American University
Browse
- No file added yet -

Antibiofilm activity of Actinobacillus pleuropneumoniae serotyoe 5 capsular polysaccharide

Download (2.82 MB)
journal contribution
posted on 2023-08-05, 10:46 authored by Michael T. Karwacki, Daniel E. Kadouri, Meriem Bendaoud, Era A. Izano, Vandana Sampathkumar, Thomas J. Inzana, Jeffrey B. Kaplan

Cell-free extracts isolated from colony biofilms of Actinobacillus pleuropneumoniae serotype 5 were found to inhibit biofilm formation by Staphylococcus aureus, S. epidermidis and Aggregatibacter actinomycetemcomitans, but not by A. pleuropneumoniae serotype 5 itself, in a 96-well microtiter plate assay. Physical and chemical analyses indicated that the antibiofilm activity in the extract was due to high-molecular-weight polysaccharide. Extracts isolated from a mutant strain deficient in the production of serotype 5 capsular polysaccharide did not exhibit antibiofilm activity. A plasmid harboring the serotype 5 capsule genes restored the antibiofilm activity in the mutant extract. Purified serotype 5 capsular polysaccharide also exhibited antibiofilm activity against S. aureus. A. pleuropneumoniae wild-type extracts did not inhibit S. aureus growth, but did inhibit S. aureus intercellular adhesion and binding of S. aureus cells to stainless steel surfaces. Furthermore, polystyrene surfaces coated with A. pleuropneumoniae wild-type extracts, but not with capsule-mutant extracts, resisted S. aureus biofilm formation. Our findings suggest that the A. pleuropneumoniae serotype 5 capsule inhibits cell-to-cell and cell-to-surface interactions of other bacteria. A. pleuropneumoniae serotype 5 capsular polysaccharide is one of a growing number of bacterial polysaccharides that exhibit broad-spectrum, nonbiocidal antibiofilm activity. Future studies on these antibiofilm polysaccharides may uncover novel functions for bacterial polysaccharides in nature, and may lead to the development of new classes of antibiofilm agents for industrial and clinical applications.

History

Publisher

PLOS

Handle

http://hdl.handle.net/1961/auislandora:72214

Usage metrics

    Biology

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC