2006, p. 271, theorem 2). The maximum-likelihood estimator for

the shape parameter, which can be denoted by α̂, must be found by using numerical

methods, but it can be found by solving the following equation.

n

α̂
+
n(x(n)/x(1))

α̂ ln{x(n)/x(1)}
1− (x(n)/x(1))α̂

−
n∑
i=1

ln

{
x(i)
x(n)

}
= 0 (B.30)

(ibid.). The maximum-likelihood estimators for the lower-bound and truncation

parameters are consistent (Aban et al. 2006, p. 271), but biased (Zhang 2013, theorem

1). Unbiased estimators for the lower-bound and truncation parameters were derived

analytically by Zhang (2013) as

x(n)

(
1 +

(x(n)/x(1))
α̂ − 1

nα̂

)
(B.31)

and

x(1)

(
1 +

ln{x(1)/x(n)}
n

)
(B.32)

respectively (Zhang 2013, eq. 3). Given that the maximum-likelihood estimator for

the shape parameter must be found numerically, a correction for any asymptotic bias

cannot be derived analytically, but Maschberger and Kroupa (2009) suggest simply

using

(
n− 3

n

)
α̂ (B.33)

where, again, α̂ is the solution to equation B.30. This adjusted for any bias was sug-

gested because it is similar to the correction for the bias of the maximum-likelihood
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estimator for the shape parameter of an untrucated Pareto distribution (where three

rather than two is subtracted to account for the additional parameter in the trun-

cated case; Maschberger and Kroupa 2009, p. 3).

B.4.3 Truncated Log-Normal Distribution

If the logarithm of a random variable is normally distributed, then the random

variable is log-normally distributed. The probability density function for a (two-

parameter) log-normal distribution is

f(x;µ, σ) ≡ 1

x
√

2πσ2
exp

{
− (ln{x} − µ)2

2σ2

}
(B.34)

for x > 0, where µ ∈ (−∞,∞) and σ > 0 are the mean and standard deviation

of the logarithm of the random variable, respectively. The cumulative distribution

function for the log-normal distribution is

F (x;µ, σ) ≡ 1

2

(
1 + erf

{
ln{x} − µ√

2σ2

})
(B.35)

where

erf {z} ≡ 2√
π

∫ z

0

exp
{
−t2
}
dt (B.36)

is the error function.

If a log-normal distribution is truncated from below at a known truncation

point τ , then the probability density function for the truncated log-normal distribu-

tion is

f(x;µ, σ|x > τ) =
f(x;µ, σ)

1− F (τ ;µ, σ)
(B.37)

Let x1, x2, . . . , xn > τ be independent samples from the same truncated log-normal

distribution. Then the likelihood function is
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L(µ, σ;x1, x2, . . . , xn) ≡
n∏
i=1

f(xi;µ, σ)

1− F (τ ;µ, σ)
(B.38)

The logarithm of that likelihood function is

lnL(µ, σ;x1, x2, . . . , xn) =
n∑
i=1

[ln f(xi;µ, σ)− ln {1− F (τ ;µ, σ)}] (B.39)

where

ln f(xi;µ, σ) = ln

{
1

xi
√

2πσ2

}
− (ln{xi} − µ)2

2σ2
(B.40)

The maximum-likelihood estimators for the mean and standard-deviation parameters

can be found by using numerical methods.

B.4.4 Truncated Gamma Distribution

The probability density function for a (two-parameter) gamma distribution is

f(x;α, β) ≡ (x/β)α−1 exp {−x/β}
βΓ {α} (B.41)

for x > 0, where α > 0 is a shape parameter, β > 0 is a scale parameter, and

Γ {·} is the gamma function. The cumulative distribution function for the gamma

distribution is

F (x;α, β) ≡ γ {α, x/β}
Γ {α} (B.42)

where γ {·} is the lower incomplete gamma function.

If a gamma distribution is truncated from below at a known truncation point

τ , then the probability density function for the truncated gamma distribution is

f(x;α, β|x > τ) =
f(x;α, β)

1− F (τ ;α, β)
(B.43)
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Let x1, x2, . . . , xn > τ be independent samples from the same truncated gamma

distribution. Then the likelihood function is

L(α, β;x1, x2, . . . , xn) ≡
n∏
i=1

f(xi;α, β)

1− F (τ ;α, β)
(B.44)

The logarithm of that likelihood function is

lnL(α, β;x1, x2, . . . , xn) =
n∑
i=1

[ln f(xi;α, β)− ln {1− F (τ ;α, β)}] (B.45)

where

ln f(xi;α, β) = (α− 1) ln {xi} − α ln {β} − (xi/β)− ln {Γ {α}} (B.46)

The maximum-likelihood estimators for the shape and scale parameters can be found

by using numerical methods.
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APPENDIX C

APPENDIX TO THE THIRD ESSAY

C.1 Movements Onto, Off of, and Throughout the List

Figure 4.1 in the text of the essay shows, for each year between 1982 to 2013,

the number of people on Forbes Magazine’s list in one year who appeared again

or dropped off due to either death or decline by the next year. The tables that

follow show the same information in numerical rather than graphical form, as well

as some additional information about the number of people who moved onto, off of,

or throughout the list over time.

Table C.1 shows, for each year between 1982 and 2013, the number of people on

the magazine’s list in one year who dropped off the list by the next year (“dropouts”).

The table also shows the number of those people who dropped off because they died

(“decedents”), renounced their American citizenship (“renunciants”), or experienced

an absolute or relative decline their wealth (“other dropouts”).

Table C.2 shows, for the same years, the number of people who came onto the

list between one year and the next (“entrants”). The people who came onto the list

were either appearing for the first time (“first-timers”) or reappearing after dropping

off in an earlier year (“returnees”), so the table also shows the number of people in

those two groups. Everyone who appeared on the first year of the magazine’s list

was new to the list and appearing for the first time, of course, while everyone who

was new in its second year must not have been on the list in its first.
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Finally, table C.3 shows, for the same years, the number of people who were

on the list in a given year and still on the list in the next year (“incumbents”). The

table also shows the number of incumbents who moved up the wealth rankings by

becoming wealthier in absolute or at least relative terms (“up in rank”), the number

who became poorer and moved down the rankings (“down in rank”), and the number

who stayed where they were in the rankings between the given year and the next

(“same rank”). Note that someone could have only moved so far down the rankings

before dropping off the list altogether.

The tables in this section suggest that, for years associated with asset-market

booms like the stock market boom in the late 1990s, there tended to be more people

who appeared on the list for the first time, more people who dropped off, and more

incumbents who moved up in rank. For years associated with asset-market busts

like the dot-com crash and the recent recession, on the other hand, there tended to

be fewer first-timers and fewer incumbents dropping off, but also fewer incumbents

moving up in rank. Whether someone on the list is more or less likely to drop off in

certain years after controlling for their characteristics is one of the central questions

explored by the essay.

The tables also suggest that, aside from years associated with such asset-

market booms and busts, mobility among the wealthiest Americans has been fairly

stable and arguably low over recent decades. Between any one year and the next,

most people have remained on the list. On average, only about 10 percent of the

400 people have dropped off per year. Most dropped off due to decline, while some

dropped off due to death, and only rarely did anyone drop off because they renounced

their American citizenship. Among the people who came onto the list to replace the

dropouts, most came onto the list for the first time, but some of them were also

returning after dropping off in an earlier year.
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It should be noted that it is difficult to assess whether mobility among the 400

wealthiest Americans, according to Forbes Magazine’s list, is consistent with mobility

among other wealthy groups, according to panel surveys. A panel survey conducted

as part of the Survey of Consumer Finances (SCF) suggests that, between 2007 to

2009, the amount of turnover among the wealthiest one percent of households was

consistent with the amount of turnover among the people on Forbes Magazine’s list

between the same years (Kennickell 2011, pp. 10, 15). It is unclear whether turnover

between other years is consistent, however, given that the SCF is typically only a

cross-sectional survey.

Evidence from the Panel Survey of Income Dynamics (PSID) suggests that the

amount of turnover among the wealthiest groups in its survey is not inconsistent with

the amount of turnover among the people on the magazine’s list. The survey suggests

that most of the wealthy remain wealthy. (See Diaz-Gimenez et al. 2011, pp. 27–

28, on inter-quintile movements between 2001 and 2007; also see Hurst et al., 1998,

pp. 282–87, on inter-decile movements between 1984 and 1994). Yet the wealthiest

groups in the PSID are often relatively poor (Juster et al. 1999), so it is unclear

whether turnover among those groups should be compared to turnover among the

people on the magazine’s list.
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Table C.1. Number of Dropouts, 1982–2013

Year Decedents Renunciants Other dropouts Total

1982–1983 13 0 61 74
1983–1984 6 0 38 44
1984–1985 7 0 57 64
1985–1986 7 0 49 56
1986–1987 8 0 72 80
1987–1988 4 0 48 52
1988–1989 5 0 55 60
1989–1990 6 0 38 44
1990–1991 6 0 41 47
1991–1992 7 0 36 43
1992–1993 13 0 34 47
1993–1994 10 1 38 49
1994–1995 13 2 30 45
1995–1996 10 0 43 53
1996–1997 6 0 37 43
1997–1998 5 0 42 47
1998–1999 7 0 63 70
1999–2000 2 0 53 55
2000–2001 3 0 51 54
2001–2002 4 0 31 35
2002–2003 11 0 20 31
2003–2004 6 0 48 54
2004–2005 8 0 34 42
2005–2006 8 0 34 42
2006–2007 7 0 51 58
2007–2008 6 0 33 39
2008–2009 6 0 33 39
2009–2010 9 0 26 35
2010–2011 3 0 21 24
2011–2012 7 1 24 32
2012–2013 6 0 28 34

Average 7 0 41 48

Source: Data adapted from Forbes Magazine (1982–2013).

Note: This table shows, for the years 1982 to 2013 and as an average across those years,
the number of people who dropped off Forbes Magazine’s list of the 400 wealthiest Americans
between one year of that list and the next year because they died (“decedents”), renounced their
American citizenship (“renunciants”), or experienced a decline in their wealth (“other dropouts”).
The total number of people who dropped off between one year and the next is also shown.
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Table C.2. Number of Entrants, 1982–2013

Year First-timers Returnees Total

1982–1983 74 0 74
1983–1984 35 9 44
1984–1985 41 23 64
1985–1986 51 5 56
1986–1987 60 20 80
1987–1988 36 16 52
1988–1989 35 25 60
1989–1990 27 17 44
1990–1991 27 20 47
1991–1992 30 13 43
1992–1993 37 10 47
1993–1994 34 15 49
1994–1995 39 6 45
1995–1996 40 13 53
1996–1997 31 12 43
1997–1998 36 11 47
1998–1999 60 10 70
1999–2000 46 9 55
2000–2001 25 29 54
2001–2002 16 19 35
2002–2003 15 16 31
2003–2004 45 9 54
2004–2005 33 9 42
2005–2006 28 14 42
2006–2007 46 12 58
2007–2008 32 7 39
2008–2009 19 20 39
2009–2010 17 18 35
2010–2011 18 6 24
2011–2012 21 11 32
2012–2013 20 14 34

Average 35 13 48

Source: Data adapted from Forbes Magazine (1982–2013).

Note: This table shows, for the years 1982 to 2013 and as an average across those years,
the number of people who came onto Forbes Magazine’s list of the 400 wealthiest Americans
between one year of that list and the next year for the first time since its inception in 1982
(“first-time”) or after an absence (“returnees”). The total number of people who came onto the
list between one year and the next is also shown.
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Table C.3. Number of Incumbents, 1982–2013

Year Up in rank Down in rank Same rank Total

1982–1983 184 141 1 326
1983–1984 215 138 3 356
1984–1985 217 116 3 336
1985–1986 184 153 7 344
1986–1987 187 128 5 320
1987–1988 174 165 9 348
1988–1989 224 113 3 340
1989–1990 151 198 7 356
1990–1991 163 187 3 353
1991–1992 155 196 6 357
1992–1993 204 142 7 353
1993–1994 192 151 8 351
1994–1995 181 167 7 355
1995–1996 221 120 6 347
1996–1997 191 162 4 357
1997–1998 176 172 5 353
1998–1999 217 106 7 330
1999–2000 227 117 1 345
2000–2001 76 260 10 346
2001–2002 120 237 8 365
2002–2003 229 130 10 369
2003–2004 201 131 14 346
2004–2005 231 121 6 358
2005–2006 202 149 7 358
2006–2007 207 124 11 342
2007–2008 171 180 10 361
2008–2009 165 187 9 361
2009–2010 207 149 9 365
2010–2011 206 166 4 376
2011–2012 193 162 13 368
2012–2013 222 128 16 366

Average 190 155 7 352

Source: Data adapted from Forbes Magazine (1982–2013).

Note: This table shows, for the years 1982 to 2013 and as an average across those years,
the number of people who stayed on Forbes Magazine’s list of the 400 wealthiest Americans
between one year of that list and the next year while seeing their rank in the distribution of wealth
go up, down, or stay the same. The total number of people who stayed on the list between one
year and the next is also shown.
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C.2 Expressions for the Simple Estimates

The text of the essay discusses a simple estimate for the probability that some-

one would appear on Forbes Magazine’s list again after appearing for a given number

of consecutive years. The text also discussed a related estimate for the probability

that someone would appear again and again for a given number of consecutive years.

Those estimates can be rediscussed with more notation as follows.

Looking at any given year of Forbes Magazine’s list, each person on the list

in the given year will have been on the list for some number of consecutive years.

Some will appear again in the next year, while others will not. Looking across each

year of the magazine’s list, we can add up the total number of (possibly non-unique)

people who appeared for some number of consecutive years t. Let nt denote that

number of people. For people on any year of the list except its most-recent year,

we know whether they appeared again or not. Let dt denote the number of people

who dropped off the list after their t-th consecutive year on it. For people on the

most-recent year of the list, we do not yet know whether they will appear again or

not. Let ct denote the number of those right-censored people.

A simple estimate of the probability of that someone will appear again in the

next year after appearing for a given number of consecutive years t is

pt ≡ 1−
(

dt
nt − ct

)
(C.1)

which is one less the number of people who appeared again after appearing for a

given number of consecutive years all over the number of people who either appeared

again or dropped off after the given number of years. That estimate is simplistic in

the sense that it assumes that, conditional on the number of years that someone has

already appeared, everyone appears again or drops off with the same probability.
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Using those estimates for the probability of appearing again after a given num-

ber of consecutive years, the probability that someone will appear again and again

for given number of consecutive years T can be estimated as the product

T∏
t=1

pt (C.2)

That estimate is simplistic in the sense that it assumes that everyone has the same

probability of appearing on the magazine’s list again and again for a given number

of consecutive years. The estimate is akin to the popular Kaplan-Meier or “product-

limit” estimator (Hollander and Wolfe 1999, pp. 535–50) and similarly simple non-

parametric estimators for survival functions.

C.3 Tests of the IIA Assumption

In the model discussed in the text, a person’s probability of dropping off Forbes

Magazine’s list due to a decline in his or wealth rather than appearing again, his or

her probability of dropping off due to death rather than appearing again, and his or

her probability of dropping off due to decline rather than death were all assumed to be

independent of the possibility of the remaining alternative. That is the independence

of irrelevant alternatives (IIA) assumption of any multinomial logit model.

The IIA assumption can be tested by applying a popular test suggested by

Hausman and McFadden (1984). The intuition behind the test is that, if the IIA

assumption is correct, then the estimated effects of the covariates on the relative

probability of any two alternatives should not change too much if the observations

associated with the remaining, supposedly irrelevant alternative were ignored. So, for

example, the estimates from a binomial logit model for the probability of dropping

off due to decline rather than appearing again should not be too different from the

comparable estimates from the trinomial logit model discussed in the text that also
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models the probability of the supposedly irrelevant alternative of dropping off due

to death rather than appearing again.

The statistic for the test is as follows. If β̂full and β̂restricted denote the estimates

of the comparable coefficients from a full, trinomial logit model that models all of the

alternatives and a restricted, binomial logit model that ignores one of the alternatives,

respectively, and if V̂ full and V̂ restricted denote the estimated variance-covariance

matrices of the comparable coefficients, then the test statistic is

(
β̂restricted − β̂full

)′ (
V̂ restricted − V̂ full

)−1 (
β̂restricted − β̂full

)
(C.3)

which should be asymptotically distributed as a Chi-squared distribution with de-

grees of freedom equal to number of comparable coefficients (Hausman and McFad-

den 1984). That statistic will obviously be zero if the estimated coefficients do not

change when one of the alternatives is ignored. If the statistic is too large, then the

IIA assumption is rejected.

Given that our model has three alternatives, the test can be performed in three

different ways by ignoring different alternatives, although, at least asymptotically,

the test should yield the same result, regardless of the way in which it is performed.

One way to perform the test is to ignore the observations associated with dropping

off due to decline. When those observations are ignored and a binomial logit model

is estimated, the change in the estimated parameters yields a test statistic that is a

negative number (specifically, about −5.22).

Although the test statistic should be non-negative asymptotically, given that

a Chi-squared distribution does not take on negative values, negative values are not

atypical with either real or simulated data (Cheng and Long 2007; Vijverberg 2011;

etc.). Such values are typically interpreted as a failure to reject the IIA assumption

(Vijverberg 2011, p. 39, table 1). Most notably, Hausman and McFadden (1984,
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p. 1226) interpret negative values in that way. Interpreted in that way, the test

suggests that the probability of dropping off due to death rather than appearing

again is independent of the possibility of dropping off due to decline.

A similar conclusion is drawn if the observations associated with dropping off

due to death are ignored. If those observations are ignored, then the test statistic is

negative again (specifically, about −7.91), which again suggests that the probability

of dropping off due to decline rather than appearing again is independent of the

possibility of dropping off due to death, if a negative test statistic is interpreted in

the same way as before.

The test statistic is also negative (specifically, about −710.35) if the observa-

tions associated with appearing again are ignored. Thus the probability of dropping

off due to death rather than decline appears to be independent of the possibility of

appearing again. It should be noted that, by ignoring the observations in which a

person appears again, the number of observations is reduced by almost an order of

magnitude from about 12,400 person-year observations to 1,488 observations. With

a smaller number of observations, the uncertainty associated with any given estimate

should tend to be larger, so we would not expect to find statistically significant dif-

ferences between the estimates of comparable coefficients. All three versions of the

test therefore imply that the IIA assumption cannot be rejected.

There is however an important caveat to that conclusion. We have applied

the Hausman-McFadden test because the possible violation of the IAA assumption

is so well known and the popularity of that test is so widespread that any well-

trained economist would expect the test to be applied. Yet scholars who have used

Monte Carlo simulations to study whether the Hausman-McFadden test actually

tests what it claims to test conclude that any inferences drawn from that test should

be completely ignored (Cheng and Long 2007; Vijverberg 2011).
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The intuition behind the test is nevertheless appealing, so it can be noted

that, even when a supposedly irrelevant alternative is ignored, the relative risk of

one alternative rather than another does not seem to change by a substantial amount.

For a person with a median age and median rank who comes onto the list for the

first time in 1996, for example, the trinomial model suggests that he or she is about

418 times more likely to appear on the list again rather than drop off due to death,

while a binomial model that ignores the possibility of dropping off due to decline

suggests that the person is about 426 times more likely to do so. The trinomial

model also suggests that the person is about 20.2 times more likely to appear again

than drop off due to decline, while a binomial model that ignores the possibility of

dropping off due to death suggests that he or she is about 20.3 times more likely to

do so. And the person is also much more likely to drop off the list due to decline

than death, according to both the trinomial model and a binomial model that ignores

the possibility of appearing on the list again in the next year, although the trinomial

model suggests that he or she is about 21 times more likely to drop off due to decline,

while the binomial model suggests that he or she is about 129 times more likely to

do so. In each case, the relative risks are qualitatively similar and, except for the

latter case, quantitatively similar.

C.4 Estimates for the Extensions

Table 4.1 in the text shows estimates for the model that was subsequently

extended, but similar tables were not shown for the extensions to that model. The

following tables show estimates for the extensions to the model. Recall that one ex-

tension included a dummy variable for whether someone was philanthropic. Another

extension included a dummy variable for whether someone’s wealth was self-made.

And yet another extension included a dummy variable for whether someone’s wealth
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was made in the finance, insurance, or real estate (FIRE) industry, as well as inter-

action terms between that dummy and year-specific dummies. All of the extensions

were restricted to the years since 1996 because we do not have information on those

dummy variables in earlier years. Forbes Magazine did not start systematically re-

porting the source of someone’s wealth until 1996. That was also the first year for

which Slate constructed its list of the most-generous Americans.
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Table C.4. Multinomial Logit Model with Philanthropic Dummies

Competing risks

Covariates Decline Death

Constant −4.24
∗∗∗ −6.56

∗

(0.92) (3.47)
Age −0.06

∗∗ −0.10
(0.03) (0.09)

Age squared 0.00
∗∗

0.00
∗∗

(0.00) (0.00)
Rank 0.02

∗∗∗ −0.00
(0.00) (0.00)

Left-censored dummy −0.57
∗∗

0.26
(0.28) (0.34)

Philanthropic dummy −0.04 −0.34
(0.15) (0.27)

Year dummies ∗∗∗Yes ∗∗∗Yes
Duration dummies ∗∗∗Yes ∗∗∗Yes

Number of observations 6, 798
Percent correctly predicted 89.19
Log-likelihood −1, 927.46
Test for non-constant variables 1, 392.83

∗∗∗

Test for philanthropic dummies 1.68

Source: Data adapted from Chronicle of Philanthropy ; Forbes Magazine (1982–2013); and Slate.

Note: This table shows maximum-likelihood estimates for the model discussed in the text
that was essentially the same as the model estimated in table 4.1, except that it included a dummy
variable that reflects people who were one of the wealthiest Americans in a given year according
to Forbes Magazine’s list and also one of the most-generous Americans in that or any other earlier
year according to either the Philanthropy 50 list (for the years since 2000) or the Slate 60 list (for
the years between 1996 and 1999).

∗p < .10 ∗∗p < .05 ∗∗∗p < 0.01
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Table C.5. Multinomial Logit Model with Self-made Dummies

Competing risks

Covariates Decline Death

Constant −4.44
∗∗∗ −6.05

∗

(0.93) (3.45)
Age −0.06

∗∗ −0.11
(0.03) (0.09)

Age squared 0.00
∗

0.00
∗∗∗

(0.00) (0.00)
Rank 0.02

∗∗∗ −0.00
(0.00) (0.00)

Left-censored dummy −0.57
∗∗

0.09
(0.28) (0.34)

Self-made dummy 0.22
∗∗ −0.57

∗∗∗

(0.11) (0.22)
Year dummies ∗∗∗Yes ∗∗∗Yes
Duration dummies ∗∗∗Yes ∗∗∗Yes

Number of observations 6, 798
Percent correctly predicted 89.19
Log-likelihood −1, 922.51
Test for non-constant variables 1, 402.74

∗∗∗

Test for self-made dummies 11.60
∗∗∗

Source: Data adapted from Forbes Magazine (1982–2013).

Note: This table shows maximum-likelihood estimates for the model discussed in the text
that was essentially the same as the model estimated in table 4.1, except that it included a dummy
variable for whether someone’s wealth was self-made or not.

∗p < .10 ∗∗p < .05 ∗∗∗p < 0.01
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Table C.6. Multinomial Logit Model with FIRE Industry Dummies

Competing risks

Covariates Decline Death

Constant −4.35
∗∗∗ −6.56

∗

(0.94) (3.51)
Age −0.05

∗ −0.10
(0.03) (0.09)

Age squared 0.00
∗

0.00
∗∗

(0.00) (0.00)
Rank 0.02

∗∗∗ −0.00
(0.00) (0.00)

Left-censored dummy −0.56
∗

0.28
(0.28) (0.34)

FIRE industry dummy −0.81
∗∗∗ −0.52

(0.19) (0.51)
Year dummies ∗∗∗Yes ∗∗∗Yes
Duration dummies ∗∗∗Yes ∗∗∗Yes
Industry-year interaction terms ∗∗∗Yes ∗∗∗Yes

Number of observations 6, 798
Percent correctly predicted 89.50
Log-likelihood −1, 908.35
Test for non-constant variables 1, 431.05

∗∗∗

Test for FIRE industry dummies and
industry-year interaction terms 39.91

∗∗

Source: Data adapted from Forbes Magazine (1982–2013).

Note: This table shows maximum-likelihood estimates for the model discussed in the text
that was essentially the same as the model estimated in table 4.1, except that it included a dummy
variable for whether someone’s wealth was made in the FIRE industry or not and, also, interaction
terms between that dummy and year dummies.

∗p < .10 ∗∗p < .05 ∗∗∗p < 0.01
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C.5 A Thought Experiment on Wealth Deaccumulation

While we might simply assume that a wealthy person could become less wealthy

if he or she wanted to, we should think about the ways in which someone could

actually do so if they wanted. To that end, suppose that someone has somehow

accumulated enough wealth to make himself or herself wealthier than anyone else.

That wealthy person can be called Mr. Moneybags. It has sometimes been suggested

that the wealthy accumulate wealth as an end unto itself, but suppose that Mr. Mon-

eybag wants to deaccumulate wealth as an end unto itself. Reasons why someone

might want to deaccumulate wealth are noted below, but, for now, suppose that

Mr. Moneybags merely wants to deaccumulate wealth as an end unto itself.

There are ways in which he could try to reduce his wealth. Some assets can

be destroyed. Cash can be burned, for example. So, if at least some of his assets

were already held in a destructible form like cash, then Mr. Moneybags could destroy

those assets and thereby reduce his wealth. Yet, if Mr. Moneybags destroyed some

of his cash, then the rate of interest on his remaining cash should rise, at least from

a loanable funds perspective. Burning a dollar would therefore decrease Mr. Mon-

eybag’s wealth by a dollar, all other things being equal, but it might not decrease

his wealth by a full dollar if the interest rate rose, unless he burned any additional

interest income, although he would also need to burn any additional interest income

that was generated by burning that dollar, and so forth (and likewise for any other

destroyable assets that yield a return determined by supply and demand). The de-

struction of assets would nevertheless seem to be an effective way for Mr. Moneybags

to reduce his assets and thereby reduce his wealth.

Other ways in which Mr. Moneybags could try to reduce his wealth may also be

effective. Suppose that instead of destroying assets, Mr. Moneybags simply transfers

them to some other individual or organization. If at least some of his assets were
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already held as cash, then he could drop his cash out of a helicopter, for example.

Such a helicopter drop of cash would reduce his wealth, at least immediately. Yet,

if Mr. Moneybags owned a business that manufactured bags for holding money, and

if there was an increase in the demand for such bags after he started dropping cash

out of a helicopter, then a fraction of each dollar he dropped might return to him.

The same thing would be true, if he owned any sort of business that benefited from

broadly shared wealth.1 In order to reduce his wealth by a dollar after dropping a

dollar out of a helicopter, he would also need to drop any cents that return to him

out of a helicopter, and so forth. Again, however, transferring assets would seem to

be an effective way for Mr. Moneybags to reduce his wealth.

Another seemingly effective way to reduce his wealth would be to take on debt.

Taking on debt and then eventually repaying that debt would be equivalent to simply

transferring whatever the interest payments would have been (usurious or otherwise),

at least up until the point where the wealth of Mr. Moneybags would turn negative

with his debts exceeding his assets. Whereas Mr. Moneybags could never reduce his

wealth below zero by destroying or transferring his assets, he could reduce his wealth

below zero by taking on enough debt.

Taking on debt, transferring assets, or destroying assets would therefore seem

to be effective ways for Mr. Moneybags to reduce his wealth. Of course, except when

they are at their most euphoric, it is uncommon for bankers to extend a loan simply

so that someone can take on debt. The intentional destruction of one’s assets is

also uncommon, except perhaps among those who either attend potlatch rituals or

reenact the actions of protagonists from Ayn Rand novels. Transferring assets is more

common. The wealthy transfer assets to their children and other charity cases all

1To take a more realistic example, Bill Gates might get some of his money back if he bought
a personal computer for every child in Africa and then some of those children or their parents went
out and bought Microsoft products.
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the time, for example. A “warm glow” or some other form of utility associated with

such transfers may be at least one reason why someone would want to deaccumulate

wealth as more than an end unto itself (Andreoni 1990).

Other ways in which Mr. Moneybags could try to reduce his wealth may be

less effective. Assuming that at least some of his assets were already held in cash or

another liquid form, Mr. Moneybags could use those assets to buy goods and services.

Unlike a pure transfer of wealth, in which he would exchange his wealth for nothing

in return except perhaps a warm glow or some other form of utility, Mr. Moneybags

would get a good or service back in exchange for his wealth. If a good or service

was non-durable, then Mr. Moneybags could consume it, and his wealth would be

reduced by the cost of the item. If he merely wanted to deaccumulate wealth as

an end unto itself, then there would presumably be no limit to the amount of non-

durable goods and services that he could buy. Yet, as pointed out by Carroll (2000,

pp. 476–7), if someone actually wanted to consume what they bought, and if someone

was only willing to pay so much for a particular good and service, then there would

presumably be a limit to the amount non-durable goods and services that anyone

could buy and consume.

Durable goods could also be bought, but such goods are assets that add to

one’s wealth (or, at least, they could be counted as such). If Mr. Moneybags bought

a helicopter, for example, then his wealth might not decline by the full cost of

that helicopter, depending on its resale value. The wealth of Mr. Moneybags might

even increase if the mere fact that he owned a helicopter increased the demand

for and thereby the value of the helicopter. That said, Mr. Moneybags might be

able to reduce his wealth through either durable or non-durable consumption. Such

consumption would be another reason to deaccumulate wealth as more than an end

unto itself.
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Some of the above-discussed ways in which Mr. Moneybags could reduce his

wealth depended on him already having some of his assets in cash or another liquid

or destructible form. Transforming his wealth into that form might be difficult,

however. Suppose that most of his wealth was initially held in the stock of a specific

company. One difficulty that might arise is that, even if there were market makers or

other market participants who wanted to buy the stock, trying to sell too much stock

too quickly might cause the price of the stock—or maybe even the entire market for

the stock—to collapse (as Einstein 2000 pointed out in the context of Bill Gates

trying to sell off all of his stock in Microsoft).

Also, if market participants did not know that Mr. Moneybags was selling his

stock simply so that he could deaccumulate wealth, then the market participants

might presume that Mr. Moneybags had insider information (as Einstein 2000 also

pointed out). Again, the price of the stock might collapse. If Mr. Moneybags merely

wanted to deaccumulate wealth, such a collapse would be welcomed; but, if someone

was actually trying to transform those assets into another form that could be used

for consumption, charity, or what not, then he or she would obviously wish to avoid

such a collapse. Someone trying to sell off their stock in a specific company would

therefore need to convince market participants that he or she was selling off stock,

but not at any price and only for reasons unrelated to the company. A new-found

desire to help the less fortunate might be one reason.
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APPENDIX D

APPENDIX ON THE DATA

D.1 Collecting and Processing the Data

The primary source of data used by this dissertation is Forbes Magazine’s

annual list of the 400 wealthiest Americans. That list was first published in 1982,

and it was published as recently as 2013, as of writing (Forbes Magazine 1982, 1983,

1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,

1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,

2012, 2013). The author of this dissertation was informed that the magazine does

not share its data on the 400 wealthiest Americans (personal communication on

June 17, 2009, with Tanya Prive, circulation assistant at Forbes Magazine). The

magazine obviously does share its data through its print publication and its online

presence. The data has also been shared as part of a book (Bernstein and Swan

2007), as discussed below. The magazine apparently does not share its data in a

less-dispersed form, however. Thus, in order to study the magazine’s list, the data

must be collected and processed from the print or online versions of the magazine.

The author of this dissertation collected and processed the data himself.

Previous researchers who have studied the magazine’s list have also apparently

had to collect and process the data themselves. For example: An economist at the

Federal Reserve, Arthur Kennickell, apparently collected and processed data on the

magazine’s list for the years 1989, 1992, and 1995, as well as for each year between
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the years 1998 and 2002 (Kennickell 2006). Kennickell appears to have collected and

processed the data himself because, while presenting at a conference, he said, “This

[i.e., the years around 1989, 1992, and 1995] is when the data was only available in

the magazine, [so] I had to type them into the computer, and I was not going to do

[that for] every year; but, since then, I can get [the data] off the internet, so I have

an annual series beyond that [i.e., in the years 1998 to 2002]” (Kennickell 2003).

As another example: The authors of Klass et al. (2006) and their research

assistant apparently collected and processed the data from print or online versions

of the magazine for the years 1988 to 2003. The corresponding author of that paper

was kind enough to share their dataset with the author of this dissertation (personal

communication on June 19, 2009, with Moshe Levy, corresponding author of Klass

et al. 2006), although the author of this dissertation independently collected and

processed data for those years, as discussed in one of the essays in this dissertation,

and some errors were identified in their dataset, as discussed in the same essay.

The main difficulty with collecting and processing the magazine’s data is that

the same people have been listed under slightly different names in different years.

Bill Gates was “William Henry Gates III” when he first appeared on the list in

1986 (Forbes Magazine 1986, p. 173), but he was just “Bill Gates” by 2013 (Forbes

Magazine 2013, p. 124), to take but one example. For any longitudinal analysis,

identifying unique individuals across time is obviously important. The author of this

dissertation tried to ensure that he identified individuals across time by attempting

to replicate a list of all the unique individuals who appeared on the magazine’s list

in any year between 1982 and 2006 (Bernstein and Swan 2007, pp. 331–60) and in

both 1982 and 2012 (Kilachand 2012). Those attempted replications are discussed in

the next two sections, before discussing a few other issues that should be addressed

before trying to study the data.
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D.2 Replicating Bernstein and Swan’s (2007) Table

There is a book entitled All the Money in the World: How the Forbes Four

Hundred Make and Spend Their Fortunes (Bernstein and Swan 2007). That book

was published to coincide with the 25th anniversary of Forbes Magazine’s annual

list of the 400 wealthiest Americans, and it was created in collaboration with the

magazine (see Bernstein and Swan 2007, p. vii, on the collaboration).

As an appendix to the book, there is a table entitled “The Forbes Four Hun-

dred, 1982–2006” (Bernstein and Swan 2007, pp. 331–60). That table is supposed

to include all of the unique individuals who appeared on the magazine’s list between

1982 and 2006 (ibid., p. 331). The table also includes, for each supposedly unique in-

dividual, his or her peak wealth (in millions of current dollars) and the year of his or

her peak wealth (or, if there were multiple years at the peak wealth, the most-recent

year of the peak wealth).

The author of this dissertation tried to replicate that book’s table. The fol-

lowing discrepancies were identified during the attempted replication.

One discrepancy was in the number of unique individuals who appeared on

the magazine’s list over its first 25 years. According to the book’s table, there were

1,302 unique individuals who appeared. The author identified only 1,301 unique

individuals, or one fewer.

This discrepancy arose because the book inadvertently included nine individ-

uals who should have been excluded, and inadvertently excluded eight individuals

who should have been included.

One of the nine individuals who should have been excluded, Stephen C. Hilbert,

should have been excluded because he did not appear on the magazine’s list in any

year. According to the book’s table, he appeared once in 1998, but he was a near

miss in that year, according to the magazine (Forbes Magazine 1998, p. 384).
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The other eight individuals should have been excluded because the supposedly

unique individuals were not actually unique individuals. Eights pairs of names are

given below. For each pair of names, each name in the pair was included in the

book’s table as a unique individual, but both names refer to the same individual.

• “Crocker, Ruth Chandler” and “Von Platen, Ruth Chandler”

• “Dedman, Robert H.” and “Dedman, Robert Henry, Sr.”

• “Getty, J. Paul, Jr.” and “Getty, Eugene Paul (J. Paul), Jr.”

• “Harris, Ann Clark Rockefeller” and “Roberts, Ann Clark Rockefeller”

• “Hendrix, Helen Hunt” and “Hunt, Helen”

• “O’Neill, Abby M. Rockefeller” and “O’Neill, Abby Mitton”

• “O’Neill, Laura Simpson” and “Thorn, Laura Simpson”

• “Resenberg [sic], Henry A., Jr.” and “Rosenberg, Henry A., Jr.”

For most of those pairs, each name refers to a woman who changed her name after

marriage or divorce. For the other pairs of names, one name in the pair is either

a misspelling of the other name or a slight variation on the other name. Eight

non-unique individuals were therefore inadvertently included in the book’s table.

The eight individuals who were inadvertently excluded from the book’s table

are as follows.

• Robert Dart appeared on the magazine’s list once in 1994, but he is not included

in the book’s table.

• Mark Getty appeared once in 1994, but he is not included.
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• David Whitmire Hearst Sr. appeared four times, but he is not included. The

book seems to attribute three of his appearances to his son, David Whitmire Hearst

Jr., who appeared on the magazine’s list for 19 years, not the 22 years reported in

the book’s table.

• Stanley Stub Hubbard appeared for 20 years, but he is not included. The book

seems to attribute his appearances to his father, Stanley E. Hubbard, who appeared

on the magazine’s list for two years, not the 22 years reported in the book’s table.

• Glenn Robert Jones appeared once in 1994, but he is not included.

• William Myron Keck Jr. appeared once in 1982, but he is not included. The book

seems to attribute his appearances to William Myron Keck II, who appeared on the

magazine’s list for eight years, not the nine years reported in the book’s table.

• Kim Magness appeared four times, but he is not included. The book seems to

attribute his appearances to his father, Bob John Magness, who appeared on the

magazine’s list for 12 years, not the 16 years reported in the book’s table.

• Ariadne Getty Williams appeared once in 1994, but she is not included.

If those eight individuals who should have been included are included, and if the

nine individuals who should have been excluded are excluded, then the book’s table

would have identified the same number of unique individuals as the author.

Other discrepancies besides a discrepancy in the total number of unique indi-

viduals were also identified during the attempted replication. Those discrepancies

related to an individual’s years on the magazine’s list, his or her peak wealth, or the

most-recent year of his or her peak wealth. The other discrepancies were as follows.

All the discrepancies are due to errors in the book’s table, at least to the best of the

author’s knowledge. All dollar values are in current dollars.



203

• John Edward Anderson appeared on the magazine’s list for 19 years in total (he

was a new entry in the year 1988 and appeared through the year 2006), not the 20

years that was reported by the book’s table.

• Robert Orville Anderson appeared for seven years (he appeared from 1982 to

1988), not six years.

• George Leon Argyros appeared for 10 years, not 11 years, although he was a near

miss in 1992.

• Kenneth Eugene Behring appeared for eight years (he appeared from 1989 to

1995 and in 1997), not nine years, and his peak wealth was in 1997, not 1998 (he

was not on the list in that year).

• Arthur Bejer Belfer appeared for 11 years (he appeared from 1982 to 1992), not

10 years.

• Virginia McKnight Binger appeared for 17 years, not 18 years, although she was

a near miss in 1998.

• Octavia Mary du Pont Bredin appeared for 15 years (she appeared from 1982 to

1987, dropped out in 1988, appeared from 1989 to 1997, and dropped out in 1998),

not 14 years.

• August Anheuser Busch Jr. appeared for eight years (he appeared from 1982 to

1989), not seven years.

• James H. Clark appeared for nine years, not 10 years, although he was a near

miss in 1998.

• Tristram C. Colket Jr. appeared for eight years, not nine years, although he was

a near miss in 1992.
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• Andrea B. Currier appeared for five years (she appeared in 1986 and from 1990

to 1993), not three years.

• Constance Simons du Pont Darden appeared for 16 years (she appeared from

1982 to 1987, dropped out in 1988, and appeared from 1989 to 1999), not 15 years,

and her peak wealth was 525 million dollars in 1998, not 500 million dollars in 1997.

• Robert Henry Dedman Sr. (or, equivalently, Robert H. Dedman; see above) ap-

peared for 17 years, his peak wealth was 1.2 billion dollars, and the most-recent year

of his peak wealth was 1999.

• Barry Diller appeared for nine years, not 10 years, although he was a near miss

in 1998.

• Thomas Henry Dittmer appeared for four years (he appeared from 1986 to 1989),

not three years.

• John Thompson Dorrance II appeared for seven years (he appeared from 1982 to

1988 and dropped out due to death in 1989), not eight years.

• John Thompson Dorrance III appeared for seven years (he appeared in 1982,

dropped out in 1983, returned in 1989, and appeared until 1994), not five years.

• Helena Allaire Crozer du Pont appeared for five years (she appeared from 1984

to 1988), not four years.

• The peak wealth of Pierre Samuel du Pont III was 300 million dollars. According

to the book’s table, the most-recent year he was worth that much was 1982; but the

most-recent year was 1987, according to the magazine’s list.

• Malcolm Stevenson Forbes appeared for eight years (he appeared from 1982 to

1989), not six years.
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• Samuel Joseph Frankino appeared for four years (he appeared in 1985 and from

1987 to 1989), not three years.

• John Brooks Fuqua appeared for five years (he appeared from 1982 to 1984 and

in 1988 and 1992), not four years.

• Eugene Paul Getty Jr. (or, equivalently, J. Paul Getty Jr.; see above) appeared

for 11 years with a peak wealth of one billion dollars in 1997.

• Guilford Glazer appeared for 18 years, not 19 years, although he was a near miss

in 1998.

• John Murdoch Harbert III appeared for 11 years (he was a new addition in 1984,

appeared from 1984 to 1994, and dropped due to death in 1995), not 12 years, and

his peak wealth was 710 million dollars in 1993, not 1.5 billion dollars in 2006 (he

was not on the list in that year).

• Marguerite Harbert appeared for 11 years, not 10 years. The book seems to

attribute her 2006 appearance to her deceased husband, John Murdoch Harbert III.

• David Whitmire Hearst Jr. appeared for 19 years, not 22 years, as noted above.

• Helen Hunt Hendrix (or, equivalently, Helen Hunt; see above) appeared for five

years, her peak wealth was 200 million dollars, and the most-recent year of her peak

wealth was 1986.

• Teresa F. Heinz appeared for 10 years, not 11 years, although she was a near miss

in 1999.

• Leon Hess appeared for 17 years (he appeared from 1982 to 1998, and dropped

out in 1999), not 18 years, and his peak wealth was in 1993, not 1999 (he was not

on the list in that year).
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• Samuel J. Heyman appeared for eight years (he was a new entry in 1991, appeared

until 1998, and dropped out in 1999), not seven years.

• Harry Howard Hoiles appeared for nine years (he was a new entry in 1987, ap-

peared until 1995, and dropped out in 1996), not 10 years.

• Ronald Holden appeared for only one year, not two years, although he was a near

miss in 1998.

• Amos Barr Hostetter Jr. appeared for 20 years (he was a new entry in 1987 and

appeared through 2006), not 21 years.

• Stanley E. Hubbard appeared for two years, not 21 years, as noted above. Also,

his peak wealth was 175 million dollars in 1983, not 1.8 billion dollars in 1996 (he

was not on the list in that year).

• Muriel Kauffman appeared for two years (she appeared once in 1993 and again

in 1994), not one year.

• William Myron Keck II appeared for eight years, not nine years, as noted above.

• Randolph D. Lerner appeared for four years (he was a new entry in 2003 and

appeared through 2006), not seven years.

• Theodore Nathan Lerner appeared for four years, not one year. The book seems

to attribute some of his appearances to Randolph D. Lerner, who is a different (and

apparently unrelated) individual.

• Bob John Magness appeared for 12 years (from 1985 to 1996), not 16 years, as

noted above. Also, his peak wealth was 1.2 billion dollars in 1994, not 2.3 billion

dollars in 2000 (he was not on the list in that year).
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• Morton Leon Mandel appeared for 12 years (he appeared from 1982 to 1984, in

1987, and from 1989 to 1996), not 11 years.

• Jacqueline Mars appeared for 20 years (she was a new entry in 1987 and appeared

through 2006), not 21 years.

• Craig O. McCaw appeared for 20 years (he was a new entry in 1987 and appeared

through 2006), not 21 years.

• Wendy McCaw appeared for two years, not three years, although she was a near

miss in 1998.

• Alice Francis du Pont Mills appeared for 17 years (she appeared from 1982 to

1998, and dropped out in 1999), not 16 years.

• Abby Mitton Rockefeller O’Neill (or, equivalently, Abby M. Rockefeller O’Neill;

see above) appeared for five years with a peak wealth of 425 million dollars in 1985.

• Milton Jack Petrie appeared for 13 years (he appeared from 1982 to 1994), not

12 years.

• Ann Clark Rockefeller Roberts (or, equivalently, Ann Clark Rockefeller Harris;

see above) appear for three years, her peak wealth was 150 million dollars, and the

most-recent year of her peak wealth was 1984.

• Marvin Maynard Schwan appeared for five years (he appeared from 1988 to 1992),

not four years.

• Edward Wyllis Scripps appeared for four years (he appeared from 1982 to 1985),

not five years, and his peak wealth was 160 million dollars in 1985, not 1.6 billion

dollars in 1993 (he was not on the list in that year). The book seems to confuse the
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dispersed wealth of the family of E.W. Scripps (who died in 1926) with the wealth

of Edward Wyllis Scripps.

• Ollen Bruton Smith appeared for 11 years, not 12 years, although he was a near

miss in 1998.

• George Soros appeared for 20 years (he was a new entry in 1987 and appeared

through 2006), not 21 years.

• Laura Simpson Thorn (or, equivalently, Laura Simpson O’Neill; see above) ap-

peared for four years with a peak wealth of 200 million dollars in 1985.

• Ruth Chandler Von Platen (or, equivalently, Ruth Chandler Crocker; see above)

appeared for five years with a peak wealth of 300 million dollars in 1987.

Those discrepancies relate to 54 unique individuals, which is a relatively small number

of people, given that over one thousand people appeared on the magazine’s list

between 1982 and 2006.

D.3 Replicating Kilachand’s (2012) List

For the 30th anniversary of its inaugural list of the 400 wealthiest Americans,

a staff member at Forbes Magazine published a list of the names and wealths of

the unique individuals who appeared on the list in both 1982 and 2012 (Kilachand

2012). That list included 36 people. Each of those 36 people did indeed appear on

the magazine’s list in both 1982 and 2012, but three other people—Phoebe Hearst

Cooke, George Phydias Mitchell, and Leslie Herbert Wexner—also appeared on the

list in both of those years. There were 39 people who appeared on the list in both

1982 and 2012, therefore. It can also be noted that Kenneth Stanley “Bud” Jr. was

worth 150 million current dollars in 1982, according to the magazine, not 152 million

current dollars, as Kilachand (2012) suggests.
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D.4 Imputing the Wealth of One of Them

In each year, except in a few years, Forbes Magazine has reported an estimate

of the wealth of each person who has appeared on its list of the 400 wealthiest

Americans. The exceptions are that, in the years 1982 to 1989, the magazine did

not report an estimate for the wealth of one person on its list, Malcolm Stevenson

Forbes, who was the editor-in-chief of Forbes Magazine. “People would have assumed

that the printed figure [for my wealth] was real, not an estimate, as all the rest are,”

he explained (Forbes Magazine 1983, p. 168; also see Forbes Magazine 1982, p. 170).

This dissertation imputed his wealth in a given year as the median wealth of the other

399 people on the list in the given year. The wealths of one person (corresponding

to eight observations) were therefore imputed.

It can be noted that, by using that imputation method, Malcolm Stevenson

Forbes would be estimated to be worth 450 million current dollars in 1989. When he

died a year later in 1990, the New York Times reported that, “Mr. Forbes’ worth was

estimated at 400 million to one billion [current] dollars” (New York Times 1990b,

p. D1). So, an estimated wealth of 450 million current dollars in 1989 is not incon-

sistent with other estimates of his wealth from around that time.

D.5 Fixing the Ages of Some of Them

In addition to reporting an estimate of the wealth of each person who appears

on its list of the 400 wealthiest Americans, Forbes Magazine also reports the age of

each person, although there have been a few exceptions over the years.

For some people in some years, the magazine did not report their ages or only

reported a range for their ages like “70s.” Some of those people appeared on the list

in subsequent years along with their ages, however, so their ages can be extrapolated

backward. This dissertation extrapolated the ages of 22 people (corresponding to
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61 observations). The fact that Forbes Magazine was sometimes able to estimate

a person’s wealth but not their age may make one wonder about the accuracy of

the wealth estimates, although the magazine’s primary interest was obviously in

estimating people’s wealths rather than their ages.

For other people, their ages cannot be extrapolated backwards because they

never appeared again in subsequent years or, at least, they never appeared again

along with their ages. For those people, except for one person, this dissertation im-

puted their ages as the average conditional age of the other people on the magazine’s

list in the same year. So, for example, if the magazine reported that a person was

somewhere in his or her seventies, then this dissertation imputed his or her age as the

average age of everyone else on the list in the same year who was in their seventies.

The ages of 15 people (34 observations) were imputed in that way.

The one person who is the exception is David S. Oros, who appeared on the

magazine’s list once in the year 2000. A 2001 article in Forbes Magazine reported

that Oros was 41 years of age (Brown 2001), so this dissertation assumed that he

was 40 in 2000. That person was the only person for which the magazine reported

his or her age in another context, at least to the author’s knowledge.

A final issue with the ages reported by the magazine is the following. If the

ages of unique people are compared from list to list, then it is obvious that at least

some of the ages reported by the magazine were incorrect. If the ages were correct,

then the difference in age for a given person between any two lists should never be

less than zero or greater than two years of age. The difference does not necessarily

need to be one year of age because the magazine’s list has not been a snapshot of

wealth on the exact same day every year, so a person could be the same age or

two years older between any two lists. Some of the age differences are greater than

two, however, in which case the person would have had too many birthdays. Some
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of the age difference are also negative, in which case the person would have grown

younger. This dissertation corrected those obviously incorrect ages by assuming

that the most-recent age reported by the magazine was correct—which seems like

a reasonable assumption, given that more information should come to light over

time—and then extrapolating backwards. The ages of 53 people (111 observations)

were corrected in that way.

In total, the ages of 90 people corresponding to 206 observations were either

extrapolated, imputed, or corrected. That represents a relatively small number of

people (only about six percent of the total number of people who appeared on the

magazine’s list) and a relatively small number of observations (only about two percent

of the total number of observations).

D.6 Ignoring Human Capital

When it estimates what someone is worth, Forbes Magazine apparently tries

to account for all sorts of real and financial assets (“stakes in public and private

companies, real estate, art, yachts, planes, ranches, vineyards, jewelry, car collections,

and more;” Forbes Magazine 2012, p. 262), but there is no indication that it tries

to account for “human capital” or any of the other sorts of capital identified by

social scientists such as “personal capital,” “mental capital,” “social capital,” “erotic

capital,” or “natural capital.”1

Human capital is the only sort of capital that economists commonly complain

about whenever someone fails to account for it, so not trying to account for other

sorts of capital can perhaps pass without comment, but a few comments should be

made about the magazine not trying to account for human capital.

1The sorts of capital listed above are borrowed from Fine’s (2013, p. 8) extensive but not
exhaustive list of a plethora of capitals. Other sorts of capital identified by social scientists include
“cultural capital” and “symbolic capital” (Fine 2007, pp. 48–49).
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It should first be recognized that, even if the magazine does not try to account

for human capital, its wealth estimates may account for such capital after all, at least

partially, and at least in some cases. Some of the wealthiest Americans according to

Forbes Magazine have been people who created companies, operated those compa-

nies, and held some of their wealth in the companies. If we take the view that markets

are information processors, then part of the price of such a company should reflect

something akin to the human capital of its creator and operator. When the price

of Apple’s stock rose and fell along with news about the health of Steve Jobs, those

prices swings presumably reflected new expectations about how long Jobs would live

and how much value he would contribute over the rest of his life, for example. To the

extent that the price of a company reflects a person’s human capital, the person’s

wealth held in that company would also reflect his or her human capital. Thus, while

it is important to note that the magazine does not try to account for human capital,

that does not imply that it completely fails to do so.

It should also be noted that, even if Forbes Magazine wanted to try to account

for human capital, it is unclear how it could do so. Economists often measure a

stock of human capital by a level of education, but many of the Americans who have

been the wealthiest Americans according to Forbes Magazine have also been college

or even high school dropouts. The man who has been the wealthiest American for

several years according to the magazine (namely, Bill Gates) is a college dropout,

for example (Bernstein and Swan 2007, p. 8). Selection effects are an obvious reason

why someone who became wealthy would forgo higher levels of education, but it

is nevertheless the case that education may be a poor proxy for human capital.

Another typical measure of a stock of human capital is a flow of income, but some of

the wealthiest Americans according to Forbes Magazine have worked for salaries of

only one dollar per. Steve Jobs, Larry Page, and others have worked for an annual
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salary of only one dollar, for example (Coffey 2011). Stock options are an obvious

reason why someone would work for such a seemingly low amount, but, if we account

for stock options, then those options would reflect the person’s human capital only

to the extent that the price of a stock reflects such capital.

Finally, it should be recognized that, even if there was a clear way to try to

account for human capital, there are reasons to study non-human assets separately

from human ones. Unlike non-human assets, human assets cannot be bought or sold,

so they cannot be spent down or pledged as collateral (Davies 2009, pp. 127–8).

In summary, the fact that Forbes Magazine does not try to account for human

capital is noteworthy but not indefensible.

D.7 Ignoring Some Valuation Issues

Human capital is not the only asset for which it is somewhat unclear how it

should be valued when trying to estimate someone’s wealth. Even publicly traded

stocks could reasonably be valued in different manners. Such stocks may seem

straightforward to value because they change hands almost constantly at prices that

are publicly available. Simply using market prices is an obvious and not unreason-

able approach to valuing a stock, and that approach is the one that Forbes Magazine

apparently adopts. Again, however, there are other reasonable manners in which

publicly traded stocks might be valued.

If a person owns a certain amount of a stock that is trading at a certain price,

then he or she would only be worth the current value of that stock to the extent that

wealth is defined in terms of market prices. If the person actually sold the stock, then

trying to sell it might push down its price and, even if its price was not pushed down,

capital-gain taxes and other expenses might be incurred, as emphasized by Einstein

(2000). Thus, in some sense, the person was never worth as much as the market price
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of his or her stock might suggest. Any taxes or transactions costs associated with

selling a stock should therefore perhaps be accounted for when valuing the stock.

Of course, for other assets besides publicly traded stocks, just estimating their

market prices can be difficult. Estimating any taxes and transaction costs that

someone might face when selling an asset is an additional difficulty. That difficulty

may also be unnecessary, if it is reasonable to simply value assets at market prices.

It is therefore not surprising that the magazine does not try to account for the costs

associated with selling an asset.2

D.8 Sharing the Data

As mentioned above, Forbes Magazine declined to directly share its data on

the 400 wealthiest Americans with the author of this dissertation, so the author went

through each year of the magazine’s list and collected the data himself. The mag-

azine also declined the author’s request to republish that raw data as part of this

dissertation (personal communication on May 8, 2014, with Elena Coster, sales co-

ordinator at Forbes Magazine’s content management firm, PARS International). We

will therefore refrain from sharing that raw data as part of this dissertation. Instead,

we will share the dataset we created by collecting data from each year of the mag-

azine’s list, identifying unique individuals in the manner discussed above, imputing

some wealth estimates in the manner discussed above, and fixing some of the ages

reported by the magazine in the manner discussed above. That dataset is too large

to include here, but it is included as a supplementary file to this dissertation. That

file is available through ProQuest/UMI along with the full text of the dissertation.

2An implication of valuing assets at market prices that is perhaps noteworthy is as follows.
While a fortune with substantial unrealized capital gains may appear bigger than a fortune for
which capital gains have already been realized, the former may actually be smaller than the latter
after accounting for capital-gains taxes.
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D.9 Some Summary Statistics

D.9.1 Their Absolute Wealth

According to the magazine’s list, the total wealth of the 400 wealthiest Amer-

icans increased dramatically between the inaugural year of its list in 1982 and the

most-recent year of its list, which was the year 2013, as of writing. The increase in

the nominal wealth of the 400 wealthiest Americans was especially dramatic. Their

nominal wealth increased over 20-fold from about 92 billion to two trillion current

dollars between 1982 and 2013 (Forbes Magazine 1982, 2013).3 That increase in their

nominal wealth is shown as part of figure D.1 in this section.

Of course, for comparisons over time, nominal values should be adjusted to

account for changes to the value of a dollar. Previous studies based on Forbes Mag-

azine’s list of the 400 wealthiest Americans have either erroneously ignored the dis-

tinction between nominal and real wealth (Klass et al. 2006) or used a version of the

Consumer Price Index (CPI) made by the Bureau of Labor Statistics (BLS) in order

to deflate nominal wealth into real wealth (Broom and Shay 2000; Kennickell 2006;

Kopczuk and Saez 2004a; Mishel et al. 2012).

It could be argued that the CPI is an inappropriate deflator for at least two

reasons. First: If wealth is accumulated for future consumption (either by one’s self

or one’s beneficiaries), rather than current consumption, then wealth should perhaps

be measured in terms of future rather than current prices (Alchian and Klein 1973).

Second: If wealth is accumulated for some power it confers over people or institutions,

rather than for its purchasing power over current or future goods and services, then

3Again, in the years 1982 to 1989, Forbes Magazine did not report an estimate of the wealth
of one of the 400 wealthiest Americans on its list (the editor-in-chief of the magazine, Malcolm
Stevenson Forbes). His wealth in a given year was imputed as the median wealth of the other 399
wealthiest Americans in that year. Previous studies that have used the magazine’s list to study the
wealth of the 400 wealthiest Americans do not appear to have used any imputation (Broom and
Shay 2000; Kennickell 2006; Mishel et al. 2012). Those studies were actually only studies of the
wealth of 399 out of the 400 wealthiest Americans up until the year 1990, therefore.
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Figure D.1. Wealth of the 400 Wealthiest Americans, 1982–2013

Source: Data adapted from BLS (2013); Forbes Magazine (1982–2013).

Note: This figure shows the wealth of the 400 wealthiest Americans, based on Forbes
Magazine’s list from the years 1982 to 2013. Their wealth is shown in current dollars and
constant (i.e., CPI-deflated, 2013) dollars.

wealth should perhaps be measured in terms of the social power it confers (Officer and

Williamson 2006). Unfortunately, a measure of future prices is not readily available

and a measure of social power is not well established. So, if only out of necessity, we

will simply use a version of the CPI as a deflator.4

When their nominal wealth is deflated by the CPI, the increase in the wealth

of the 400 wealthiest Americans between 1982 and 2013 is somewhat less dramatic.

Their wealth in CPI-deflated, 2013 dollars increased a little less than 10-fold from a

little over 200 billion to about two trillion constant dollars.

4Although the results would be qualitatively similar with different versions of that index, we
will use the CPI-U-RS, in particular (BLS 2013).
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As seen in figure D.1, the wealth of the 400 wealthiest Americans—whether it

is measured in current or constant dollars—did not increase in every year between

1982 and 2013. Their wealth decreased in some years. The most-dramatic decrease

in their wealth occurred after their wealth peaked in the year 2000 and then fell

over the next two years. Their wealth peaked in the year 2000 at about 1.2 trillion

current or 1.6 trillion constant dollars. Their wealth then fell between 2000 and 2002

by about 325 current or 484 constant dollars. The decline in their constant-dollar

wealth after the year 2000 is shown as part of figure D.2. The run-up and decline

in their wealth around those years can be associated with the stock-market boom of

the late 1990s that went bust in the early 2000s (Forbes Magazine 2001, 2002).

By the year 2007, the wealth of the 400 wealthiest Americans had exceeded its

previous peak in terms of both current and constant dollars, but their wealth then

fell again over the next two year. Their wealth fell by about 272 billion current or

348 billion constant dollars between 2007 and 2009. That decline in their wealth—

which can be associated with the recent economic crisis that saw the collapse of a

housing bubble, a panic in financial markets, a crash in the stock market, and a

deep recession that rivaled the Great Depression (Forbes Magazine 2007–2009)—was

relatively modest, relative to the decline in their wealth after the stock-market crash

of the early 2000s, as figure D.2 shows.

Other declines in their wealth were even more modest. Between 1987 and 1988,

as well as between 1989 and 1990, their wealth decreased slightly in current-dollar

terms and it only increased slightly in constant-dollar terms. Their current-dollar

wealth increased by amounts that were on the order of only about one billion dollars,

while their constant-dollar wealth decreased by amounts that were on the order of

only about 10 billion dollars. For the magazine’s list from 1987, publicly traded

stocks were valued on September 11th of that year (Forbes Magazine 1987, p. 112),
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Figure D.2. Percentage Change in the Wealth of the 400 Wealthiest Americans Over
Select Years

Source: Data adapted from BLS (2013); Forbes Magazine (1987–2010).

Note: This figure shows, for years after their wealth peaked, the percentage change in the
wealth of the 400 wealthiest Americans, relative to their peak wealth. Dollar values are
constant (i.e., CPI-deflated, 2013) dollars.

which was shortly before the “Black Monday” of October 19th when the stock market

crashed. The decline in the wealth of the 400 wealthiest Americans between 1987

and 1988 can therefore be associated with that stock-market crash (Forbes Magazine

1988). The decline in their wealth between 1989 and 1990 can be associated with

the downturn in the real-estate market, stock market, and economy more generally

that occurred around those years (Forbes Magazine 1990).

Thus, while Forbes Magazine’s list does not suggest that the 400 wealthiest

Americans became ever-wealthier in absolute terms since 1982, the list does suggest

that they became wealthier in absolute terms since then.
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D.9.2 Their Relative Wealth

As the wealth of the 400 wealthiest Americans increased in absolute terms over

recent decades, their wealth also increased relative to everyone else’s, although the

exact extent to which their relative wealth increased obviously depends on how the

wealth of everyone else is measured.

Part of figure D.3 shows, for the years 1982 to 2013, the wealth of the 400

wealthiest Americans as a share of one specific measure. The measure that we used

for that figure was a weighted average of the end-of-the-second-quarter and end-of-

the-third-quarter wealth of the household sector in the United States in a given year,

as reported by the Federal Reserve’s Flow of Funds Accounts, where the weights are

discussed below. Using that measure, the share of household wealth held by the 400

wealthiest Americans roughly tripled from about 0.85 to 2.75 percent between 1982

and 2013, as shown as part of the figure.

One issue with using that specific measure is a timing issue. Wealth is a stock

variable, so it should be measured at a point in time. The magazine’s list in a given

year is supposed to be a snapshot of wealth at the close of the stock market on a

particular day of the given year, but the day of the year has varied over the years, and

the day has never been at the end of any quarter. For years in which the magazine

reported the day on which it took a snapshot of wealth, the day was as early as

August 16th in 2002 and as late as September 12th in 1986 (Forbes Magazine 1982–

2013). Those days fall between the end of the second quarter and the end of the

third quarter, which is why a weighted average of the wealth of the household sector

at the end of those two quarters was used above. The wealth of the household sector

at the end of a quarter was weighted more heavily if the date on which the magazine

took its snapshot of the wealth was closer (in terms of number of days) to the end of

that quarter. Unfortunately, for some years, the magazine does not appear to have
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Figure D.3. Share of Wealth Held by the 400 Wealthiest Americans, 1982–2013

Source: Data adapted from Bricker et al. (2012); BLS (2013); Flow of Funds Accounts;
Forbes Magazine (1982–2013); Kennickell (2011, 2012); Kennickell and Starr (1994); Ken-
nickell et al. (2000).

Note: This figure shows the wealth of the 400 wealthiest Americans, based on Forbes
Magazine’s list, as a share of household wealth, based on either the Flow of Funds Accounts
(FOFA) or the Survey of Consumer Finances (SCF), for years between 1982 and 2013.

reported the day on which it took a snapshot of wealth. To the author’s knowledge,

the magazine did not report the day it took a snapshot of wealth for its lists in

1982, 1999, 2000, and 2003 to 2005, although the magazine did report that its 1982

list was a snapshot of wealth in “mid-August” (Forbes Magazine 1982, p. 101). For

those years, the wealth of the household sector at the end of the second quarter was

weighted equally with their wealth at the end of the third quarter.

Using a weighted average of the wealth of the household sector at the end of

the second and third quarters does not necessarily resolve the timing issue. That

would only resolve the issue if the wealth of the household sector changed in a linear
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fashion between the end of one quarter and the next. Yet, if we were to use the Flow-

of-Funds estimates of the wealth of the household sector at the end of any quarter

in a given year, then trends in the wealth of the 400 wealthiest Americans as a share

of the wealth of the household sector would be quantitatively similar. To be more

specific, if the Flow-of-Funds estimates at the end of any quarter in a given year

were used, then their wealth share would be estimated to be as low as about 0.82

and as high as about 0.87 percent in 1982, and it would be estimated to be anywhere

between about 2.62 and 2.85 percent in 2013. Their share of household wealth would

have therefore increased between those years by a factor that was anywhere between

about three to three-and-a-half percent—roughly tripling.

Although their share of wealth has roughly tripled over recent decades (at least

according to Forbes Magazine’s list), some economists have suggested that, even at

their largest, the share of wealth held by the 400 wealthiest Americans has still

been small. For example: In a footnote to their 2002 article, two economists from

the Federal Reserve noted that the SCF is designed to exclude the (households of

the) people who appear on Forbes Magazine’s list (Bertaut and Starr 2002, p. 214,

n. 10). They noted in the same footnote that the share of household wealth held

by the people on the magazine’s list was “on the order of 2.5 percent,” which they

suggested was merely a “modest” share (ibid.).

As another example: At a 2003 conference, an economist from the Federal

Reserve presented a paper in which he used Forbes Magazine’s list to supplement the

SCF (Kennickell 2003). He used that list to supplement the SCF because, as noted

above, the SCF is designed to exclude the (households of the) people who appear on

the magazine’s list. The paper’s discussant asked the audience the question, “What

fraction of total wealth do you think that the [400 wealthiest Americans] hold?”

(Smeeding 2003). “They hold two percent,” he answered. “The lowest guess I’ve
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gotten from anyone is 10 percent. Everybody thinks it’s much bigger [but] these rich

guys hold two percent only, and that’s it” (ibid.).

While it could perhaps be argued that the trillion or so dollars of wealth held by

the 400 wealthiest Americans (about two trillion current dollars in 2013, according

to the magazine’s list from that year) is small relative to the tens of trillions of

dollars of wealth held by all the households in America (roughly 75 trillion current

dollars in 2013, according to the Flow-of-Funds estimate discussed above), it seems

unreasonable to suggest that the share of wealth held by the 400 wealthiest Americans

is small relative to either their share of the population or the shares of wealth held

by other groups of Americans, as we will now argue.

Consider their share of wealth relative to their share of the population. At

every point in time over recent decades, the 400 wealthiest Americans have been an

infinitesimally small proportion of the population. In 1982, they accounted for about

one five-thousandth of one percent (i.e., about 0.0002 percent) of the population

using the Census Bureau’s estimate of the resident population in that year. By

2013, the 400 wealthiest Americans only accounted for about one ten-thousandth of

one percent (i.e., about 0.0001 percent) of the population (again, using the Census

Bureau’s population estimate). By comparison, the share of household wealth held by

the 400 wealthiest Americans was almost one percent in 1982 and over two-and-a-half

percent by 2013, according to the estimates discussed above. Their share of wealth

has therefore been thousands of times larger than their share of the population. A

share of wealth that is thousands of times larger than an infinitesimal share of the

population is still small, perhaps, but the share of wealth held by the 400 wealthiest

Americans has been at least disproportionately large.

Next, consider their share of wealth relative to the share of wealth held by an-

other group of wealthy Americans, specifically, the wealthiest one percent of Amer-
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ican households. Although there is no single source of data that can be used to

compare the shares of wealth held by those two groups (Kennickell 2006, p. 84, n. 4),

their wealth shares can be compared by using Forbes Magazine’s list and the Fed-

eral Reserve’s SCF. One of the current directors of the SCF, Arthur B. Kennickell,

has used the magazine’s list to make similar comparisons (Kennickell 2003, 2006).5

Those two data sources can be used to compare the shares of wealth held by the

two groups in every three years between the years 1989 and 2010. Earlier years of

the SCF are not comparable to latter years of that survey because the survey was

redesigned (Kennickell 2011, p. 11, n. 10), and more-recent years of the survey are

not yet available, but, again, the two data sources can be used to compare the shares

of wealth held by the two groups in every three years between 1989 and 2010.

In 1989, the share of wealth held by the wealthiest one percent of American

households was about 30.1 percent, according to estimates made by Kennickell (2012,

p. 5, table 3) from the SCF. Kennickell (2012) reported that wealth share without

reporting either an estimate of the total wealth of the wealthiest one percent of Amer-

ican households or an estimate of the total wealth of all the households in America,

but he did report an estimate of the mean wealth of American households. He esti-

mated that their mean wealth was about 188.9 thousand current dollars (Kennickell

2012, 4, table 2, if the constant-dollar figure he reports is converted to 1989 dollars by

using the CPI-U-RS). The total wealth of American households must have therefore

been estimated to be about 17.6 trillion current dollars, given that the number of

households represented by the SCF in that year was apparently 93.1 million (Ken-

nickell and Starr 1994, p. 880, n. 22).6 That estimate of household wealth based on

5On Kennickell and his role in the SCF, see Rae and DeHaan (2012).

6The number of households represented by the SCF over the years has apparently been, in
millions of households, 93.1 in 1989 (Kennickell and Starr 1994, p. 880, n. 22), 95.9 in 1992 (ibid.),
99.0 in 1995 (Kennickell et al. 2000, p. 27, n. 35), 102.6 in 1998 (ibid.), 106.5 in 2001 (Bricker et al.
2012, p. 78, table A.3), 112.1 in 2004 (ibid.), 116.1 in 2007 (ibid.), and 117.6 in 2010 (ibid.).
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the 1989 SCF is similar to, although not exactly the same as, Flow-of-Funds esti-

mates of household wealth at the end of any quarter in that year. According to the

Flow of Funds Accounts, household wealth ranged from about 17.7 to 19.0 trillion

current dollars over that year. If the wealthiest one percent of American households

were estimated to be worth 30.1 percent of about 17.6 trillion current dollars, then

they must have been estimated to be worth about 5.3 trillion current dollars. By

comparison, the wealth of the 400 wealthiest Americans was about 270 billion current

dollars in 1989, which would have been about 5.1 percent of that amount.

However, if we follow Kennickell (2006) and add the magazine’s estimate of the

wealth of the 400 wealthiest Americans to the SCF estimates, then the wealthiest one

percent of households would have been worth about 31.2 percent of household wealth,

and the 400 wealthiest Americans would have been worth about 4.8 percent of that.

In a similar context, Kennickell (2006) adds the magazine’s estimate because, again,

the SCF is designed to exclude the (households of the) people who appear on the

magazine’s list. The wealth of the 400 wealthiest Americans as a share of the SCF

estimate of household wealth with Forbes Magazine’s estimate of their wealth added

to it (or, for that matter, without the magazine’s estimate of their wealth added to

it) has not been exactly the same as their wealth as a share of the Flow-of-Funds

estimate of household wealth, which can be seen in figure D.3, but the shares have

been similar, which can be seen in the same figure.

If the same calculations are made for subsequent years, then, by 2010, the share

of wealth held by the wealthiest one percent of American households was about 34.5

percent and the 400 wealthiest Americans were worth about 6.7 percent of that. Or,

if Forbes Magazine’s estimate of the wealth of the 400 wealthiest Americans is added

to the SCF estimates, then share of wealth held by the wealthiest one percent of

American households was about 36 percent and the 400 wealthiest Americans were
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Figure D.4. Shares of Wealth Held by the Wealthiest One Percent of American
Households and the 400 Wealthiest Americans, 1989–2010

Source: Data adapted from Bricker et al. (2012); BLS (2013); Forbes Magazine (1989–
2010); Kennickell (2011, 2012); Kennickell and Starr (1994); Kennickell et al. (2000).

worth about 6.3 percent of that. The wealth shares in the other years between 1989

and 2010 are shown as part of figure D.4, where the magazine’s estimate of the wealth

of the 400 wealthiest Americans was added to the SCF estimates in each year.

As a final comparison, consider the share of wealth held by the 400 wealthiest

Americans relative to the share of wealth held by a group of some of the least-wealthy

Americans, specifically, the least-wealthy half of American households. Again, there

is no single source of data that can be used to compare the shares of wealth held

by those two groups, but their wealth shares can be compared for every three years

between 1989 and 2010 by using Forbes Magazine’s list and the Federal Reserve’s

SCF. Figure D.5 shows, for each of those years, the shares of household wealth held

by the least-wealthy half of American households, on the one hand, and the 400
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Figure D.5. Shares of Wealth Held by the Least-wealthy Half of American Households
and the 400 Wealthiest Americans, 1989–2010

Source: Data adapted from the same sources as figure D.4.

wealthiest Americans, on the other hand, where the shares were estimated in the

same way as in the earlier figure. As seen in the figure: In 1989, the least-wealthy

half of American households owned about three percent of household wealth, while

the 400 wealthiest Americans owned about 1.5 percent. By 2010, the 400 wealthiest

Americans owned about 2.3 percent of household wealth, while the least-wealthy half

of American households owned about 1.1 percent.

It can be noted that, as long as the magazine did not over-estimate what

they were worth by more than about 720 billion current dollars or 53 percent, the

400 wealthiest Americans were worth at least as much as the least-wealthy half of

American households in the 2010. The fact that the 400 wealthiest Americans were

worth at least as much as the least-wealthy half of Americans households in that

year was partially due to the fact that about 11.1 percent of households had negative
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wealth with their debts exceeding their assets (Kennickell 2012, p. 3, table 1), but

it is nevertheless a striking statistic that a group that accounted for less than one

thousandth of one percent of the American population was worth at least as much as

half of the roughly 120 million households in America. That statistic, as well as the

earlier statistic on the share of wealth held by the 400 wealthiest Americans relative

to the share of wealth held by the wealthiest one percent of American households,

has been emphasized by Foster and Holleman (2010) among others.7

The share of wealth held by the 400 wealthiest Americans over recent decades

hsas therefore been disproportionately large relative to their share of the population,

roughly equal to the share of wealth held by the least-wealthy half of American

households, and arguably large relative to the share of wealth held by the wealthiest

one percent of American households. Their share of wealth has also been larger in

recent years than it was in earlier years, despite the fact they shrunk as a share of

the population. Whether the wealth of the household sector is measured based on

the SCF or the Flow of Funds Accounts, the wealth of the 400 wealthiest Americans

increased relative to the wealth of everyone else over recent decades, as seen in figure

D.3 of this section. Their share of wealth did not increase in every year, however, as

seen in the same figure. Their wealth share fell by a relatively large amount amid the

stock-market crash of the early 2000s, recovered to a large extent, and then fell by a

smaller amount amid the recent economic crisis. The most-recent estimates suggest

that their wealth share has all but recovered.

7Another striking statistic—which was estimated by Allegretto (2011), emphasized by
Stiglitz (2012, p. 8), and expounded upon by Bivens (2012) and others—is that the share of house-
hold wealth held by the six heirs of Walmart in 2007 was roughly equal to the share of wealth held
by the least-wealthy 30 percent of American households in that year.
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D.9.3 The Pro-Wealthiness of Their Accumulation

As discussed in the previous section, Forbes Magazine’s list suggests that the

wealth of the 400 wealthiest Americans increased relative to the wealth of everyone

else over recent decades. The magazine’s list also suggests that, even among the 400

wealthiest Americans, the wealth of wealthier people increased relative to the wealth

of less-wealthy people, as seen in figure D.6 of this section.

That figure shows, for the wealthiest to the 400th wealthiest Americans in

1982 and 2013 (whoever they happened to be in those two years), the change in

their wealth in billions of constant dollars. Note that the ordinate axis in the figure

uses an inverse hyperbolic sine transformation.8

As seen in the figure: The increase in the wealth of the wealthiest American

was relatively large at about 67 billion constant dollars; the increase in the wealth

of the 100th wealthiest American was roughly equal to the average change of about

five billion; the change in the wealth of the 200th wealthiest American was smaller at

about three billion; and the change in the wealth of the 400th wealthiest American

was smaller still at about one billion constant dollars.

Figures like figure D.6 are often used in the literature on poverty to study the

distributional effects of income growth. In that context, such figures show changes in

income between two periods of time as a function of relative income. The figures are

used to study whether growth was “pro-poor” in the sense (among the other senses

in which that term is used) that poorer people saw their incomes rise by more than

8That is to say, if y denotes the variable of interest, then that variable was transformed as
ln{θy + (θ2y2 + 1)1/2}/θ, where the scale parameter θ was somewhat arbitrarily set to one one-
thousandth. An inverse hyperbolic sine or “arcsinh” transformation approximates a logarithmic
transformation at extreme values, but the former is more popular than the latter in the literature
on wealth because, while wealth can be zero or negative, the log of a non-positive number is
infinite or imaginary (Kennickell 2006, p. 84; Pence 2006). (At values close to zero, an arcsinh
transformation approximates a linear transformation or, equivalently, no transformation at all.) A
semi-log scale could have been used for the figure, given that all of the changes in wealth were
positive, but the semi-arcsinh scale was used in anticipation of a similar figure that follows.
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Figure D.6. Anonymous Changes in Wealth, 1982–2013

Source: Data adapted from Forbes Magazine (1982–2013).

Note: This figure shows, on a semi-arcsinh scale, changes in the wealth of the wealthiest to
the 400th wealthiest Americans between 1982 and 2013 (in billions of CPI-deflated, 2013
dollars), ignoring who they were as individuals in either of those years (solid line). The
average change in their wealth is also shown (dashed line).

richer people, ignoring who those people might have been in either period of time.

An obvious issue with such a figure is that it obscures the gains or losses experience

by unique individuals (Grimm 2007). The same issue presents itself in our figure.

Figure D.7 extends our earlier figure by showing changes in the wealth of

unique individuals who appeared on Forbes Magazine’s list in 1982, 2013, or both

of those years. Only 38 people appeared in both years. For those 38 people, the

figure shows the uncensored changes in their wealth. Considering just those changes

for the moment, the figure suggests that some people fared better between 1982 and

2013 than figure D.6 would suggest. The investor Warren Buffett fared better, for

example. In 1982, he was the 92nd wealthiest American with a wealth of about half
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Figure D.7. Non-anonymous Changes in Wealth, 1982–2013

Source: Data adapted from the same sources as figure D.6.

Note: This figure shows, on a semi-arcsinh scale, changes in the wealth of the wealthiest
to the 400th wealthiest Americans between 1982 and 2013, ignoring who they were as
individuals (solid line). Uncensored or censored changes in the wealth of individuals who
were one of the 400 wealthiest Americans in 1982 or 2013 are also shown (points).

a billion constant dollars. By 2013, the 92nd wealthiest American was worth about

five billion dollars, but, by then, Buffett was the second wealthiest American with a

wealth of over 50 billion dollars.

Other people who appeared on the list in both 1982 and 2013 fared worse

than figure D.6 would suggest. The oldest grandson of John D. Rockefeller—David

Rockefeller—fared worse, for example. David was the third wealthiest American

in 1982 with a wealth of about two billion constant dollars. The third wealthiest

American was worth 41 billion dollars by 2013, but David was not worth nearly that

much by then. He still fared fairly well, of course, or else he would have fallen off the

list. David was the 193rd wealthiest American with a wealth of 2.8 billion dollars.
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An above-average change in wealth does not necessarily imply that someone

fared as well in the intervening period as that change would suggest. Take Donald

Trump, for example. According to Forbes Magazine, Trump was the 290th wealthiest

American in 1982 with a wealth of about 200 million constant dollars, and he was the

134th wealthiest American with a wealth of over three billion dollars by 2013, but, for

the first half of the 1990s, he was not one of the 400 wealthiest Americans. Indeed,

his debts may have even exceeded his assets by hundreds of millions of dollars at one

point (Barsky 1990). Again, however, an above-average (or below-average) change

in wealth between 1982 and 2013 implies that someone ultimately fared better (or

worse) than figure D.6 would suggest.

For everyone except the 38 people who appeared on the magazine’s list in

both 1982 and 2013, only censored changes in their wealth can be shown. For the

362 people who were on the list in 1982 but dropped off by 2013, the amount by

which a person’s wealth changed is shown as the difference between his or her wealth

in 1982, on the one hand, and the minimum wealth of the 400 wealthiest Americans

in any year after he or she dropped off the list, on the other hand. The change in

a person’s wealth would have been at least as large as that difference, if the person

was still alive and still an American citizen by 2013.

Some of the people who dropped off the list were still alive and still Americans

by then. After appearing on the list in 1982 with a wealth of over two billion constant

dollars, and after dropping off the list in the 1980s amid an ill-fated attempt to corner

the silver market with his brother, Nelson Hunt did not make it back on the list by

2013, but he was still alive and still an American in that year, for example.

Some of the people who dropped off the list were no longer alive or no longer

Americans by 2013, however. Over a quarter (specially, 117) of the 400 people who

appeared on the list in 1982 eventually dropped off because they died. Other people
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dropped off the list for other reasons, but at least some of them eventually died,

too. At least some of the 243 people who dropped off the list because of a decline in

their wealth eventually died. One of the sisters of the Hunt brothers—Margaret—

eventually died after dropping off the list because of a decline in her wealth, for

example. And one of the two people who dropped off the list because they renounced

their American citizenship eventually died. Carnival Cruise Line founder Ted Arison,

who dropped off the list in 1994 because he renounced his American citizenship, died

in 1999. For the people who died, they obviously lost all their wealth and much

more, but the change in their wealth between 1982 and 2013 was still at least as

large as the difference that was described above, at least in some sense.9

For the 362 people who were not on the list in 1982 but came onto the list

by 2013, the amount by which a person’s wealth changed is shown as the difference

between the minimum wealth of the 400 wealthiest Americans in any year between

1982 and the first year that the person appeared on the list, on the one hand, and

his or her wealth in 2013, on the other hand. The change in a person’s wealth would

have been at least as large as that difference, if the person could have appeared,

but did not appear, in the year in which the minimum wealth of the 400 wealthiest

Americans was at its minimum.

Most of the people who came onto the list by 2013 could have appeared on the

list in 1982 if only they were wealthy enough, but some could not have appeared,

either because they had not been born yet or because they had not become American

citizens yet. The minimum wealth of the 400 wealthiest Americans was at its mini-

mum in 1982, so the three people who were born after 1982 (namely, oil-pipeline heir

9The one other person who was on the list in 1982 but eventually dropped off the list because
he renounced his American citizenship was Campbell Soup Company heir John Thompson Dorrance
III. He was still alive and still wealthy enough to be one of the 400 wealthiest Americans in 2013
if only he was still an American citizen (at least according to Forbes Magazine’s list of the world’s
billionaires in 2013), so his change in wealth was better than the change shown in figure D.7.
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Scott Duncan and Facebook co-founders Dustin Moskovitz and Mark Zuckerberg)

could not have appeared on the list back in that year, although the change in their

wealth between 1982 and 2013 was still at least as large as the difference described

above, at least in some sense.

The number of people who would have appeared on the list in 1982 if only

they had already been American citizens is unknown, but the number might be zero.

There were only 38 immigrants on the list in 2013 who were not already on the list in

1982 (Navarro 2013). The wealthiest one of them (namely, Google co-founder Sergey

Brin) was almost surely not a multi-millionaire back in 1982, and the earliest year

any of them appeared on the list was 1987. George Soros appeared on the list for

the first time in that year, but he had been an American citizen since the 1960s.

To the extent that any of those immigrants were already multi-millionaires back in

1982, the change in their wealth was worse than the change shown in our figure.

Although some of the changes shown in the figure may be misleading due to

censoring, some of the greatest gains seem to have been experienced by people who

were not on the list in 1982 but made it onto the list by 2013, while some of the

greatest losses seem to have been experienced by people who were on the list in

1982 but dropped off by 2013. Bill Gates was not on the list in 1982, so he must

have been worth less than the minimum wealth of the 400 wealthiest Americans in

that year, which was about 174 million constant dollars. By 2013, Gates was the

wealthiest American and worth 72 billion dollars. Gates fared well between 1982 and

2013, therefore. The wealthiest American in 1982—the shipping mogul Daniel Keith

Ludwig—did not fare as well. Ludwig was worth over four billion constant dollars

in 1982, but he eventually dropped off the list because he died.

Thus, the changes in wealth among the 400 wealthiest Americans between 1982

and 2013 were perhaps not as pro-wealthy as figure D.6 might suggest. Relatively
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wealthier members of the 400 wealthiest Americans became relatively wealthier be-

tween 1982 and 2013, but the 400 wealthiest Americans in 1982 were not exactly the

same people—or even mostly the same people—as the 400 wealthiest Americans in

2013, and people who were the same moved up and down the ranks.

The change in the wealth of the 400 wealthiest Americans as a group between

1982 and 2013 was also perhaps not as pro-wealthy as the increase in their wealth

relative to the wealth of everyone else might suggest. The change in the wealth of the

400 wealthiest Americans as a group between those two years can be decomposed

into the contributions of the people who appeared on the list in both years, the

people who came onto the list, and the people who dropped off. The contribution

of people who appeared on the list in both years (“incumbents”) is simply the sum

of the changes in their wealth. If someone appeared on the magazine’s list in both

years, and if his or her wealth increased by a given amount, then the wealth of the

400 wealthiest Americans must have also increased by that amount.

The contributions of the people who came onto the list (“entrants”) and the

people who dropped off the list (“dropouts”) can be calculated as the sum of the

differences between a person’s wealth in 2013 and the minimum wealth of the 400

wealthiest Americans in 1982, in the former case, and the negative of the sum of the

differences between the minimum wealth of the 400 wealthiest Americans in 1982

and a person’s wealth in 2013, in the latter case. If someone was on the list in

1982 but dropped off by 2013, and if all other things were equal, then the wealth

of the 400 wealthiest Americans would have decreased by the difference between

his or her initial wealth and the minimum wealth of the 400 wealthiest Americans.

Likewise, if someone was not on the list in 1982 but came onto the list by 2013,

and if all other things were equal, then the wealth of the 400 wealthiest Americans

would have increased by the difference between his or her initial wealth and the
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minimum wealth of the 400 wealthiest Americans. All other things were not equal,

of course. The minimum wealth of the 400 wealthiest increased between 1982 and

2013, in particular. Decomposing the change in the total wealth of the 400 wealthiest

Americans in that way still seems sensible, however.

The contributions of the people who dropped off the list can be further decom-

posed into the contributions of people who dropped off the list because they died

(“decedents”), people who dropped off the list because they renounced their Amer-

ican citizenship (“renunciants”), and people who dropped off the list because their

wealth declined in either absolute or relative terms (“other dropouts”).

Decomposing the 1,807-billion-constant-dollar increase in the wealth of the 400

wealthiest Americans between 1982 and 2013 in such a manner, incumbents added

about 273 billion constant dollars (of which Buffett contributed about 21 percent

all by himself) and entrants added about 1,652 billion (of which Gates contributed

about four percent), while decedents subtracted about 57 billion (of which Ludwig

subtracted about eight percent), other dropouts besides renunciants subtracted a

similar dollar amount (about 61 billion, of which Nelson Hunt subtracted about

four percent), and renunciants subtracted a negligible amount (less than one billion

constant dollars). Thus, while some of the increase in the wealth of the 400 wealthiest

Americans was due to the gains experienced by people who were one of the 400

wealthiest Americans in both of those years, most of the change was due to the gains

experienced by people who were not yet one of the 400 wealthiest Americans back

in 1982. There is no guarantee that those people started from a lowly station in life

or that they ended up doing anything more than inheriting a fortune, of course, but

they were at least not already one of the 400 wealthiest Americans in 1982.

The 1,652-billion-constant-dollar contribution of the people who became one

of the 400 wealthiest Americans by 2013 can be decomposed further into the con-
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tributions of people who were self-made, at least according to Forbes Magazine, and

people who were not. According to the magazine, 273 out of the 400 people on its list

in 2013 were self-made, in the sense that they “built [their] fortunes themselves” (al-

though they might not have built their fortunes “entirely from scratch” because they

might have “borrowed money from in-laws or parents” or “started businesses with

spouses or other relatives;” Kroll 2012). All but 17 of the 273 self-made people were

not on the list in 1982. The self-made people who made it onto the list by 2013 con-

tributed about 1,134 billion dollars. Seven of those people—including the Microsoft

co-founder Bill Gates, the Orcale founder Larry Ellison, the Amazon founder Jeff

Bezos, and the Google co-founders Larry Page and Sergey Brin, as well as the me-

dia mogul Michael Bloomberg and the casino owner Sheldon Anderson—contributed

about 22 percent of that amount or about 248 billion dollars.

The other people who made it onto the list by 2013 but were not self-made

contributed about 519 billion. The heirs of Walmart founder Sam Walton—oldest son

Rob, youngest son Jim, daughter Alice, and daughter-in-law Christy—contributed

about a quarter of that amount or about 135 billion dollars.

The magazine’s list therefore suggests that, out of the 1,807-billion-constant-

dollar increase in the wealth of the 400 wealthiest Americans between 1982 and 2013,

about 792 billion can be attributed to people who were either already one of the 400

wealthiest Americans back in 1982 or became one of the 400 wealthiest Americans

by 2013 without building their fortunes by themselves, while about 1,134 billion can

be attributed to self-made people who became one of the 400 wealthiest Americans

by 2013. The discrepancy is attributable to people who either died, experienced a

decline in their wealth, or renounced their American citizenship. The contributions

of each group are summarized in table D.1.
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Table D.1. Decomposition of the Change in the Wealth of the 400 Wealthiest Amer-
icans, 1982–2013

Group Contribution ($Bs)

Incumbents 273
Entrants

Self-made entrants 1, 134
Other entrants 519

Dropouts
Decedents −57
Renunciants −1
Other dropouts −61

All groups 1, 807

Source: Data adapted from Forbes Magazine (1982–2013).

Note: This table shows how the change in the total wealth of the 400 wealthiest Americans
between 1982 and 2013 can be decomposed into the contributions made by different groups of
unique individuals. The decomposition is discussed in the text. The dollar values are billons of
CPI-deflated, 2013 dollars.
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APPENDIX E

APPENDIX ON THE CODE

E.1 Code for Creating a Dataset

This appendix includes code for a program that creates the dataset used by

each essay in the dissertation, a program that loads that dataset, and programs that

generate the results reported by the essays. All of the programs were written in

the programming language Python (specifically, Python version 2.7). The programs

should be readable without much knowledge of that particular language, although it

can be noted that comments are set off by number signs or quotation marks.

This section of the appendix includes the program that creates the dataset

used by each essay. That dataset is based on each year of Forbes Magazine’s list of

the 400 wealthiest Americans between the inaugural year of its list in 1982 and the

most-recent year, which is 2013, as of writing. The primary differences between the

dataset created by the program and the information reported by the magazine are

that unique individuals have the same names across years, some wealth estimates are

imputed in the manner discussed in section D.4 of the data appendix, and some of

the ages reported by the magazine are corrected in the manner discussed in section

D.5 of the same appendix. The dataset is available through ProQuest/UMI along

with the full text of this dissertation, as discussed in section D.8.

The next sections of this appendix include programs that load and analyze the

dataset created by the program that follows.
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‘‘‘
Filename: create forbes 400 dataset.py
Python version: 2.7
Source: Capehart, Kevin W. Essays on the Wealthiest Americans. PhD dissertation, American

University, Washington, DC, 2014.
Description: This program creates a dataset based on Forbes Magazine’s annual list of the 400

wealthiest Americans. The primary differences between the dataset created by this program
and the information reported by the magazine are that unique individuals have the same
names across years, some wealth estimates are imputed, and some of the ages reported by the
magazine are corrected. See the dissertation cited above and the code below for more details
on the manner in which unique individuals were identified, some wealths were imputed, and
some ages were corrected.

’’’

## IMPORT SOME STANDARD MODULES ##

from future import division # define division as in Python v3
import numpy # import for its many useful functions
from os.path import isfile # import for checking whether a file exists

## IMPORT RAW FORBES 400 DATA ##

# The data to be imported is organized so that each row corresponds to an individual on Forbes
Magazine’s list of the 400 wealthiest Americans in a given year. Some of the rows also
correspond to a family on the magazine’s accompanying list of some of the wealthiest
families in America the given year, but we will ignore those rows. (The distinction between
those two lists is discussed in the dissertation.) For the rows of interest, the columns
correspond to an individual’s name, age, wealth (in millions of current dollars), the specific
source of his or her wealth, the general industry in which his or her wealth was made, and
whether his or her wealth was self−made. That data is almost identical to the information
reported by each year of the magazine’s list, except that some of the names were modified
so that unique individuals have the same names across years. See the dissertation for a
discussion of how the data was collected and how the unique individuals were identified. Of
note, data on whether someone’s wealth was self−made, as well as data on the industry in
which someone made his or her wealth, is only available for the years since 1996 when the
magazine started making its list available online. Also of note, Forbes discontinued its list of
some of the wealthiest families in America after 1999.

# define the filename for the raw data
filename = “./data/raw forbes 400 data.txt”

# assertion error if file does not exist
assert isfile(filename), “Forbes Magazine declined to directly share its data on the 400 wealthiest

Americans with the author (personal communication on June 17, 2009, with Tanya Prive,
circulation assistant at Forbes Magazine), so the author went through each year of the
magazine’s list and collected the data himself. The magazine also declined the author’s
request to republish that raw data as part of his dissertation (personal communication on
May 8, 2014, with Elena Coster, sales coordinator at Forbes Magazine’s content
management firm, PARS International). As such, a file with the raw data collected from the
magazine is not included as a supplementary file to the dissertation. The code for processing
the rawer version of the data (‘create forbes 400 dataset.py’) cannot be executed without
that version of the data (named ‘raw forbes 400 data.txt’ by the author). The processed
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version of the data (‘forbes 400 dataset.txt’) is included as a supplementary file to the
dissertation, however, and the manner in which that version of the data was produced can
be seen by looking at the code for processing the rawer version.”

# get the header for the raw data
skiprows = 4 # number of rows to skip in file
delimiter = ‘\t’ # file delimiter
f = open(filename, “r”) # open file
header = f.readlines()[skiprows−1].replace(‘\n’, ‘’).split(delimiter)
f.close() # close file

# load the data with the headers
rawdata = numpy.loadtxt(filename, delimiter=delimiter, skiprows=skiprows,

dtype={‘names’:(header), ‘formats’:([‘<S99’]∗len(header))})

# get the most−recent year of the list
last year = max([int(year) for year in set(rawdata[‘year’])])

## REMOVE ANY FAMILY MEMBERS FROM AN INDIVIDUAL’S NAME ##

# As discussed in the dissertation, an individual’s wealth can include the wealth of family
members in some cases. In such cases, an individual’s name is usually given as his or name
followed by the phrase ‘ and Family’. We’ll remove that phrase.

for i in range(0, len(rawdata)):
if ‘ and Family’ in rawdata[‘name’][i]:

rawdata[‘name’][i] = rawdata[‘name’][i].replace(‘ and Family’, ‘’)

# There are also a few cases that require special attention. In 2011, in three cases, a husband
and wife were listed together, rather than as one individual and their family. The
husband−wife teams were: Michael and Marian Ilitch, Stewart and Lynda Resnick, and Do
Won and Jin Sook Chang. Michael Illitch had been on the list in the past, as either himself
or ‘Michael Illitch and Family’, so we will remove ‘ and Marian Ilitch’ from the name ‘Ilitch,
Michael and Marian Ilitch’. The other individuals were new to the Forbes 400. Forbes
appears to report the age of Do Won Chang, so we will remove ‘ and Jin Sook Chang’ from
the name ‘Sook, Jin and Do Won Chang’. Forbes does not report an age for the Resnicks, so
we will arbitrarily remove ‘ and Lynda Resnick’ from the name ‘Resnick, Stewart and Lynda
Resnick’. We’ll do the same for all other years, as well. In 2012 and 2013, the brothers Hank
and Doug Meijer were listed together, rather than as one individual and their family. Hank
is the older brother, so we’ll remove ‘ and Doug’ from the name ‘Meijer, Hank and Doug’.
For the same years, we’ll also arbitrarily remove ‘ and Judy’ from the husband−wife team
‘Love, Tom and Judy’ and remove ‘ and Peggy’ from the husband−wife team ‘Cherng,
Andrew and Peggy’. Note that, if someone in any one of those pairs eventually dies while
the other remains on the list, then, for any sort of longitudinal analysis, we should
reconsider which family members (if any) should be ignored.

for i in range(0, len(rawdata)):
if rawdata[‘name’][i] == ‘Ilitch, Michael and Marian Ilitch’:

rawdata[‘name’][i] = rawdata[‘name’][i].replace(‘ and Marian Ilitch’, ‘’)
if rawdata[‘name’][i] == ‘Chang, Do Won and Jin Sook Chang’:

rawdata[‘name’][i] = rawdata[‘name’][i].replace(‘ and Jin Sook Chang’, ‘’)
if rawdata[‘name’][i] == ‘Resnick, Stewart and Lynda Resnick’:
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rawdata[‘name’][i] = rawdata[‘name’][i].replace(‘ and Lynda Resnick’, ‘’)
if rawdata[‘name’][i] == ‘Meijer, Hank and Doug’:

rawdata[‘name’][i] = rawdata[‘name’][i].replace(‘ and Doug’, ‘’)
if rawdata[‘name’][i] == ‘Love, Tom and Judy’:

rawdata[‘name’][i] = rawdata[‘name’][i].replace(‘ and Judy’, ‘’)
if rawdata[‘name’][i] == ‘Cherng, Andrew and Peggy’:

rawdata[‘name’][i] = rawdata[‘name’][i].replace(‘ and Peggy’, ‘’)

## GET INDIVIDUALS’ NAMES ##

# construct a list of non−unique names
names = dict(zip([‘including families’, ‘excluding families’], \

[list(), list()]))
for i in range(0, len(rawdata)):

name = rawdata[‘name’][i]
names[‘including families’].append(name)
# the age associated with a family is ‘n.a.’ in the raw data in most cases
if rawdata[‘age’][i] != ‘n.a.’:

names[‘excluding families’].append(name)

# get unique names
for in [‘including families’, ‘excluding families’]:

names[ ] = list(set(names[ ]))

# If excluding families, exclude family names that have associated ages that were not excluded
by the code excuted above. It is unclear why these names have ages associated with them in
the magazine, but they are families and not individuals.

family names to remove = [‘Alfond Family’, ‘Breed Family’, ‘Magness Family’, ‘Martin Family’,
‘Miner Family’, ‘Ward Family’]

for name in family names to remove:
names[‘excluding families’].remove(name)

# alphabetize names
for in [‘including families’, ‘excluding families’]:

names[ ].sort()

## EXPORT DATA ORGANIZED BY UNIQUE INDIVIDUALS ##

# if the file already exists, set the following to True to recreate it
re create file = False
filename = “./data/reorganized forbes 400 data 1982 to ” + str(last year) + “.txt”
if not isfile(filename) or re create file:

# open file
table = open(filename, ‘w’)
# write first header for the table
infos = [‘wealth’, ‘age’, ‘source’, ‘industry’, ‘selfmade or inherited’]
years = [str(y) for y in range(1982, last year+1, 1)]
header = ‘name\t’
for info in infos:

header += info + ‘\t’
for year in years[1:]:

if (info == infos[−1]) and (year == years[−1]):
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header += ‘\n’
else:

header += ‘\t’ # if last info and last year, then break line
table.write(header)
# write second header for the table
header = ‘/year\t’
for info in infos:

for year in years:
header += year
if (info == infos[−1]) and (year == years[−1]):

header += ‘\n’
else:

header += ‘\t’
table.write(header)
# write data
for name in names[‘excluding families’]: # note: excluding families

table.write(name + ‘\t’) # write name
for info in infos:

for year in years:
for i in range(0, len(rawdata)):

if (name == rawdata[‘name’][i]) and (year == rawdata[‘year’][i]):
table.write(rawdata[info][i])
break

if (info == infos[−1]) and (year == years[−1]):
table.write(‘\n’)

else:
table.write(‘\t’)

# close file
table.close()

else:
print “Note that ‘re create file’ must be set to True in order to recreate the file that

reorganizes the raw data.”

## IMPORT DATA THAT WAS JUST EXPORTED ##

# infos and years
infos = [‘wealth’, ‘age’, ‘source’, ‘industry’, ‘selfmade or inherited’]
years = [str(y) for y in range(1982, last year+1, 1)]
# define header
header = [‘name’]
for info in infos:

header.extend(info+year for year in years)
# import data
rawdata = numpy.loadtxt(filename, delimiter=‘\t’, skiprows=2, \

dtype={‘names’:(header), ‘formats’:([‘<S99’]∗len(header))})
# create a dictionary of the data
data = dict(zip(rawdata[‘name’], [dict(zip([‘wealth’, ‘age’, ‘source’, ‘industry’, ‘selfmade or

inherited’], [dict(zip(years, [rawdata[‘wealth’+y][i] for y in years])), dict(zip(years,
[rawdata[‘age’+y][i] for y in years])), dict(zip(years, [rawdata[‘source’+y][i] for y in years])),
dict(zip(years, [rawdata[‘industry’+y][i] for y in years])), dict(zip(years, [rawdata[‘selfmade
or inherited’+y][i] for y in years]))])) for i in range(0, len(rawdata[‘name’]))]))

# get list of names sorted alphabetically
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names = sorted(data.keys())

## USE OTHER INFO TO SOME FIX AGES ##

# The following age is missing, but it can be fixed with other information from forbes.
According to http://www.forbes.com/global/2001/0709/030tab1.html, David Oros was 41 in
2001, so he would’ve been about 40 in 2000.

data[‘Oros, David S’][‘age’][‘2000’] = ‘40’

## EXTRAPOLATE AND CORRECT SOME AGES ##

# some ages are “bad” in the sense that they’re not reported or not reported as an integer
bad ages = [‘n.a.’, ‘blank’, ‘page23’, ‘died after press closing’, \

‘unknown’, ‘40s’, ‘50s’, ‘early50s’, ‘60s’, ‘late60s’, ‘70s’, ‘70+’, ‘early70s’, \
‘mid70s’, ‘75+’, ‘late70s’, ‘80s’, ‘late80s’]

# keep track of names with ages that are extrapolated or corrected
names with ages extrapolated, names with corrected ages = [], []

# fix the following ages by extrapolating forward
data[‘Lauder, Estee’][‘age’][‘1995’] = ‘87’ # roll her age forward
data[‘Busch, August Anheuser Jr’][‘age’][‘1989’] = ‘90’ # roll his age forward
names with ages extrapolated.append(‘Lauder, Estee’)
names with ages extrapolated.append(‘Busch, August Anheuser Jr’)

# define years in descending order
descending years = [str(y) for y in range(last year, 1982−1, −1)]

# fix the following ages by extrapolating backwards or correcting inconsistencies
# for each name
for name in names:

# define a variable for the last age that was observed, extrapolated backwards, or corrected
last age = ‘’
# look at each year in descending order
for year in descending years:

# get the name’s age in a given year
age = data[name][‘age’][year]
# if an age is not observed in the given year and an age wasn’t observed in later years, then

pass
if (age == ‘’) and (last age == ‘’):

pass
# if an age is not observed in the given year, but an age was observed in later years
elif (age == ‘’) and (last age != ‘’):

# continue to extrapolate the observed age backwards by subtracting unity
last age = str(int(last age) − 1)

# if a bad age is observed in the given year, but an age was observed in later years
elif (age != ‘’) and (age in bad ages) and (last age != ‘’):

# extrapolate the observed age backwards by subtracting unity
data[name][‘age’][year] = str(int(last age) − 1)
# redefine the last age as this age
last age = str(int(last age) − 1)
# keep track of the names with extrapolated ages
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names with ages extrapolated.append(name)
# if a good age is observed in the given year and an age wasn’t observed in later years
elif (age != ‘’) and (age not in bad ages) and (last age == ‘’):

# redefine the last age as this age
last age = data[name][‘age’][year]

# if a good age is observed in the given year and an age was also observed in later years
elif (age != ‘’) and (age not in bad ages) and (last age != ‘’):

# check to see if the age is consistent by calculating the difference between the age
observed in later years extrapolated backwards, on the one hand, and the age
observed in the given year, on the other hand.

age difference = int(last age) − int(age)
# depending on when their birthday occurs, the difference should be between zero and

two years
# if age is consistent, then redefine last age
if 2 >= age difference >= 0:

last age = age
# if age is inconsistent
else:

# correct it
data[name][‘age’][year] = str(int(last age) − 1)
# redefine the last age as this age
last age = str(int(last age) − 1)
# keep track of the names with corrected ages
names with corrected ages.append(name)

# EXTRAPOLATIONS: If a person’s age was missing in a given year, but she appeared on the
list in a latter year with a non−missing age, then it was assumed that the most−recent
non−missing age was correct, and the earlier missing age was extrapolated based on it. The
ages of 22 people (61 observations) were extrapolated, in total.

#print “The ages of ” + str(len(list(set(names with ages extrapolated)))) + “ people (” +
str(len(names with ages extrapolated)) + “ observations) were extrapolated, in total. ”

# CORRECTIONS: Note that, if the ages are correct, then the age difference for a given person
between two lists should be no less than zero years (or else they would’ve grown younger)
and at most two years (since the list is not constructed on the same date every year, it is
possible that a person could have two birthdays between two lists). If those conditions did
not hold, then we assumed that the most−recent age was correct while the latter age was
incorrect, which is reasonable since new information presumably came to light. The ages of
53 people (111 observations) were corrected, in total.

#print “The ages of ” + str(len(list(set(names with corrected ages)))) + “ people (” +
str(len(names with corrected ages)) + “ observations) were corrected, in total. ”

## IMPUTE SOME AGES ##

# For each year, we’ll impute unknown ages as the average age of a relevant group. M.S. Forbes’
ages will be inclued in all of the imputations, as they should be, given that he was a
member of the Forbes 400.

# create list of age categories
age categories = [‘all age categories’]
rough ages = [‘40s’, ‘60s’, ‘70s’, ‘80s’, ‘late70s’, ‘70+’, ‘75+’]
age categories.extend(rough ages)
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# create dict of ages by year by age category
ages in = dict(zip(age categories, [dict(zip(years, [[] for year in years])) for age category in

age categories]))

# define a function that takes an age and returns an age group
def get rough age(age):

if 40 <= age < 50:
rough age = rough ages[0]

elif 60 <= age < 70:
rough age = rough ages[1]

elif 70 <= age < 80:
rough age = rough ages[2]

elif 80 <= age < 90:
rough age = rough ages[3]

else:
rough age = ‘ignore’

return rough age

# fill the dictionary
for name in names:

for year in years:
age = data[name][‘age’][year]
if (age != ‘’) and (age not in bad ages):

ages in[‘all age categories’][year].append(int(age))
rough age = get rough age(int(age))
# age categories
if rough age != ‘ignore’:

ages in[rough age][year].append(int(age))
# late 70s
if 75 <= int(age) < 80:

ages in[‘late70s’][year].append(int(age))
# 70+
if int(age) >= 70:

ages in[‘70+’][year].append(int(age))
# 75 +
if int(age) >= 75:

ages in[‘75+’][year].append(int(age))

# calculate average age by age category by year
avg age in = dict(zip(age categories, [dict(zip(years,

[str(int(round(numpy.mean(ages in[age category][year])))) for year in years])) for
age category in age categories]))

# ‘unknown’ ages are imputed as the average age for the given year (3 people, 5 observations)
data[‘Pan, Jing Jong’][‘age’][‘2000’] = avg age in[‘all age categories’][‘2000’]
data[‘Pan, Theresa’][‘age’][‘2000’] = avg age in[‘all age categories’][‘2000’]
data[‘Wiskemann, Elizabeth S’][‘age’][‘2004’] = avg age in[‘all age categories’][‘2004’]
data[‘Wiskemann, Elizabeth S’][‘age’][‘2005’] = avg age in[‘all age categories’][‘2005’]
data[‘Wiskemann, Elizabeth S’][‘age’][‘2006’] = avg age in[‘all age categories’][‘2006’]

# conditional ages are imputed as average conditional age (12 people, 29 observations)
data[‘Bettingen, Burton Green’][‘age’][‘1982’] = avg age in[‘70+’][‘1982’]
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data[‘Bettingen, Burton Green’][‘age’][‘1983’] = avg age in[‘70+’][‘1983’]
data[‘Bettingen, Burton Green’][‘age’][‘1984’] = avg age in[‘70s’][‘1984’]
data[‘Bettingen, Burton Green’][‘age’][‘1985’] = avg age in[‘70s’][‘1985’]
data[‘Bettingen, Burton Green’][‘age’][‘1986’] = avg age in[‘70s’][‘1986’]
data[‘Copeland, Gerret van Sweringen’][‘age’][‘1985’] = avg age in[‘40s’][‘1985’]
data[‘Copeland, Pamela Cunningham’][‘age’][‘1985’] = avg age in[‘70s’][‘1985’]
data[‘Franchetti, Anne’][‘age’][‘1991’] = avg age in[‘70s’][‘1991’]
data[‘Franchetti, Anne’][‘age’][‘1992’] = avg age in[‘70s’][‘1992’]
data[‘Franchetti, Anne’][‘age’][‘1993’] = avg age in[‘70s’][‘1993’]
data[‘Franchetti, Anne’][‘age’][‘1994’] = avg age in[‘70s’][‘1994’]
data[‘Green, Dorothy (Dolly)’][‘age’][‘1982’] = avg age in[‘70+’][‘1982’]
data[‘Green, Dorothy (Dolly)’][‘age’][‘1983’] = avg age in[‘70s’][‘1983’]
data[‘Green, Dorothy (Dolly)’][‘age’][‘1984’] = avg age in[‘70s’][‘1984’]
data[‘Green, Dorothy (Dolly)’][‘age’][‘1985’] = avg age in[‘70s’][‘1985’]
data[‘Green, Dorothy (Dolly)’][‘age’][‘1986’] = avg age in[‘70s’][‘1986’]
data[‘Green, Dorothy (Dolly)’][‘age’][‘1987’] = avg age in[‘late70s’][‘1987’]
data[‘Green, Dorothy (Dolly)’][‘age’][‘1988’] = avg age in[‘80s’][‘1988’]
data[‘Jones, Arthur’][‘age’][‘1983’] = avg age in[‘60s’][‘1983’]
data[‘Kauffman, Muriel’][‘age’][‘1994’] = avg age in[‘70s’][‘1994’]
data[‘Lauder, Joseph’][‘age’][‘1982’] = avg age in[‘70s’][‘1982’]
data[‘Rains, Liliore Green’][‘age’][‘1982’] = avg age in[‘70+’][‘1982’]
data[‘Rains, Liliore Green’][‘age’][‘1983’] = avg age in[‘70s’][‘1983’]
data[‘Rains, Liliore Green’][‘age’][‘1984’] = avg age in[‘70s’][‘1984’]
data[‘Rains, Liliore Green’][‘age’][‘1985’] = avg age in[‘70s’][‘1985’]
data[‘Rains, Liliore Green’][‘age’][‘1986’] = avg age in[‘70s’][‘1986’]
data[‘Whittier, Leland K’][‘age’][‘1982’] = avg age in[‘75+’][‘1982’]
data[‘Whittier, N Paul’][‘age’][‘1982’] = avg age in[‘75+’][‘1982’]
data[‘Woodward, Helen Whittier’][‘age’][‘1982’] = avg age in[‘75+’][‘1982’]

# INTERPOLATIONS: The ages of 15 people (34 observations) were imputed, of which 3
people (5 observations) had unknown ages and 12 people (29 observations) had conditional
ages (e.g., “70s”). Unknown ages were imputed as the year−specific average age.
Conditional ages were imputed as the age−specific average conditional age; “70s” was
imputed as the average age of people in their 70s, for example.

# SUMMARY: The ages of 22 people (61 observations) were extrapolated. The ages of 53 people
(111 observations) were corrected. And the ages of 15 people (34 observations) were
imputed. So, in total, the ages of 90 people (206 observations) were extrapolated, corrected,
or imputed. That represents a relatively small number of people: about six percent,
specifically, 100. ∗ (90. / 1474.) percent, of the (unique) people in the sample. It also
represents a relatively small number of the age observations: about two percent, specifically,
100. ∗ (206. / (400. ∗ 32.)) percent, of the age observations

## IMPUTE THE WEALTH OF M.S. FORBES ##

# M.S. Forbes was one of Forbes 400 in the 1982 to 1989 lists (dying by 1990 list), but the
magazine did not report an estimate of his wealth. We’ll impute his wealth in a given year
as the median wealth of the other 399 wealthiest Americans on the list in the given year

# remove M.S. Forbes from the list of names
names.remove(‘Forbes, Malcolm Stevenson’)
# calculate median wealth with M.S. Forbes
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median wealth in = dict(zip(years, [[] for year in years]))
for year in years:

for name in names:
wealth = data[name][‘wealth’][year]
if wealth != ‘’:

median wealth in[year].append(float(wealth))
for year in years:

median wealth in[year] = numpy.median(median wealth in[year])
# impute his wealth as the median wealth (1 person, 8 observations)
for year in [str(y) for y in range(1982, 1989+1)]:

data[‘Forbes, Malcolm Stevenson’][‘wealth’][year] = str(int(median wealth in[year]))
# add M.S. Forbes back to list of names and sort the names alphabetically
names.append(‘Forbes, Malcolm Stevenson’)
names.sort()

# SUMMARY: The wealths of one person (eight observations) were imputed as the
year−specific median wealth.

## INDUSTRY DATA ##

# impute missing industries
data[‘Anderson, John Edward’][‘industry’][‘2000’] = ‘Beverages’
data[‘Diller, Barry’][‘industry’][‘2000’] = ‘Media/Entertainment’
data[‘Disney, Roy Edward’][‘industry’][‘2000’] = ‘Media/Entertainment’
data[‘Eisner, Michael D’][‘industry’][‘2000’] = ‘Media/Entertainment’
data[‘Gallo, Ernest’][‘industry’][‘2000’] = ‘Beverages’
data[‘Gonda, Louis L’][‘industry’][‘2000’] = ‘Investments’ # source of wealth in 1999 was ‘AIG

stock’, so industry should be investments. Industry was also investments in 1999
data[‘Kimmel, Sidney’][‘industry’][‘2000’] = ‘Apparel’
data[‘Stowers, James Evans Jr’][‘industry’][‘2000’] = ‘Finance’

# change ‘Technology/Medicine’ to ‘Technology’ for the following
data[‘Bezos, Jeffrey P’][‘industry’][‘2009’] = ‘Technology’
data[‘Dangermond, Jack’][‘industry’][‘2009’] = ‘Technology’
data[‘Dolby, Ray Milton’][‘industry’][‘2009’] = ‘Technology’
data[‘Gates, William Henry III’][‘industry’][‘2009’] = ‘Technology’
data[‘Kim, James’][‘industry’][‘2009’] = ‘Technology’
data[‘Sun, David’][‘industry’][‘2009’] = ‘Technology’
data[‘Zuckerberg, Mark’][‘industry’][‘2009’] = ‘Technology’

# change ‘Technology/Medicine’ to ‘Healthcare’ for the following
data[‘Brown, John W’][‘industry’][‘2009’] = ‘Healthcare’
data[‘Rahr, Stewart’][‘industry’][‘2009’] = ‘Healthcare’

# should be ‘Investments’ for the following
data[‘Picower, Jeffry’][‘industry’][‘2009’] = ‘Investments’

# change to ‘Information Technology’, ‘Internet’, and ‘Software’ to ‘Technology’ for simplicity
# also change ‘Investments’ and ‘Finance/Investment’ to ‘Finance’ for simplicity
for year in years:

for name in names:
wealth = data[name][‘wealth’][year]
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if wealth != ‘’:
industry = data[name][‘industry’][year]
# change to ‘Information Technology’, ‘Internet’, and ‘Software’ to ‘Technology’
if industry in [‘Information Technology’, ‘Internet’, ‘Software’]:

data[name][‘industry’][year] = ‘Technology’
# change ‘Investments’ and ‘Finance/Investment’ to ‘Finance’
if industry in [‘Investments’, ‘Finance/Investment’]:

data[name][‘industry’][year] = ‘Finance’

## SELF−MADE OR INHERITED DATA ##

# impute missing
data[‘McGlothlin, James’][‘selfmade or inherited’][‘1997’] = ‘Self made’ # this imputation can be

justified in different ways, but based on earlier years of the Forbes 400 list and other
information, he does not appear to have inherited his wealth

data[‘Corn, Elizabeth Turner’][‘selfmade or inherited’][‘1996’] = ‘Inherited’ # if someone’s
priminary source of wealth is ‘Inheritance’ and wealth is inherited in other years, then
wealth shouldn’t be ‘Self made’

data[‘Boudjakdji, Millicent V’][‘selfmade or inherited’][‘1997’] = ‘Inherited’ # same justification
# it should be noted that ‘Copley, Helen Kinney’ has a priminary source of ‘Inheritance’ and

her wealth is ‘Self made’ in 1996, but it’s not clear that this is an error when looking at
other years, so we’ll leave it be

for year in years:
for name in names:

wealth = data[name][‘wealth’][year]
if wealth != ‘’:

# change mixed to ‘Both’
type = data[name][‘selfmade or inherited’][year]
if type in [‘Both’, ‘Built up inheritance’, ‘Inherited and growing’]:

data[name][‘selfmade or inherited’][year] = ‘Both’

## EXPORT PROCESSED DATA ##

# open file
filename = “./data/forbes 400 dataset 1982 to ” + str(last year) + “.txt”
table = open(filename, ‘w’)
# write license
table.write(“This work is licensed under a Creative Commons Attribution−ShareAlike 4.0

International License. For more information on that license see
http://creativecommons.org/licenses/by−sa/4.0/. Under the terms of the license, you are
free to share and adapt the work for any purpose, but you must give appropriate credit and,
if any changes are made to the original version, you must distribute your adapted version
under the same license as the original. Preferred citation is: Capehart, Kevin W. Essays on
the Wealthiest Americans. PhD dissertation, American University, Washington, DC,
2014.\n\n”)

# wite notes
table.write(“Note:\n”)
table.write(“The following table is based on each year of Forbes Magazine’s list of the 400

wealthiest Americans between its inaugural year in 1982 and its most−recent year as of
writing, which was 2013. Each row of the table corresponds to a unique individual who
appeared on the magazine’s list in at least one year between those years. Unique individuals
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were identified by the author in the manner discussed in the dissertation. For individuals
who appeared on the magazine’s list in a given year, the columns of the table show an
individual’s wealth (in millions of current dollars), his or her age, the specific source of his
or her wealth, the general industry in which his or her wealth was made, and whether his or
her wealth was self−made. If an individual did not appear on the list in a given year, then
the corresponding entries in the table are blank. All of the entries in the table are based on,
but not always the same as, the information reported by the magazine. As discussed in the
dissertation, the magazine did not report a wealth estimate for Malcolm Stevenson Forbes
during the years in which he appeared on its list, so we imputed his wealth in a given year
as the median wealth of the 399 other people on the list in the given year. Some of the ages
are also different than those reported by the magazine for the reasons discussed in the
dissertation. Of note, information on whether someone’s wealth was self−made, as well as
information on the industry in which someone made his or her wealth, is only available for
the years since 1996 when the magazine started making its list available online. \n\n”)

# write first header for the table
header = ‘\t’
for info in infos:

header += info + ‘ in ...’ + ‘\t’
for year in years[1:]:

if (info == infos[−1]) and (year == years[−1]):
header += ‘\n’

else:
header += ‘\t’ # if last info and last year, then break line

table.write(header)
# write second header for the table
header = ‘name/year\t’
for info in infos:

for year in years:
header += year
if (info == infos[−1]) and (year == years[−1]):

header += ‘\n’
else:

header += ‘\t’
table.write(header)
# write data
for name in names:

table.write(name + ‘\t’) # write name
for info in infos:

for year in years:
table.write(data[name][info][year])
if (info == infos[−1]) and (year == years[−1]):

table.write(‘\n’)
else:

table.write(‘\t’)
# close file
table.close()
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E.2 Code for Loading the Dataset

This section includes a program that loads the dataset used by each of the

essays in the dissertation. Again, the data is based on Forbes Magazine’s annual

list of the 400 wealthiest Americans. Programs specific to each essay are included in

subsequent sections of this appendix. All of those programs execute the code in this

section in order to load the dataset. The code is as follows.

‘‘‘
Filename: load forbes 400 dataset.py
Python version: 2.7
Source: Capehart, Kevin W. Essays on the Wealthiest Americans. PhD dissertation, American

University, Washington, DC, 2014.
Description: This file loads a dataset based on Forbes Magazine’s annual list of the 400 wealthiest

Americans. See the dissertation cited above for more details on the dataset. Some other
relevant sets of data are also loaded, including data on the dates for which the magazine tried
to take a snapshot of wealth, the people who dropped off the magazine’s list because they
died, and the people who dropped off the list because they renounced their American
citizenship.

’’’

from future import division
import numpy
import datetime # import for dealing with dates

## LOAD FORBES 400 DATA ##

# define the most−recent year of the list
last year = 2013
# define the years between the earliest and most−recent lists
years = [str(y) for y in range(1982, last year+1)]
# define some other sets of years that will prove useful
years less initial = [str(y) for y in range(1983, last year+1)]
years less last = [str(y) for y in range(1982, (last year−1)+1)]
years less initial and last = [str(y) for y in range(1983, (last year−1)+1)]
descending years = [str(y) for y in range(last year, 1982−1, −1)]

# load the Forbes 400 data from the data subdirectory
filename = “./data/forbes 400 dataset 1982 to ” + str(last year) + “.txt”
header = [‘name’]
for info in [‘wealth’,‘age’,‘source’,‘industry’,‘selfmade or inherited’]:

header.extend(info+year for year in years)
rawdata = numpy.loadtxt(filename, delimiter=‘\t’, skiprows=7, dtype={‘names’:(header),

‘formats’:([‘<S99’]∗len(header))})
# create a dictionary of the data
data = dict(zip(rawdata[‘name’], [dict(zip([‘wealth’, ‘age’, ‘source’, ‘industry’, ‘selfmade or

inherited’], [dict(zip(years, [rawdata[‘wealth’+y][i] for y in years])), dict(zip(years,
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[rawdata[‘age’+y][i] for y in years])), dict(zip(years, [rawdata[‘source’+y][i] for y in years])),
dict(zip(years, [rawdata[‘industry’+y][i] for y in years])), dict(zip(years, [rawdata[‘selfmade
or inherited’+y][i] for y in years]))])) for i in range(0, len(rawdata[‘name’]))]))

# get list of names sorted alphabetically
names = sorted(data.keys())

# load data on Forbes 400 members who dropped out because they died
filename = “./data/exit by death data.txt”
header = [‘name’, ‘year’]
rawdata = numpy.loadtxt(filename, delimiter=‘\t’, skiprows=2, dtype={‘names’:(header),

‘formats’:([‘<S50’ for in range(0, len(header))])})
# get dict of names of the dead by year
year dead in for = dict(zip(rawdata[‘name’], rawdata[‘year’]))
dead in = dict(zip(years less initial, [[] for year in years less initial]))
for name in year dead in for.keys():

year = year dead in for[name]
if year in years:

dead in[year].append(name)

# load data on Forbes 400 members who dropped out because they renounced their citizenship
filename = “./data/exit by renunciation of citizenship data.txt”
header = [‘name’, ‘year’]
rawdata = numpy.loadtxt(filename, delimiter=‘\t’, skiprows=8, dtype={‘names’:(header),

‘formats’:([‘<S50’ for in range(0, len(header))])})
# get dict of names of those who renounced their citizenship by year
year renounced citizenship in for = dict(zip(rawdata[‘name’], rawdata[‘year’]))
renunciants in = dict(zip(years less initial, [[] for year in years less initial]))
for name in year renounced citizenship in for.keys():

year = year renounced citizenship in for[name]
if year in years:

renunciants in[year].append(name)

## RECORD SOME SUMMARY STATISTICS ##

# Note that M.S. Forbes and his imputed wealth are included in the following.

# define dicts for storing infos
infos = [‘wealths’, ‘len’, ‘sum’, ‘min’, ‘median’, ‘mean’, ‘max’]
summary stats = dict(zip(infos, [dict(zip(years, [[] for year in years])) for in infos]))

# get sorted wealths by year
for year in years:

for name in names:
wealth = data[name][‘wealth’][year]
if (wealth != ‘’):

summary stats[‘wealths’][year].append(float(wealth))
summary stats[‘wealths’][year].sort(reverse=True) # sort in descending order

# get stats on wealths
for year in years:

summary stats[‘len’][year] = len(summary stats[‘wealths’][year])
summary stats[‘sum’][year] = sum(summary stats[‘wealths’][year])
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summary stats[‘min’][year] = min(summary stats[‘wealths’][year])
summary stats[‘median’][year] = numpy.median(summary stats[‘wealths’][year])
summary stats[‘mean’][year] = numpy.mean(summary stats[‘wealths’][year])
summary stats[‘max’][year] = max(summary stats[‘wealths’][year])

## DATES OF VALUATION ##

# load the dates (formatted as year, month, day) when Forbes priced publicly traded stocks
valued on in = dict(zip(years, [datetime.date(1982, 8, 25), # imputed (see comments below)

datetime.date(1983, 8, 24),
datetime.date(1984, 8, 17),
datetime.date(1985, 9, 6),
datetime.date(1986, 9, 12),
datetime.date(1987, 9, 11),
datetime.date(1988, 8, 30),
datetime.date(1989, 9, 8),
datetime.date(1990, 9, 5),
datetime.date(1991, 9, 4),
datetime.date(1992, 8, 27), # last Thursday of August
datetime.date(1993, 8, 27), # last Friday of August ∗
datetime.date(1994, 8, 31), # last day of August, a Wednesday
datetime.date(1995, 8, 23), # second to last Wednesday of August
datetime.date(1996, 8, 23), # second to last Friday of August ∗
datetime.date(1997, 8, 22), # second to last Friday of August ∗
datetime.date(1998, 9, 1), # first day of September, a Tuesday
datetime.date(1999, 8, 27), # imputed
datetime.date(2000, 8, 25), # imputed
datetime.date(2001, 8, 27), # last Monday of August
datetime.date(2002, 8, 16), # mid−August, a Friday ∗
datetime.date(2003, 8, 29), # imputed
datetime.date(2004, 8, 27), # imputed
datetime.date(2005, 8, 26), # imputed
datetime.date(2006, 8, 31), # last day of August, a Thursday
datetime.date(2007, 8, 31), # last day of August, a Friday ∗
datetime.date(2008, 8, 29), # last Friday of August ∗
datetime.date(2009, 9, 10), # second Thursday of September
datetime.date(2010, 8, 25), # last Wednesday of August
datetime.date(2011, 8, 26), # last Friday of August ∗
datetime.date(2012, 8, 24), # second to last Friday of August ∗
datetime.date(2013, 8, 23)])) # second to last Friday of August ∗

# In the 1982 Forbes 400, the valuation date was reported as “mid−August,” 1982. We’ll
impute the valuation date as Wednesday, August 25, 1982, based on the fact that the
valuation date for the 1983 Forbes 400 was Wednesday, August 24, 1983. To our knowledge,
neither Forbes Magazine nor Forbes.com reported the valuation dates in 1999, 2000, or 2003
to 2005. We’ll impute the valuation dates as the last Friday of August of the respective
years, given that, in recent years (i.e., since 1992), most of the valuation dates (9 out of 15)
have been on a Friday towards the end of August (the last or second to last Friday of the
month).

years w imputed valuation dates = [‘1982’, ‘1999’, ‘2000’, ‘2003’, ‘2004’, ‘2005’]
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E.3 Code for the First Essay

The code for generating the results reported in the first essay is as follows.

‘‘‘
Filename: essay on estimation of wealth code.py
Python version: 2.7
Source: Capehart, Kevin W. Essays on the Wealthiest Americans. PhD dissertation, American

University, Washington, DC, 2014.
Description: This file generates results reported by the essay on the estimation of the wealth of

the wealthiest Americans.
’’’

from future import division
from load forbes 400 dataset import ∗ # load our Forbes 400 dataset
import decimal # import for trying to avoid any severe floating point errors
import scipy.stats # import for calculating quantiles
from os.path import isfile # import for checking whether a file exists
import pickle # import for dumping and loading computationally intensive results

## DEFINE A FUNCTION FOR CONVERTING FLOATS ##

# The estate−multiplier method often involves taking the reciprocal of small mortality rates
and multiplying them by large wealths, so we will use Python’s module for decimal floating
point arithmetic in order to try to avoid any severe floating point errors

def dec(floating point):
‘‘‘ Returns a decimal instead of a float ’’’
return decimal.Decimal(str(floating point))

## LOAD SOME DATA ##

# load the names of the women who dropped off the Forbes 400 because they died
filepath = “./data/data specific to first essay/”
filename = filepath + “women who died data.txt”
raw data = numpy.loadtxt(filename, delimiter=‘\t’, skiprows=2, dtype={‘names’:[‘name’],

‘formats’:[‘<S50’]})
names of dead who were women = raw data[‘name’]

# load mortality rates used by Kopczuk and Saez (2004a,b)
filename = filepath + “mortality rates data.txt”
header = [‘year’, ‘age’, ‘male’, ‘female’, ‘total’]
raw mortality rates = numpy.loadtxt(filename, delimiter=‘\t’, skiprows=9,

dtype={‘names’:header, ‘formats’:[‘<S50’]∗len(header)})
filename = filepath + “relative mortality rates data.txt”
header = [‘age’, ‘male’, ‘female’]
raw relative mortality rates = numpy.loadtxt(filename, delimiter=‘\t’, skiprows=7,

dtype={‘names’:header, ‘formats’:[‘<S50’]∗len(header)})

# define dicts for mortality rates
genders = [‘male’, ‘female’]
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genders and total = [‘male’, ‘female’, ‘total’]
ages = raw relative mortality rates[‘age’]
years btw 1982 and 2012 = [str(y) for y in range(1982, 2012+1)]
years btw 1982 to 2012 but also 1918 = [‘1918’]
years btw 1982 to 2012 but also 1918.extend([year for year in years btw 1982 and 2012])
mortality rate of = dict(zip(genders and total, [dict(zip(years btw 1982 to 2012 but also 1918,

[dict(zip(raw mortality rates[‘age’][i:i+119+1],
raw mortality rates[gender or total][i:i+119+1])) for i in range(0, (2012−1982+1+1)∗119,
119+1)])) for gender or total in genders and total]))

relative mortality rate of = dict(zip(genders, [dict(zip(raw relative mortality rates[‘age’],
raw relative mortality rates[gender])) for gender in genders]))

# load Kopczuk and Saez (2004a,b) data on wealthiest 0.01%
filename = filepath + “ks wealthiest 0 01 percent data.txt”
header = [‘year’, ‘population’, ‘top 0.01% average wealth’, ‘top 0.01% wealth threshold’]
years btw 1982 and 2000 = [str(y) for y in range(1982, 2000+1)] # only have estimates up to

the year 2000
raw ks wealthiest 0 01 percent data = numpy.loadtxt(filename, delimiter=‘\t’, skiprows=4,

dtype={‘names’:header, ‘formats’:[‘<S50’]∗len(header)})
ks wealthiest 0 01 percent data = dict(zip([‘population’, ‘top 0.01% average wealth’, ‘top 0.01%

wealth threshold’], [dict(zip(years btw 1982 and 2000,
[raw ks wealthiest 0 01 percent data[ ][i] for i in range(0, 2000−1982+1)])) for in
[‘population’, ‘top 0.01% average wealth’, ‘top 0.01% wealth threshold’]]))

# load the price index used by Kopczuk and Saez (2004a,b), which is an earlier version of the
CPI−U−RS with 2000 as the base year

filename = filepath + “ks price index data.txt”
raw data = numpy.loadtxt(filename, delimiter=‘\t’, skiprows=3, dtype={‘names’:[‘year’,

‘index’], ‘formats’:[‘<S50’,‘f’]})
price index used by ks = dict(zip(raw data[‘year’], raw data[‘index’]))

# load the latest version of the CPI−U−RS
filename = “./data/cpi u rs data.txt”
raw cpi data = numpy.loadtxt(filename, delimiter=‘\t’, skiprows=4, dtype={‘names’:[‘year’,

‘index’], ‘formats’:[‘<S50’,‘f’]})
cpi u rs w 1977 as base year = dict(zip(raw cpi data[‘year’], raw cpi data[‘index’]))
cpi u rs w 2000 as base year = dict(zip(years, [dec(100.0) ∗

(dec(cpi u rs w 1977 as base year[year]) / dec(cpi u rs w 1977 as base year[‘2000’])) for year
in years]))

## DEFINE FUNCTIONS FOR CONVERTING DOLLAR AMOUNTS ##

# Kopczuk and Saez’s (2004a,b) dollar figures are in CPI−U−RS dollars, but the version of the
CPI−U−RS that they used is an older version, so we will re−inflate their constant dollar
figures into current dollars in order to then deflate them using the latest version of the index

def not in 2000 dollars(constant dollar amount, year):
‘‘‘ Returns a 2000 dollar amount in current dollars using the old version of the CPI-U-RS used

by Kopczuk and Saez (2004a,b) ’’’
return constant dollar amount ∗ (dec(price index used by ks[year]) / dec(100.0))

def in 2000 dollars(current dollar amount, year):
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‘‘‘ Returns a current dollar amount in 2000 dollars using the latest version of the CPI-U-RS ’’’
return current dollar amount / (dec(cpi u rs w 2000 as base year[year]) / dec(100.0))

## SEC. A.4: K&S VS. SCF ESTIMATES OF THE WEALTH OF WEALTHIEST ONE
PERCENT ##

# The following code compares Kopczuk and Saez’s (2004a,b) estate−multiplier estimates of the
total wealth of the wealthiest one percent, on the one hand, to survey estimates of that
group’s wealth.

# load SCF data
years of scf = [‘1989’, ‘1992’, ‘1995’, ‘1998’, ‘2001’, ‘2004’, ‘2007’, ‘2010’]
scf mean wealth in thousands of 2009 dollars in = dict(zip(years of scf, [315.3, 279.5, 296.1,

373.2, 483.0, 509.6, 575.9, 493.1])) # Source: Table 2 of Kennickell’s (2012) “The Other,
Other Half: Changes in the Finances of the Least Wealthy 50%, 2007−2009.”

number of households in millions = dict(zip(years of scf, [93.1, 95.9, 99.0, 102.6, 106.5, 112.1,
116.1, 117.6])) # Sources: Kennickell and Starr (1994, p. 880, n. 22); Kennickell et al. (2000,
p. 27, n. 35); Bricker et al. (2012, p. 78, table A.3)

perct of wealth held by wealthiest one perct in = dict(zip(years of scf, [30.1, 30.1, 34.6, 33.9,
32.6, 33.4, 33.8, 34.5])) # Source: Ibid.

# define a function for converting Kennickell’s 2009 constant dollars to current dollars
cpi u rs w 2009 as base year = dict(zip(years, [dec(100.0) ∗

(dec(cpi u rs w 1977 as base year[year]) / dec(cpi u rs w 1977 as base year[‘2009’])) for year
in years]))

def not in 2009 dollars(constant dollar amount, year):
‘‘‘ Returns a 2009 dollar amount in current dollars using the latest version of the CPI-U-RS ’’’
return constant dollar amount ∗ (dec(cpi u rs w 2009 as base year[year]) / dec(100.))

# calculate wealth of the wealthiest one percent based on the SCF data
scf estimate of wealth of wealthiest one percent in = dict(zip(years less last,

[‘TBD’]∗len(years of scf)))
for year in years of scf:

mean wealth = in 2000 dollars( not in 2009 dollars(
dec(scf mean wealth in thousands of 2009 dollars in[year]) ∗ dec(1000.), year=year),
year=year) # in 2000 dollars

number of households = dec(number of households in millions[year]) ∗ dec(1000000.) # in
households

total wealth = number of households ∗ mean wealth # in 2000 dollars
scf estimate of wealth of wealthiest one percent in[year] =

((dec(perct of wealth held by wealthiest one perct in[year]) / dec(100.)) ∗ total wealth) /
dec(1000000000.) # in billions of 2000 dollars

# load Kopczuk and Saez’s (2004a,b) estimates of the wealth of the wealthiest one percent
filename = filepath + “ks wealthiest one percent data.txt”
header = [‘year’, ‘total wealth’, ‘top 1% wealth share’]
raw ks wealthiest one percent data = numpy.loadtxt(filename, delimiter=‘\t’, skiprows=4,

dtype={‘names’:header, ‘formats’:[‘<S50’, ‘<S50’]∗len(header)})
ks wealthiest one percent data = dict(zip([‘total wealth’, ‘top 1% wealth share’],

[dict(zip(years btw 1982 and 2000, [raw ks wealthiest one percent data[ ][i] for i in range(0,
2000−1982+1)])) for in [‘total wealth’, ‘top 1% wealth share’]]))
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ks estimate of wealth of wealthiest one percent in = dict(zip(years less last,
[‘TBD’]∗len(years btw 1982 and 2000)))

for year in years btw 1982 and 2000:
total wealth = in 2000 dollars( not in 2000 dollars(

constant dollar amount=dec(ks wealthiest one percent data[‘total wealth’][year]),
year=year), year=year)

ks estimate of wealth of wealthiest one percent in[year] = total wealth ∗
(dec(ks wealthiest one percent data[‘top 1% wealth share’][year]) / dec(100.)) # billions of
2000 dollars

# print estimates of the wealth of the wealthiest one percent
for year in years:

if year == years[0]: print “\nestimates of the wealth of the wealthiest one percent \nyear
\tSCF estimate \tK&S estimate”

print year, “\t”,
if year in years of scf:

print round(scf estimate of wealth of wealthiest one percent in[year]), “\t”,
else:

print “\t”,
if year in years btw 1982 and 2000:

print round(ks estimate of wealth of wealthiest one percent in[year]), “\n”,
else:

print “\n”,

## SEC. 2.2 TO 2.3: DIRECT VS. ESTATE−MULTIPLIER ESTIMATES OF THE WEALTH
OF THE 400 WEALTHIEST ##

# The following code uses Kopczuk and Saez’s (2004a,b) estate−multiplier estimates for the
smallest group they consider (the wealthiest 0.01%) and also uses their Pareto extrapolation
to method in order to get estate−multiplier estimates of the wealth of the 400 wealthiest.
Those estate−multiplier estimates are then compared to Forbes Magazine’s direct estimates.

ks estimated wealth of 400 wealthiest in = dict(zip(years btw 1982 and 2000, [‘TBD’ for year in
years btw 1982 and 2000]))

difference in = dict(zip(years less last, [‘TBD’ for year in years less last]))
for year in years btw 1982 and 2000:

avg wealth at top = dec(ks wealthiest 0 01 percent data[‘top 0.01% average wealth’][year]) #
in their 2000 dollars

number in top = (dec(0.01) / dec(100.)) ∗
dec(ks wealthiest 0 01 percent data[‘population’][year])

total wealth at top = avg wealth at top ∗ number in top
wealth threshold for top = dec(ks wealthiest 0 01 percent data[‘top 0.01% wealth

threshold’][year]) # in their 2000 dollars
a = total wealth at top / (total wealth at top − wealth threshold for top ∗ number in top)
ks estimated wealth of 400 wealthiest in year in their 2000 dollars = total wealth at top ∗

((dec(400.) / number in top) ∗∗ (dec(1) − (dec(1) / a)))
ks estimated wealth of 400 wealthiest in[year] = in 2000 dollars( not in 2000 dollars(

constant dollar amount =
ks estimated wealth of 400 wealthiest in year in their 2000 dollars, year=year), year=year)

direct estimate = in 2000 dollars(dec(summary stats[‘sum’][year]), year)
difference in[year] = ks estimated wealth of 400 wealthiest in[year] − direct estimate
# print results
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if year == years btw 1982 and 2000[0]: print “\ndifference btw direct and estate−multiplier
estimates of the wealth of the 400 wealthiest Americans \nyear \testate−multiplier
estimate \tdirect estimate \t difference in dollars \t difference as a percentage of the
direct estimate”

print year, “\t”,
print round(ks estimated wealth of 400 wealthiest in[year]), “\t”,
print round(direct estimate), “\t”,
print round(difference in[year]), “\t”,
print round(dec(100.0) ∗ difference in[year] / direct estimate, 2)

## SOME CALCULATIONS ##

print “\n400 wealthiest’s wealth (millions of 2000 dollars) in 1990, according to K&S:\t”,
print round(ks estimated wealth of 400 wealthiest in[‘1990’])
print “400 wealthiest’s wealth in 2000, according to K&S:\t”,
print round(ks estimated wealth of 400 wealthiest in[‘2000’])
print “400 wealthiest’s share of wealth in 1990, according to K&S:\t”,
print round(dec(100.) ∗ ks estimated wealth of 400 wealthiest in[‘1990’] / (in 2000 dollars(

not in 2000 dollars( constant dollar amount=dec(21588.2728070478), year=‘1990’),
year=‘1990’) ∗ dec(1000.)), 2)

print “400 wealthiest’s share of wealth in 2000, according to K&S:\t”,
aggregate wealth in billions according to ks = dec(32936.4508843353) # in billions of dollars
print round(dec(100.) ∗ ks estimated wealth of 400 wealthiest in[‘2000’] /

(aggregate wealth in billions according to ks ∗ dec(1000)), 2)
print “difference in 2000 (millions of dollars)\t”,
print difference in[‘2000’]
print “difference in 2000 as a percent of 400 wealthiest’s wealth, according to K&S:\t”,
print round(dec(100.) ∗ difference in[‘2000’] / ks estimated wealth of 400 wealthiest in[‘2000’])
print “difference in 2000 as a percent of 400 wealthiest’s wealth, according to Forbes:\t”,
print round(dec(100.) ∗ difference in[‘2000’] / in 2000 dollars(dec(summary stats[‘sum’][‘2000’]),

‘2000’))
print “difference in 2000 as a percent of top 0.01%’s wealth, according to K&S:\t”,
top 0 01 perct wealth = (dec(3.89579841645598) / dec(100.)) ∗ (in 2000 dollars(

not in 2000 dollars( constant dollar amount=aggregate wealth in billions according to ks,
year=‘2000’), year=‘2000’) ∗ dec(1000)) # in millions

print round(dec(100.) ∗ difference in[‘2000’] / top 0 01 perct wealth)
print “difference in 2000 as a percent of top 2%’s wealth, according to K&S:\t”,
top 2 perct wealth = (dec(26.4262930798121) / dec(100.)) ∗ (in 2000 dollars(

not in 2000 dollars( constant dollar amount=aggregate wealth in billions according to ks,
year=‘2000’), year=‘2000’) ∗ dec(1000)) # in millions

print round(dec(100.) ∗ difference in[‘2000’] / top 2 perct wealth)

## SEC. 2.4.4: ESTIMATE MORTALITY RATES AMONG THE FORBES 400 ##

# The probability that someone on the Forbes 400 list in a given year will die by the next year
can be estimated by assuming that members of the Forbes 400 live and die according to the
Gompertz−Makeham law of mortality, as discussed in the dissertation. The parameters
associated with that law must be estimated by using numerical methods. We estimated
them using the econometric program gretl 1.9.14. The following Python code exports the
data that we used, can print the gretl code that we used, and imports estimates made using
gretl and our gretl code.
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# open file for all years
filename = filepath + “exported gompertz data for all years.txt”
file for all years = open(filename, ‘w’)
# write header
file for all years.write(“t,r,d,y\n”)
for year in years less last:

next year = str(int(year) + 1)
# open file for given year
filename = filepath + “exported gompertz data for ” + year + “.txt”
file for one year = open(filename, ‘w’)
# write header
file for one year.write(“t,r,d\n”)
# write data
for name in names:

if (data[name][‘wealth’][year] != ‘’):
age = data[name][‘age’][year]
s = age + ‘,’
wealth = float(data[name][‘wealth’][year])
rank = str(summary stats[‘wealths’][year].index(wealth) + 1)
s += rank + ‘,’
if (name in dead in[next year]):

s += str(1)
else:

s += str(0)
file for all years.write(s + ‘,’ + str(years less last.index(year)) + ‘\n’)
file for one year.write(s + ‘\n’)

# close file
file for one year.close()

file for all years.close()

# de−comment to print gretl code
‘‘‘
for year in years less last:

print “\nset seed 250624”
print ‘open “ABSOLUTE PATH/data/data specific to first

essay/exported gompertz data for ’ + year + ‘.txt”’ # note that the open command is
not available in loop mode in gretl

print “scalar a = 0.01”
print “scalar b = 0.10”
print “scalar c = 0”
print “mle loglik = check ? (1 − d) ∗ ((a/b) ∗ (exp(b∗t) − exp(b∗(t+1))) − c) + d ∗ log(1 −

exp(((a/b) ∗ (exp(b∗t) − exp(b∗(t+1))) − c))) : NA”
print “\tscalar check = (a>=0) && (b>=0) && (c>=0)”
print “\tparams a b”
print “end mle −−quiet”
print “scalar a = a”
print “scalar b = b”
print “scalar c = a”
print “mle loglik = check ? (1 − d) ∗ ((a/b) ∗ (exp(b∗t) − exp(b∗(t+1))) − c) + d ∗ log(1 −

exp(((a/b) ∗ (exp(b∗t) − exp(b∗(t+1))) − c))) : NA”
print “\tscalar check = (a>=0) && (b>=0) && (c>=0)”
print “\tparams a b c” # note that you cannot export results to a file in gretl
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print “end mle −−quiet −−lbfgs”
print “print a b c”
print “restrict”
print “\tb[3] = 0”
print “end restrict”

’’’

# import estimates that were made using gretl and the gretl code given above
filename = filepath + “gompertz estimates.txt”
header = [‘year’, ‘a’, ‘b’, ‘c’]
raw data = numpy.loadtxt(filename, delimiter=‘\t’, skiprows=3, dtype={‘names’:header,

‘formats’:[‘f’]∗len(header)})
a parameter in = dict(zip(years less last, raw data[‘a’]))
b parameter in = dict(zip(years less last, raw data[‘b’]))
c parameter in = dict(zip(years less last, raw data[‘c’]))

# define a function that returns the mortality rates
def estimated mortality rate in(year, age):

‘‘‘ Returns the probability that someone on the Forbes 400 list in one year would die by the
next. The estimates were made by assuming that members of the Forbes 400 live and die
according to the Gompertz-Makeham law of mortality ’’’

return 1. − numpy.exp((a parameter in[year] / b parameter in[year]) ∗
(numpy.exp(b parameter in[year] ∗ float(age)) − numpy.exp(b parameter in[year] ∗
(float(age) + 1.))) − c parameter in[year])

## SEC. 2.5: APPLY THE ESTATE−MULTIPLIER METHOD TO THE FORBES 400 LIST
##

class eme of wealth of 400 or other wealthiest in(object):
‘‘‘

Class for applying the estate-multiplier method to the Forbes 400 list in the manner discussed in
the initial exercise in the essay

Parameters
==========
year : string of the year of one of the Forbes 400 list
number of wealthiest : int of the number of people whose wealth will be estimated
use estimated mortality rates : bool for whether to use our estimated mortality rates or Kopczuk

and Saez’s (2004a,b)
cut wealths in half : bool for whether to undervalue a person’s wealth by half

’’’

def init (self, year, number of wealthiest=400, use estimated mortality rates=False,
cut wealths in half=False):

self.year = year
self.number of wealthiest = dec(number of wealthiest)
self.use estimated mortality rates = use estimated mortality rates
self.cut wealths in half = cut wealths in half
self.names of dead = dead in[str(int(self.year) + 1)] # names of people on the Forbes 400

who died by next year
self.estimated wealth of number of wealthiest = ‘TBD’
self.bias = ‘TBD’
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def calculate raw estimates(self):
‘‘‘ Apply the estate-multiplier method by assuming that we observe the wealths, ages, and

genders of people who were on the Forbes 400, but died by the next year. Note that, in
general, the estate-multiplier estimate of the number of people is not going to be equal to
the number of people whose wealth we might wish to estimate, so we must interpolate or
extrapolate the raw estate-multiplier estimates. Returns None ’’’

self.W = dec(0) # estimate of total wealth
self.N = dec(0) # estimate of number of people
self.wealths and implied numbers = list() # store info
self.var of raw total = dec(0) # store variance
for name in self.names of dead:

age, wealth = data[name][‘age’][self.year],
in 2000 dollars(dec(data[name][‘wealth’][self.year]), self.year) # wealth is in millions of
2000 dollars

if self.use estimated mortality rates:
mortality rate = dec(estimated mortality rate in(year=self.year, age=age))

else:
if name in names of dead who were women:

gender = ‘female’
else:

gender = ‘male’
mortality rate = dec(mortality rate of[gender][self.year][age]) ∗

dec(relative mortality rate of[gender][age]) # adjust mortality rates for social
differential

if self.cut wealths in half:
wealth ∗= dec(0.5) # cut wealth in half

self.W += wealth / mortality rate
self.N += dec(1.) / mortality rate
self.wealths and implied numbers.append((wealth, dec(1) / mortality rate)) # note: list of

tuples of wealths and number of people (which is typically not a whole number) with
those wealths

self.var of raw total += ((dec(1) − mortality rate) / (mortality rate ∗∗ dec(2.))) ∗ (wealth
∗∗ dec(2.))

def get interpolated wealth of the number of wealthiest(self):
‘‘‘ Returns the interpolated wealth of the 400 or other wealthiest. The interpolation method

follows Kopczuk and Saez (2004b, appendix D.2) ’’’
# if the raw estate−multiplier estimate of the total number of people is already

number of wealthiest, return the raw estate−multiplier estimate of their wealth
if self.N == self.number of wealthiest:

estimated wealth of number of wealthiest = self.W
else:

# make sure that the 400 or other wealthiest can be interpolated
assert self.N > self.number of wealthiest, “Wealth must be extrapolated”
# if the raw estate−multipier estimate is different, then go through a list of sorted wealths

and the number of people with those wealths until we get to number of wealthiest
estimated wealth of number of wealthiest = dec(0)
people so far = dec(0)
self.wealths and implied numbers.sort(reverse=True) # sorted in descending order
for wealth, number in self.wealths and implied numbers:

if self.number of wealthiest < (people so far + number):
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estimated wealth of number of wealthiest += (self.number of wealthiest −
people so far) ∗ wealth

people so far += (self.number of wealthiest − people so far)
else:

estimated wealth of number of wealthiest += number ∗ wealth
people so far += number

return estimated wealth of number of wealthiest

def get extrapolated wealth of the number of wealthiest(self):
‘‘‘ Returns the extrapolated wealth of the 400 or other wealthiest. Assumes that wealth

follows a Pareto distribution, following Kopczuk and Saez (2004b, p. 7, note 10) ’’’
# assert that the sample can be extrapolated
assert ((self.w ∗ self.N == self.W) != True), “Can’t apply the Pareto extrapolation method”
# apply the Pareto extrapolation method
w, W, N = self.w, self.W, self.N
a = W / (W − N ∗ w)
estimated min wealth of number of wealthiest = W / (self.number of wealthiest ∗ (a / (a −

dec(1.))) ∗ (N / self.number of wealthiest) ∗∗ (dec(1.) − (dec(1.) / a)))
estimated wealth of number of wealthiest = self.number of wealthiest ∗ (a / (a − dec(1.))) ∗

estimated min wealth of number of wealthiest
return estimated wealth of number of wealthiest

def get estimate(self):
‘‘‘ Returns the estate-multiplier estimate of the wealth of the 400 or other wealthiest ’’’
# calculate raw estimates
self.calculate raw estimates()
# assert that at least somebody died
assert ((not self.wealths and implied numbers) != True), “Nobody died”
# if implied population is less than 400, then extrapolate, if extrapolation is possible
if self.N < self.number of wealthiest:

# get minimum wealth
self.w = min(self.wealths and implied numbers)[0]
# extrapolate the sample
self.estimated wealth of number of wealthiest =

self.get extrapolated wealth of the number of wealthiest()
# if implied population is greater than or equal to 400, then interpolate
else:

self.estimated wealth of number of wealthiest =
self.get interpolated wealth of the number of wealthiest()

return self.estimated wealth of number of wealthiest # in millions of current dollars

def get bias(self):
‘‘‘ Returns the bias of the estate-multiplier estimator ’’’
if self.estimated wealth of number of wealthiest == ‘TBD’:

self.get estimate()
self.bias = self.estimated wealth of number of wealthiest − in 2000 dollars( dec( sum(

summary stats[‘wealths’][self.year][0:int(self.number of wealthiest)])), self.year)
return self.bias # in millions of current dollars

def get comparison of bias w combined wealth of the wealthiest(self):
‘‘‘ Returns an interperation of any bias in the estate-multiplier method’s estimate ’’’
# get bias if not already calculated
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if self.bias == ‘TBD’:
self.get bias()

# get whether bias is negative or positive
if self.bias < 0:

over or under estimates = “under−estimates”
elif self.bias > 0:

over or under estimates = “over−estimates”
else:

return “The estate−multiplier method as it was applied estimates the total wealth of the ”
+ str(number of wealthiest) + “ exactly”

# compare the absolute value of the bias to the combined wealth of some of the wealthiest
i = 1
wealth of some of the wealthiest = dec(0)
while (wealth of some of the wealthiest <= abs(self.bias)) and (i <

int(self.number of wealthiest)):
wealth of some of the wealthiest +=

in 2000 dollars(dec(summary stats[‘wealths’][self.year][int(i − 1)]), self.year)
i += 1

if i == int(self.number of wealthiest):
more than or about = “more than”

else:
more than or about = “about”
wealth of some of the wealthiest −=

in 2000 dollars(dec(summary stats[‘wealths’][self.year][int(i − 1)]), self.year)
i −= 1

# return result of comparison
return “The estate−multiplier method as it was applied ” + over or under estimates + “ the

total wealth of the ” + str(number of wealthiest) + “ by about ” +
str(format(round(abs(self.bias) / dec(1000000), 2), ‘.2f’)) + “ trillion constant (2000)
dollars, which was ” + more than or about + “ the total wealth of the ” + str(i) + “
wealthiest Americans on the magazine’s list”

# use the mortality rates assumed by Kopczuk and Saez (2004a,b)
eme of wealth of 400 wealthiest in w ks mortality rates = dict(zip(years less last,

[‘TBD’]∗len(years less last)))
for year in years less last:

estimator = eme of wealth of 400 or other wealthiest in(year)
eme of wealth of 400 wealthiest in w ks mortality rates[year] = estimator.get estimate()
# print results
if year == years less last[0]: print “\nwealth of the Forbes 400 using K&S mortality

rates\nyear \testimated \tactual \tdifference”
estimated = eme of wealth of 400 wealthiest in w ks mortality rates[year]
actual = in 2000 dollars(dec(summary stats[‘sum’][year]), year)
difference = estimated − actual
print year, “\t”, round(estimated), “\t”, round(actual), “\t”, round(difference)

# use the mortality rates assumed by Kopczuk and Saez (2004a,b) and also under−value
wealths by half

eme of wealth of 400 wealthiest in w ks mortality rates and halved wealths =
dict(zip(years less last, [‘TBD’]∗len(years less last)))

for year in years less last:
estimator = eme of wealth of 400 or other wealthiest in(year, cut wealths in half=True)
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eme of wealth of 400 wealthiest in w ks mortality rates and halved wealths[year] =
estimator.get estimate()

# print results
if year == years less last[0]: print “\nwealth of the Forbes 400 using K&S mortality rates and

under−valuing wealths by half\nyear \testimated \tactual\t difference”
estimated = eme of wealth of 400 wealthiest in w ks mortality rates and halved wealths[year]
actual = in 2000 dollars(dec(summary stats[‘sum’][year]), year)
difference = estimated − actual
print year, “\t”, round(estimated), “\t”, round(actual), “\t”, round(difference)

## SEC. 2.6.1: PROBABILITY OF UNDERESTIMATION ##

class sample and estimate total wealth of the 400 or other wealthiest from(object):
‘‘‘

Class for sampling from a given group of people and estimating the wealth of the group in the
manner discussed in the extended exercise in the essay

Parameters
==========
wealth age pairs : pairs of wealths and ages to sample from
year for mortality rates : string of the year to use for mortality rates
number of wealthiest : int of the number of people whose wealth will be estimated. Must be less

than or equal to 400
use estimated mortality rates to sample : bool for whether to use our estimated mortality rates

or Kopczuk and Saez’s (2004a,b) to sample people
use estimated mortality rates to inflate : bool for whether to use our estimated mortality rates or

Kopczuk and Saez’s (2004a,b) to inflate wealths
cut wealths in half : bool for whether to undervalue a person’s wealth by half

’’’

def init (self, wealth age pairs, year for mortality rates, number of wealthiest=400,
cut wealths in half=False, use estimated mortality rates to sample=True,
use estimated mortality rates to inflate=True):

self.wealth age pairs = wealth age pairs
self.year for mortality rates = year for mortality rates
self.number of wealthiest = dec(number of wealthiest) # number of people whose wealth

will be estimated
self.cut wealths in half = cut wealths in half
self.use estimated mortality rates to sample = use estimated mortality rates to sample
self.use estimated mortality rates to inflate = use estimated mortality rates to inflate
self.min of wealth for wealth age pairs = min(wealth for wealth, age in wealth age pairs)
self.empty sample = False

def draw sample(self):
‘‘‘ Draws a sample from the wealth and age pairs. Returns None ’’’
self.W = dec(0)
self.N = dec(0)
self.wealths and implied numbers = list()
for pair in self.wealth age pairs:

wealth, age = pair
# get mortality rate for sampling
if self.use estimated mortality rates to sample:



264

true mortality rate = dec(estimated mortality rate in(year=self.year for mortality rates,
age=age))

else:
true mortality rate = dec(mortality rate of[‘male’][self.year for mortality rates][age]) ∗

dec(relative mortality rate of[‘male’][age]) # use male mortality rates
# sample wealth age pair?
if numpy.random.uniform(0, 1) < float(true mortality rate):

# misestimate mortality rates?
if self.use estimated mortality rates to inflate:

assumed mortality rate =
dec(estimated mortality rate in(year=self.year for mortality rates, age=age))

else:
assumed mortality rate =

dec(mortality rate of[‘male’][self.year for mortality rates][age]) ∗
dec(relative mortality rate of[‘male’][age])

# cut wealth in half?
if self.cut wealths in half:

wealth ∗= dec(0.50)
self.W += dec(wealth) / assumed mortality rate
self.N += dec(1) / assumed mortality rate
self.wealths and implied numbers.append((wealth, dec(1) / assumed mortality rate))

# if sample is empty, then assume that number of wealthiest have the minimum wealth for
the reasons discussed in the dissertation

if (not self.wealths and implied numbers):
known min wealth = dec(self.min of wealth for wealth age pairs)
if self.cut wealths in half:

known min wealth ∗= dec(0.50)
self.W = known min wealth ∗ self.number of wealthiest
self.N = self.number of wealthiest
self.wealths and implied numbers = [(known min wealth, self.number of wealthiest)]
self.empty sample = True

def get estimate(self):
‘‘‘ Returns the estate-multiplier estimate of the wealth of the 400 or other wealthiest ’’’
self.draw sample()
W, N, wealths and implied numbers = self.W, self.N, self.wealths and implied numbers
# extrapolate
if N < self.number of wealthiest:

# if each of the N < number of wealthiest have the same wealth, extrapolate by assuming
that number of wealthiest have the same wealth, the shape parameter of the Pareto
distribution can be thought of as infinite

w = min(wealths and implied numbers)[0]
if (w ∗ N == W):

estimated wealth of number of wealthiest = w ∗ self.number of wealthiest
# otherwise, extrapolate by assuming a pareto distribution
else:

a = W / (W − N ∗ w)
estimated min wealth of number of wealthiest = W / ( self.number of wealthiest ∗ (a /

(a − dec(1))) ∗ (N / self.number of wealthiest) ∗∗ (dec(1) − (dec(1) / a)) )
estimated wealth of number of wealthiest = self.number of wealthiest ∗ (a / (a −

dec(1))) ∗ estimated min wealth of number of wealthiest
# interpolate
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else:
estimated wealth of number of wealthiest = dec(0)
people so far = dec(0)
wealths and implied numbers.sort(reverse=True)
for wealth, number in wealths and implied numbers:

if self.number of wealthiest < (people so far + number):
estimated wealth of number of wealthiest += (self.number of wealthiest −

people so far) ∗ wealth
people so far += (self.number of wealthiest − people so far)

else:
estimated wealth of number of wealthiest += number ∗ wealth
people so far += number

# return estimate
return estimated wealth of number of wealthiest

# differences that were observed between the direct and estate−multiplier estimates
difference in 2000 as a fraction of total wealth of forbes 400 =

(dec(ks estimated wealth of 400 wealthiest in[‘2000’]) −
dec(in 2000 dollars(dec(summary stats[‘sum’][‘2000’]), ‘2000’))) /
dec(in 2000 dollars(dec(summary stats[‘sum’][‘2000’]), ‘2000’))

difference in year as a fraction of total wealth of forbes 400 = dict()
for year in years btw 1982 and 2000:

difference in year as a fraction of total wealth of forbes 400[year] =
(dec(ks estimated wealth of 400 wealthiest in[year]) −
dec(in 2000 dollars(dec(summary stats[‘sum’][year]), year))) /
dec(in 2000 dollars(dec(summary stats[‘sum’][year]), year))

# define dicts for storing results
set ups = [‘right wealths and right rates’, ‘wrong wealths but right rates’, ‘right wealths but

wrong rates’, ‘wrong wealths and wrong rates’]
median bias for = dict(zip(set ups, [dict(zip(years less last, [‘TBD’ for year in years less last]))

for set up in set ups]))
prob under estimate by 2000 amount for = dict(zip(set ups, [dict(zip(years less last, [‘TBD’ for

year in years less last])) for set up in set ups]))
prob under estimate by same amount for = dict(zip(set ups, [dict(zip(years btw 1982 and 2000,

[‘TBD’ for year in years btw 1982 and 2000])) for set up in set ups]))
cumulative prob 1996 to 2000 for = dict(zip(set ups, [dec(1.) for set up in set ups]))
# set the following to True to re−estimate if already estimated
re estimate = False
# check if already been estimated
filenames = [filepath + + “.pkl” for in [“median bias for”,

“prob under estimate by 2000 amount for”, “prob under estimate by same amount for”,
“cumulative prob 1996 to 2000 for”]]

already estimated = False not in [isfile(filename) for filename in filenames]
# estimate or re−estimate
if not already estimated or re estimate:

# set up simulations
for set up in set ups:

# number of resamples
number of resamples = 10000
# cut wealths in half?
if ‘wrong wealths’ in set up:
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cut wealths in half = True
else:

cut wealths in half = False
# misestimate mortality rates?
if ‘wrong rates’ in set up:

use estimated mortality rates to sample = True
use estimated mortality rates to inflate = False

else:
use estimated mortality rates to sample = True
use estimated mortality rates to inflate = True

print set up
# run simulations for each year
for year in years less last:

numpy.random.seed(250624)
biases for year = list()
median bias for year = list()
prob under estimate by 2000 amount for year = 0
prob under estimate by same amount for year = 0
wealth age pairs = [(in 2000 dollars(dec(data[name][‘wealth’][year]), year),

data[name][‘age’][year]) for name in names if (data[name][‘wealth’][year] != ‘’)]
unknown total wealth of 400 wealthiest = sum(zip(∗wealth age pairs)[0])
year for mortality rates = year
# for each resample
for in range(1, number of resamples+1):

# draw a sample
estimate = sample and estimate total wealth of the 400 or other wealthiest from(

wealth age pairs = wealth age pairs, year for mortality rates =
year for mortality rates, cut wealths in half = cut wealths in half,
use estimated mortality rates to sample = use estimated mortality rates to sample,
use estimated mortality rates to inflate =
use estimated mortality rates to inflate).get estimate()

# get bias
bias = (estimate − unknown total wealth of 400 wealthiest)
biases for year.append(float(bias))
# bias bigger than given amount?
bias as a fraction of total wealth of forbes 400 = bias /

(unknown total wealth of 400 wealthiest) # bias as a percent
if not bias as a fraction of total wealth of forbes 400 >

difference in 2000 as a fraction of total wealth of forbes 400:
prob under estimate by 2000 amount for year += 1

if year in years btw 1982 and 2000:
if not bias as a fraction of total wealth of forbes 400 >

difference in year as a fraction of total wealth of forbes 400[year]:
prob under estimate by same amount for year += 1

# record results
median bias for[set up][year] = str(round(scipy.stats.mstats.mquantiles( biases for year,

prob=[50./100.], alphap=1/3., betap=1/3.)[0], 2))
prob under estimate by 2000 amount for[set up][year] = str(dec(100.) ∗

dec(prob under estimate by 2000 amount for year) / dec(number of resamples))
if year in years btw 1982 and 2000:

prob under estimate by same amount for[set up][year] = str(dec(100.) ∗
dec(prob under estimate by same amount for year) / dec(number of resamples))
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if int(1996) <= int(year) <= int(2000):
cumulative prob 1996 to 2000 for[set up] ∗=

dec(prob under estimate by same amount for year) / dec(number of resamples)
print year

# dump results
filename = filepath + “median bias for.pkl”
pickle.dump(median bias for, open(filename, ‘wb’))
filename = filepath + “prob under estimate by 2000 amount for.pkl”
pickle.dump(prob under estimate by 2000 amount for, open(filename, ‘wb’))
filename = filepath + “prob under estimate by same amount for.pkl”
pickle.dump(prob under estimate by same amount for, open(filename, ‘wb’))
filename = filepath + “cumulative prob 1996 to 2000 for.pkl”
pickle.dump(cumulative prob 1996 to 2000 for, open(filename, ‘wb’))

else:
# load results that were dumped using pickle
median bias for = pickle.load(open(filepath + “median bias for.pkl”, ‘rb’))
prob under estimate by 2000 amount for = pickle.load(open(filepath +

“prob under estimate by 2000 amount for.pkl”, ‘rb’))
prob under estimate by same amount for = pickle.load(open(filepath +

“prob under estimate by same amount for.pkl”, ‘rb’))
cumulative prob 1996 to 2000 for = pickle.load(open(filepath +

“cumulative prob 1996 to 2000 for.pkl”, ‘rb’))

# print results
for set up in set ups:

for year in years btw 1982 and 2000:
if year == years btw 1982 and 2000[0]: print “\nyear\t probability of underestimating by at

least about 76 percent if ” + set up + “ \tmedian misestmation”
print year, “\t”,
print round(float(prob under estimate by 2000 amount for[set up][year]), 2), “\t”,
print round(float(median bias for[set up][year]))

set up = ‘wrong wealths and wrong rates’
for year in years btw 1982 and 2000:

if year == years btw 1982 and 2000[0]: print “\nyear\t observed difference\t probability of
observing that difference if ” + set up

print year, “\t”,
print round(float(dec(100.) ∗

difference in year as a fraction of total wealth of forbes 400[year])), “\t”,
print round(float(prob under estimate by same amount for[set up][year]))

print “\nprobability of underestimating by observed differences in each year between 1996 and
2000:\t”, cumulative prob 1996 to 2000 for[set up]

# Of note, medians were calculated by using one of the empirical quantile functions recommend
by Hyndman and Yanan’s (1996) “Sample Quantiles in Statistical Packackages”
(specifically, the eighth function they consider). According to the authors, it gives
approximately median−unbiased estimates of a quartile regardless of the underlying
distribution. Numpy’s median function yields similar results.

## SEC. 2.6.2, ESP. FIG. 2.9: EFFECT OF INEQUALITY ##

# The following code looks at the probability of underestimating the total wealth of the Forbes
400 if the distribution of their wealth is changed and all other things are held equal.
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def get pareto index if wealthiest perct owns one minus perct(perct):
‘‘‘ Returns the Pareto index that corresponds to a percentage of the population owning one

minus their percentage of the population ’’’
perct of pop = perct
pareto index = numpy.log(perct of pop) / numpy.log(perct of pop / (1. − perct of pop))
return pareto index

def wealths w pareto index of(pareto index, total wealth=dec(summary stats[‘sum’][‘2000’]),
number of people=400):

‘‘‘ Returns wealths that precisely follow a Pareto distribution ’’’
wealths = list()
for i in range(1, number of people+1):

p = dec(i) / dec(number of people) # perct of pop corresponding to person
p 1 = dec(i − 1) / dec(number of people) # perct of pop corresponding to next person
wealth = total wealth ∗ (p ∗∗ (dec(1.) − (dec(1.) / dec(pareto index))) − p 1 ∗∗ (dec(1.) −

(dec(1.) / dec(pareto index))))
wealths.append(wealth)

return wealths

# define dicts for storing results
percts of wealth = [ for in (100. ∗ numpy.array(range(201, 399+1, 2)) / 400.)]
biases for w different inequality = dict(zip(percts of wealth, [list() for perct of wealth in

percts of wealth]))
lower bias for w different inequality = dict(zip(percts of wealth, [‘TBD’ for perct of wealth in

percts of wealth]))
median bias for w different inequality = dict(zip(percts of wealth, [‘TBD’ for perct of wealth in

percts of wealth]))
upper bias for w different inequality = dict(zip(percts of wealth, [‘TBD’ for perct of wealth in

percts of wealth]))
prob under estimate by fixed amount for w different inequality = dict(zip(percts of wealth, [0

for perct of wealth in percts of wealth]))
prob over estimate by fixed amount for w different inequality = dict(zip(percts of wealth, [0 for

perct of wealth in percts of wealth]))
# set the following to True to re−estimate if already estimated
re estimate = False
# check if already been estimated
filenames = [filepath + + “.pkl” for in [“lower bias for w different inequality”,

“median bias for w different inequality”, “upper bias for w different inequality”,
“prob under estimate by fixed amount for w different inequality”,
“prob over estimate by fixed amount for w different inequality”]]

already estimated = False not in [isfile(filename) for filename in filenames]
# estimate or re−estimate
if not already estimated or re estimate:

# set seed
numpy.random.seed(250624)
# number of resamples
number of resamples = 10000
# cut wealths in half
cut wealths in half = True
# misestimate mortality rate
use estimated mortality rates to sample = True
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use estimated mortality rates to inflate = False
# get ages, sorted by descending wealth with order of names breaking ties
ranks = range(0, 400)
ages of = dict(zip(ranks, [list() for rank in ranks]))
for name in names:

if (data[name][‘wealth’][‘2000’] != ‘’):
rank = summary stats[‘wealths’][‘2000’].index(float(data[name][‘wealth’][‘2000’]))
age = str(data[name][‘age’][‘2000’])
ages of[rank].append(age)

ages to pair w wealths = list()
for rank in ranks:

ages to pair w wealths.extend(ages of[rank])
# get fixed amount
fixed amount = abs(difference in[‘2000’])
# for each perct of wealth
for perct of wealth in percts of wealth:

# get wealths to pair with ages
wealths to pair w ages = wealths w pareto index of( pareto index =

get pareto index if wealthiest perct owns one minus perct( perct = (100. −
perct of wealth) / 100.)) # different distributions of wealth

unknown total wealth of 400 wealthiest = sum(wealths to pair w ages)
# for each resample
for in range(1, number of resamples+1):

# pair wealths and ages
wealth age pairs = zip(wealths to pair w ages, ages to pair w wealths)
# draw a sample
estimate = sample and estimate total wealth of the 400 or other wealthiest from(

wealth age pairs = wealth age pairs, year for mortality rates=‘2000’,
cut wealths in half = cut wealths in half, use estimated mortality rates to sample =
use estimated mortality rates to sample, use estimated mortality rates to inflate =
use estimated mortality rates to inflate).get estimate()

# get bias
biases for w different inequality[perct of wealth].append(float(estimate −

unknown total wealth of 400 wealthiest))
if abs(estimate − unknown total wealth of 400 wealthiest) > fixed amount:

if estimate − unknown total wealth of 400 wealthiest < 0:
prob under estimate by fixed amount for w different inequality[perct of wealth] += 1

if estimate − unknown total wealth of 400 wealthiest > 0:
prob over estimate by fixed amount for w different inequality[perct of wealth] += 1

# record results
median bias for w different inequality[perct of wealth] =

str(round(scipy.stats.mstats.mquantiles(
biases for w different inequality[perct of wealth], prob=[50./100.], alphap=1/3.,
betap=1/3.)[0]))

lower bias for w different inequality[perct of wealth] =
str(round(scipy.stats.mstats.mquantiles(
biases for w different inequality[perct of wealth], prob=[2.5/100.], alphap=1/3.,
betap=1/3.)[0], 1))

upper bias for w different inequality[perct of wealth] =
str(round(scipy.stats.mstats.mquantiles(
biases for w different inequality[perct of wealth], prob=[97.5/100.], alphap=1/3.,
betap=1/3.)[0], 1))
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prob under estimate by fixed amount for w different inequality[perct of wealth] =
str(dec(100.) ∗
dec(prob under estimate by fixed amount for w different inequality[perct of wealth]) /
dec(number of resamples))

prob over estimate by fixed amount for w different inequality[perct of wealth] =
str(dec(100.) ∗
dec(prob over estimate by fixed amount for w different inequality[perct of wealth]) /
dec(number of resamples))

print perct of wealth
# dump results
filename = filepath + “lower bias for w different inequality.pkl”
pickle.dump(lower bias for w different inequality, open(filename, ‘wb’))
filename = filepath + “median bias for w different inequality.pkl”
pickle.dump(median bias for w different inequality, open(filename, ‘wb’))
filename = filepath + “upper bias for w different inequality.pkl”
pickle.dump(upper bias for w different inequality, open(filename, ‘wb’))
filename = filepath + “prob under estimate by fixed amount for w different inequality.pkl”
pickle.dump(prob under estimate by fixed amount for w different inequality, open(filename,

‘wb’))
filename = filepath + “prob over estimate by fixed amount for w different inequality.pkl”
pickle.dump(prob over estimate by fixed amount for w different inequality, open(filename,

‘wb’))
else:

# load results that were dumped using pickle
lower bias for w different inequality = pickle.load(open(filepath +

“lower bias for w different inequality.pkl”, ‘rb’))
median bias for w different inequality = pickle.load(open(filepath +

“median bias for w different inequality.pkl”, ‘rb’))
upper bias for w different inequality = pickle.load(open(filepath +

“upper bias for w different inequality.pkl”, ‘rb’))
prob under estimate by fixed amount for w different inequality = pickle.load(open(filepath +

“prob under estimate by fixed amount for w different inequality.pkl”, ‘rb’))
prob over estimate by fixed amount for w different inequality = pickle.load(open(filepath +

“prob over estimate by fixed amount for w different inequality.pkl”, ‘rb’))

print “\nmisestimation with different levels of inequality \nperct of wealth \tlower bias
\tmedian bias \tupper bias \tprob underestimate \tprob overestimate”

for perct of wealth in percts of wealth:
print perct of wealth, “\t”, lower bias for w different inequality[perct of wealth], “\t”,

median bias for w different inequality[perct of wealth], “\t”,
upper bias for w different inequality[perct of wealth], “\t”,
prob under estimate by fixed amount for w different inequality[perct of wealth], “\t”,
prob over estimate by fixed amount for w different inequality[perct of wealth]

## SEC. 2.6.2, ESP. FIG. 2.10: ESTIMATES WITH EXTREME INEQUALITY ##

# define a function for rounding wealth estimates
def get rounded(dec estimate in billions):

‘‘‘ Takes a dollar amount in billions and rounds it the nearest billion, if the nearest one billion
dollars, if it was greater than five billion, and the nearest 100 million, otherwise. Dollar
amounts are decimals, not floats ’’’

# less than five billion?
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if dec estimate in billions < dec(5.0):
round to nearest = dec(0.100) # hundred million

else:
round to nearest = dec(1.0) # billion

return dec(round(float(dec estimate in billions / round to nearest), 0)) ∗ round to nearest

# define dict for storing results
prob of estimating w extreme inequality = dict()
# set the following to True to re−estimate if already estimated
re estimate = False
# check if already been estimated
filename = filepath + “prob of estimating w extreme inequality.pkl”
already estimated = isfile(filename)
# estimate or re−estimate
if not already estimated or re estimate:

# set seed
numpy.random.seed(250624)
# number of resamples
number of resamples = 10000
# cut wealths in half
cut wealths in half = True
# misestimate mortality rate
use estimated mortality rates to sample = True
use estimated mortality rates to inflate = False
# get ages, sorted by descending wealth with order of names breaking ties
ranks = range(0, 400)
ages of = dict(zip(ranks, [list() for rank in ranks]))
for name in names:

if (data[name][‘wealth’][‘2000’] != ‘’):
rank = summary stats[‘wealths’][‘2000’].index(float(data[name][‘wealth’][‘2000’]))
age = str(data[name][‘age’][‘2000’])
ages of[rank].append(age)

ages to pair w wealths = list()
for rank in ranks:

ages to pair w wealths.extend(ages of[rank])
# estimate probabilities
biases = list()
# for the most−extreme level of inequality
for perct of wealth in [99.75]:

# get wealths to pair with ages
wealths to pair w ages = wealths w pareto index of( pareto index =

get pareto index if wealthiest perct owns one minus perct( perct = (100. −
perct of wealth) / 100.))

unknown total wealth of 400 wealthiest = sum(wealths to pair w ages)
# for each resample
for resample in range(1, number of resamples+1):

# pair wealths and ages
wealth age pairs = zip(wealths to pair w ages, ages to pair w wealths)
# draw a sample
estimate = sample and estimate total wealth of the 400 or other wealthiest from(

wealth age pairs = wealth age pairs, year for mortality rates=‘2000’,
cut wealths in half = cut wealths in half, use estimated mortality rates to sample =
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use estimated mortality rates to sample, use estimated mortality rates to inflate =
use estimated mortality rates to inflate).get estimate()

estimate = str(get rounded(estimate / dec(1000.))) # string of rounded estimate in billions
if estimate in prob of estimating w extreme inequality.keys():

prob of estimating w extreme inequality[estimate] += 1
else:

prob of estimating w extreme inequality[estimate] = 1
print resample

for estimate in prob of estimating w extreme inequality.keys():
prob of estimating w extreme inequality[estimate] = round(100 ∗

(prob of estimating w extreme inequality[estimate] / number of resamples), 2)
# dump results
filename = filepath + “prob of estimating w extreme inequality.pkl”
pickle.dump(prob of estimating w extreme inequality, open(filename, ‘wb’))

else:
# load results that were dumped using pickle
prob of estimating w extreme inequality = pickle.load(open(filepath +

“prob of estimating w extreme inequality.pkl”, ‘rb’))

## SEC. 2.6.2, ESP. TABLE 2.1: EFFECT OF CHANGES RELATIVE TO BASE YEAR ##

# The following code looks at the effect of changes between base year and 2000 on the
probability of underestimating the total wealth of the Forbes 400.

base year = ‘1990’
changes = [‘No changes relative to base year’, ‘Ages’, ‘Sampling rates’, ‘Ages and sampling

rates’, ‘Wealths’, ‘All changes’]
# define dict for storing results
prob under estimate by 2000 amount for w changes = dict(zip(set ups, [dict(zip(changes, [0 for

change in changes])) for set up in set ups]))
# set the following to True to re−estimate if already estimated
re estimate = False
# check if already been estimated
filename = filepath + “prob under estimate by 2000 amount for w changes.pkl”
already estimated = isfile(filename)
# estimate or re−estimate
if not already estimated or re estimate:

# set up simulations
for set up in set ups:

# number of resamples
number of resamples = 10000
# cut wealths in half?
if ‘wrong wealths’ in set up:

cut wealths in half = True
else:

cut wealths in half = False
# misestimate mortality rates?
if ‘wrong rates’ in set up:

use estimated mortality rates to sample = True
use estimated mortality rates to inflate = False

else:
use estimated mortality rates to sample = True
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use estimated mortality rates to inflate = True
print set up
# for each change
for change in changes:

# set seed
numpy.random.seed(250624)
# get wealths in descending order by year
# also get ages by year, sorted by descending wealth with order of names breaking ties
ranks = range(0, 400)
wealths in base year = dict(zip(ranks, [list() for rank in ranks]))
wealths in 2000 = dict(zip(ranks, [list() for rank in ranks]))
ages in base year = dict(zip(ranks, [list() for rank in ranks]))
ages in 2000 = dict(zip(ranks, [list() for rank in ranks]))
for name in names:

if (data[name][‘wealth’][base year] != ‘’):
rank = summary stats[‘wealths’][base year].index(float(data[name][‘wealth’][base year]))
wealth = in 2000 dollars(dec(data[name][‘wealth’][base year]), base year)
age = str(data[name][‘age’][base year])
wealths in base year[rank].append(wealth)
ages in base year[rank].append(age)

if (data[name][‘wealth’][‘2000’] != ‘’):
rank = summary stats[‘wealths’][‘2000’].index(float(data[name][‘wealth’][‘2000’]))
wealth = in 2000 dollars(dec(data[name][‘wealth’][‘2000’]), ‘2000’)
age = str(data[name][‘age’][‘2000’])
wealths in 2000[rank].append(wealth)
ages in 2000[rank].append(age)

wealths in base year to pair w ages = list()
wealths in 2000 to pair w ages = list()
ages in base year to pair w wealths = list()
ages in 2000 to pair w wealths = list()
for rank in ranks:

wealths in base year to pair w ages.extend(wealths in base year[rank])
wealths in 2000 to pair w ages.extend(wealths in 2000[rank])
ages in base year to pair w wealths.extend(ages in base year[rank])
ages in 2000 to pair w wealths.extend(ages in 2000[rank])

# changes wealth, ages, or year of mortality rates
if change == ‘No changes relative to base year’:

# base year wealths, ages, and mortality rates
wealth age pairs = [(in 2000 dollars(dec(data[name][‘wealth’][base year]), base year),

data[name][‘age’][base year]) for name in names if (data[name][‘wealth’][base year]
!= ‘’)] # same order, so that we get the same result with the same seed

unknown total wealth of 400 wealthiest = sum(zip(∗wealth age pairs)[0])
year for mortality rates = base year

elif change == ‘All changes’:
# 2000 wealths, ages, and mortality rates
wealth age pairs = [(in 2000 dollars(dec(data[name][‘wealth’][‘2000’]), ‘2000’),

data[name][‘age’][‘2000’]) for name in names if (data[name][‘wealth’][‘2000’] != ‘’)] #
same order, so that we get the same result with the same seed

unknown total wealth of 400 wealthiest = sum(zip(∗wealth age pairs)[0])
year for mortality rates = ‘2000’

else:
# change wealth?
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if change == ‘Wealths’:
# 2000 wealths, but 1990 ages
wealth age pairs = zip(wealths in 2000 to pair w ages,

ages in base year to pair w wealths)
# change ages?
if ‘Ages’ in change:

# 1990 wealths, but 2000 ages
wealth age pairs = zip(wealths in base year to pair w ages,

ages in 2000 to pair w wealths)
# total wealth
unknown total wealth of 400 wealthiest = sum(zip(∗wealth age pairs)[0])
# change mortality rates?
if ‘sampling rates’ in change.lower():

year for mortality rates = ‘2000’
else:

year for mortality rates = base year
# for each resample
for in range(1, number of resamples+1):

# draw a sample
estimate = sample and estimate total wealth of the 400 or other wealthiest from(

wealth age pairs = wealth age pairs, year for mortality rates =
year for mortality rates, cut wealths in half = cut wealths in half,
use estimated mortality rates to sample = use estimated mortality rates to sample,
use estimated mortality rates to inflate =
use estimated mortality rates to inflate).get estimate()

# get bias
bias = (estimate − unknown total wealth of 400 wealthiest) /

(unknown total wealth of 400 wealthiest) # bias as a percent
if not bias > difference in 2000 as a fraction of total wealth of forbes 400:

prob under estimate by 2000 amount for w changes[set up][change] += 1
prob under estimate by 2000 amount for w changes[set up][change] = str(dec(100.) ∗

dec(prob under estimate by 2000 amount for w changes[set up][change]) /
dec(number of resamples))

print change
# dump results
filename = filepath + “prob under estimate by 2000 amount for w changes.pkl”
pickle.dump(prob under estimate by 2000 amount for w changes, open(filename, ‘wb’))

else:
# load results that were dumped using pickle
prob under estimate by 2000 amount for w changes = pickle.load(open(filepath +

“prob under estimate by 2000 amount for w changes.pkl”, ‘rb’))

# print results
print “\neffect of changes between ” + base year + “ and 2000”
for set up in set ups:

print “\nset up: ” + set up + “ \nchange \tprob of underestimating by 2000 amount given
change”

for change in changes:
print change, “\t”, prob under estimate by 2000 amount for w changes[set up][change]

## SEC. A.5: EFFECT OF CHANGES BETWEEN 1918 AND 2000 ##
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# get data on thirty wealthiest Americans in 1918
filename = filepath + “thirty wealthiest in 1918 data.txt”
header = [‘Rank’, ‘Name’, ‘Wealth (in millions)’, ‘Born’, ‘Died’, ‘Gender’, ‘Age in 1918

(assuming birthday already occurred)’, ‘Prob of dying in 1918’]
raw thirty wealthiest in 1918 data = numpy.loadtxt(filename, delimiter=‘\t’, skiprows=5,

dtype={‘names’:header, ‘formats’:[‘<S50’]∗len(header)})
wealths in 1918, ages in 1918 = list(), list()
for i in range(0, len(raw thirty wealthiest in 1918 data[‘Rank’])):

wealth = dec(raw thirty wealthiest in 1918 data[‘Wealth (in millions)’][i])
age = raw thirty wealthiest in 1918 data[‘Age in 1918 (assuming birthday already occurred)’][i]
gender = raw thirty wealthiest in 1918 data[‘Gender’][i].lower() # continue to ignore gender

for simplicity
wealths in 1918.append(wealth)
ages in 1918.append(age)

wealth age pairs for 1918 = zip(wealths in 1918, ages in 1918)

# get data on thirty wealthiest Americans in 2000
wealths in 2000, ages in 2000 = list(), list()
for year in [‘2000’]:

for name in names:
if data[name][‘wealth’][year] != ‘’:

wealth = data[name][‘wealth’][year]
rank = summary stats[‘wealths’][year].index(float(wealth)) # note: no ties for 30th

wealthiest in 2000
if rank < 30:

wealths in 2000.append(dec(wealth))
age = data[name][‘age’][year]
if name in [‘Walton, Alice L’, ‘Walton, Helen R’, ‘Anthony, Barbara Cox’, ‘Chambers,

Anne Cox’, ‘Johnson, Abigail’]:
gender = ‘female’

else:
gender = ‘male’ # continue to ignore gender for simplicity

ages in 2000.append(age)
wealth age pairs for 2000 = zip(wealths in 2000, ages in 2000)

base year = ‘1918’
# define dicts for storing results
biases for = dict(zip(changes, [list() for change in changes]))
median bias as a perct of wealth for w changes = dict(zip(changes, [‘TBD’ for change in

changes]))
# set the following to True to re−estimate if already estimated
re estimate = False
# check if already been estimated
filename = filepath + “median bias as a perct of wealth for w changes.pkl”
already estimated = isfile(filename)
# estimate or re−estimate
if not already estimated or re estimate:

# number of resamples
number of resamples = 10000
# fully value wealths
cut wealths in half = False
# use K&S rates to sample and inflate
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use estimated mortality rates to sample = False
use estimated mortality rates to inflate = False
# for each change
for change in changes:

# set seed
numpy.random.seed(250624)
# changes wealth, ages, or year of sampling rates
if change == ‘No changes relative to base year’:

# base year wealths, ages, and sampling rates
wealth age pairs = wealth age pairs for 1918
unknown total wealth of 30 wealthiest = sum(zip(∗wealth age pairs)[0])
year for mortality rates = base year
wrong rates in year = False

elif change == ‘All changes’:
# 2000 wealths, ages, and sampling rates
wealth age pairs = wealth age pairs for 2000
unknown total wealth of 30 wealthiest = sum(zip(∗wealth age pairs)[0])
year for mortality rates = ‘2000’
wrong rates in year = False

else:
# change wealth?
if change == ‘Wealths’:

# 2000 wealths, but 1918 ages
wealth age pairs = zip(wealths in 2000, ages in 1918)

# change ages?
if ‘Ages’ in change:

# 1918 wealths, but 2000 ages
wealth age pairs = zip(wealths in 1918, ages in 2000)

# total wealth
unknown total wealth of 30 wealthiest = sum(zip(∗wealth age pairs)[0])
# change sampling rates?
if ‘sampling rates’ in change.lower():

year for mortality rates = ‘2000’
wrong rates in year = False

else:
year for mortality rates = base year
wrong rates in year = False

# for each resample
for in range(1, number of resamples+1):

# draw a sample and get estimate
estimate = sample and estimate total wealth of the 400 or other wealthiest from(

wealth age pairs = wealth age pairs, year for mortality rates =
year for mortality rates, number of wealthiest=30, cut wealths in half =
cut wealths in half, use estimated mortality rates to sample =
use estimated mortality rates to sample, use estimated mortality rates to inflate =
use estimated mortality rates to inflate).get estimate()

# get bias
bias = (estimate − unknown total wealth of 30 wealthiest) /

(unknown total wealth of 30 wealthiest) # bias as a percent
biases for[change].append(100. ∗ float(bias))

# record results
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median bias as a perct of wealth for w changes[change] =
str(round(scipy.stats.mstats.mquantiles( biases for[change], prob=[50./100.],
alphap=1/3., betap=1/3.)[0], 2))

print change
# dump results
filename = filepath + “median bias as a perct of wealth for w changes.pkl”
pickle.dump(median bias as a perct of wealth for w changes, open(filename, ‘wb’))

else:
# load results that were dumped using pickle
median bias as a perct of wealth for w changes = pickle.load(open(filepath +

“median bias as a perct of wealth for w changes.pkl”, ‘rb’))

# print results
print “\neffect of changes between 1918 and 2000 \nset up: right wealths and right rates
\nchange \tmedian misestimation as a perct of wealth given change”

for change in changes:
print change, “\t”, median bias as a perct of wealth for w changes[change]

E.4 Code for the Second Essay

The code for generating the results reported in the second essay is as follows.

‘‘‘
Filename: essay on distribution of wealth code.py
Python version: 2.7
Source: Capehart, Kevin W. Essays on the Wealthiest Americans. PhD dissertation, American

University, Washington, DC, 2014.
Description: This file generates results reported by the essay on the distribution of the wealth of

the wealthiest Americans.
’’’

from future import division
import numpy
import scipy.stats # import for confidence intervals
import scipy.optimize # import for maximum likelihood estimation
import scipy.special # import for gamma distribution
from scipy.special import erf # import for error function erf(z) = 2 / sqrt(pi) ∗ integral(exp(−x

∗∗ 2), x=0...z)
from os.path import isfile # import for checking whether a file exists
import pickle # import for dumping and loading computationally intensive results

## SEC. 3.2: REPLICATION OF KLASS ET AL. (2006)

# The following code estimates the shape parameters of Pareto distributions using Klass et al.’s
(2006) data and methods

def get pareto index using klass et al method(wealths, shift term for ranks=0., ignore ties=True,
drop wealthiest and poorest=True, regress wealth on rank instead of rank on wealth=False):

‘‘‘
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Returns OLS estimate of shape parameter of pareto distribution from a regression of log-ranks on
log-wealths

Parameters
==========
shift term for ranks : float for shift term to subtract from ranks as in the rank-1/2 OLS method
ignore ties : bool for whether to ignore or account for ties in wealth when ranking wealths
drop wealthiest and poorest : bool for whether to drop wealths that are strictly poorer than the

400th and strictly wealthier than the 10th
regress wealth on rank instead of rank on wealth : bool for whether to run a log-log weak-rank

rather than a log-log rank-wealth regression
’’’
# sort wealths in descending order
wealths.sort(reverse=True)
# create ranks
# ignore ties?
if ignore ties:

ranks = list(rank − shift term for ranks for rank in range(1, len(wealths)+1))
else:

ranks = [1]
for i in range(1, len(wealths)):

if wealths[i−1] == wealths[i]:
ranks.append(ranks[−1])

else:
ranks.append(i+1)

# drop wealthiest and poorest?
if drop wealthiest and poorest:

# drop wealths that are strictly poorer than the 400th
while ranks[−1] > 400:

ranks.pop()
wealths.pop()

# drop wealths that are strictly wealthier than the 10th
i = 0
rank = ranks[i]
while rank < 10:

i += 1
rank = ranks[i]

index of 10th wealthiest = i
wealths, ranks = wealths[index of 10th wealthiest:], ranks[index of 10th wealthiest:] # note:

re−defining wealths and ranks
# log wealths and ranks
log wealths = numpy.log(wealths)
log ranks = numpy.log(ranks)
# get means of log wealth and ranks
mean of log wealths = numpy.mean(log wealths)
mean of log ranks = numpy.mean(log ranks)
# estimate shape parameter
# regress log wealths on log ranks or vice versa?
if regress wealth on rank instead of rank on wealth:

cov btw log ranks and log wealths = (1. / len(ranks)) ∗ sum([(log ranks[i] −
mean of log ranks) ∗ (log wealths[i] − mean of log wealths) for i in range(0, len(ranks))])
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var of log ranks = (1. / len(ranks)) ∗ sum([(log ranks[i] − mean of log ranks) ∗∗ 2. for i in
range(0, len(ranks))])

shape parameter = − 1. / (cov btw log ranks and log wealths / var of log ranks)
else:

cov btw log wealths and log ranks = (1. / len(wealths)) ∗ sum([(log wealths[i] −
mean of log wealths) ∗ (log ranks[i] − mean of log ranks) for i in range(0, len(wealths))])

var of log wealths = (1. / len(wealths)) ∗ sum([(log wealths[i] − mean of log wealths) ∗∗ 2.
for i in range(0, len(wealths))])

shape parameter = − 1. ∗ (cov btw log wealths and log ranks / var of log wealths)
# return estimated shape parameter
return shape parameter

# load Klass et al.’s (2006) data
filepath = “./data/data specific to second essay/”
filename = filepath + “data for klass et al 2006.txt”
select years = list(str(y) for y in range(1988, 2003+1))
header = [‘Name’]
header.extend(select years)
rawdata = numpy.loadtxt(filename, delimiter=‘,’, skiprows=5, dtype={‘names’:(header),

‘formats’:([‘<S50’ for in range(0, len(header))])})

# define a dict for storing their data with its errors while preparing to correct errors
wealths for klass et al data in = dict(zip(select years, [dict(zip([‘with errors’, ‘without errors’],

[‘TBD’ for in [‘with errors’, ‘without errors’]])) for year in select years]))
# store raw data, removing zeros
for year in select years:

wealths for klass et al data in[year][‘with errors’] = [float(rawdata[year][i]) for i in range(0,
len(rawdata[‘Name’]))]

while 0. in wealths for klass et al data in[year][‘with errors’]:
wealths for klass et al data in[year][‘with errors’].remove(0.)

# estimate Pareto indexes using klass et al.’s (2006) data while also preparing to estimate them
after correcting errors in their data

estimated pareto index using klass et al methods in = dict(zip(select years, list(dict(zip([‘with
errors’, ‘without errors’], list(dict(zip([‘point’, ‘se’], [‘TBD’, ‘TBD’])) for in [‘with errors’,
‘without errors’]))) for year in select years)))

w or wo = ‘with errors’
for year in select years:

wealths = wealths for klass et al data in[year][w or wo]
point = get pareto index using klass et al method(wealths, shift term for ranks=0.,

ignore ties=True, drop wealthiest and poorest=True,
regress wealth on rank instead of rank on wealth=False)

se = point ∗ (2. / 391.) ∗∗ 0.5 # use the standard error suggested by Gabaix and Ibragimov
(2011)

estimated pareto index using klass et al methods in[year][w or wo][‘point’] = point
estimated pareto index using klass et al methods in[year][w or wo][‘se’] = se
# print results
if year == select years[0]: print “\npareto indexes estimated using Klass et al.’s (2006) data

and methods \nyear \tpoint estimate”
print year, “\t”,

round(estimated pareto index using klass et al methods in[year][w or wo][‘point’], 2)
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## 3.3.1: EFFECT OF ERRORS IN KLASS ET AL.’s (2006) DATA ##

# The following code shows the effect of errors in Klass et al.’s (2006) data on estimates of the
Pareto indexes. Their estimation method is still used.

# correct errors related to the wealths of individuals/families who appear in Klass et al.’s (2006)
data

# Richard Alexander Manoogian’s wealth was 625 million dollars in 1988 (24 October 1988, p.
188, 340), not 885 million dollars, as in Klass et al.’s (2006) data.

rawdata[‘1988’][list(rawdata[‘Name’]).index(‘ManoogianRichardAlexander’)] = ‘625’
# Henry Ross Perot Sr.’s wealth was 2500 million dollars in 1989 (23 October 1989, p. 156, 352),

not 500 million dollars, as in Klass et al.’s (2006) data.
rawdata[‘1989’][list(rawdata[‘Name’]).index(‘PerotHenryRoss’)] = ‘2500’
# Klass et al.’s (2006) data includes Roy Michael Huffington with a worth of 400 million dollars

in the year 1994, but he dropped off the 1994 Forbes Four Hundred (17 October 1994, p.
331, 310).

rawdata[‘1994’][list(rawdata[‘Name’]).index(‘HuffingtonRoyMichael’)] = ‘0’
# Leonard Samuel Skaggs Jr.’s wealth was 950 million million dollars in 1996 (14 October 1996,

p. 204, 354)
rawdata[‘1996’][list(rawdata[‘Name’]).index(‘SkaggsLeonardSamuelJr’)] = ‘950’

# store corrected data, removing zeros
for year in select years:

wealths for klass et al data in[year][‘without errors’] = [float(rawdata[year][i]) for i in range(0,
len(rawdata[‘Name’]))]

while 0. in wealths for klass et al data in[year][‘without errors’]:
wealths for klass et al data in[year][‘without errors’].remove(0.)

# correct errors related to individuals/families who do not appear in Klass et al.’s (2006) data
# Klass et al.’s (2006) data includes the family of Charles E. Smith with a worth of 290 million

dollars in the year 1988, but the 1988 Forbes Four Hundred included Charles E. Smith and
Robert H. Smith each with worths of 290 million dollars (24 October 1988, p. 258,
344−−345).

wealths for klass et al data in[‘1988’][‘without errors’].append(290.)
# Klass et al.’s (2006) data does not include Shelby Cullom Davis for the year 1993, but he was

on the 1993 Forbes Four Hundred with a worth of 800 million dollars (18 October 1993, p.
180).

wealths for klass et al data in[‘1993’][‘without errors’].append(800.)
# Klass et al.’s (2006) data includes a Frank Batten with a worth 1.6 billion dollars in the year

1999, but there was a Frank Batten Sr. who was worth twice that much (i.e., 2.1 billion
dollars) and a Frank Batten Jr. who was worth half that much (i.e., 1.1 billion dollars) on
the 1999 Forbes Four Hundred (11 October 1999, p. 242).

wealths for klass et al data in[‘1999’][‘without errors’].remove(1600.)
wealths for klass et al data in[‘1999’][‘without errors’].append(2100.)
wealths for klass et al data in[‘1999’][‘without errors’].append(1100.)

# estimate Pareto indexes without errors in the data
w or wo = ‘without errors’
for year in select years:

wealths = wealths for klass et al data in[year][w or wo]
point = get pareto index using klass et al method(wealths, shift term for ranks=0.,

ignore ties=True, drop wealthiest and poorest=True,
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regress wealth on rank instead of rank on wealth=False)
se = point ∗ (2. / 391.) ∗∗ 0.5 # use the standard error suggested by Gabaix and Ibragimov

(2011)
estimated pareto index using klass et al methods in[year][w or wo][‘point’] = point
estimated pareto index using klass et al methods in[year][w or wo][‘se’] = se
# print results
if year == select years[0]: print “\npareto indexes with and without errors \nyear \twith

\twithout \tdiff”
with errors, without errors = estimated pareto index using klass et al methods in[year][‘with

errors’][‘point’], estimated pareto index using klass et al methods in[year][‘without
errors’][‘point’]

print year, “\t”, format(round(with errors, 2), ‘.2f’), “\t”,
print format(round(without errors, 2), ‘.2f’), “\t”,
print format(round(with errors − without errors, 2), ‘.2f’)

## LOAD OUR FORBES 400 DATASET ##

from load forbes 400 dataset import ∗

## SEC. 3.4.1: VARIATION OVER TIME IN PARETO INDEX ##

# The following code looks at variation over time in the maximum−likelihood estimate of the
shape parameter of a Pareto distribution fit the wealths of the Forbes 400

class fit pareto to(object):
‘‘‘ Class for getting the (unbiased) maximum-likelihood estimates of the parameters of a

two-parameter Pareto distribution ’’’

def init (self, wealths):
self.wealths = wealths # observations
self.n = len(wealths) # number of observations
self.min wealth = min(self.wealths) # minimum observation

def estimate biased parameters(self):
‘‘‘ Calculates biased MLEs of lower bound and shape parameters. Returns None ’’’
self.biased lower bound = self.min wealth
self.biased shape = self.n / sum(list(numpy.log(wealth / self.min wealth) for wealth in

self.wealths))

def get estimated parameters(self):
‘‘‘ Returns unbiased MLEs of lower bound and shape parameters ’’’
self.estimate biased parameters()
self.lower bound = (1. − (1. / ((self.n − 1) ∗ self.biased shape))) ∗ self.biased lower bound
self.shape = ((self.n − 2.) / self.n) ∗ self.biased shape
return self.lower bound, self.shape

def get standard errors of estimated parameters(self):
‘‘‘ Returns standard errors of estimated lower bound and shape parameters ’’’
se of lower bound = numpy.sqrt((self.lower bound ∗∗ 2.) ∗ (self.shape ∗∗ −1.) ∗ ((self.n −

1.) ∗∗ −1.) ∗ ((self.shape ∗ self.n − 2.) ∗∗ −1.))
se of shape = numpy.sqrt((self.shape ∗∗ 2.) ∗ ((self.n − 3.) ∗∗ −1.))
return se of lower bound, se of shape
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# define dict for storing estimates
estimated pareto index in = dict(zip(years, [dict(zip([‘point’, ‘se’], [‘TBD’ for in [‘point’, ‘se’]]))

for year in years]))
# get estimates
for year in years:

wealths = summary stats[‘wealths’][year]
fit = fit pareto to(wealths=wealths)
, estimated pareto index in[year][‘point’] = fit.get estimated parameters()
, estimated pareto index in[year][‘se’] = fit.get standard errors of estimated parameters()

# print results
if year == years[0]: print “\nmles of pareto indexes \nyear \tpoint \tse”
print year, “\t”, estimated pareto index in[year][‘point’], “\t”,

estimated pareto index in[year][‘se’]

## SEC. 3.4.2: PARTS RELATED TO FIG. 3.1 ##

# The following code generates the empirical CCDF, fitted CCDF, and largest absolute
difference between those two distributions shown in Fig. 3.1 of the essay

class k s like test against unknown pareto distribution(object):
‘‘‘ Class for a Kolmogorov−Smirnov−like test against a two−parameter Pareto distribution.

The test is exactly like a K−S−like test, except it is on the CCDF rather than the CDF,
but that has no effect on the conclusions as long as the empirical CCDF and CDF are the
complement of one another.

Parameters
==========
wealths : observed wealths
a priori parameters of null distribution : None for unknown parameters of Pareto distribution or

tuple for specifying parameters a priori
’’’

def init (self, wealths, a priori parameters of null distribution=None):
self.wealths = wealths
self.wealths.sort() # sort wealths in ascending order
self.number of observations = len(self.wealths)
self.distinct wealths = list(set(self.wealths))
self.distinct wealths.sort() # sort distinct wealths in ascending order
self.number of distinct observations = len(self.distinct wealths)
if a priori parameters of null distribution == None:

self.lower bound parameter, self.shape parameter = self.get estimated parameters()
else:

self.lower bound parameter, self.shape parameter = a priori parameters of null distribution
self.max discrepancy = None # maximum discrepancy

def get estimated parameters(self):
fit = fit pareto to(wealths=self.wealths)
return fit.get estimated parameters()

def get predicted ccdf at(self, given wealth):
if given wealth < self.lower bound parameter:
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return 1.
else:

return (self.lower bound parameter / given wealth) ∗∗ self.shape parameter

def get predicted wealth for(self, prob wealth greater than or equal to):
return self.lower bound parameter ∗ (prob wealth greater than or equal to ∗∗ (−

self.shape parameter))

def get empirical ccdf at(self, given wealth):
‘‘‘ Returns proportion of wealths that are strictly greater than the given wealth ’’’
return sum(list(int(wealth > given wealth) for wealth in self.wealths)) /

float(self.number of observations)

def get discrepancy statistic(self):
‘‘‘ Returns the largest absolute difference between an empirical and fitted CCDF ’’’
# get discrepancies
discrepancies = list()
# observations, except left most
for i in range(1, self.number of distinct observations):

discrepancy = max(abs(self.get empirical ccdf at(self.distinct wealths[i−1]) −
self.get predicted ccdf at(self.distinct wealths[i])),
abs(self.get empirical ccdf at(self.distinct wealths[i]) −
self.get predicted ccdf at(self.distinct wealths[i])))

discrepancies.append(discrepancy)
# left−most observation
discrepancy = max(abs(1. − self.get predicted ccdf at(self.distinct wealths[0])),

abs(self.get empirical ccdf at(self.distinct wealths[0]) −
self.get predicted ccdf at(self.distinct wealths[0])))

discrepancies.append(discrepancy)
# get maximum discrepancy
max discrepancy = max(discrepancies)
self.max discrepancy = max discrepancy
return max discrepancy

def get wealths and probs at max discrepancy(self):
‘‘‘ Returns wealth(s) and prob(s) at the maximum discrepancy between an empirical and

fitted CCDF ’’’
if self.max discrepancy == None:

self.get discrepancy statistic()
else:

pass
# get wealths and probs at max discrepancy
wealths at max discrepancy = list()
probs at max discrepancy = list()
# left−most observation
discrepancy = max(abs(1. − self.get predicted ccdf at(self.distinct wealths[0])),

abs(self.get empirical ccdf at(self.distinct wealths[0]) −
self.get predicted ccdf at(self.distinct wealths[0])))

if discrepancy < self.max discrepancy:
pass

else:
wealths at max discrepancy.append(self.distinct wealths[0])
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# just before step?
if abs(1. − self.get predicted ccdf at(self.distinct wealths[0])) >

abs(self.get empirical ccdf at(self.distinct wealths[0]) −
self.get predicted ccdf at(self.distinct wealths[0])):

probs at max discrepancy.append([1., self.get predicted ccdf at(self.distinct wealths[0])])
# just after step?
else:

probs at max discrepancy.append([self.get empirical ccdf at(self.distinct wealths[0]),
self.get predicted ccdf at(self.distinct wealths[0])])

# others observations
for i in range(1, self.number of distinct observations):

discrepancy = max(abs(self.get empirical ccdf at(self.distinct wealths[i−1]) −
self.get predicted ccdf at(self.distinct wealths[i])),
abs(self.get empirical ccdf at(self.distinct wealths[i]) −
self.get predicted ccdf at(self.distinct wealths[i])))

if discrepancy < self.max discrepancy:
pass

else:
wealths at max discrepancy.append(self.distinct wealths[i])
# just before step?
if abs(self.get empirical ccdf at(self.distinct wealths[i−1]) −

self.get predicted ccdf at(self.distinct wealths[i])) >
abs(self.get empirical ccdf at(self.distinct wealths[i]) −
self.get predicted ccdf at(self.distinct wealths[i])):

probs at max discrepancy.append([self.get empirical ccdf at(self.distinct wealths[i−1]),
self.get predicted ccdf at(self.distinct wealths[i])])

# just after step?
else:

probs at max discrepancy.append([self.get empirical ccdf at(self.distinct wealths[i]),
self.get predicted ccdf at(self.distinct wealths[i])])

return wealths at max discrepancy, probs at max discrepancy

# get empirical CCDF for wealth of the 2003 Forbes 400
wealths in 2003 = summary stats[‘wealths’][‘2003’]
k s like test = k s like test against unknown pareto distribution(wealths in 2003) # use this

classes empirical CCDF function
empirical ccdf at for 2003 = [k s like test.get empirical ccdf at(wealth) for wealth in

wealths in 2003]
# get fitted CCDF
fitted ccdf for 2003 = [k s like test.get predicted ccdf at(wealth) for wealth in wealths in 2003]
# get largest discrepancy and the wealth(s) and prob(s) associated with that discrepancy
discrepancy statistic in 2003 = k s like test.get discrepancy statistic()
wealths at max discrepancy for 2003, probs at max discrepancy for 2003 =

k s like test.get wealths and probs at max discrepancy()
# largest discrepancy only occurs once, so only need first element of lists
assert len(wealths at max discrepancy for 2003) == 1, “Largest discrepancy occurs more than

once”
wealth at max discrepancy for 2003 = wealths at max discrepancy for 2003[0]
probs at max discrepancy for 2003 = probs at max discrepancy for 2003[0]

## FUNCTION AND CLASS FOR CRITICAL VALUES OF K−S−LIKE TEST AGAINST
UNBOUNDED PARETO ##
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def random pareto(lower bound, shape parameter, size):
‘‘‘ Returns random draws from a two-parameter Pareto distribution ’’’
uniforms = 1. − numpy.random.random(size=size) # uniform draws from (0.0, 1.0]
paretos = lower bound / (uniforms ∗∗ (1. / shape parameter))
return list(paretos)

class resample d stats for unknown pareto distribution(object):
‘‘‘ Class for resampling the discrepancy statistic for a K−S−like test against an unknown

Pareto distribution

Parameters
==========
wealths : observed wealths
round to nearest for : dict of instructions for way in which the wealths of billionaires and

sub-billionaires were rounded
number of resamples : int for number of resamples to draw
fitting : True for estimating parameters or tuple for specifying parameters a priori
rounding : bool for whether to round resamples using instructions from round to nearest for
diffs to draw from : False for no perturbation of resamples or set of kernel density estimates to

draw from
’’’

def init (self, wealths=list(), round to nearest for={}, number of resamples=1, fitting=True,
rounding=True, diffs to draw from=None):

self.wealths = wealths
self.number of observations = len(self.wealths)
self.round to nearest for = round to nearest for
k s like test = k s like test against unknown pareto distribution(self.wealths)
self.lower bound parameter, self.shape parameter = k s like test.get estimated parameters()
self.number of resamples = number of resamples
if fitting:

self.a priori parameters of null distribution = None
else:

self.a priori parameters of null distribution = (self.lower bound parameter,
self.shape parameter)

self.rounding = rounding
self.diffs to draw from = diffs to draw from
if self.diffs to draw from != None:

self.kde = kernel density estimator(x=diffs to draw from)
self.resampled discrepancy statistics = list()

def get resample discrepancy statistics(self):
‘‘‘ Returns discrepancy statistics from applying the same K-S-like test to sets of random

draws from a bounded Pareto distribution ’’’
for resample in range(1, self.number of resamples+1):

resampled wealths = self.get resampled wealths()
k s like test on resampled wealths =

k s like test against unknown pareto distribution(resampled wealths,
a priori parameters of null distribution=self.a priori parameters of null distribution)

discrepancy statistic = k s like test on resampled wealths.get discrepancy statistic()
self.resampled discrepancy statistics.append(discrepancy statistic)
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self.resampled discrepancy statistics.sort(reverse=True) # sort in descending order
return self.resampled discrepancy statistics

def get p value(self, discrepancy statistic):
‘‘‘ Returns estimated p-value associated with given a discrepancy statistic ””’’’
# resample discrepancy statistic, if haven’t done so already
if len(self.resampled discrepancy statistics) == 0:

self.get resample discrepancy statistics()
else:

pass
# find the proportion of resampled discrepancy statistics that are larger than the given

discrepancy statistic
i = 0
while (discrepancy statistic < self.resampled discrepancy statistics[i]) and (i <

self.number of resamples−1):
i += 1

return i / self.number of resamples

def get perct critical value(self, perct=5):
‘‘‘ Returns the critical value associated with a given p-value ’’’
# resample discrepancy statistic, if haven’t done so already
if len(self.resampled discrepancy statistics) == 0:

self.get resample discrepancy statistics()
else:

pass
# find the proportion of resampled discrepancy statistics that are larger than the given

discrepancy statistic
return self.resampled discrepancy statistics[int(int(round((perct / 100.) ∗

self.number of resamples, 0)) − 1)]

def get resampled wealths(self):
‘‘‘ Returns a set of random draws from a Pareto distribution ’’’
if self.diffs to draw from == None:

wealths = random pareto(lower bound=self.lower bound parameter,
shape parameter=self.shape parameter, size=self.number of observations)

else:
uniform randoms = 1. − numpy.random.uniform(low=0.0, high=1.0,

size=self.number of observations ∗ 10.) # order of magnitude more observations
wealths = list((self.lower bound parameter / 10.) / (uniform randoms ∗∗ (1. /

self.shape parameter))) # order of magnitude lower lower−bound parameter
wealths = list(wealth ∗ self.kde.get random sample from estimated kernel density() for

wealth in wealths) # perturb
wealths.sort(reverse=True)
wealths = wealths[0:self.number of observations] # only use the number of observations

largest samples
# round wealths
if self.rounding:

wealths = list(self.get rounded(wealth) for wealth in wealths)
# return resampled and rounded wealth
return wealths

def get rounded(self, wealth):
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‘‘‘ Returns a wealth rounded according to the rounding instructions ’’’
if wealth < 1000.:

round to nearest = self.round to nearest for[‘sub−billionaires’]
else:

round to nearest = self.round to nearest for[‘billionaires’]
wealth = round(wealth / round to nearest, 0) ∗ round to nearest
return wealth

## CLASSES FOR FITTING TO A BOUNDED PARETO AND TESTING THE GOODNESS
OF THE FIT ##

class fit bounded pareto to(object):
‘‘‘ Class for getting the maximum-likelihood estimates of the three parameters of a truncated or

tappered or bounded Pareto distribution ’’’

def init (self, wealths):
self.wealths = wealths # the data
self.n = len(wealths) # number of observations
self.min wealth = min(self.wealths) # minimum observation
self.max wealth = max(self.wealths) # maximum observation
self.min over max = (self.min wealth / self.max wealth)
self.found root = False

def get estimated parameters(self):
‘‘‘ Returns unbiased MLEs of parameters ’’’
# get MLE of shape parameter
tries = 0
initial guess for shape = self.get initial guess for shape parameter()
while (self.found root == False) and (tries < 1000+1):

guess for shape = numpy.random.uniform(initial guess for shape / 2.,
initial guess for shape ∗ 2.)

biased shape = scipy.optimize.newton(func=self.func, x0=guess for shape, fprime=None)
self.found root = (not (self.func(biased shape) > 1.48e−08))
tries += 1

# adjust for bias by following the suggestion of Maschberger and Kroupa 2009
bias adjusted shape = ((self.n − 3.) / self.n) ∗ biased shape
# get bias−adjusted MLEs of upper− and lower−bound parameters by following the

suggestions of Zhang (2012)
lower bound = self.min wealth ∗ (1. + (((self.min over max ∗∗ biased shape) − 1.) / (self.n

∗ biased shape)))
upper bound = self.max wealth ∗ (1. + (numpy.log(self.max wealth / self.min wealth) /

self.n))
return lower bound, upper bound, bias adjusted shape

def get initial guess for shape parameter(self):
‘‘‘ Returns an initial guess for the shape parameter based on the MLE of the shape parameter

for an unbounded Pareto ’’’
return self.n / sum(list(numpy.log(wealth / self.min wealth) for wealth in self.wealths))

def func(self, shape):
‘‘‘ Returns the shape parameter that solves func = 0 ’’’
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return (self.n / shape) + ((self.n ∗ ((self.min over max ∗∗ shape) ∗
numpy.log(self.min over max))) / (1. − (self.min over max ∗∗ shape))) −
sum(list(numpy.log(wealth / self.min wealth) for wealth in self.wealths))

def get found root(self):
‘‘‘ Returns a bool for whether a root was found or not ’’’
return self.found root

class k s like test against unknown bounded pareto distribution(object):
‘‘‘ Class for a K-S-like test against an unknown bounded pareto distribution ’’’

def init (self, wealths):
self.wealths = wealths
self.wealths.sort() # sort wealths in ascending order
self.number of observations = len(self.wealths)
self.distinct wealths = list(set(self.wealths))
self.distinct wealths.sort() # sort distinct wealths in ascending order
self.number of distinct observations = len(self.distinct wealths)
self.lower bound parameter, self.upper bound parameter, self.shape parameter =

self.get estimated parameters()
self.max discrepancy = None # maximum discrepancy

def get estimated parameters(self):
fit = fit bounded pareto to(wealths=self.wealths)
estimated parameters = fit.get estimated parameters()
self.found root = fit.get found root()
return estimated parameters

def get found root(self):
return self.found root

def get predicted ccdf at(self, given wealth):
if given wealth < self.lower bound parameter:

return 1.
elif given wealth > self.upper bound parameter:

return 0.
else:

return ((self.lower bound parameter ∗∗ self.shape parameter) ∗ ((given wealth ∗∗ (−
self.shape parameter)) − (self.upper bound parameter ∗∗ (− self.shape parameter))))
/ (1. − ((self.lower bound parameter / self.upper bound parameter) ∗∗
self.shape parameter))

def get empirical ccdf at(self, given wealth):
return sum(list(int(wealth > given wealth) for wealth in self.wealths)) /

float(self.number of observations)

def get discrepancy statistic(self):
# record discrepancies
discrepancies = list()
# observations, except left most
for i in range(1, self.number of distinct observations):
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discrepancy = max(abs(self.get empirical ccdf at(self.distinct wealths[i−1]) −
self.get predicted ccdf at(self.distinct wealths[i])),
abs(self.get empirical ccdf at(self.distinct wealths[i]) −
self.get predicted ccdf at(self.distinct wealths[i])))

discrepancies.append(discrepancy)
# left−most observation
discrepancy = max(abs(1. − self.get predicted ccdf at(self.distinct wealths[0])),

abs(self.get empirical ccdf at(self.distinct wealths[0]) −
self.get predicted ccdf at(self.distinct wealths[0])))

discrepancies.append(discrepancy)
# maximum discrepancy
max discrepancy = max(discrepancies)
self.max discrepancy = max discrepancy
return max discrepancy

def get wealths and probs at max discrepancy(self):
if self.max discrepancy == None:

self.get discrepancy statistic()
else:

pass
wealths at max discrepancy = list()
probs at max discrepancy = list()
# left−most observation
discrepancy = max(abs(1. − self.get predicted ccdf at(self.distinct wealths[0])),

abs(self.get empirical ccdf at(self.distinct wealths[0]) −
self.get predicted ccdf at(self.distinct wealths[0])))

if discrepancy < self.max discrepancy:
pass

else:
wealths at max discrepancy.append(self.distinct wealths[0])
# just before step?
if abs(1. − self.get predicted ccdf at(self.distinct wealths[0])) >

abs(self.get empirical ccdf at(self.distinct wealths[0]) −
self.get predicted ccdf at(self.distinct wealths[0])):

probs at max discrepancy.append([1., self.get predicted ccdf at(self.distinct wealths[0])])
# just after step?
else:

probs at max discrepancy.append([self.get empirical ccdf at(self.distinct wealths[0]),
self.get predicted ccdf at(self.distinct wealths[0])])

# others observations
for i in range(1, self.number of distinct observations):

discrepancy = max(abs(self.get empirical ccdf at(self.distinct wealths[i−1]) −
self.get predicted ccdf at(self.distinct wealths[i])),
abs(self.get empirical ccdf at(self.distinct wealths[i]) −
self.get predicted ccdf at(self.distinct wealths[i])))

if discrepancy < self.max discrepancy:
pass

else:
wealths at max discrepancy.append(self.distinct wealths[i])
# just before step?
if abs(self.get empirical ccdf at(self.distinct wealths[i−1]) −

self.get predicted ccdf at(self.distinct wealths[i])) >
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abs(self.get empirical ccdf at(self.distinct wealths[i]) −
self.get predicted ccdf at(self.distinct wealths[i])):

probs at max discrepancy.append([self.get empirical ccdf at(self.distinct wealths[i−1]),
self.get predicted ccdf at(self.distinct wealths[i])])

# just after step?
else:

probs at max discrepancy.append([self.get empirical ccdf at(self.distinct wealths[i]),
self.get predicted ccdf at(self.distinct wealths[i])])

return wealths at max discrepancy, probs at max discrepancy

def random bounded pareto(lower bound, shape parameter, upper bound, size):
‘‘‘ Returns random draws from a bounded Pareto distribution ’’’
uniform randoms = 1. − numpy.random.uniform(low=0.0, high=1.0, size=size)
bounded paretos = list((− (uniform randoms ∗ (upper bound ∗∗ shape parameter) −

uniform randoms ∗ (lower bound ∗∗ shape parameter) − (upper bound ∗∗
shape parameter)) / ((lower bound ∗∗ shape parameter) ∗ (upper bound ∗∗
shape parameter))) ∗∗ (− 1. / shape parameter))

return list(bounded paretos)

class resample d stats for unknown bounded pareto distribution(object):
‘‘‘ Class for resampling the discrepancy statistic for a K-S-like test against an unknown bounded

Pareto distribution ’’’

def init (self, wealths=list(), round to nearest for={}, number of resamples=10000,
diffs to draw from=None):

self.wealths = wealths
self.number of observations = len(self.wealths)
self.round to nearest for = round to nearest for
k s like test = k s like test against unknown bounded pareto distribution(self.wealths)
self.lower bound parameter, self.upper bound parameter, self.shape parameter =

k s like test.get estimated parameters()
self.number of resamples = number of resamples
self.diffs to draw from = diffs to draw from
if self.diffs to draw from != None:

self.kde = kernel density estimator(x=diffs to draw from)
self.resampled discrepancy statistics = list()

def get resample discrepancy statistics(self):
for resample in range(1, self.number of resamples+1):

#tries = 0
found root = False
while found root == False:

resampled wealths = self.get resampled wealths()
k s like test on resampled wealths =

k s like test against unknown bounded pareto distribution(resampled wealths)
found root = k s like test on resampled wealths.get found root()

discrepancy statistic = k s like test on resampled wealths.get discrepancy statistic()
self.resampled discrepancy statistics.append(discrepancy statistic)

self.resampled discrepancy statistics.sort(reverse=True) # sort in descending order
return self.resampled discrepancy statistics

def get p value(self, discrepancy statistic):
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# resample discrepancy statistic, if haven’t done so already
if len(self.resampled discrepancy statistics) == 0:

self.get resample discrepancy statistics()
else:

pass
# find the proportion of resampled discrepancy statistics that are larger than the given

discrepancy statistic
i = 0
while (discrepancy statistic < self.resampled discrepancy statistics[i]) and (i <

self.number of resamples−1):
i += 1

return i / self.number of resamples

def get resampled wealths(self):
if self.diffs to draw from == None:

wealths = random bounded pareto(lower bound=self.lower bound parameter,
shape parameter=self.shape parameter, upper bound=self.upper bound parameter,
size=self.number of observations)

else:
uniform randoms = 1. − numpy.random.uniform(low=0.0, high=1.0,

size=self.number of observations ∗ 10.) # order of magnitude more observations
wealths = list((− (uniform randoms ∗ (self.upper bound parameter ∗∗

self.shape parameter) − uniform randoms ∗ ((self.lower bound parameter / 10.) ∗∗
self.shape parameter) − (self.upper bound parameter ∗∗ self.shape parameter)) /
(((self.lower bound parameter / 10.) ∗∗ self.shape parameter) ∗
(self.upper bound parameter ∗∗ self.shape parameter))) ∗∗ (− 1. /
self.shape parameter)) # order of magnitude lower lower−bound parameter

wealths = list(wealth ∗ self.kde.get random sample from estimated kernel density() for
wealth in wealths) # mismeasure

wealths.sort(reverse=True)
wealths = wealths[0:self.number of observations] # only use the number of observations

largest samples
# round wealths, following the methodology of forbes
wealths = list(self.get rounded(wealth) for wealth in wealths)
# return resampled and rounded wealth
return wealths

def get rounded(self, wealth):
‘‘‘ Returns a wealth rounded according to the rounding instructions ’’’
if wealth < 1000.:

round to nearest = self.round to nearest for[‘sub−billionaires’]
else:

round to nearest = self.round to nearest for[‘billionaires’]
wealth = round(wealth / round to nearest, 0) ∗ round to nearest
return wealth

## K−S−LIKE TEST WITH ROUNDING ERRORS ##

# The following code runs the K−S−like tests

# define dict for storing results for K−S−like test with rounding errors against unbounded and
bounded Pareto distributions
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unbounded and bounded pareto = [‘pareto’, ‘bounded pareto’]
k s like test against w rounding errors = dict(zip(unbounded and bounded pareto,

[dict(zip(years, [dict(zip([‘D stat’, ‘p−value’, ‘D stats’], [‘TBD’ for in [‘D stat’, ‘p−value’,
‘D stats’]])) for year in years])) for distribution in unbounded and bounded pareto]))

# set the following to True to re−estimate if already estimated
re estimate = False
# check if already been estimated
filename = filepath + “k s like test against w rounding errors.pkl”
already estimated = isfile(filename)
# estimate or re−estimate
if not already estimated or re estimate:

# set number of resamples
number of resamples = 10000
# for each year
for year in years:

# get wealths
wealths = summary stats[‘wealths’][year]
# get rounding instructions
round to nearest for = dict()
unique wealths = list(set(wealths))
unique wealths.sort(reverse=True)
# if wealthiest person isn’t a billionaire
if summary stats[‘max’][year] < 1000.0:

min difference = min(list(unique wealths[i] − unique wealths[i+1] for i in range(0,
len(unique wealths)−1) if unique wealths[i] < 1000.0))

round to nearest for[‘billionaires’] = min difference # if a billion dollar wealth is drawn,
use the same rounding

round to nearest for[‘sub−billionaires’] = min difference
# if poorest person is a billionaire
elif summary stats[‘min’][year] >= 1000.0:

min difference = min(list(unique wealths[i] − unique wealths[i+1] for i in range(0,
len(unique wealths)−1) if unique wealths[i+1] >= 1000.0))

round to nearest for[‘billionaires’] = min difference # if a sub−billion dollar wealth is
drawn, use the same rounding

round to nearest for[‘sub−billionaires’] = min difference
else:

round to nearest for[‘billionaires’] = min(list(unique wealths[i] − unique wealths[i+1] for i
in range(0, len(unique wealths)−1) if unique wealths[i+1] >= 1000.0))

round to nearest for[‘sub−billionaires’] = min(list(unique wealths[i] − unique wealths[i+1]
for i in range(0, len(unique wealths)−1) if unique wealths[i] < 1000.0))

## k−s test with errors against unbounded pareto ##
# get discrepancy statistic
numpy.random.seed(250624)
k s like test = k s like test against unknown pareto distribution(wealths)
discrepancy statistic = k s like test.get discrepancy statistic()
k s like test against w rounding errors[‘pareto’][year][‘D stat’] = discrepancy statistic
# resample discrepancy statistic
numpy.random.seed(250624)
resample d stats = resample d stats for unknown pareto distribution(wealths=wealths,

round to nearest for=round to nearest for, number of resamples=number of resamples,
fitting=True, rounding=True)
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k s like test against w rounding errors[‘pareto’][year][‘p−value’] =
resample d stats.get p value(discrepancy statistic)

#k s like test against w rounding errors[‘pareto’][year][‘D stats’] =
resample d stats.resampled discrepancy statistics # de−comment to store D−stats

## k−s test with errors against bounded pareto ##
# get discrepancy statistic against bounded pareto distribution
numpy.random.seed(250624)
k s like test = k s like test against unknown bounded pareto distribution(wealths=wealths)
discrepancy statistic = k s like test.get discrepancy statistic()
k s like test against w rounding errors[‘bounded pareto’][year][‘D stat’] =

discrepancy statistic
# resample discrepancy statistic
numpy.random.seed(250624)
resample d stats =

resample d stats for unknown bounded pareto distribution(wealths=wealths,
round to nearest for=round to nearest for, number of resamples=number of resamples)
# always fitting and rounding

k s like test against w rounding errors[‘bounded pareto’][year][‘p−value’] =
resample d stats.get p value(discrepancy statistic)

#k s like test against w rounding errors[‘bounded pareto’][year][‘D stats’] =
resample d stats.resampled discrepancy statistics # de−comment to store D−stats

print year
# dump results
pickle.dump(k s like test against w rounding errors, open(filename, ‘wb’))

else:
# load result
k s like test against w rounding errors = pickle.load(open(filename, ‘rb’))

## BLOOMBERG VS. FORBES DIFFERENCES ##

class kernel density estimator(object):

def init (self, x):
self.x = x
self.N = len(self.x)
self.global bandwidth = self.get silverman plug in estimate()

def get sample inter quartile range(self):
‘‘‘ Computes the sample interquartile range using one of the functions recommended by

Hyndman and Fan (1996), specifically, the eighth fuction they consider. According to the
authors, it gives approximately median-unbiased estimates of a quartile regardless of the
underlying distribution ’’’

upper quartile = scipy.stats.mstats.mquantiles(self.x, prob=[75/100.], alphap=1/3.,
betap=1/3.)[0]

lower quartile = scipy.stats.mstats.mquantiles(self.x, prob=[25/100.], alphap=1/3.,
betap=1/3.)[0]

return upper quartile − lower quartile

def get silverman plug in estimate(self):
‘‘‘ Return’s Silverman’s plug-in estimate of the optimal band width ’’’
constant = (3 / (8 ∗ numpy.sqrt(numpy.pi))) ∗∗ −0.2 # = about 1.3643
delta = (1 / (2 ∗ numpy.sqrt(numpy.pi))) ∗∗ 0.2 # = about 0.7764
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sample standard deviation = numpy.std(self.x, ddof=1) # standard deviation with (N−1)
adjustment

iqr = self.get sample inter quartile range()
normalized iqr = iqr / (scipy.stats.norm.ppf(0.75) − scipy.stats.norm.ppf(0.25)) # if the

distribution is normal, then the standard deviation should be the inter−quartile range
deflated by about 1.349

return constant ∗ delta ∗ ( self.N ∗∗ (−0.2) ) ∗ min(sample standard deviation,
normalized iqr)

def guassian kernel(self, z):
‘‘‘ Returns Guassian kernel ’’’
return ((2. ∗ numpy.pi) ∗∗ (−0.5)) ∗ numpy.exp(−0.5 ∗ (z ∗∗ 2.))

def get kernel density estimates(self, xrange=None):
‘‘‘ Returns a dictionary of the Guassian kernel density estimates at each data point.

Bandwidth is equal to Silverman’s plug-in estimate ’’’
density estimate at = dict()
if xrange == None:

self.xrange = self.x
else:

self.xrange = xrange
bandwidth at = dict(zip(self.x, [self.global bandwidth] ∗ self.N))
for x0 in self.xrange:

density estimate at[x0] = (1. / self.N) ∗ sum([(1. / bandwidth at[xi]) ∗
self.guassian kernel((x0 − xi) / bandwidth at[xi]) for xi in self.x])

return density estimate at

def get random sample from estimated kernel density(self):
‘‘‘ Returns random draws from the kernel density estimate ’’’
return numpy.random.normal(self.x[numpy.random.randint(low=int(0),

high=int(self.N−1))], self.global bandwidth)

# load forbes vs. bloomberg data
filename = filepath + “bloomberg vs forbes data.txt”
header = [‘name’, ‘forbes wealth’, ‘bloomberg wealth’, ‘year’]
raw data = numpy.loadtxt(filename, delimiter=‘\t’, skiprows=8, dtype={‘names’:header,

‘formats’:[‘<S50’]∗len(header)})

# define dicts for storing results
sources = [‘forbes 2012’, ‘bloomberg 2012’, ‘forbes 2013’, ‘bloomberg 2013’]
wealths from = dict(zip(sources, [list() for source in sources]))
n on = dict(zip(sources, [0 for source in sources]))
comparisions = [‘forbes and bloomberg 2012’, ‘forbes and bloomberg 2013’]
n on both = dict(zip(comparisions, [0 for comparison in comparisions])) # ignoring Rick Cohen
diffs btw = dict(zip(comparisions, [list() for comparison in comparisions]))
for i in range(len(raw data)):

name = raw data[‘name’][i]
forbes wealth = raw data[‘forbes wealth’][i]
bloomberg wealth = raw data[‘bloomberg wealth’][i]
year = raw data[‘year’][i]
if (forbes wealth != ‘’):

n on[‘forbes’ + ‘ ’ + year] += 1
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wealths from[‘forbes’ + ‘ ’ + year].append(float(forbes wealth))
if (bloomberg wealth != ‘’):

n on both[‘forbes and bloomberg’ + ‘ ’ + year] += 1
diff = (float(bloomberg wealth) / float(forbes wealth)) # bloomberg as perct of forbes
diffs btw[‘forbes and bloomberg’ + ‘ ’ + year].append(diff)

if (bloomberg wealth != ‘’):
n on[‘bloomberg’ + ‘ ’ + year] += 1
wealths from[‘bloomberg’ + ‘ ’ + year].append(float(bloomberg wealth))
# note: diff already recorded

for comparison in comparisions:
diffs btw[comparison].sort() # sort in ascending order

print “\nnumber on forbes and bloomberg lists, respectively”
for year in [‘2012’, ‘2013’]:

print year, “\t”, str(n on[‘forbes’ + ‘ ’ + year]), “\t”, str(n on[‘bloomberg’ + ‘ ’ + year])

print “\nnumber on both lists”,
for year in [‘2012’, ‘2013’]:

print year, “\t”, str(n on both[‘forbes and bloomberg’ + ‘ ’ + year])

print “\nrange of differences between the forbes and bloomberg estimates of someone’s wealth
(as a percentage of the Forbes estimate)”

for year in [‘2012’, ‘2013’]:
print “min/max in ” + str(year) + “:\t”, str(100. ∗ diffs btw[‘forbes and bloomberg’ + ‘ ’ +

year][0]), “\t”, str(round(100. ∗ diffs btw[‘forbes and bloomberg’ + ‘ ’ + year][−1], 0))

# kde for 2013 diffs
xrange for bloomberg forbes diffs = list(set(diffs btw[‘forbes and bloomberg

2012’]).union(set(diffs btw[‘forbes and bloomberg 2013’]))) # use diffs from both years
xrange for bloomberg forbes diffs.append(0) # include zero to pick up any left tail
xrange for bloomberg forbes diffs.sort()
kde = kernel density estimator(x=diffs btw[‘forbes and bloomberg 2013’])
kde for bloomberg and forbes 2013 diffs at =

kde.get kernel density estimates(xrange=xrange for bloomberg forbes diffs)
# kde for 2012 diffs
kde = kernel density estimator(x=diffs btw[‘forbes and bloomberg 2012’])
kde for bloomberg and forbes 2012 diffs at =

kde.get kernel density estimates(xrange=xrange for bloomberg forbes diffs)

## K−S−LIKE TEST WITH ROUNDING AND OTHER MEASUREMENT ERRORS ##

# define dict for storing results for K−S−like test with rounding and other measurement errors
against unbounded and bounded Pareto distributions

k s like test against w rounding and other measurement errors =
dict(zip(unbounded and bounded pareto, [dict(zip(years, [dict(zip([‘D stat’, ‘p−value’, ‘D
stats’], [‘TBD’ for in [‘D stat’, ‘p−value’, ‘D stats’]])) for year in years])) for distribution in
unbounded and bounded pareto]))

# set the following to True to re−estimate if already estimate
re estimate = False
# check if already been estimated
filename = filepath + “k s like test against w rounding and other measurement errors.pkl”
already estimated = isfile(filename)
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# estimate or re−estimate
if not already estimated or re estimate:

# set number of resamples
number of resamples = 10000
# for each year
for year in years:

# get wealths
wealths = summary stats[‘wealths’][year]
# get rounding instructions
round to nearest for = dict()
unique wealths = list(set(wealths))
unique wealths.sort(reverse=True)
# if wealthiest person isn’t a billionaire
if summary stats[‘max’][year] < 1000.0:

min difference = min(list(unique wealths[i] − unique wealths[i+1] for i in range(0,
len(unique wealths)−1) if unique wealths[i] < 1000.0))

round to nearest for[‘billionaires’] = min difference # if a billion dollar wealth is drawn,
use the same rounding

round to nearest for[‘sub−billionaires’] = min difference
# if poorest person is a billionaire
elif summary stats[‘min’][year] >= 1000.0:

min difference = min(list(unique wealths[i] − unique wealths[i+1] for i in range(0,
len(unique wealths)−1) if unique wealths[i+1] >= 1000.0))

round to nearest for[‘billionaires’] = min difference # if a sub−billion dollar wealth is
drawn, use the same rounding

round to nearest for[‘sub−billionaires’] = min difference
else:

round to nearest for[‘billionaires’] = min(list(unique wealths[i] − unique wealths[i+1] for i
in range(0, len(unique wealths)−1) if unique wealths[i+1] >= 1000.0))

round to nearest for[‘sub−billionaires’] = min(list(unique wealths[i] − unique wealths[i+1]
for i in range(0, len(unique wealths)−1) if unique wealths[i] < 1000.0))

## k−s like test with rounding and other measurement errors against unbounded pareto
##

# get discrepancy statistic
numpy.random.seed(250624)
k s like test = k s like test against unknown pareto distribution(wealths)
discrepancy statistic = k s like test.get discrepancy statistic()
k s like test against w rounding and other measurement errors[‘pareto’][year][‘D stat’] =

discrepancy statistic
# resample discrepancy statistic
numpy.random.seed(250624)
resample d stats = resample d stats for unknown pareto distribution(wealths=wealths,

round to nearest for=round to nearest for, number of resamples=number of resamples,
fitting=True, rounding=True, diffs to draw from=diffs btw[‘forbes and bloomberg
2013’])

k s like test against w rounding and other measurement errors[‘pareto’][year][‘p−value’] =
resample d stats.get p value(discrepancy statistic)

#k s like test against w rounding and other measurement errors[‘pareto’][year][‘D stats’] =
resample d stats.resampled discrepancy statistics # de−comment to store D−stats

## k−s like test with rounding and other measurement errors against bounded pareto ##
# get discrepancy statistic against bounded pareto distribution
numpy.random.seed(250624)
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k s like test = k s like test against unknown bounded pareto distribution(wealths=wealths)
discrepancy statistic = k s like test.get discrepancy statistic()
k s like test against w rounding and other measurement errors[‘bounded pareto’][year][‘D

stat’] = discrepancy statistic
# resample discrepancy statistic
numpy.random.seed(250624)
resample d stats =

resample d stats for unknown bounded pareto distribution(wealths=wealths,
round to nearest for=round to nearest for, number of resamples=number of resamples,
diffs to draw from=diffs btw[‘forbes and bloomberg 2013’]) # always rounding and
fitting

k s like test against w rounding and other measurement errors[‘bounded
pareto’][year][‘p−value’] = resample d stats.get p value(discrepancy statistic)

#k s like test against w rounding and other measurement errors[‘bounded pareto’][year][‘D
stats’] = resample d stats.resampled discrepancy statistics # de−comment to store
D−stats

print year
# dump results
pickle.dump(k s like test against w rounding and other measurement errors, open(filename,

‘wb’))
else:

# load result
k s like test against w rounding and other measurement errors = pickle.load(open(filename,

‘rb’))

# print results
distribution = ‘pareto’
print “\nresults of k−s test for ” + distribution + “\nt−stat \tp−value accounting for rounding
\tp−value accounting for rounding and other measurement errors”

for year in years:
= k s like test against w rounding errors[‘pareto’][year]

print year, “\t”, [‘D stat’], “\t”, [‘p−value’], “\t”,
print k s like test against w rounding and other measurement errors[‘pareto’][year][‘p−value’]

## CLASSES FOR FITTING A TRUNCATED LOG−NORMAL AND COMPARING ITS
FIT TO THAT OF A PARETO ##

class fit truncated log normal distribution to(object):
‘‘‘ Class for getting the maximum likelihood estimates of the parameters of a two-parameter

log-normal distribution truncated from below at a known truncation point ’’’

def init (self, x, truncated from below at):
self.x = x # the data
self.truncated from below at = truncated from below at # the truncation point
self.converged = False # optimization method converged

def pdf at(self, xi, parameters):
‘‘‘ Returns the PDF at a given xi of a log-normal with given mean and stdev parameters ’’’
# unpack the parameters
mean, stdev = parameters
# return the pdf evaluated at xi
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return (1. / (xi ∗ numpy.sqrt(2. ∗ numpy.pi ∗ (stdev ∗∗ 2.)))) ∗ numpy.exp((−
(numpy.log(xi) − mean) ∗∗ 2.) / (2. ∗ (stdev ∗∗ 2.)))

def cdf at(self, xi, parameters):
‘‘‘ Returns the CDF at a given xi of a log-normal with given mean and stdev parameters ’’’
# unpack the parameters
mean, stdev = parameters
# return the cdf evaluated at xi
return 0.5 ∗ (1. + erf((numpy.log(xi) − mean) / numpy.sqrt(2. ∗ (stdev ∗∗ 2.))))

def negative log likelihood function(self, parameters):
‘‘‘ Returns the negative log-likelihood function for given data and parameters ’’’
# create a variable for the sum of contributions to the negative log likelihood function
sum of contributions to log likelihood function = 0.
# create scaling factor
ln of 1 minus cdf at truncation point = numpy.log((1. −

self.cdf at(self.truncated from below at, parameters)))
# sum the contributions
for xi in self.x:

sum of contributions to log likelihood function += numpy.log(self.pdf at(xi, parameters))
− ln of 1 minus cdf at truncation point

# return the (negative of the) sum of contributions
return − sum of contributions to log likelihood function

def partial derivative of ln of pdf wrt mean at(self, xi, parameters):
mean, stdev = parameters
return (numpy.log(xi) − mean) / (stdev ∗∗ 2.)

def partial derivative of ln of pdf wrt stdev at(self, xi, parameters):
mean, stdev = parameters
return (− 1. / stdev) + (((numpy.log(xi) − mean) ∗∗ 2.) / (stdev ∗∗ 2.))

def partial derivative of cdf wrt mean at(self, xi, parameters):
mean, stdev = parameters
return (− 1. / numpy.sqrt(2 ∗ numpy.pi ∗ (stdev ∗∗ 2.))) ∗ numpy.exp((− (numpy.log(xi) −

mean) ∗∗ 2.) / (2. ∗ (stdev ∗∗ 2.)))

def partial derivative of cdf wrt stdev at(self, xi, parameters):
mean, stdev = parameters
return (− (numpy.log(xi) − mean) / ((stdev ∗∗ 2.) ∗ numpy.sqrt(2. ∗ numpy.pi))) ∗

numpy.exp((− (numpy.log(xi) − mean) ∗∗ 2.) / (2. ∗ (stdev ∗∗ 2.)))

def gradient of negative log likelihood function(self, parameters):
‘‘‘ Returns the gradient of the negative log-likelihood function ’’’
# create variables for the components of the gradient
partial derivative wrt mean = 0.
partial derivative wrt stdev = 0.
# create scaling factors
cdf at truncation point = self.cdf at(self.truncated from below at, parameters)
partial derivative of cdf wrt mean at truncation point =

self.partial derivative of cdf wrt mean at(self.truncated from below at, parameters)
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partial derivative of cdf wrt stdev at truncation point =
self.partial derivative of cdf wrt stdev at(self.truncated from below at, parameters)

# sum the contributions
for xi in self.x:

partial derivative wrt mean += self.partial derivative of ln of pdf wrt mean at(xi,
parameters) + (1. / cdf at truncation point) ∗
partial derivative of cdf wrt mean at truncation point

partial derivative wrt stdev += self.partial derivative of ln of pdf wrt stdev at(xi,
parameters) + (1. / cdf at truncation point) ∗
partial derivative of cdf wrt stdev at truncation point

# return the (negative of the) components of the gradient
return numpy.array([− partial derivative wrt mean, − partial derivative wrt stdev])

def get initial guess(self):
‘‘‘ Returns an initial guess for the parameters based on the MLEs of an untruncated

log-normal ’’’
mean0 = (1. / len(self.x)) ∗ sum([numpy.log(xi) for xi in self.x])
stdev0 = numpy.sqrt((1. / len(self.x)) ∗ sum([(numpy.log(xi) − mean0) ∗∗ 2. for xi in

self.x]))
return mean0, stdev0

def get estimated parameters(self):
‘‘‘ Returns the MLEs of the parameters ’’’
# if optimization fails to converge, try a new guess
tries = 0
fmins = list()
initial guess = self.get initial guess()
while (self.converged == False) and (tries < 100+1):

guess = numpy.random.uniform(initial guess[0] / 2., initial guess[0] ∗ 2.),
numpy.random.uniform(initial guess[1] / 2., initial guess[1] ∗ 2.) # take anywhere
between half and twice the initial guess

fmin = scipy.optimize.fmin tnc(func=self.negative log likelihood function,
fprime=self.gradient of negative log likelihood function, bounds=[(None, None),
(0.+10∗∗−100, None)], x0=guess, maxfun=100, messages=0) # 8 is “Exit reasons”

parameters = (fmin[0][0], fmin[0][1])
negative log likelihood = self.negative log likelihood function(parameters)
converged = (fmin[2] == 1) # function converged
if numpy.isnan(negative log likelihood) or numpy.isinf(negative log likelihood):

pass
else:

fmins.append((negative log likelihood, parameters, converged))
fmins.sort()
self.estimated parameters = fmins[0][1]
self.converged = fmins[0][2]

tries += 1
if len(fmins) == 0:

tries −= 1 # try again, if only found log−likelihood of NaN or +/Infinity
if (self.converged == True) and (tries < 10+1):

self.converged = False # try at least ten starting points
return self.estimated parameters

def get converged(self):
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return self.converged

def get std errors of estimated parameters(self):
‘‘‘ Returns std errors of the estimated mean and stdev parameters ’’’
# following gretl, standard errors are based on the outer product of the gradient
G = list()
# create scaling factors
cdf at truncation point = self.cdf at(self.truncated from below at, self.estimated parameters)
partial derivative of cdf wrt mean at truncation point =

self.partial derivative of cdf wrt mean at(self.truncated from below at,
self.estimated parameters)

partial derivative of cdf wrt stdev at truncation point =
self.partial derivative of cdf wrt stdev at(self.truncated from below at,
self.estimated parameters)

# sum the contributions
for xi in self.x:

partial derivative of ln of pdf wrt mean at xi =
self.partial derivative of ln of pdf wrt mean at(xi, self.estimated parameters) + (1. /
cdf at truncation point) ∗ partial derivative of cdf wrt mean at truncation point

partial derivative of ln of pdf wrt stdev at xi =
self.partial derivative of ln of pdf wrt stdev at(xi, self.estimated parameters) + (1. /
cdf at truncation point) ∗ partial derivative of cdf wrt stdev at truncation point

G.append([− partial derivative of ln of pdf wrt mean at xi, −
partial derivative of ln of pdf wrt stdev at xi])

G = numpy.matrix(G)
VCV = numpy.array((G.T ∗ G).I)
return numpy.sqrt(VCV[0][0]), numpy.sqrt(VCV[1][1])

class vuong test for pareto against truncated log normal distribution(object):
‘‘‘ Class for a Vuong (1989) test of a two-parameter Pareto distribution against a truncated

log-normal distribution. Follows Cameron and Trivedi (2006, sec. 8.5.3–5) ’’’

def init (self, wealths, truncated from below at):
self.wealths = wealths
self.truncated from below at = truncated from below at # for truncated log−normal
self.fit distributions()
self.n = len(wealths)

def fit distributions(self):
# fit parteo
fit to pareto = fit pareto to(wealths=self.wealths)
self.estimated parameters for pareto = fit to pareto.get estimated parameters()
# fit log normal
self.fit to truncated log normal = fit truncated log normal distribution to(x=self.wealths,

truncated from below at=self.truncated from below at)
self.estimated parameters for truncated log normal =

self.fit to truncated log normal.get estimated parameters()

def get log likelihood at for fitted pareto(self, wealth):
lower bound, shape = self.estimated parameters for pareto # unpack parameters
return numpy.log(shape ∗ (lower bound ∗∗ shape) ∗ (wealth ∗∗ (− 1. − shape)))
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def get log likelihood at for fitted truncated log normal(self, wealth):
ln of 1 minus cdf at truncation point = numpy.log((1. −

self.fit to truncated log normal.cdf at(self.truncated from below at,
self.estimated parameters for truncated log normal)))

return numpy.log(self.fit to truncated log normal.pdf at(xi=wealth,
parameters=self.estimated parameters for truncated log normal)) −
ln of 1 minus cdf at truncation point

def get test statistic(self):
‘‘‘ Returns the test statistic ’’’
likelihood ratios = list(self.get log likelihood at for fitted pareto(wealth=wealth) −

self.get log likelihood at for fitted truncated log normal(wealth=wealth) for wealth in
self.wealths)

LR = sum(likelihood ratios)
omega squared = (1. / self.n) ∗ sum(list(likelihood ratio ∗∗ 2. for likelihood ratio in

likelihood ratios)) − ((1. / self.n) ∗ LR) ∗∗ 2.
return LR / numpy.sqrt(self.n ∗ omega squared)

## CLASSES FOR FITTING A TRUNCATED GAMMA AND COMPARING ITS FIT TO
THAT OF A PARETO ##

class fit truncated gamma distribution to(object):
‘‘‘ Class for getting the maximum likelihood estimates of the parameters of a two-parameter

gamma distribution truncated from below at a known truncation point ’’’

def init (self, x, truncated from below at):
self.x = x # the data
self.truncated from below at = truncated from below at # the truncation point
self.converged = False # optimization method converged

def pdf at(self, xi, parameters):
# unpack the parameters
shape, scale = parameters
# return the pdf evaluated at xi
return (1. / scipy.special.gamma(shape)) ∗ (scale ∗∗ (− shape)) ∗ (xi ∗∗ (shape − 1)) ∗

numpy.exp(− xi / scale)

def cdf at(self, xi, parameters):
# unpack the parameters
shape, scale = parameters
# return the cdf evaluated at xi
return scipy.special.gammainc(shape, xi / scale)
# note that scipy.special.gammainc is the regularized version of the lower incomplete

gamma function

def negative log likelihood function(self, parameters):
# create a variable for the sum of contributions to the negative log likelihood function
sum of contributions to log likelihood function = 0.
# create scaling factor, note that the scipy.special.gammaincc could be used in calculating

the complement
ln of 1 minus cdf at truncation point = numpy.log((1. −

self.cdf at(self.truncated from below at, parameters)))
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# sum the contributions
for xi in self.x:

sum of contributions to log likelihood function += numpy.log(self.pdf at(xi, parameters))
− ln of 1 minus cdf at truncation point

# return the (negative of the) sum of contributions
return − sum of contributions to log likelihood function

def partial derivative of ln of pdf wrt shape at(self, xi, parameters):
shape, scale = parameters
return numpy.log(xi) − numpy.log(scale) − scipy.special.psi(shape)

def partial derivative of ln of pdf wrt scale at(self, xi, parameters):
shape, scale = parameters
return − (shape / scale) − (xi / scale)

def partial derivative of cdf wrt shape at(self, xi, parameters):
shape, scale = parameters
return “TBD”

def partial derivative of cdf wrt scale at(self, xi, parameters):
shape, scale = parameters
return − (numpy.exp(− x / scale) ∗ ((x / scale) ∗∗ shape)) / (scale ∗

scipy.special.gamma(shape))

def gradient of negative log likelihood function(self, parameters):
# create variables for the components of the gradient
partial derivative wrt shape = 0.
partial derivative wrt scale = 0.
# create scaling factors
cdf at truncation point = self.cdf at(self.truncated from below at, parameters)
partial derivative of cdf wrt shape at truncation point =

self.partial derivative of cdf wrt shape at(self.truncated from below at, parameters)
partial derivative of cdf wrt scale at truncation point =

self.partial derivative of cdf wrt scale at(self.truncated from below at, parameters)
# sum the contributions
for xi in self.x:

partial derivative wrt shape += self.partial derivative of ln of pdf wrt shape at(xi,
parameters) + (1. / cdf at truncation point) ∗
partial derivative of cdf wrt shape at truncation point

partial derivative wrt scale += self.partial derivative of ln of pdf wrt scale at(xi,
parameters) + (1. / cdf at truncation point) ∗
partial derivative of cdf wrt scale at truncation point

# return the (negative of the) components of the gradient
return numpy.array([− partial derivative wrt shape, − partial derivative wrt scale])

def get initial guess(self):
‘‘‘ Returns an initial guess for the parameters based on Thom’s (1958) approximation to the

MLEs for an untruncated gamma ’’’
arithmetic mean = (1. / len(self.x)) ∗ sum(self.x)
d = numpy.log(arithmetic mean) − (1. / len(self.x)) ∗ sum(list(numpy.log(xi) for xi in

self.x))
shape0 = (1. + numpy.sqrt(1. + ((4. ∗ d) / 3.))) / (4. ∗ d)



303

scale0 = arithmetic mean / shape0
return shape0, scale0

def get estimated parameters(self):
‘‘‘ Returns the MLEs ’’’
tries = 0
fmins = list()
initial guess = self.get initial guess()
while (self.converged == False) and (tries < 100+1):

guess = numpy.random.uniform(initial guess[0] / 2., initial guess[0] ∗ 2.),
numpy.random.uniform(initial guess[1] / 2., initial guess[1] ∗ 2.)

fmin = scipy.optimize.fmin l bfgs b(func=self.negative log likelihood function, x0=guess,
fprime=None, approx grad=True, bounds=[(0.+10∗∗−100, None), (0.+10∗∗−100,
None)], maxfun=100)

parameters = (fmin[0][0], fmin[0][1])
negative log likelihood = float(fmin[1])
converged = (fmin[2][‘warnflag’] == 0)
if numpy.isnan(negative log likelihood) or numpy.isinf(negative log likelihood):

pass
else:

fmins.append((negative log likelihood, parameters, converged))
fmins.sort()
self.estimated parameters = fmins[0][1]
self.converged = fmins[0][2]

tries += 1
if len(fmins) == 0:

tries −= 1 # try again, if only found log−likelihood of NaN or +/Inf
if (self.converged == True) and (tries < 10+1):

self.converged = False # try at least ten starting points
return self.estimated parameters

def get converged(self):
return self.converged

class vuong test for pareto against truncated gamma distribution(object):
‘‘‘ Class for a Vuong (1989) test of of a two-parameter Pareto distribution against a

left-truncated gamma distribution ’’’

def init (self, wealths, truncated from below at):
self.wealths = wealths
self.truncated from below at = truncated from below at # for truncated gamma
self.fit distributions()
self.n = len(wealths)

def fit distributions(self):
# fit parteo
fit to pareto = fit pareto to(wealths=self.wealths)
self.estimated parameters for pareto = fit to pareto.get estimated parameters()
# fit truncated gamma
self.fit to truncated gamma = fit truncated gamma distribution to(x=self.wealths,

truncated from below at=self.truncated from below at)
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self.estimated parameters for truncated gamma =
self.fit to truncated gamma.get estimated parameters()

def get log likelihood at for fitted pareto(self, wealth):
lower bound, shape = self.estimated parameters for pareto # unpack parameters
return numpy.log(shape ∗ (lower bound ∗∗ shape) ∗ (wealth ∗∗ (− 1. − shape)))

def get log likelihood at for fitted truncated gamma(self, wealth):
ln of 1 minus cdf at truncation point = numpy.log((1. −

self.fit to truncated gamma.cdf at(xi=self.truncated from below at,
parameters=self.estimated parameters for truncated gamma)))

return numpy.log(self.fit to truncated gamma.pdf at(xi=wealth,
parameters=self.estimated parameters for truncated gamma)) −
ln of 1 minus cdf at truncation point

def get test statistic(self):
likelihood ratios = list(self.get log likelihood at for fitted pareto(wealth=wealth) −

self.get log likelihood at for fitted truncated gamma(wealth=wealth) for wealth in
self.wealths)

LR = sum(likelihood ratios)
omega squared = (1. / self.n) ∗ sum(list(likelihood ratio ∗∗ 2. for likelihood ratio in

likelihood ratios)) − ((1. / self.n) ∗ LR) ∗∗ 2.
return LR / numpy.sqrt(self.n ∗ omega squared)

## CLASS FOR COMPARING FIT OF BOUNDED AND UNBOUNDED PARETOS ##

class lr test for pareto against bounded pareto distribution(object):
‘‘‘ Class for a likelihood ratio test of an unbounded Pareto distribution against a bounded one.

A standard likelihood ratio test can be applied because the former is nested in the latter.
The two distributions are the same as the bounding parameter goes to infinity ’’’

def init (self, wealths):
self.wealths = wealths
self.fit distributions()

def fit distributions(self):
# fit parteo
fit to pareto = fit pareto to(wealths=self.wealths)
self.estimated parameters for pareto = fit to pareto.get estimated parameters()
# fit bounded pareto
fit to bounded pareto = fit bounded pareto to(wealths=self.wealths)
self.estimated parameters for bounded pareto =

fit to bounded pareto.get estimated parameters()

def get log likelihood at for fitted pareto(self, wealth):
lower bound, shape = self.estimated parameters for pareto # unpack parameters
return numpy.log(shape ∗ (lower bound ∗∗ shape) ∗ (wealth ∗∗ (− 1. − shape)))

def get log likelihood at for fitted bounded pareto(self, wealth):
lower bound, upper bound, shape = self.estimated parameters for bounded pareto # unpack

parameters
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return numpy.log((shape ∗ (lower bound ∗∗ shape) ∗ (wealth ∗∗ (− 1. − shape))) / (1. −
(lower bound / upper bound) ∗∗ shape))

def get test statistic(self):
‘‘‘ Returns the test statistic ’’’
likelihood for pareto = sum(list(self.get log likelihood at for fitted pareto(wealth=wealth)

for wealth in self.wealths))
likelihood for bounded pareto =

sum(list(self.get log likelihood at for fitted bounded pareto(wealth=wealth) for wealth
in self.wealths))

return −2. ∗ (likelihood for pareto − likelihood for bounded pareto)

## LIKELIHOOD−RATIO TESTS OF PARETO AGAINST OTHER DISTRIBUTIONS ##

def get p value(z stat):
‘‘‘ Returns p-value for z-test ’’’
return scipy.stats.norm.cdf(−abs(z stat), loc=0, scale=1) + scipy.stats.norm.sf(abs(z stat),

loc=0, scale=1)

# define dicts for storing results of tests
other distributions = [‘gamma’, ‘log−normal’, ‘bounded pareto’]
lr test of pareto against = dict(zip(other distributions, [dict(zip(years, [dict(zip([‘t−stat’,

‘p−value’], [‘TBD’ for in [‘t−stat’, ‘p−value’]])) for year in years])) for distribution in
other distributions]))

# set the following to True to re−estimate if already estimate
re estimate = False
# check if already been estimated
filename = filepath + “lr test of pareto against.pkl”
already estimated = isfile(filename)
# estimate or re−estimate
if not already estimated or re estimate:

# for each year
for year in years:

# get wealths
wealths = summary stats[‘wealths’][year]
# get rounding
round to nearest for = dict()
unique wealths = list(set(wealths))
unique wealths.sort(reverse=True)
# if wealthiest person isn’t a billionaire
if summary stats[‘max’][year] < 1000.0:

min difference = min(list(unique wealths[i] − unique wealths[i+1] for i in range(0,
len(unique wealths)−1) if unique wealths[i] < 1000.0))

round to nearest for[‘billionaires’] = min difference # if a billion dollar wealth is drawn,
use the same rounding

round to nearest for[‘sub−billionaires’] = min difference
# if poorest person is a billionaire
elif summary stats[‘min’][year] >= 1000.0:

min difference = min(list(unique wealths[i] − unique wealths[i+1] for i in range(0,
len(unique wealths)−1) if unique wealths[i+1] >= 1000.0))

round to nearest for[‘billionaires’] = min difference # if a sub−billion dollar wealth is
drawn, use the same rounding
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round to nearest for[‘sub−billionaires’] = min difference
else:

round to nearest for[‘billionaires’] = min(list(unique wealths[i] − unique wealths[i+1] for i
in range(0, len(unique wealths)−1) if unique wealths[i+1] >= 1000.0))

round to nearest for[‘sub−billionaires’] = min(list(unique wealths[i] − unique wealths[i+1]
for i in range(0, len(unique wealths)−1) if unique wealths[i] < 1000.0))

# get truncation point
truncated from below at = summary stats[‘min’][year] −

(round to nearest for[‘sub−billionaires’] / 2.)
## test pareto against gamma ##
numpy.random.seed(250624)
vuong test = vuong test for pareto against truncated gamma distribution(wealths=wealths,

truncated from below at=truncated from below at)
test statistic = vuong test.get test statistic()
lr test of pareto against[‘gamma’][year][‘t−stat’] = test statistic
lr test of pareto against[‘gamma’][year][‘p−value’] = get p value(z stat=test statistic)
## test pareto against truncated log−normal ##
numpy.random.seed(250624)
vuong test =

vuong test for pareto against truncated log normal distribution(wealths=wealths,
truncated from below at=truncated from below at)

test statistic = vuong test.get test statistic()
lr test of pareto against[‘log−normal’][year][‘t−stat’] = test statistic
lr test of pareto against[‘log−normal’][year][‘p−value’] = get p value(z stat=test statistic)
## test pareto against bounded pareto ##
# note that the unbounded pareto is nested in the bounded pareto
numpy.random.seed(250624)
lr test = lr test for pareto against bounded pareto distribution(wealths=wealths)
test statistic = lr test.get test statistic()
lr test of pareto against[‘bounded pareto’][year][‘t−stat’] = test statistic
lr test of pareto against[‘bounded pareto’][year][‘p−value’] = 1. −

scipy.stats.chi2.cdf(test statistic, 1) # chi−squared with one degree of freedom
print year

# dump results
pickle.dump(lr test of pareto against, open(filename, ‘wb’))

else:
# load result
lr test of pareto against = pickle.load(open(filename, ‘rb’))

# print results
print “\nresults of LR tests”
for distribution in other distributions:

# intepretation of Vuong (1989) tests
if distribution not in [‘bounded pareto’]:

n years favors dist = int(sum([lr test of pareto against[distribution][year][‘t−stat’] > 0. and
lr test of pareto against[distribution][year][‘p−value’] < 0.10 for year in years]))

n years favors pareto = int(sum([lr test of pareto against[distribution][year][‘t−stat’] < 0.
and lr test of pareto against[distribution][year][‘p−value’] < 0.10 for year in years]))

neither favored = len(years) − (n years favors dist + n years favors pareto)
# intepretation of standard LR tests
else:
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n years favors dist = int(sum([lr test of pareto against[distribution][year][‘p−value’] < 0.10
for year in years]))

n years favors pareto = len(years)
print “A LR test favors a ” + distribution + “ over an unbounded pareto in ” +

str(n years favors dist) + “ years.”,
if distribution not in [‘bounded pareto’]:

print “The same test favors the pareto over the ” + distribution + “ in ” +
str(n years favors pareto) + “ years.”,

print “Neither is favored over the other in ” + str(neither favored) + “ years.”

E.5 Code for the Third Essay

The code for generating the results reported in the third essay is as follows.

‘‘‘
Filename: essay on duration of wealth code.py
Python version: 2.7
Source: Capehart, Kevin W. Essays on the Wealthiest Americans. PhD dissertation, American

University, Washington, DC, 2014.
Description: This file generates results reported by the essay on the duration of the wealth of the

wealthiest Americans.
’’’

from future import division
from load forbes 400 dataset import ∗ # load our Forbes 400 dataset
import scipy.stats # import for confidence intervals
from scipy.special import btdtri # import for quantiles of beta distribution
import statsmodels.api as sm # import for multionomial logit model
from os.path import isfile # import for checking whether a file exists
import pickle # import for dumping and loading computationally intensive results

## SEC. 4.3 AND C.1: NUMBER APPEARING AGAIN OR DROPPING OFF ##

# The following code looks at the year−over−year movement of unique individuals onto, off of,
and throughout the Forbes 400.

dyears = [year + ‘−−’ + str(int(year) + 1) for year in years less last]
dyear types = [‘remain wealthy’, ‘remain wealthy and move up’, ‘remain wealthy but move

down’, ‘remain wealthy and stay the same’, ‘exit’, ‘exit by decline’, ‘exit by death’, ‘exit by
renunciation of citizenship’, ‘entrants’, ‘first−timers’, ‘returnees’]

n by dyear types in = dict(zip(dyears, [dict(zip(dyear types, [0 for type in dyear types])) for
dyear in dyears]))

for dyear in dyears:
year, next year = dyear.split(‘−−’)
for name in names:

if data[name][‘wealth’][year] != ‘’:
# remained wealthy?
if (data[name][‘wealth’][next year] != ‘’):

n by dyear types in[dyear][‘remain wealthy’] += 1
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rank in year = summary stats[‘wealths’][year].index(float(data[name][‘wealth’][year]))
rank in next year =

summary stats[‘wealths’][next year].index(float(data[name][‘wealth’][next year]))
# up, down, or same?
if rank in next year > rank in year:

n by dyear types in[dyear][‘remain wealthy and move up’] += 1
elif rank in next year < rank in year:

n by dyear types in[dyear][‘remain wealthy but move down’] += 1
else:

assert (rank in next year == rank in year), “If a person didn’t move up or down in
the rankings, their rank should be the same”

n by dyear types in[dyear][‘remain wealthy and stay the same’] += 1
# exited?
else:

n by dyear types in[dyear][‘exit’] += 1
# exited by death, decline, or renunciation of citizenship?
if (name in dead in[next year]):

n by dyear types in[dyear][‘exit by death’] += 1
elif (name in renunciants in[next year]):

n by dyear types in[dyear][‘exit by renunciation of citizenship’] += 1
else:

n by dyear types in[dyear][‘exit by decline’] += 1
else:

# not on list in first year, but comes on by next?
if data[name][‘wealth’][next year] != ‘’:

n by dyear types in[dyear][‘entrants’] += 1
# first−timer or returnee?
if True in [data[name][‘wealth’][str(y)] != ‘’ for y in range(1982, int(year))]:

n by dyear types in[dyear][‘returnees’] += 1
assert (True in [data[name][‘wealth’][str(y)] != ‘’ for y in range(1982, int(year))]) ==

(True in [data[name][‘wealth’][str(y)] != ‘’ for y in range(1982, int(next year))])
else:

n by dyear types in[dyear][‘first−timers’] += 1

print “\nyear \tremain wealthy \texit by decline \texit by death \texit by renunciation of
citizenship”

for dyear in dyears: print year, “\t”, n by dyear types in[dyear][‘remain wealthy’], “\t”,
n by dyear types in[dyear][‘exit by decline’], “\t”, n by dyear types in[dyear][‘exit by
death’], “\t”, n by dyear types in[dyear][‘exit by renunciation of citizenship’]

print “\ntype \tavg number across years”
for type in dyear types: print type, “\t”, round(numpy.average([n by dyear types in[dyear][type]

for dyear in dyears]), 0)

# quick calculation to compare to highest income 400
print “\nnumber of unique individuals on Forbes 400 btw 1992 and 2009:\t”, len(list(set([name

for name in names for year in [str(y) for y in range(1992, 2009+1)] if
(data[name][‘wealth’][year] != ‘’)])))

## SEC. 4.3: PATTERNS OF APPEARANCES ###
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# The following code uses Ashworth et al.’s (1994) classification scheme in order to look at the
patterns with which unique individuals appeared on the Forbes 400 over the years.

patterns = [‘transient’, ‘occasional’, ‘recurrent’, ‘persistent’, ‘chronic’, ‘permanent’]
persons by pattern = dict(zip(patterns, [list() for pattern in patterns]))
longest spell for multiple spells = 0
# for each name
for name in names:

# get spells
spells = []
spell = []
for year in years:

wealth = data[name][‘wealth’][year]
if wealth != ‘’:

spell.append(year)
else:

spells.append(spell)
spell = []

spells.append(spell)
# remove empty spells
while [] in spells:

spells.remove([])
# record single−spell patterns
if len(spells) == 1:

# ‘transient’: one ‘short’ (i.e., one year) spell
if len(spells[0]) == 1:

persons by pattern[‘transient’].append(name)
# ‘permanent’: one continuous spell
elif len(spells[0]) == len(years):

persons by pattern[‘permanent’].append(name)
# ‘persistent’: one ‘non−short’ spell (i.e., longer than one year), but not continuous
else:

persons by pattern[‘persistent’].append(name)
# record multiple−spell patterns
else:

# get shortest spell
shortest spell = min([len(spell) for spell in spells])
# get longest spell, too
longest spell = max([len(spell) for spell in spells])
if longest spell > longest spell for multiple spells:

longest spell for multiple spells = longest spell
# get longest time between observed spells
longest time between spells = []
for i in range(0, len(spells)−1):

longest time between spells.append(int(spells[i+1][0]) − int(spells[i][−1]) − 1)
longest time between spells = max(longest time between spells)
# ‘occasional’: multiple ‘short’ spells (all lasting one year)
if (shortest spell == 1):

persons by pattern[‘occasional’].append((name, [len(spell) for spell in spells]))
# ‘recurrent’: multiple ‘non−short’ spells (some lasting over one year) and ‘non−short’

out−of−poverty spells (some lasting over one year)
elif (shortest spell > 1) and (longest time between spells > 1):
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persons by pattern[‘recurrent’].append((longest time between spells, name, [len(spell) for
spell in spells]))

# ‘chronic’: multiple ‘non−short’ poverty spells (some lasting over one year) and ‘short’
out−of−poverty spells (lasting one year)

else:
persons by pattern[‘chronic’].append((name, [len(spell) for spell in spells]))

#if len(spells) == 4:
# print name

## SOME CALCULATIONS ##

# persons for all patterns
persons by pattern[‘all’] = list()
for pattern in patterns:

persons by pattern[‘all’].extend(persons by pattern[pattern])
total number of persons = len(persons by pattern[‘all’])

# single spell patterns
print “\nBetween 1982 and 2013,”,
print “out of the ” + str(format(total number of persons, ‘,.0f’)) + “ people who appeared at

least once on the magazine’s list of the 400 wealthiest Americans,”,
print “over three quarters of them (”,
number with single spell = len(persons by pattern[‘transient’]) +

len(persons by pattern[‘persistent’]) + len(persons by pattern[‘permanent’])
print str(format(number with single spell, ‘,.0f’)) + “ or about ” + str(int(round(100. ∗

number with single spell / total number of persons))),
print “percent of them) came onto the list, appeared in consecutive years, and then dropped off

without reappearing again.”,
# transient, persistent, permanent
print “Out of these people who had only one spell on the magazine’s list,”,
print “a minority (”,
print str(len(persons by pattern[‘transient’])) + “ or about ” + str(int(round(100. ∗

len(persons by pattern[‘transient’]) / number with single spell))),
print “percent) only appeared in one year, a majority (”,
print str(len(persons by pattern[‘persistent’]) + len(persons by pattern[‘permanent’])) + “ or

about ” + str(int(round(100. ∗ (len(persons by pattern[‘persistent’]) +
len(persons by pattern[‘permanent’])) / number with single spell))),

print “percent) appeared in more than one year, and a small fraction”,
print “(” + str(len(persons by pattern[‘permanent’])),
print “people or about”,
print str(int(round(100. ∗ len(persons by pattern[‘permanent’]) / number with single spell))),
print “percent) appeared in every year.”,
number with multiple spells = len(persons by pattern[‘occasional’]) +

len(persons by pattern[‘recurrent’]) + len(persons by pattern[‘chronic’])
# occassional
print “\nOut of the ” + str(number with multiple spells) + “ people who had more than one

spell, about half of them (”,
print str(len(persons by pattern[‘occasional’])) + “ or about ” + str(int(round(100. ∗

len(persons by pattern[‘occasional’]) / number with multiple spells))),
print “percent of them) had a pattern wherein all of their spells (of which the median number

was”,
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print str(int(round(numpy.median([len(spells) for name, spells in
persons by pattern[‘occasional’]])))),

print “and the maximum number was”,
print str(max([len(spells) for name, spells in persons by pattern[‘occasional’]])),
print “spells) only lasted one year.”,
# recurrent
print str(len(persons by pattern[‘recurrent’])) + “ or about ” + str(int(round(100. ∗

len(persons by pattern[‘recurrent’]) / number with multiple spells))),
print “percent of them had a pattern wherein at least one of their spells (of which the median

number was”,
print str(int(round(numpy.median([len(spells) for name, spells, longest time between spells in

persons by pattern[‘recurrent’]])))),
print “and the maximum number was”,
print str(max([len(spells) for name, spells, longest time between spells in

persons by pattern[‘recurrent’]])),
print “spells) lasted longer than one year, but at least one of the times in between their spells

was longer than one year.”,
# chronic
print str(len(persons by pattern[‘chronic’])) + “ or about ” + str(int(round(100. ∗

len(persons by pattern[‘chronic’]) / number with multiple spells))),
print “percent of them had a pattern wherein at least one of their spells (of which the median

number was”,
print str(int(round(numpy.median([len(spells) for name, spells in

persons by pattern[‘chronic’]])))),
print “and the maximum number was”,
print str(max([len(spells) for name, spells in persons by pattern[‘chronic’]])),
print “spells) lasted longer than one year, and none of the times in between their spells were

longer than one year.”,
# longest and shortest
print “The longest spell for anyone with more than one spell was”,
print str(longest spell for multiple spells),
print “years (the heiress Phoebe Hearst Cooke and the media mogul Sumner Murray Redstone

both had spells of that length),”,
print “while the longest time between any two spells was”,
persons by pattern[‘recurrent’].sort(reverse=True)
assert persons by pattern[‘recurrent’][0][0] != persons by pattern[‘recurrent’][1][0] # no ties for

the longest time between spells
print str(persons by pattern[‘recurrent’][0][0]),
print “years (Kenneth Stanley ‘‘Bud‘’ Adams Jr. was off the list for that long between his two

spells).”

## DEFINE FUNCTIONS FOR CI’S AND P−VALUES ##

def get normal ci(point, se, confidence level=0.95):
‘‘‘ Returns lower and upper confidence intervals based on a Normal distribution ’’’
z stat = scipy.stats.norm.ppf(1. − ((1. − confidence level) / 2.))
lower = point − z stat ∗ se
upper = point + z stat ∗ se
return lower, upper

def get p value(z stat):
‘‘‘ Returns p-value for a z-test ’’’
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return scipy.stats.norm.cdf(−abs(z stat), loc=0, scale=1) + scipy.stats.norm.sf(abs(z stat),
loc=0, scale=1)

def get cp ci(trials, failures, confidence level=0.95):
‘‘‘ Returns lower and upper Clopper-Pearson confidence intervals, which are calculated based on

the quantiles of a beta distribution ’’’
lower = btdtri(failures, trials − failures + 1., (1. − confidence level) / 2.)
upper = btdtri(failures + 1., trials − failures, 1. − ((1. − confidence level) / 2.))
return lower, upper

## SEC. 4.3, ESP. FIG. 4.3: SURVIVAL FUNCTION ##

# The following code looks at consecutive appearances of unique invidiauls on the Forbes 400
and calculates a survival function for appearing again and again for at least a given number
of consecutive years.

durations = range(1, len(years), 1)
n at risk at = dict(zip(durations, [0 for duration in durations]))
n exits by decline in wealth at = dict(zip(durations, [0 for duration in durations]))
n exits by death at = dict(zip(durations, [0 for duration in durations]))
n exits by renunciation of citizenship at = dict(zip(durations, [0 for duration in durations]))

# omit left−censored spells?
omit left censored spells = False
if omit left censored spells:

durations = range(1, len(years)−1, 1) # re−defines durations
# for each name
for name in names:

# get spells
spells = []
spell = []
for year in years:

wealth = data[name][‘wealth’][year]
if wealth != ‘’:

spell.append(year)
else:

spells.append(spell)
spell = []

spells.append(spell)
# change left−censored spells to empty spells, so they’ll be removed when empty spells are

removed
if omit left censored spells:

for i in range(0, len(spells)):
if ‘1982’ in spells[i]:

spells[i] = []
# remove empty spells
while [] in spells:

spells.remove([])
# for each spell, record data
while len(spells) > 0:

spell = spells.pop()
# as long as the spell didn’t start in the last year
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if spell == [years[−1]]:
pass

else:
# for each year of the spell
for i in range(0, len(spell)):

# year
year = spell[i]
next year = str(int(year)+1)
# if year is not the last year
if year != years[−1]:

# record at risk
duration = (i + 1)
n at risk at[duration] += 1
# remains wealthy?
remains wealthy = int(i != len(spell)−1)
# exits by decline in wealth?
exits by decline in wealth = int(data[name][‘wealth’][next year] == ‘’)
# exits by death?
exits by death = int(name in dead in[next year])
# exits by renunciation of citizenship?
exits by renunciation of citizenship = int(name in renunciants in[next year])
# record any incidence
if exits by renunciation of citizenship:

n exits by renunciation of citizenship at[duration] += 1
elif exits by death:

n exits by death at[duration] += 1
elif exits by decline in wealth:

n exits by decline in wealth at[duration] += 1
else: # remains wealthy

pass

n exits at = dict(zip(durations, [n exits by decline in wealth at[duration] +
n exits by death at[duration] + n exits by renunciation of citizenship at[duration] for
duration in durations]))

point estimate for survivor function = dict()
lower ci for survivor function, upper ci for survivor function = dict(), dict()
duration = durations[0]
lower ci for survivor function[duration], point estimate for survivor function[duration],

upper ci for survivor function[duration] = 1., 1., 1.

print “\nduration \tpoint estimate for survivor function \t std error”
print duration, “\t”, point estimate for survivor function[duration], “\t”, 0.0
for duration in durations[1:]:

shorter durations = range(1, duration, 1)
point estimate for survivor function[duration] = numpy.prod([1. −

(n exits at[shorter duration] / n at risk at[shorter duration]) for shorter duration in
shorter durations])

var = (point estimate for survivor function[duration] ∗∗ 2.) ∗ sum([n exits at[shorter duration]
/ (n at risk at[shorter duration] ∗ (n at risk at[shorter duration] −
n exits at[shorter duration])) for shorter duration in shorter durations])

lower ci for survivor function[duration], upper ci for survivor function[duration] =
get normal ci(point=point estimate for survivor function[duration], se=numpy.sqrt(var))



314

print duration, “\t”, point estimate for survivor function[duration], “\t”, 100. ∗
numpy.sqrt(var)

print “\nOf note, if survival curves with and without left−censored observations are computed,
then the largest difference between them is 0.027692595 and that occurs once at three years,
but that difference is not quite statistically significant at the 10 percent level (with a
p−value of about ” + str(get p value(z stat=(0.657313437 − 0.629620841) /
numpy.sqrt(0.000124073 + 0.000164852295641))) + “).”

## SEC. 4.3, ESP. FIG. 4.2: HAZARD FUNCTION ##

# The following code calculates a hazard function for appearing again after a given number of
consecutive appearances. Normal CI’s contain impossible values less than zero, so we use
Clopper−Pearson CI’s instead.

durations = range(1, len(years), 1)
point estimate for hazard function = dict()
lower ci for hazard function, upper ci for hazard function = dict(), dict()
for duration in durations:

# Normal CI’s
point estimate for hazard function[duration] = n exits at[duration] / n at risk at[duration]
se = numpy.sqrt((point estimate for hazard function[duration] ∗ (1. −

point estimate for hazard function[duration])) / n at risk at[duration])
lower, upper = get normal ci(point=point estimate for hazard function[duration], se=se)
# print results
if duration == durations[0]: print “\nduration \tpoint estimate for hazard function duration

\tlower Normal CI \tupper Normal CI \tlower CP CI \tupper CP CI”
print duration, “\t”, point estimate for hazard function[duration], “\t”, lower, “\t”, upper,

“\t”,
# Clopper−Pearson CI’s
lower, upper = get cp ci(trials=n at risk at[duration], failures=n exits at[duration])
lower ci for hazard function[duration] = lower
upper ci for hazard function[duration] = upper
# print results
print lower, “\t”, upper

## SEC. 4.4: GET DATA FOR BASELINE MODEL ##

# keep track of names associated with each spell
names associated w spells = list()
# keep track of ages and ranks
ages as dependent vars, ranks as dependent vars = list(), list()
# list of data for spells
data for spells = list()
# for each name
for name in names:

# get spells
spells = []
spell = []
for year in years:

wealth = data[name][‘wealth’][year]
if wealth != ‘’:

spell.append(year)
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else:
spells.append(spell)
spell = []

spells.append(spell)
# remove empty spells
while [] in spells:

spells.remove([])
# for each spell, record data
while len(spells) > 0:

spell = spells.pop()
# as long as the spell didn’t start in the last year
if spell == [years[−1]]:

pass
else:

# list of data for spell
data for spell = list()
# for each year of the spell
for i in range(0, len(spell)):

# year
year = spell[i]
next year = str(int(year)+1)
# if year is not the last year
if year != years[−1]:

# data for given year of the spell
data for year of spell = list()
# remains wealthy?
remains wealthy = int(i != len(spell)−1)
# exits by decline in wealth?
exits by decline in wealth = int(data[name][‘wealth’][next year] == ‘’)
# exits by death? superseding exit by decline
exits by death = int(name in dead in[next year])
# exits by renunciation of citizenship? superseding exit by decline
exits by renunciation of citizenship = int(name in renunciants in[next year])
# record dependent variable
if exits by renunciation of citizenship:

dependent var = 3 # where 3 = exits by renunciation of citizenship:
elif exits by death:

dependent var = 2 # where 2 = exits by death
elif exits by decline in wealth:

dependent var = 1 # where 1 = exits by decline in wealth
else: # remains wealthy

dependent var = 0 # where 0 = remains wealthy
data for year of spell.append(dependent var)
# independent variables
# age
age = int(data[name][‘age’][year])
age squared = age ∗ age
# rank
rank = summary stats[‘wealths’][year].index(float(data[name][‘wealth’][year])) + 1
# left−censored dummy
left censored = int(‘1982’ in spell)
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data for year of spell.extend([1., age, age squared, rank, left censored]) # include a
constant

# dummies for years, but drop the dummy for 1982
data for year of spell.extend([int(year == ) for in years less initial and last])
# test:
if 1 in data for year of spell[6:6+len(years less initial and last)]:

assert year ==
years[data for year of spell[6:6+len(years less initial and last)].index(1)+1]

else:
assert year == ‘1982’

# dummies for durations of given number of years or 28 or more years (see below),
but drop the dummy for a duration of one year

duration = (i + 1)
for in range(2, 27+1):

data for year of spell.append(int(duration == ))
data for year of spell.append(int(duration > 27))
# add to list
if (data for year of spell[0] != 3): # ignore spells that end with exit by renunciation of

citizenship for reasons discussed in dissertation
data for spell.append(data for year of spell)
ages as dependent vars.append(age)
ranks as dependent vars.append(rank)

# add to list
if (data for year of spell[0] != 3): # again, ignorning spells that end with exit by

renunciation of citizenship
data for spells.append(data for spell)
names associated w spells.append(name)

# Each of the 25 people who were on the list for 30 years by 2011 remained on the list into 2012
and 2013, so there will be perfect prediction problem if we include a dummy variable for a
duration of 30 or more years. Moreover, none of the people who who were on the list for 29
years died, they all either remained wealthy or exited by a decline in wealth, so there would
again be a perfect prediction problem if we included a dummy variable for a duration of 29
years. In order to avoid these problems while still allowing for a non−parameteric approach
to duration dependence, we use a dummy for a duration of 28 or more years, instead of
dummies for durations of 28, 29, and 30 years.

print “\nThere are ” + str(sum(len( ) for in data for spells)) + “ person−year observations
associated with ” + str(len(data for spells)) + “ spells of ” +
str(len(list(set(names associated w spells)))) + “ unique individuals.”

# Observations of 400 people in each year for 31 years should yield 400 ∗ 31 = 12,400
person−year observations. But if we ignore the observations associated with spells for the
four people who renounced their citizenship, then we get 12,379 person−year observations
associated with the 1,854 spells of 1,451 unique individuals. (One person who would
eventually exit by renunciation of citizenship, John Thompson Dorrance III, had an earlier
spell.)

## ORGANIZE DATA AND EXPORT IT ##

# organize data for estimation
dependent vars = list()
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independent vars = list()
for data for spell in data for spells:

for data for year of spell in data for spell:
dependent vars.append(data for year of spell[0])
independent vars.append(numpy.array(data for year of spell[1:]))

dependent vars = numpy.array(dependent vars)
independent vars = numpy.array(independent vars)
# export to file
filepath = “./data/data specific to third essay/”
filename = filepath + “exported survival data.csv”
f = open(filename, ‘w’)
# write header
s = “dependent var,constant,age,age squared,rank,left censored,”
for year in years less initial and last:

s += “d” + year + “,”
for duration in range(2, 27+1):

s += “d” + str(duration) + “,”
s += “d28 or more” + “\n”
f.write(s)
header = s.replace(‘\n’, ‘’)
header = header.split(‘,’)
n of independent vars = len(header[1:])
# write data
for i in range(0, len(dependent vars)):

s = str(dependent vars[i])
for var in independent vars[i]:

s += ‘,’
s += str(var)

s += ‘\n’
f.write(s)

# close file
f.close()

## SOME SUMMARY STATISTICS ##

# import the data that was just exported
raw data = numpy.loadtxt(filename, delimiter=‘,’, skiprows=1, dtype={‘names’:header,

‘formats’:[‘f’]∗len(header)})
# calculate some summary statistics
for var in [‘age’,‘rank’]:

print “\nThe minimum, median, and maximum ” + var + “ are ” + str(min(raw data[var])) +
‘, ’ + str(numpy.median(raw data[var])) + “, and ” + str(max(raw data[var])) + “,
respectively.”

for var in header[5:]:
if var == header[5:][0]: print “\nThe total number of observations where each dummy variable

is true are as follows.”
print var, “\t”, sum(raw data[var])

## ESTIMATE BASELINE MODEL ##

model = sm.MNLogit(dependent vars, independent vars)
estimate using gretl = False
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if estimate using gretl:
# use the optimizers used by the MNLogit function in StatsModel to estimate the model
converged = False
while converged == False:

fitted for baseline = model.fit(disp=False)
converged = fitted for baseline.mle retvals[‘converged’]

else:
# use estimated parameters from gretl and just use the MNLogit function for var−covar

estimates
start params = []
filename = filepath + “start params for baseline model.txt”
f = open(filename, “r”)
lines = f.readlines()
for line in lines[len(lines) − n of independent vars ∗ 2:]:

start params.append(float(line.replace(‘\n’, ‘’)))
f.close()
# fit model
fitted for baseline = model.fit(method=‘bfgs’, maxiter=0, disp=False,

start params=numpy.array(start params))
#print fitted for baseline.summary(yname=header[0], xname=header[1:]) # de−comment to

print summary of estimated model
# As a check, it can be shown that the econometric program gretl 1.9.14 generates the same

estimates (ignoring floating point errors) as the MNLogit function in the StatsModel, so we
will simply use the estimates generated by the latter.

## SEC. 4.4.3., ESP. FIGS. 4.4 TO 4.7: PREDICTED PROBABILITIES ##

exits = [‘remain wealthy’, ‘exit by decline’, ‘exit by death’] # ignoring exit by renunciation of
citizenship for reasons discussed in the essay

ages = range(20, 100+1) # select ages
ranks = [1]
ranks.extend(range(10, 400+1, 10)) # select ranks
durations = range(1, 28+1) # select durations

# set the following to True to re−estimate confidence intervals if they’ve already been estimated
re estimate = False
# check if confidence intervals have already been estimated
filenames = [filepath + + “.pkl” for in [“prob of exit by age”, “prob of exit by rank”,

“prob of exit by duration”, “prob of exit by year”]]
already estimated = False not in [isfile(filename) for filename in filenames]
# estimate or re−estimate
if not already estimated or re estimate:

# construct Krinsky−Robb confidence intervals by taking a large number of draws from a
multivariate normal with means equal to the estimated parameters and var−covar matrix
equal to the estimated var−covar matrix

numpy.random.seed(250624)
redrawn parameters =

numpy.random.multivariate normal(mean=fitted for baseline.params.flatten(‘F’),
cov=fitted for baseline.cov params(), size=10000)

# probs of exits by ages
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prob of exit by age = dict(zip(exits, [dict(zip([‘lower’, ‘point’, ‘upper’], [dict(zip(ages, [[] for
age in ages])) for in [‘lower’, ‘point’, ‘upper’]])) for exit in exits]))

# for each age
for age in ages:

X = [1, age, age ∗ age, 194, 0] # rank of 194, no left censoring
X.extend([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) #

1996
X.extend([0 for in range(2, 28+1)]) # duration of one year
n = len(X)
# point estimates for probs, given estimated parameters
eXb1 = numpy.exp(numpy.dot(X, fitted for baseline.params.flatten(‘F’)[0:n]))
eXb2 = numpy.exp(numpy.dot(X, fitted for baseline.params.flatten(‘F’)[n:]))
denominator = 1. + eXb1 + eXb2
prob of exit by age[‘remain wealthy’][‘point’][age] = 1. / denominator
prob of exit by age[‘exit by decline’][‘point’][age] = eXb1 / denominator
prob of exit by age[‘exit by death’][‘point’][age] = eXb2 / denominator
# point estimates for probs, given redrawn parameters
estimates for = dict(zip(exits, [[] for exit in exits]))
for b in redrawn parameters:

eXb1 = numpy.exp(numpy.dot(X, b[0:n]))
eXb2 = numpy.exp(numpy.dot(X, b[n:]))
denominator = 1. + eXb1 + eXb2
estimates for[‘remain wealthy’].append(1. / denominator)
estimates for[‘exit by decline’].append(eXb1 / denominator)
estimates for[‘exit by death’].append(eXb2 / denominator)

# get 95% CI
for exit in exits:

prob of exit by age[exit][‘lower’][age] = scipy.stats.mstats.mquantiles(estimates for[exit],
prob=[2.5/100.], alphap=1/3., betap=1/3.)[0]

prob of exit by age[exit][‘upper’][age] = scipy.stats.mstats.mquantiles(estimates for[exit],
prob=[97.5/100.], alphap=1/3., betap=1/3.)[0]

# dump results
filename = filepath + “prob of exit by age.pkl”
pickle.dump(prob of exit by age, open(filename, ‘wb’))

# probs of exits by rank
prob of exit by rank = dict(zip(exits, [dict(zip([‘lower’, ‘point’, ‘upper’], [dict(zip(ranks, [None

for rank in ranks])) for in [‘lower’, ‘point’, ‘upper’]])) for exit in exits]))
# for each rank
for rank in ranks:

X = [1, 64, 4096, rank, 0] # 64 years of age, no left censoring
X.extend([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) #

1996
X.extend([0 for in range(2, 28+1)]) # duration of one year
n = len(X)
# point estimates for probs, given estimated parameters
eXb1 = numpy.exp(numpy.dot(X, fitted for baseline.params.flatten(‘F’)[0:n]))
eXb2 = numpy.exp(numpy.dot(X, fitted for baseline.params.flatten(‘F’)[n:]))
denominator = 1. + eXb1 + eXb2
prob of exit by rank[‘remain wealthy’][‘point’][rank] = 1. / denominator
prob of exit by rank[‘exit by decline’][‘point’][rank] = eXb1 / denominator
prob of exit by rank[‘exit by death’][‘point’][rank] = eXb2 / denominator
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# point estimates for probs, given redrawn parameters
estimates for = dict(zip(exits, [[] for exit in exits]))
for b in redrawn parameters:

eXb1 = numpy.exp(numpy.dot(X, b[0:n]))
eXb2 = numpy.exp(numpy.dot(X, b[n:]))
denominator = 1. + eXb1 + eXb2
estimates for[‘remain wealthy’].append(1. / denominator)
estimates for[‘exit by decline’].append(eXb1 / denominator)
estimates for[‘exit by death’].append(eXb2 / denominator)

# get 95% CI
for exit in exits:

prob of exit by rank[exit][‘lower’][rank] = scipy.stats.mstats.mquantiles(estimates for[exit],
prob=[2.5/100.], alphap=1/3., betap=1/3.)[0]

prob of exit by rank[exit][‘upper’][rank] = scipy.stats.mstats.mquantiles(estimates for[exit],
prob=[97.5/100.], alphap=1/3., betap=1/3.)[0]

# dump results
filename = filepath + “prob of exit by rank.pkl”
pickle.dump(prob of exit by rank, open(filename, ‘wb’))

# probs of exits by duration
prob of exit by duration = dict(zip(exits, [dict(zip([‘lower’, ‘point’, ‘upper’],

[dict(zip(years less last, [None for duration in durations])) for in [‘lower’, ‘point’,
‘upper’]])) for exit in exits]))

# for each duration
for duration in durations:

X = [1, 64, 4096, 194, 0] # 64 years of age, rank of 194, no left censoring
X.extend([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) #

1996
duration dummies = [0 for in range(2, 28+1)]
if duration == 1:

pass
else:

duration dummies[range(2, 28+1).index(duration)] = 1
X.extend(duration dummies)
n = len(X)
# point estimates for probs, given estimated parameters
eXb1 = numpy.exp(numpy.dot(X, fitted for baseline.params.flatten(‘F’)[0:n]))
eXb2 = numpy.exp(numpy.dot(X, fitted for baseline.params.flatten(‘F’)[n:]))
denominator = 1. + eXb1 + eXb2
prob of exit by duration[‘remain wealthy’][‘point’][duration] = 1. / denominator
prob of exit by duration[‘exit by decline’][‘point’][duration] = eXb1 / denominator
prob of exit by duration[‘exit by death’][‘point’][duration] = eXb2 / denominator
# point estimates for probs, given redrawn parameters
estimates for = dict(zip(exits, [[] for exit in exits]))
for b in redrawn parameters:

eXb1 = numpy.exp(numpy.dot(X, b[0:n]))
eXb2 = numpy.exp(numpy.dot(X, b[n:]))
denominator = 1. + eXb1 + eXb2
estimates for[‘remain wealthy’].append(1. / denominator)
estimates for[‘exit by decline’].append(eXb1 / denominator)
estimates for[‘exit by death’].append(eXb2 / denominator)

# get 95% CI
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for exit in exits:
prob of exit by duration[exit][‘lower’][duration] =

scipy.stats.mstats.mquantiles(estimates for[exit], prob=[2.5/100.], alphap=1/3.,
betap=1/3.)[0]

prob of exit by duration[exit][‘upper’][duration] =
scipy.stats.mstats.mquantiles(estimates for[exit], prob=[97.5/100.], alphap=1/3.,
betap=1/3.)[0]

# dump results
filename = filepath + “prob of exit by duration.pkl”
pickle.dump(prob of exit by duration, open(filename, ‘wb’))

# probs of exits by year
prob of exit by year = dict(zip(exits, [dict(zip([‘lower’, ‘point’, ‘upper’],

[dict(zip(years less last, [None for year in years less last])) for in [‘lower’, ‘point’,
‘upper’]])) for exit in exits]))

# for each year
for year in years less last:

X = [1, 64, 4096, 194, 0] # 64 years of age, rank of 194, no left censoring
year dummies = [0 for in years less initial and last]
if year == ‘1982’:

pass
else:

year dummies[years less initial and last.index(year)] = 1
X.extend(year dummies)
X.extend([0 for in range(2, 28+1)]) # duration of one year
n = len(X)
# point estimates for probs, given estimated parameters
eXb1 = numpy.exp(numpy.dot(X, fitted for baseline.params.flatten(‘F’)[0:n]))
eXb2 = numpy.exp(numpy.dot(X, fitted for baseline.params.flatten(‘F’)[n:]))
denominator = 1. + eXb1 + eXb2
prob of exit by year[‘remain wealthy’][‘point’][year] = 1. / denominator
prob of exit by year[‘exit by decline’][‘point’][year] = eXb1 / denominator
prob of exit by year[‘exit by death’][‘point’][year] = eXb2 / denominator
# point estimates for probs, given redrawn parameters
estimates for = dict(zip(exits, [[] for exit in exits]))
for b in redrawn parameters:

eXb1 = numpy.exp(numpy.dot(X, b[0:n]))
eXb2 = numpy.exp(numpy.dot(X, b[n:]))
denominator = 1. + eXb1 + eXb2
estimates for[‘remain wealthy’].append(1. / denominator)
estimates for[‘exit by decline’].append(eXb1 / denominator)
estimates for[‘exit by death’].append(eXb2 / denominator)

# get 95% CI
for exit in exits:

prob of exit by year[exit][‘lower’][year] = scipy.stats.mstats.mquantiles(estimates for[exit],
prob=[2.5/100.], alphap=1/3., betap=1/3.)[0]

prob of exit by year[exit][‘upper’][year] = scipy.stats.mstats.mquantiles(estimates for[exit],
prob=[97.5/100.], alphap=1/3., betap=1/3.)[0]

# dump results
filename = filepath + “prob of exit by year.pkl”
pickle.dump(prob of exit by year, open(filename, ‘wb’))
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else:

# load results that were dumped using pickle
prob of exit by age = pickle.load(open(filepath + “prob of exit by age.pkl”, ‘rb’))
prob of exit by rank = pickle.load(open(filepath + “prob of exit by rank.pkl”, ‘rb’))
prob of exit by duration = pickle.load(open(filepath + “prob of exit by duration.pkl”, ‘rb’))
prob of exit by year = pickle.load(open(filepath + “prob of exit by year.pkl”, ‘rb’))

## SEC. 4.4.3: PREDICTION ERRORS ##

prediction error for = dict()
translation for exit number = dict(zip([0, 1, 2], [‘Appeared again’, ‘Exited by decline’, ‘Exited by

death’]))
for i in range(0, len(data for spells)):

data for spell = data for spells[i]
name = names associated w spells[i]
for data for year of spell in data for spell:

# point estimates for probs, given estimated parameters
prob of = dict()
X = data for year of spell[1:]
n = len(X)
eXb1 = numpy.exp(numpy.dot(X, fitted for baseline.params.flatten(‘F’)[0:n]))
eXb2 = numpy.exp(numpy.dot(X, fitted for baseline.params.flatten(‘F’)[n:]))
denominator = 1. + eXb1 + eXb2
prob of[‘Appeared again’] = 1. / denominator
prob of[‘Exited by decline’] = eXb1 / denominator
prob of[‘Exited by death’] = eXb2 / denominator
# actual outcome
actual outcome = translation for exit number[data for year of spell[0]]
# actual outcome was most likely outcome(s)?
max prob = max([prob of[outcome] for outcome in [‘Appeared again’, ‘Exited by decline’,

‘Exited by death’]])
most prob outcome = list()
for outcome in [‘Appeared again’, ‘Exited by decline’, ‘Exited by death’]:

if prob of[outcome] == max prob:
most prob outcome.append(outcome)

# if actual outcome was not the most probable outcome, get the prediction error
if actual outcome in most prob outcome:

pass
else:

if 1 in data for year of spell[6:6+len(years less initial and last)]:
year = years[data for year of spell[6:6+len(years less initial and last)].index(1)+1]

else:
year = ‘1982’

next year = str(int(year) + 1)
dyear = year + ‘−−’ + next year
# prediction error
for outcome in [‘Appeared again’, ‘Exited by decline’, ‘Exited by death’]:

if outcome == actual outcome:
assert len(most prob outcome) == 1, “Ties in most−probable outcome”
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if i==0: print “\nname \tdyear \tactual outcome \tmost probable outcome
\tprediction error”

# only print especially egregious prediction errors
if (1. − prob of[outcome]) > 0.995:

print name, “\t”, dyear, “\t”, actual outcome, “\t”, most prob outcome[0], “\t”, (1.
− prob of[outcome])

## SEC. C.3: TEST OF THE IIA ASSUMPTION FOR BASELINE DURATION MODEL ##

# define dict for storing results
results of iaa test = dict()
# set the following to True to re−estimate if already estimated
re estimate = False
# check if already been estimated
filename = filepath + + “results of iaa test.pkl”
already estimated = isfile(filename)
# estimate or re−estimate
if not already estimated or re estimate:

# get point estimates, var−covar matrix, and relative risks for full model
b full = fitted for baseline.params.flatten(‘F’)
cov full = fitted for baseline.cov params()
X = [1, 64, 4096, 194, 0] # 64 years of age, rank of 194, no left censoring
X.extend([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) # 1996
X.extend([0 for in range(2, 28+1)]) # duration of one year
n = len(X)
eXb1 = numpy.exp(numpy.dot(X, b full[0:n]))
eXb2 = numpy.exp(numpy.dot(X, b full[n:]))
denominator = 1. + eXb1 + eXb2
prob of remain wealthy = 1. / denominator
prob of exit by decline = eXb1 / denominator
prob of exit by death = eXb2 / denominator
relative risk of exit by decline to remain wealthy = prob of exit by decline /

prob of remain wealthy
relative risk of exit by death to remain wealthy = prob of exit by death /

prob of remain wealthy
relative risk of exit by decline to exit by death = prob of exit by decline /

prob of exit by death

# re−estimate model ignoring exit by decline
dependent vars = list()
independent vars = list()
for data for spell in data for spells:

for data for year of spell in data for spell:
dependent var = data for year of spell[0]
if (data for year of spell[0] == 0) or (data for year of spell[0] == 2): # ignore spells that

end with exit by decline
dependent vars.append(data for year of spell[0])
independent vars.append(numpy.array(data for year of spell[1:]))

dependent vars = numpy.array(dependent vars)
independent vars = numpy.array(independent vars)
model subset = sm.MNLogit(dependent vars, independent vars)
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numpy.random.seed(250624)
fitted subset = model subset.fit(disp=False)
# get t−stat and p−value
b subset = fitted subset.params.flatten(‘F’)
cov subset = fitted subset.cov params()
n = len(fitted subset.params)
stat = numpy.matrix(b subset − b full[n:]) ∗ numpy.matrix(cov subset − cov full[n:,n:]).I ∗

numpy.matrix(b subset − b full[n:]).T
dof = numpy.linalg.matrix rank(cov subset − cov full[n:,n:])
# store results

= “t−stat and p−value for ignoring exit by decline”
results of iaa test[ ] = (stat[(0,0)], 1.0 − scipy.stats.chi2.cdf(stat[(0,0)], dof))
# get relative risks
eXb2 = numpy.exp(numpy.dot(X, b subset))
denominator = 1. + eXb2
prob of remain wealthy = 1. / denominator
prob of exit by death = eXb2 / denominator
relative risk of exit by death to remain wealthy subset = prob of exit by death /

prob of remain wealthy
# store results

= “relative risk of exit by death to remain wealthy, full model”
results of iaa test[ ] = relative risk of exit by death to remain wealthy

= “relative risk of exit by death to remain wealthy, ignoring exit by decline”
results of iaa test[ ] = relative risk of exit by death to remain wealthy subset

# re−estimate model ignoring exit by death
dependent vars = list()
independent vars = list()
for data for spell in data for spells:

for data for year of spell in data for spell:
dependent var = data for year of spell[0]
if (data for year of spell[0] == 0) or (data for year of spell[0] == 1): # ignore spells that

end with exit by death
dependent vars.append(data for year of spell[0])
independent vars.append(numpy.array(data for year of spell[1:]))

dependent vars = numpy.array(dependent vars)
independent vars = numpy.array(independent vars)
model subset = sm.MNLogit(dependent vars, independent vars)
# estimate model on subset
numpy.random.seed(250624)
fitted subset = model subset.fit(disp=False)
# get t−stat and p−value
b subset = fitted subset.params.flatten(‘F’)
cov subset = fitted subset.cov params()
n = len(fitted subset.params)
stat = numpy.matrix(b subset − b full[0:n]) ∗ numpy.matrix(cov subset − cov full[0:n,0:n]).I ∗

numpy.matrix(b subset − b full[0:n]).T
dof = numpy.linalg.matrix rank(cov subset − cov full[0:n,0:n])
# store results

= “t−stat and p−value for ignoring exit by death”
results of iaa test[ ] = (stat[(0,0)], 1.0 − scipy.stats.chi2.cdf(stat[(0,0)], dof))
# get relative risk for model estimated on subset
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eXb1 = numpy.exp(numpy.dot(X, b subset))
denominator = 1. + eXb1
prob of remain wealthy = 1. / denominator
prob of exit by decline = eXb1 / denominator
relative risk of exit by decline to remain wealthy subset = prob of exit by decline /

prob of remain wealthy
# store results

= “relative risk of exit by decline to remain wealthy, full model”
results of iaa test[ ] = relative risk of exit by decline to remain wealthy

= “relative risk of exit by decline to remain wealthy, ignoring exit by death”
results of iaa test[ ] = relative risk of exit by decline to remain wealthy subset

# re−estimate model ignoring remain wealthy
dependent vars = list()
independent vars = list()
for data for spell in data for spells:

for data for year of spell in data for spell:
dependent var = data for year of spell[0]
if (data for year of spell[0] == 1) or (data for year of spell[0] == 2): # ignore remain

wealthy
dependent vars.append(data for year of spell[0])
independent vars.append(numpy.array(data for year of spell[1:]))

dependent vars = numpy.array(dependent vars)
independent vars = numpy.array(independent vars)
model subset = sm.MNLogit(dependent vars, independent vars)
# estimate model on subset
numpy.random.seed(250624)
fitted subset = model subset.fit(disp=False)
b subset = fitted subset.params.flatten(‘F’)
cov subset = fitted subset.cov params()
n = len(fitted subset.params)
# re−estimate full model with exit by decline as base so that the estimates are comparable
dependent vars = list()
independent vars = list()
for data for spell in data for spells:

for data for year of spell in data for spell:
# re−define dependent variable so that exit by decline is the base
if data for year of spell[0] == 0:

dependent vars.append(1) # 0=remain wealthy becomes 1
if data for year of spell[0] == 1:

dependent vars.append(0) # 1=exit by decline becomes 0
if data for year of spell[0] == 2:

dependent vars.append(2) # 2=exit by death stays as 2
independent vars.append(numpy.array(data for year of spell[1:]))

dependent vars = numpy.array(dependent vars)
independent vars = numpy.array(independent vars)
model = sm.MNLogit(dependent vars, independent vars)
numpy.random.seed(250624)
fitted w different base = model.fit(disp=False)
# get t−stat and p−value
b full = fitted w different base.params.flatten(‘F’)
cov full = fitted w different base.cov params()
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stat = numpy.matrix(b subset − b full[n:]) ∗ numpy.matrix(cov subset − cov full[n:,n:]).I ∗
numpy.matrix(b subset − b full[n:]).T

dof = numpy.linalg.matrix rank(cov subset − cov full[n:,n:])
# store results

= “t−stat and p−value for ignoring remaining wealthy”
results of iaa test[ ] = (stat[(0,0)], 1.0 − scipy.stats.chi2.cdf(stat[(0,0)], dof))
# get relative risk for full model with different base
eXb2 = numpy.exp(numpy.dot(X, b subset))
denominator = 1. + eXb2
prob of exit by decline = 1. / denominator
prob of exit by death = eXb2 / denominator
relative risk of exit by decline to exit by death subset = prob of exit by decline /

prob of exit by death
# store results

= “relative risk of exit by decline to exit by death, full model”
results of iaa test[ ] = relative risk of exit by decline to exit by death

= “relative risk of exit by decline to exit by death, ignoring remaining wealthy”
results of iaa test[ ] = relative risk of exit by decline to exit by death subset

# dump all results
filename = filepath + “results of iaa test.pkl”
pickle.dump(results of iaa test, open(filename, ‘wb’))

else:

# load results that were dumped using pickle
results of iaa test = pickle.load(open(filepath + “results of iaa test.pkl”, ‘rb’))

organized keys = [‘t−stat and p−value for ignoring exit by decline’,
‘t−stat and p−value for ignoring exit by death’,
‘t−stat and p−value for ignoring remaining wealthy’,
‘relative risk of exit by death to remain wealthy, full model’,
‘relative risk of exit by death to remain wealthy, ignoring exit by decline’,
‘relative risk of exit by decline to remain wealthy, full model’,
‘relative risk of exit by decline to remain wealthy, ignoring exit by death’,
‘relative risk of exit by decline to exit by death, full model’,
‘relative risk of exit by decline to exit by death, ignoring remaining wealthy’]

# print results
print “\nresults related to test of IIA assumption in baseline duration model”
for key in organized keys:

print key, “\t”, results of iaa test[key]

## GIVING IT AWAY? ##

# The following code relates to the extension to the baseline duration model that includes a
philanthropic dummy

## GET SURVIVAL DATA FOR PHILANTHROPIC MODEL ##

# load data on Forbes 400 members on the Philanthropy 50 or Slate 60 (note that we only have
that data since 1996)
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filename = filepath + “philanthropy 50 and slate 60 data.txt”
header = [‘year’, ‘philanthropy 50 or slate 60 donor name(s)’, ‘forbes 400 name(s)’, ‘total

amount committed’, ‘total amount committed in millions’]
rawdata = numpy.loadtxt(filename, delimiter=‘\t’, skiprows=19, dtype={‘names’:(header),

‘formats’:([‘<S100’ for in range(0, len(header))])})
# get dict of names on Philanthropy 50 and Slate 60 data
years since 1996 = [str(y) for y in range(1996, 2013+1)]
philanthropists in = dict(zip(years since 1996, [[] for year in years since 1996]))
for i in range(0, len(rawdata[‘year’])):

year = rawdata[‘year’][i]
if year in years:

donor or donors = rawdata[‘forbes 400 name(s)’][i]
# in the data, different names are separated by ‘ and ’
if ‘ and ’ in donor or donors:

donors = donor or donors.split(‘ and ’)
else:

donors = [donor or donors]
for name in donors:

if name in names:
if data[name][‘wealth’][year] != ‘’:

philanthropists in[year].append(name)

# philantropy dummy for just the same year or any earlier year?
just the same year = False
# select years
years since 1996 = [str(y) for y in range(1996, 2013+1)]
years since 1996 less initial and last = years since 1996[1:−1]
# keep track of names associated with each spell
names associated w spells = list()
# keep track of ages and ranks
ages as dependent vars, ranks as dependent vars = list(), list()
# list of data for spells
data for spells = list()
# for each name
for name in names:

# get spells
spells = []
spell = []
for year in years:

wealth = data[name][‘wealth’][year]
if wealth != ‘’:

spell.append(year)
else:

spells.append(spell)
spell = []

spells.append(spell)
# remove empty spells
while [] in spells:

spells.remove([])
# for each spell, record data
while len(spells) > 0:

spell = spells.pop()
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# as long as the spell didn’t start in the last year
if spell == [years[−1]]:

pass
else:

# list of data for spell
data for spell = list()
# for each year of the spell
for i in range(0, len(spell)):

# year
year = spell[i]
next year = str(int(year)+1)
# if year is not the last year
if year != years[−1]:

# data for given year of the spell
data for year of spell = list()
# remains wealthy?
remains wealthy = int(i != len(spell)−1)
# exits by decline in wealth?
exits by decline in wealth = int(data[name][‘wealth’][next year] == ‘’)
# exits by death?
exits by death = int(name in dead in[next year])
# exits by renunciation of citizenship?
exits by renunciation of citizenship = int(name in renunciants in[next year])
# record dependent variable
if exits by renunciation of citizenship:

dependent var = 3 # where 3 = exits by renunciation of citizenship:
elif exits by death:

dependent var = 2 # where 2 = exits by death
elif exits by decline in wealth:

dependent var = 1 # where 1 = exits by decline in wealth
else: # remains wealthy

dependent var = 0 # where 0 = remains wealthy
data for year of spell.append(dependent var)
# independent variables
# age
age = int(data[name][‘age’][year])
age squared = age ∗ age
# rank
rank = summary stats[‘wealths’][year].index(float(data[name][‘wealth’][year])) + 1
# left−censored dummy
left censored = int(‘1982’ in spell)
data for year of spell.extend([1., age, age squared, rank, left censored]) # include a

constant
# philanthropists?
if int(year) > 1995:

# same year?
if just the same year:

philanthropic = int(name in philanthropists in[year])
# any earlier year or same year?
else:

philanthropic = int(True in [name in philanthropists in[str(earlier year)] for
earlier year in range(1996, int(year)+1)])
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# append to data set
data for year of spell.append(philanthropic)

else:
data for year of spell.append(‘−999’)

# dummies for years, but drop 1996
data for year of spell.extend([int(year == ) for in

years since 1996 less initial and last])
# dummies for durations of given number of years, except when there is a perfect

prediction problem
duration = (i + 1)
for in range(2, 27+1):

if 13 <= <= 15:
pass

else:
data for year of spell.append(int(duration == ))

data for year of spell.append(int(13 <= duration <= 15)) # 13, 14, or 15 years
data for year of spell.append(int(duration > 27)) # 28 or more years
# add to list
# ignore spells that end with exit by renunciation of citizenship
# also, ignore years of spells that are before 1996
if (data for year of spell[0] != 3) and (int(year) > 1995):

data for spell.append(data for year of spell)
ages as dependent vars.append(age)
ranks as dependent vars.append(rank)

# add to list
if (data for year of spell[0] != 3) and (int(year) > 1995):

data for spells.append(data for spell)
names associated w spells.append(name)

# No one died after their 14th consecutive year on the list, so we’ll make a dummy for 13, 14, or
15 years.

## ORGANIZE PHILANTHROPIC DATA AND EXPORT IT ##

dependent vars = list()
independent vars = list()
for data for spell in data for spells:

for data for year of spell in data for spell:
dependent vars.append(data for year of spell[0])
independent vars.append(numpy.array(data for year of spell[1:]))

dependent vars = numpy.array(dependent vars)
independent vars = numpy.array(independent vars)
# export to file
f = open(filepath + “exported survival data w philanthropic just the same year ” +

str(just the same year) + “.csv”, ‘w’)
# write header
s = “dependent var,constant,age,age squared,rank,left censored,philanthropic,”
for year in years since 1996 less initial and last:

s += “d” + year + “,”
for duration in range(2, 27+1):

if 13 <= duration <=15:
pass
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else:
s += “d” + str(duration) + “,”

s += “d13 to 15” + “,”
s += “d28 or more” + “\n”
f.write(s)
# write data
for i in range(0, len(dependent vars)):

s = str(dependent vars[i])
for var in independent vars[i]:

s += ‘,’
s += str(var)

s += ‘\n’
f.write(s)

# close file
f.close()

## ESTIMATE PHILANTHROPIC MODEL ##

model = sm.MNLogit(dependent vars, independent vars)
fitted for philanthropic = model.fit(disp=False)
#print fitted for philanthropic.summary()

# define dict for storing results on probs of exits for a typical person
philanthropic types = [‘on philanthropy 50 list’, ‘not on philanthropy 50 list’]
prob of exit by philanthropic type = dict(zip(exits, [dict(zip([‘lower’, ‘point’, ‘upper’],

[dict(zip(philanthropic types, [None for type in philanthropic types])) for in [‘lower’,
‘point’, ‘upper’]])) for exit in exits]))

# set the following to True to re−estimate if already estimated
re estimate = False
# check if already been estimated
filename = filepath + + “prob of exit by philanthropic type just the same year ” +

str(just the same year) + “.pkl”
already estimated = isfile(filename)
# estimate or re−estimate
if not already estimated or re estimate:

# construct Krinsky−Robb confidence intervals by taking a large number of draws from a
multivariate normal with means equal to the estimated parameters and var−covar matrix
equal to the estimated var−covar matrix

numpy.random.seed(250624)
redrawn parameters =

numpy.random.multivariate normal(mean=fitted for philanthropic.params.flatten(‘F’),
cov=fitted for philanthropic.cov params(), size=10000)

# for each type
for type in philanthropic types:

X = [1, 64, 4096, 194, 0] # 64 years of age, rank of 194, no left censoring
if type == ‘on philanthropy 50 list’:

X.append(1)
else:

X.append(0)
X.extend([0 for in years since 1996 less initial and last]) # 1996
X.extend([0 for in range(1, 25+1)]) # duration of one year
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n = len(X)
# point estimates for probs, given estimated parameters
eXb1 = numpy.exp(numpy.dot(X, fitted for philanthropic.params.flatten(‘F’)[0:n]))
eXb2 = numpy.exp(numpy.dot(X, fitted for philanthropic.params.flatten(‘F’)[n:]))
denominator = 1. + eXb1 + eXb2
prob of exit by philanthropic type[‘remain wealthy’][‘point’][type] = 1. / denominator
prob of exit by philanthropic type[‘exit by decline’][‘point’][type] = eXb1 / denominator
prob of exit by philanthropic type[‘exit by death’][‘point’][type] = eXb2 / denominator
# point estimates for probs, given redrawn parameters
estimates for = dict(zip(exits, [[] for exit in exits]))
for b in redrawn parameters:

eXb1 = numpy.exp(numpy.dot(X, b[0:n]))
eXb2 = numpy.exp(numpy.dot(X, b[n:]))
denominator = 1. + eXb1 + eXb2
estimates for[‘remain wealthy’].append(1. / denominator)
estimates for[‘exit by decline’].append(eXb1 / denominator)
estimates for[‘exit by death’].append(eXb2 / denominator)

# get 95% CI
for exit in exits:

prob of exit by philanthropic type[exit][‘lower’][type] =
scipy.stats.mstats.mquantiles(estimates for[exit], prob=[2.5/100.], alphap=1/3.,
betap=1/3.)[0]

prob of exit by philanthropic type[exit][‘upper’][type] =
scipy.stats.mstats.mquantiles(estimates for[exit], prob=[97.5/100.], alphap=1/3.,
betap=1/3.)[0]

# dump results
filename = filepath + “prob of exit by philanthropic type just the same year ” +

str(just the same year) + “.pkl”
pickle.dump(prob of exit by philanthropic type, open(filename, ‘wb’))

else:
# load results that were dumped using pickle
prob of exit by philanthropic type = pickle.load(open(filepath +

“prob of exit by philanthropic type just the same year ” + str(just the same year) +
“.pkl”, ‘rb’))

print “\non philanthropy 50 list vs. not on, typical person”
for exit in exits:

for type in philanthropic types:
print exit, “\t”, type, “\t”, prob of exit by philanthropic type[exit][‘lower’][type], “\t”,

prob of exit by philanthropic type[exit][‘point’][type], “\t”,
prob of exit by philanthropic type[exit][‘upper’][type]

## PROFLIGATE HEIRS? ##

# The following code relates to the extension to the baseline duration model that includes a
self−made dummy

## GET SURVIVAL DATA FOR SELF−MADE MODEL ##

# keep track of names associated with each spell
names associated w spells = list()
# keep track of ages and ranks
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ages as dependent vars, ranks as dependent vars = list(), list()
# list of data for spells
data for spells = list()
# for each name
for name in names:

# get spells
spells = []
spell = []
for year in years:

wealth = data[name][‘wealth’][year]
if wealth != ‘’:

spell.append(year)
else:

spells.append(spell)
spell = []

spells.append(spell)
# remove empty spells
while [] in spells:

spells.remove([])
# for each spell, record data
while len(spells) > 0:

spell = spells.pop()
# as long as the spell didn’t start in the last year
if spell == [years[−1]]:

pass
else:

# list of data for spell
data for spell = list()
# for each year of the spell
for i in range(0, len(spell)):

# year
year = spell[i]
next year = str(int(year)+1)
# if year is not the last year
if year != years[−1]:

# data for given year of the spell
data for year of spell = list()
# remains wealthy?
remains wealthy = int(i != len(spell)−1)
# exits by decline in wealth?
exits by decline in wealth = int(data[name][‘wealth’][next year] == ‘’)
# exits by death?
exits by death = int(name in dead in[next year])
# exits by renunciation of citizenship?
exits by renunciation of citizenship = int(name in renunciants in[next year])
# record dependent variable
if exits by renunciation of citizenship:

dependent var = 3 # where 3 = exits by renunciation of citizenship:
elif exits by death:

dependent var = 2 # where 2 = exits by death
elif exits by decline in wealth:

dependent var = 1 # where 1 = exits by decline in wealth
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else: # remains wealthy
dependent var = 0 # where 0 = remains wealthy

data for year of spell.append(dependent var)
# independent variables
# age
age = int(data[name][‘age’][year])
age squared = age ∗ age
# rank
rank = summary stats[‘wealths’][year].index(float(data[name][‘wealth’][year])) + 1
# left−censored dummy
left censored = int(‘1982’ in spell)
data for year of spell.extend([1., age, age squared, rank, left censored]) # include a

constant
# self−made?
if int(year) > 1995:

data for year of spell.append(int(data[name][‘selfmade or inherited’][year] == ‘Self
made’))

else:
data for year of spell.append(‘−999’)

# dummies for years, but drop 1996
data for year of spell.extend([int(year == ) for in

years since 1996 less initial and last])
# dummies for durations of given number of years, except when there is a perfect

prediction problem
duration = (i + 1)
for in range(2, 27+1):

if 13 <= <= 15:
pass

else:
data for year of spell.append(int(duration == ))

data for year of spell.append(int(13 <= duration <= 15)) # 13, 14, or 15 years
data for year of spell.append(int(duration > 27)) # 28 or more years
# add to list
# ignore spells that end with exit by renunciation of citizenship
# also, ignore years of spells that are before 1996
if (data for year of spell[0] != 3) and (int(year) > 1995):

data for spell.append(data for year of spell)
ages as dependent vars.append(age)
ranks as dependent vars.append(rank)

# add to list
if (data for year of spell[0] != 3) and (int(year) > 1995):

data for spells.append(data for spell)
names associated w spells.append(name)

# No one died after their 14th consecutive year on the list, so we’ll make a dummy for 13, 14, or
15 years

## ORGANIZE SELF−MADE DATA AND EXPORT IT ##

# organize data for estimation
dependent vars = list()
independent vars = list()
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for data for spell in data for spells:
for data for year of spell in data for spell:

dependent vars.append(data for year of spell[0])
independent vars.append(numpy.array(data for year of spell[1:]))

dependent vars = numpy.array(dependent vars)
independent vars = numpy.array(independent vars)
# export to file
f = open(filepath + “exported survival data w self made.csv”, ‘w’)
# write header
s = “dependent var,constant,age,age squared,rank,left censored,self made,”
for year in years since 1996 less initial and last:

s += “d” + year + “,”
for duration in range(2, 27+1):

if 13 <= duration <=15:
pass

else:
s += “d” + str(duration) + “,”

s += “d13 to 15” + “,”
s += “d28 or more” + “\n”
f.write(s)
# write data
for i in range(0, len(dependent vars)):

s = str(dependent vars[i])
for var in independent vars[i]:

s += ‘,’
s += str(var)

s += ‘\n’
f.write(s)

# close file
f.close()

## ESTIMATE SELF−MADE MODEL ##

model = sm.MNLogit(dependent vars, independent vars)
fitted for self made = model.fit(disp=False)
#print fitted for self made.summary()

# probs of exits by self made or not
self made types = [‘self made’, ‘not self made’]
prob of exit by self made type = dict(zip(exits, [dict(zip([‘lower’, ‘point’, ‘upper’],

[dict(zip(self made types, [None for type in self made types])) for in [‘lower’, ‘point’,
‘upper’]])) for exit in exits]))

prob of exit diff btw self made and not = dict(zip(exits, [dict(zip([‘lower’, ‘point’, ‘upper’],
[dict(zip(ranks, [None for rank in ranks])) for in [‘lower’, ‘point’, ‘upper’]])) for exit in
exits]))

# set the following to True to re−estimate confidence intervals if they’ve already been estimated
re estimate = False
# check if confidence intervals have already been estimated
filenames = [filepath + + “.pkl” for in [“prob of exit by self made type”,

“prob of exit diff btw self made and not”]]
already estimated = False not in [isfile(filename) for filename in filenames]
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# estimate or re−estimate
if not already estimated or re estimate:

# construct Krinsky−Robb confidence intervals by taking a large number of draws from a
multivariate normal with means equal to the estimated parameters and var−covar matrix
equal to the estimated var−covar matrix

numpy.random.seed(250624)
redrawn parameters =

numpy.random.multivariate normal(mean=fitted for self made.params.flatten(‘F’),
cov=fitted for self made.cov params(), size=10000)

# probs of exits for typical person who is or is not philanthropic
for type in self made types:

X = [1, 64, 4096, 194, 0] # 64 years of age, rank of 194, no left censoring
if type == ‘self made’: # self made or not

X.append(1)
else:

X.append(0)
X.extend([0 for in years since 1996 less initial and last]) # 1996
X.extend([0 for in range(1, 25+1)]) # duration of one year
n = len(X)
# point estimates for probs, given estimated parameters
eXb1 = numpy.exp(numpy.dot(X, fitted for self made.params.flatten(‘F’)[0:n]))
eXb2 = numpy.exp(numpy.dot(X, fitted for self made.params.flatten(‘F’)[n:]))
denominator = 1. + eXb1 + eXb2
prob of exit by self made type[‘remain wealthy’][‘point’][type] = 1. / denominator
prob of exit by self made type[‘exit by decline’][‘point’][type] = eXb1 / denominator
prob of exit by self made type[‘exit by death’][‘point’][type] = eXb2 / denominator
# point estimates for probs, given redrawn parameters
estimates for = dict(zip(exits, [[] for exit in exits]))
for b in redrawn parameters:

eXb1 = numpy.exp(numpy.dot(X, b[0:n]))
eXb2 = numpy.exp(numpy.dot(X, b[n:]))
denominator = 1. + eXb1 + eXb2
estimates for[‘remain wealthy’].append(1. / denominator)
estimates for[‘exit by decline’].append(eXb1 / denominator)
estimates for[‘exit by death’].append(eXb2 / denominator)

# get 95% CI
for exit in exits:

prob of exit by self made type[exit][‘lower’][type] =
scipy.stats.mstats.mquantiles(estimates for[exit], prob=[2.5/100.], alphap=1/3.,
betap=1/3.)[0]

prob of exit by self made type[exit][‘upper’][type] =
scipy.stats.mstats.mquantiles(estimates for[exit], prob=[97.5/100.], alphap=1/3.,
betap=1/3.)[0]

# 95% CI for differences by rank
for rank in ranks:

X = dict(zip(self made types, [[1, 64, 4096, rank, 0] for type in self made types])) # age of
64, no left censoring

# self made dummy
for type in self made types:
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if type == ‘self made’:
X[type].append(1)

else:
X[type].append(0)

# year is 1996
year dummies = [0 for in years since 1996 less initial and last]
for type in self made types:

X[type].extend(year dummies)
# duration dummies
for type in self made types:

X[type].extend([0 for in range(1, 25+1)]) # duration of one year
n = len(X[self made types[0]])
# point estimates for probs, given estimated parameters
eXb1 = dict(zip(self made types, [None for type in self made types]))
eXb2 = dict(zip(self made types, [None for type in self made types]))
denominator = dict(zip(self made types, [None for type in self made types]))
for type in self made types:

eXb1[type] = numpy.exp(numpy.dot(X[type], fitted for self made.params.flatten(‘F’)[0:n]))
eXb2[type] = numpy.exp(numpy.dot(X[type], fitted for self made.params.flatten(‘F’)[n:]))
denominator[type] = 1. + eXb1[type] + eXb2[type]

prob of exit diff btw self made and not[‘remain wealthy’][‘point’][rank] = (1. /
denominator[‘self made’]) − (1. / denominator[‘not self made’])

prob of exit diff btw self made and not[‘exit by decline’][‘point’][rank] = (eXb1[‘self made’] /
denominator[‘self made’]) − (eXb1[‘not self made’] / denominator[‘not self made’])

prob of exit diff btw self made and not[‘exit by death’][‘point’][rank] = (eXb2[‘self made’] /
denominator[‘self made’]) − (eXb2[‘not self made’] / denominator[‘not self made’])

# point estimates for probs, given redrawn parameters
estimates for = dict(zip(exits, [[] for exit in exits]))
for b in redrawn parameters:

eXb1 = dict(zip(self made types, [None for type in self made types]))
eXb2 = dict(zip(self made types, [None for type in self made types]))
denominator = dict(zip(self made types, [None for type in self made types]))
for type in self made types:

eXb1[type] = numpy.exp(numpy.dot(X[type], b[0:n]))
eXb2[type] = numpy.exp(numpy.dot(X[type], b[n:]))
denominator[type] = 1. + eXb1[type] + eXb2[type]

estimates for[‘remain wealthy’].append((1. / denominator[‘self made’]) − (1. /
denominator[‘not self made’]))

estimates for[‘exit by decline’].append((eXb1[‘self made’] / denominator[‘self made’]) −
(eXb1[‘not self made’] / denominator[‘not self made’]))

estimates for[‘exit by death’].append((eXb2[‘self made’] / denominator[‘self made’]) −
(eXb2[‘not self made’] / denominator[‘not self made’]))

# get 95% CI
for exit in exits:

prob of exit diff btw self made and not[exit][‘lower’][rank] =
scipy.stats.mstats.mquantiles(estimates for[exit], prob=[2.5/100.], alphap=1/3.,
betap=1/3.)[0]

prob of exit diff btw self made and not[exit][‘upper’][rank] =
scipy.stats.mstats.mquantiles(estimates for[exit], prob=[97.5/100.], alphap=1/3.,
betap=1/3.)[0]

# dump results
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filename = filepath + “prob of exit by self made type.pkl”
pickle.dump(prob of exit by self made type, open(filename, ‘wb’))
filename = filepath + “prob of exit diff btw self made and not.pkl”
pickle.dump(prob of exit diff btw self made and not, open(filename, ‘wb’))

else:

# load results that were dumped using pickle
prob of exit by self made type = pickle.load(open(filepath +

“prob of exit by self made type.pkl”, ‘rb’))
# load results that were dumped using pickle
prob of exit diff btw self made and not = pickle.load(open(filepath +

“prob of exit diff btw self made and not.pkl”, ‘rb’))

print “\nself made vs. not, typical person”
for exit in exits:

for type in self made types:
print exit, “\t”, type, “\t”, prob of exit by self made type[exit][‘lower’][type], “\t”,

prob of exit by self made type[exit][‘point’][type], “\t”,
prob of exit by self made type[exit][‘upper’][type]

print “\ndifference by rank”
for exit in exits:

for rank in ranks:
print exit, “\t”, rank, “\t”,
print prob of exit diff btw self made and not[exit][‘lower’][rank], “\t”,

prob of exit diff btw self made and not[exit][‘point’][rank], “\t”,
prob of exit diff btw self made and not[exit][‘upper’][rank]

## A GREAT RECESSION? ##

# The following code relates to the extension to the baseline duration model that includes a
FIRE industry dummy and interaction terms between that dummy and the year dummies

## GET SURVIVAL DATA FOR FIRE MODEL ##

# no one in the FIRE industry died in either 1999, 2000, or 2012, so we’ll just focus on the years
between 2001 and 2011

years from 2001 to 2011 = [str(y) for y in range(2001, 2011+1)]
# keep track of names associated with each spell
names associated w spells = list()
# keep track of ages and ranks
ages as dependent vars, ranks as dependent vars = list(), list()
# list of data for spells
data for spells = list()
# for each name
for name in names:

# get spells
spells = []
spell = []
for year in years:

wealth = data[name][‘wealth’][year]
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if wealth != ‘’:
spell.append(year)

else:
spells.append(spell)
spell = []

spells.append(spell)
# remove empty spells
while [] in spells:

spells.remove([])
# for each spell, record data
while len(spells) > 0:

spell = spells.pop()
# as long as the spell didn’t start in the last year
if spell == [years[−1]]:

pass
else:

# list of data for spell
data for spell = list()
# for each year of the spell
for i in range(0, len(spell)):

# year
year = spell[i]
next year = str(int(year)+1)
# if year is not the last year
if year != years[−1]:

# data for given year of the spell
data for year of spell = list()
# remains wealthy?
remains wealthy = int(i != len(spell)−1)
# exits by decline in wealth?
exits by decline in wealth = int(data[name][‘wealth’][next year] == ‘’)
# exits by death?
exits by death = int(name in dead in[next year])
# exits by renunciation of citizenship?
exits by renunciation of citizenship = int(name in renunciants in[next year])
# record dependent variable
if exits by renunciation of citizenship:

dependent var = 3 # where 3 = exits by renunciation of citizenship:
elif exits by death:

dependent var = 2 # where 2 = exits by death
elif exits by decline in wealth:

dependent var = 1 # where 1 = exits by decline in wealth
# would he or she been on the list with the same wealth as last year?
#if not float(data[name][‘wealth’][year]) >= summary stats[‘min’][next year]:
# print name, “\t”, year, “\t”, data[name][‘wealth’][year], “\t”,

summary stats[‘min’][next year]
else: # remains wealthy

dependent var = 0 # where 0 = remains wealthy
data for year of spell.append(dependent var)
# independent variables
# age
age = int(data[name][‘age’][year])
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age squared = age ∗ age
# rank
rank = summary stats[‘wealths’][year].index(float(data[name][‘wealth’][year])) + 1
# left−censored dummy
left censored = int(‘1982’ in spell)
data for year of spell.extend([1., age, age squared, rank, left censored]) # include a

constant
# ‘ dummy and fire−year interaction dummies
if int(year) > 1995:

# fire dummy
industry = data[name][‘industry’][year]
fire industry = int(industry in [‘Finance’, ‘Investments’, ‘Real estate’])
data for year of spell.append(fire industry)
# fire−year interaction dummies
for in years from 2001 to 2011:

data for year of spell.append(int(fire industry ∗ int(year == )))
else:

data for year of spell.append(‘−999’)
for in years from 2001 to 2011:

data for year of spell.append(‘−999’)
# dummies for years, but drop 1996
data for year of spell.extend([int(year == ) for in

years since 1996 less initial and last])
# dummies for durations of given number of years, except when there is a perfect

prediction problem
duration = (i + 1)
for in range(2, 27+1):

if 13 <= <= 15:
pass

else:
data for year of spell.append(int(duration == ))

data for year of spell.append(int(13 <= duration <= 15)) # 13, 14, or 15 years
data for year of spell.append(int(duration > 27)) # 28 or more years
# add to list
# ignore spells that end with exit by renunciation of citizenship
# also, ignore years of spells that are before 1996
if (data for year of spell[0] != 3) and (int(year) > 1995):

data for spell.append(data for year of spell)
ages as dependent vars.append(age)
ranks as dependent vars.append(rank)

# add to list
if (data for year of spell[0] != 3) and (int(year) > 1995):

data for spells.append(data for spell)
names associated w spells.append(name)

# No one died after their 14th consecutive year on the list, so we’ll make a dummy for 13, 14, or
15 years

## ORGANIZE FIRE DATA AND EXPORT IT ##

# organize data for estimation
dependent vars = list()
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independent vars = list()
for data for spell in data for spells:

for data for year of spell in data for spell:
dependent vars.append(data for year of spell[0])
independent vars.append(numpy.array(data for year of spell[1:]))

dependent vars = numpy.array(dependent vars)
independent vars = numpy.array(independent vars)
# export to file
f = open(filepath + “exported survival data w fire.csv”, ‘w’)
# write header
s = “dependent var,constant,age,age squared,rank,left censored,fire,”
for year in years from 2001 to 2011:

s += “fire” + “d” + year + “,”
for year in years since 1996 less initial and last:

s += “d” + year + “,”
for duration in range(2, 27+1):

if 13 <= duration <=15:
pass

else:
s += “d” + str(duration) + “,”

s += “d13 to 15” + “,”
s += “d28 or more” + “\n”
f.write(s)
# write data
for i in range(0, len(dependent vars)):

s = str(dependent vars[i])
for var in independent vars[i]:

s += ‘,’
s += str(var)

s += ‘\n’
f.write(s)

# close file
f.close()

## ESTIMATE FIRE MODEL ##

model = sm.MNLogit(dependent vars, independent vars)
fitted for fire = model.fit(disp=False)
#print fitted for fire.summary()

# probs of exits by fire industry or not
industries = [‘fire’, ‘other’]
prob of exit by industry = dict(zip(exits, [dict(zip([‘lower’, ‘point’, ‘upper’],

[dict(zip(years from 2001 to 2011, [dict(zip(industries, [None for industry in industries])) for
year in years from 2001 to 2011])) for in [‘lower’, ‘point’, ‘upper’]])) for exit in exits]))

prob of exit diff btw fire and other = dict(zip(exits, [dict(zip([‘lower’, ‘point’, ‘upper’],
[dict(zip(years from 2001 to 2011, [None for year in years from 2001 to 2011])) for in
[‘lower’, ‘point’, ‘upper’]])) for exit in exits]))

# set the following to True to re−estimate confidence intervals if they’ve already been estimated
re estimate = False
# check if confidence intervals have already been estimated
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filenames = [filepath + + “.pkl” for in [“prob of exit by industry”,
“prob of exit diff btw fire and other”]]

already estimated = False not in [isfile(filename) for filename in filenames]
# estimate or re−estimate
if not already estimated or re estimate:

# construct Krinsky−Robb confidence intervals by taking a large number of draws from a
multivariate normal with means equal to the estimated parameters and var−covar matrix
equal to the estimated var−covar matrix

numpy.random.seed(250624)
redrawn parameters =

numpy.random.multivariate normal(mean=fitted for fire.params.flatten(‘F’),
cov=fitted for fire.cov params(), size=10000)

import scipy.stats # for percentile confidence intervals

# probs of exits for each industry and each year
for industry in industries:

for year in years from 2001 to 2011:
X = [1, 64, 4096, 194, 0] # 64 years of age, rank of 194, no left censoring
# fire dummy and fire−year interaction terms
if industry == ‘fire’:

X.append(1)
fire year interaction terms = [0 for in years from 2001 to 2011]
if year == ‘1996’:

pass
else:

fire year interaction terms[years from 2001 to 2011.index(year)] = 1
else:

X.append(0)
fire year interaction terms = [0 for in years from 2001 to 2011]

X.extend(fire year interaction terms)
# year dummies
year dummies = [0 for in years since 1996 less initial and last]
if year == ‘1996’:

pass
else:

year dummies[years since 1996 less initial and last.index(year)] = 1
X.extend(year dummies)
# duration dummies
X.extend([0 for in range(1, 25+1)]) # duration of one year
n = len(X)
# point estimates for probs, given estimated parameters
eXb1 = numpy.exp(numpy.dot(X, fitted for fire.params.flatten(‘F’)[0:n]))
eXb2 = numpy.exp(numpy.dot(X, fitted for fire.params.flatten(‘F’)[n:]))
denominator = 1. + eXb1 + eXb2
prob of exit by industry[‘remain wealthy’][‘point’][year][industry] = 1. / denominator
prob of exit by industry[‘exit by decline’][‘point’][year][industry] = eXb1 / denominator
prob of exit by industry[‘exit by death’][‘point’][year][industry] = eXb2 / denominator
# point estimates for probs, given redrawn parameters
estimates for = dict(zip(exits, [[] for exit in exits]))
for b in redrawn parameters:

eXb1 = numpy.exp(numpy.dot(X, b[0:n]))
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eXb2 = numpy.exp(numpy.dot(X, b[n:]))
denominator = 1. + eXb1 + eXb2
estimates for[‘remain wealthy’].append(1. / denominator)
estimates for[‘exit by decline’].append(eXb1 / denominator)
estimates for[‘exit by death’].append(eXb2 / denominator)

# get 95% CI
for exit in exits:

prob of exit by industry[exit][‘lower’][year][industry] =
scipy.stats.mstats.mquantiles(estimates for[exit], prob=[2.5/100.], alphap=1/3.,
betap=1/3.)[0]

prob of exit by industry[exit][‘upper’][year][industry] =
scipy.stats.mstats.mquantiles(estimates for[exit], prob=[97.5/100.], alphap=1/3.,
betap=1/3.)[0]

# 95% CI for differences by year
for year in years from 2001 to 2011:

X = dict(zip(industries, [[1, 64, 4096, 194, 0] for industry in industries])) # 64 years of age,
rank of 194, no left censoring

# fire dummy and fire−year interaction terms
for industry in industries:

if industry == ‘fire’:
X[industry].append(1)
fire year interaction terms = [0 for in years from 2001 to 2011]
if year == ‘1996’:

pass
else:

fire year interaction terms[years from 2001 to 2011.index(year)] = 1
else:

X[industry].append(0)
fire year interaction terms = [0 for in years from 2001 to 2011]

X[industry].extend(fire year interaction terms)
# year dummies
year dummies = [0 for in years since 1996 less initial and last]
if year == ‘1996’:

pass
else:

year dummies[years since 1996 less initial and last.index(year)] = 1
for industry in industries:

X[industry].extend(year dummies)
# duration dummies
for industry in industries:

X[industry].extend([0 for in range(1, 25+1)]) # duration of one year
n = len(X[industries[0]])
# point estimates for probs, given estimated parameters
eXb1 = dict(zip(industries, [None for industry in industries]))
eXb2 = dict(zip(industries, [None for industry in industries]))
denominator = dict(zip(industries, [None for industry in industries]))
for industry in industries:

eXb1[industry] = numpy.exp(numpy.dot(X[industry],
fitted for fire.params.flatten(‘F’)[0:n]))

eXb2[industry] = numpy.exp(numpy.dot(X[industry], fitted for fire.params.flatten(‘F’)[n:]))
denominator[industry] = 1. + eXb1[industry] + eXb2[industry]
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prob of exit diff btw fire and other[‘remain wealthy’][‘point’][year] = (1. /
denominator[‘fire’]) − (1. / denominator[‘other’])

prob of exit diff btw fire and other[‘exit by decline’][‘point’][year] = (eXb1[‘fire’] /
denominator[‘fire’]) − (eXb1[‘other’] / denominator[‘other’])

prob of exit diff btw fire and other[‘exit by death’][‘point’][year] = (eXb2[‘fire’] /
denominator[‘fire’]) − (eXb2[‘other’] / denominator[‘other’])

# point estimates for probs, given redrawn parameters
estimates for = dict(zip(exits, [[] for exit in exits]))
for b in redrawn parameters:

eXb1 = dict(zip(industries, [None for industry in industries]))
eXb2 = dict(zip(industries, [None for industry in industries]))
denominator = dict(zip(industries, [None for industry in industries]))
for industry in industries:

eXb1[industry] = numpy.exp(numpy.dot(X[industry], b[0:n]))
eXb2[industry] = numpy.exp(numpy.dot(X[industry], b[n:]))
denominator[industry] = 1. + eXb1[industry] + eXb2[industry]

estimates for[‘remain wealthy’].append((1. / denominator[‘fire’]) − (1. /
denominator[‘other’]))

estimates for[‘exit by decline’].append((eXb1[‘fire’] / denominator[‘fire’]) − (eXb1[‘other’]
/ denominator[‘other’]))

estimates for[‘exit by death’].append((eXb2[‘fire’] / denominator[‘fire’]) − (eXb2[‘other’] /
denominator[‘other’]))

# get 95% CI
for exit in exits:

prob of exit diff btw fire and other[exit][‘lower’][year] =
scipy.stats.mstats.mquantiles(estimates for[exit], prob=[2.5/100.], alphap=1/3.,
betap=1/3.)[0]

prob of exit diff btw fire and other[exit][‘upper’][year] =
scipy.stats.mstats.mquantiles(estimates for[exit], prob=[97.5/100.], alphap=1/3.,
betap=1/3.)[0]

# dump results
filename = filepath + “prob of exit by industry.pkl”
pickle.dump(prob of exit by industry, open(filename, ‘wb’))
filename = filepath + “prob of exit diff btw fire and other.pkl”
pickle.dump(prob of exit diff btw fire and other, open(filename, ‘wb’))

else:

# load results that were dumped using pickle
prob of exit by industry = pickle.load(open(filepath + “prob of exit by industry.pkl”, ‘rb’))
# load results that were dumped using pickle
prob of exit diff btw fire and other = pickle.load(open(filepath +

“prob of exit diff btw fire and other.pkl”, ‘rb’))

# print results
print “\n\t\t”, “fire”, “\t\t\t”, “other”, “\t\t\t”, “difference”
for exit in exits:

for year in years from 2001 to 2011:
print exit, “\t”, year, “\t”, prob of exit by industry[exit][‘lower’][year][‘fire’], “\t”,

prob of exit by industry[exit][‘point’][year][‘fire’], “\t”,
prob of exit by industry[exit][‘upper’][year][‘fire’], “\t”,
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print prob of exit by industry[exit][‘lower’][year][‘other’], “\t”,
prob of exit by industry[exit][‘point’][year][‘other’], “\t”,
prob of exit by industry[exit][‘upper’][year][‘other’], “\t”,

print prob of exit diff btw fire and other[exit][‘lower’][year], “\t”,
prob of exit diff btw fire and other[exit][‘point’][year], “\t”,
prob of exit diff btw fire and other[exit][‘upper’][year]
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