American University
auislandora_89620_OBJ.pdf (427.97 kB)

Radon as a natural tracer of gas transport through trees

Download (427.97 kB)
journal contribution
posted on 2023-08-05, 13:00 authored by J.P. Megonigal, Paul E. Brewer, Karen KneeKaren Knee

Trees are sources, sinks, and conduits for gas exchange between the atmosphere and soil, and effectively link these terrestrial realms in a soil–plant–atmosphere continuum. We demonstrated that naturally produced radon-222 (222Rn) gas has the potential to disentangle the biotic and physical processes that regulate gas transfer between soils or plants and the atmosphere in field settings where exogenous tracer applications are challenging. Patterns in stem radon emissions across tree species, seasons, and diurnal periods suggest that plant transport of soil gases is controlled by plant hydraulics, whether by diffusion or mass flow via transpiration. We establish for the first time that trees emit soil gases during the night when transpiration rates are negligible, suggesting that axial diffusion is an important and understudied mechanism of plant and soil gas transmission.



New Phytologist


New Phytologist, Volume 225, Issue 4, 1 February 2020, Pages 1470-1475.


Usage metrics

    Environmental Science


    No categories selected