We show that two capacitively-coupled Josephson junctions, in the quantum limit, form a simple coupled qubit system with effective coupling controlled by the junction bias currents. We compute numerically the energy levels and wave functions for the system, and show how these may be tuned to make optimal qubits. The dependence of the energy levels on the parameters can be measured spectroscopically, providing an important experimental test for the presence of entangled multiqubit states in Josephson-junction based circuits.