The maintenance and disambiguation of object representations depend upon feature contrast within and between objects
The brain processes many aspects of the visual world separately and in parallel, yet we perceive a unified world populated by objects. In order to create such a bound percept, the visual system must construct object-centered representations out of separate features and then maintain the representations across changes in space and time. Here, we examine the role of features themselves in maintaining and disambiguating the representations of the objects to which they belong. In three experiments, we measure how the perceived motion of two objects traversing ambiguous trajectories is affected by the contrast between the features and surrounding fields, by the contrast between features, and by changes to orientation of texture within objects. We report that the maintenance and disambiguation of object representations depend on the contrast of the features relative to their surrounds and on the extent of feature differences between the two objects. These feature dependencies indicate that object representation relies on relative response to many stimulus dimensions.