American University
Browse

Carbon nanoelectrodes for the electrochemical detection of neurotransmitters

Download (3.66 MB)
journal contribution
posted on 2023-08-04, 06:37 authored by Alexander ZestosAlexander Zestos

Carbon-based electrodes have been developed for the detection of neurotransmitters over the past 30 years using voltammetry and amperometry. The traditional electrode for neurotransmitter detection is the carbon fiber microelectrode (CFME). The carbonbased electrode is suitable for in vivo neurotransmitter detection due to the fact that it is biocompatible and relatively small in surface area. The advent of nanoscale electrodes is in high demand due to smaller surface areas required to target specific brain regions that are also minimally invasive and cause relatively low tissue damage when implanted into living organisms. Carbon nanotubes (CNTs), carbon nanofibers, carbon nanospikes, and carbon nanopetals among others have all been utilized for this purpose. Novel electrode materials have also required novel insulations such as glass, epoxy, and polyimide coated fused silica capillaries for their construction and usage. Recent research developments have yielded a wide array of carbon nanoelectrodes with superior properties and performances in comparison to traditional electrode materials. These electrodes have thoroughly enhanced neurotransmitter detection allowing for the sensing of biological compounds at lower limits of detection, fast temporal resolution, and without surface fouling. This will allow for greater understanding of several neurological disease states based on the detection of neurotransmitters.

History

Publisher

International Journal of Electrochemistry

Handle

http://hdl.handle.net/1961/auislandora:77990

Usage metrics

    Chemistry

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC